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Eliciting Human Beliefs using Random Generation
Pablo León-Villagrá1 Lucas Castillo2 Nick Chater3 Adam Sanborn2

1Brown University, USA 2University of Warwick, United Kingdom
3Warwick Business School, United Kingdom

Abstract

Elicitation methods, such as asking people to produce the
deciles of a distribution, are standard practices in policy or ap-
plied statistics. However, these approaches often only capture
a rough outline of what people know. We investigated whether
tasks in which participants generate random sequences of
items can be used to elicit people’s implicit beliefs about the
distribution of these items. Because it remains unclear if, and
at what level of detail, people represent distributions, we ap-
plied both decile elicitation and random generation tasks to
uncover the kinds of environmental statistics investigated by
Griffiths and Tenenbaum (2006). We found that random gen-
eration is competitive with decile elicitation in predicting par-
ticipants’ expectations. Both random generation and decile
elicitation revealed that people know the rough shapes of en-
vironmental distributions. Random generation, however, goes
beyond decile elicitation in establishing the novel finding that
people are aware of fine details of environmental distributions.
Keywords: belief elicitation; sampling for inference

Introduction
“How long does this cake have to go in the oven?”
“I don’t know... Maybe 45 minutes?”

People routinely make inferences about everyday events
or the magnitude of common quantities and often give rea-
sonable guesses even without explicitly knowing the answer.
Furthermore, when these beliefs are not simply gut instinct,
but the result of acquired expertise, opinions and suggestions
play an essential role in guiding all areas of society, from po-
litical consultants to sports pundits or weather forecasters.

What is the basis of this ability? Theoretical accounts
range from proposals suggesting that people only acquire
knowledge of a small set of representative instances (Mozer,
Pashler, & Homaei, 2008), to peoples’ beliefs being based on
rough summaries (Tran, Vul, & Pashler, 2017), or complex
probability distributions (Griffiths & Tenenbaum, 2006).

The extent of theoretical dispute is partly due to the dif-
ficulty of directly accessing peoples’ beliefs. While experts
with statistical training might be able to express their beliefs
in statistical or computational formalisms, these ways of shar-
ing knowledge might be biased and coarse. Also, the beliefs
of statistical non-experts might not be readily communicated
or accessible.

Belief Elicitation Methods
Given the importance of accessing peoples’ beliefs and the
challenges faced in eliciting them, fields ranging from ap-

plied statistics to psychology have devised methods to max-
imize efficiency and standardize the results of belief elicita-
tion methods. Most prominent elicitation methods, such as
SHELF (Gosling, 2018), query experts for statistics of the
distributions. For example, an expert might be asked to give
the limits, mean, quartiles, or a combination of these mea-
sures (O’Hagan et al., 2006). These procedures can some-
times also be administered visually, for example, by asking
participants to assign chips proportionally to the frequency of
histogram bins or by displaying the best-fitting distribution
corresponding to an elicited statistic to the participant (Jones
& Johnson, 2014; for a recent review of elicitation methods,
see Mikkola et al., 2021).

While these techniques have been studied extensively in
applied statistics, it is less clear how useful they are when
used with non-experts. In addition, these methods can usu-
ally only produce rough, low-dimensional outlines, and the
elicitation can be biased to particular distributions. Further-
more, in setting up prior elicitation tasks, experimenters face
many degrees of freedom, with potentially very different re-
sults (Stefan, Evans, & Wagenmakers, 2020), and there is
no satisfactory theoretical framework for assessing how these
degrees of freedom influence the task (Mikkola et al., 2021).

From a psychological perspective, there is strong evidence
that people’s estimates can be biased. Most relevant to be-
lief elicitation, participant judgments can be biased towards
previous values (the anchoring bias, Tversky & Kahne-
man, 1974). Furthermore, even experts are prone to exhibit
an overconfidence bias, producing overly narrow estimates
(McKenzie, Liersch, & Yaniv, 2008). Finally, it is unclear
if people can accurately learn distributions at all. In experi-
ments by Tran et al. (2017), participants were not able to re-
produce the bimodal distribution over previously encountered
objects (but also consider Griffiths & Tenenbaum, 2006; San-
born & Beierholm, 2016, arguing that people can reproduce
distributional knowledge).

Random Generation as a Belief Elicitation Method?
Here we suggest a novel method to capture people’s beliefs
— asking participants to produce a sequence of random in-
stances of the domain. This approach is deceptively simple:
instead of carefully constructing choice situations to debias
participants, our method asks people to quickly come up with
random instances. This simplicity makes random generation
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an attractive experimental method. Furthermore, people can
produce many random values in a short amount of time, al-
lowing the uncovering of distributional properties of people’s
beliefs. Finally, since no numerical information is given to
participants, the task may be less susceptible to anchoring and
other biases.

People’s systematic deviations from randomness when ex-
plicitly instructed to produce random sequences have been
studied since pioneering work by Baddeley (1966). While
the focus of this line of research has been on characterizing
deviations from pure randomness, mostly studying random
sequences of integers or letters (for a review, see Nicker-
son, 2002), some early results suggested that the random se-
quences people produce reflect features of the domain. For
example, when studying how people produce random se-
quences for a small set of alternatives, people tend to pro-
duce uniform distributions (Teraoka, 1963), but not when
the alternative set is large (Rath, 1966; Bakan, 1960). In-
terestingly, these results also showed that people produced
the number one disproportionately often, which matches en-
vironmental frequencies of small digits (Benford’s law, Rath,
1966). The idea that people use distributional knowledge of
the domain to access random samples when tasked to pro-
duce random sequences was only recently more directly stud-
ied. Motivated by the theoretical idea of human inference as
sample-based (for a recent review, see Chater et al., 2020), re-
sults by Castillo, León-Villagrá, Chater, and Sanborn (2021)
showed that manipulating distributional features of the do-
main in which participants were tasked to generate sequences
resulted in manipulation-dependent signatures in their se-
quences. Furthermore, recent work suggests that random gen-
eration can be performed in varied domains, and sequences
obtained in these experiments exhibit domain-specific signa-
tures (Castillo, León-Villagrá, Chater, & Sanborn, 2022).

Here, we evaluated if random generation tasks could pre-
dict participants’ beliefs about environmental statistics, and
how these predictions compared to predictions based on
decile elicitation. We hypothesized that random generation
would generally be on-par with decile elicitation, but be
preferable when the target domain is not a simple parametric
distribution. We also evaluated potential carry-over between
the tasks. For example, it is plausible that performing the ran-
dom generation task would highlight outliers, subsequently
resulting in broader decile distributions.

Experiment
Participants
The study was certified following departmental ethics guide-
lines. We recruited 60 participants, (Mage = 41.08, SDage =
12.39, 28 female, 30 male, 2 non-binary) on Amazon Me-
chanical Turk, following pre-registered criteria1. Participants
had to have an MTurk Masters qualification, be located in
the United States, and have more than 100 approved HITs

1For the full preregistration, including exclusion criteria and
planned analysis, see https://osf.io/a6g3r

with an approval rate of 95% or higher. Twenty-four ad-
ditional participants were excluded following one or several
pre-registered criteria2. We also excluded an additional par-
ticipant who only provided one unique value in the condi-
tional estimation task and predicted all baking times to be
90 minutes long. Given that this prediction pattern repre-
sented an extreme outlier (the median number of unique val-
ues was 5, M = 4.27, SD = 0.94) and the normalized root
mean squared deviation is not defined for zero-variance re-
sponses, we decided to exclude this participant. Participants
were paid a flat fee of $3. The experiment took about 10 min-
utes to complete (M = 9.31, SD = 2.80).

Materials
As more than 15 years have passed since the publication of
Griffiths and Tenenbaum (2006), we collected up-to-date data
from similar sources, see Table 1.

Table 1: Data sources used to establish environmental statis-
tics. For cake baking times, we parsed all cake recipes in the
dessert category. For movie lengths, we excluded series and
other non-movies and excluded movies with runtimes longer
than 10 hours. All sources were accessed in October 2021.

Data set Source Points
Lifespans 2018 Life Tables (Arias & Xu, 2020)
Movie Gross www.worldwideboxoffice.com 5460
Movie Length www.imdb.com 372655
NFL www.pro-football-reference.com 33836
Pharaohs www.metmuseum.org 182
Cakes www.allrecipes.com 3849

Procedure
To ensure that participants had a functioning audio setup and
were comfortable saying numbers aloud at the pace of the
metronome (30 ticks per minute), immediately after the first
set of instructions, participants completed a 15-second prac-
tice trial. The practice trial followed the same structure as
the random generation block, but participants were prompted
to produce numbers between 0 and 10 for 15 seconds. Once
participants completed the practice, they could listen to their
recording, and if they judged the audio quality to be insuf-
ficient, re-record the block. Then, participants were shown
the experiment instructions and had to pass a comprehen-
sion check. Finally, participants proceeded to either the ran-
dom generation (RG) or decile elicitation (DE) task. For an
overview of the procedure, see Figure 1.

Random Generation Block (RG): Participants first re-
ceived brief instructions about the domain for which they

211 did not produce any numbers in the RG block, 4 produced
invalid CE values (≥ 2 initial submissions lower than the observed
value), 7 produced invalid DE submissions (the submitted value was
not greater than or equal to the previous decile), and 9 did not record
the familiarization task.
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Random Generation Decile Elicitation Conditional Exp.

Figure 1: The experiment consisted of three main blocks. In the random generation block, participants had to say values aloud
at random. In the decile elicitation block, participants had to judge the value corresponding to a proportion of the domain. In
the conditional expectation task, participants were tasked to predict the total final value given an observation.

had to sample values, e.g., “Your task is to produce the to-
tal amount of box office revenues (in millions) at random at
each tick of the metronome”. Next, they were instructed to
imagine that they had written all items on sheets of paper, put
them in a hat, shuffled, and retrieved them at random, one
at a time. Then they proceeded to the two-minute random
generation task, where audio was recorded, and the domain
instructions were shown again. A metronome played a tick-
ing sound at 30 ticks per minute to ensure that participants
kept pace throughout the task.

Decile Elicitation Block (DE): Participants had to provide
values for the deciles at 11 points (0, 10%, . . . , 100%), fol-
lowing a prompt, e.g., “Imagine that we have sorted the to-
tal amount of box office intake for all movies from least to
most intake. The red line indicates the box office intake of
a movie (in millions). {p}% of all box office intakes were
lower than the movie intake in red. {100− p}% were higher
than the movie intake in red.”, similar to Achtypi, Ashby,
Brown, Walasek, and Yechiam (2021).

The range of sorted values was presented as a horizontal
bar, with marks at the 11 points and the current query high-
lighted. Participants typed their responses into a textbox, and
once they submitted their choice, the value appeared above
the corresponding mark. Since the two extreme points (0,
100%) could influence subsequent submissions, we presented
these first (starting with 0). The remaining 9 points were pre-
sented in random order. Participants could correct previous
submissions at any point of the task by clicking on them and
entering a new number.

Conditional Expectation (CE): After the RG and DE
blocks, participants proceeded to the conditional expectation
(CE) task. They were presented with 15 questions in which
they had to predict a value, given an observation. These ques-
tions corresponded to three domains with five observed values
each (shown in random order). For domains used by Griffiths
and Tenenbaum (2006), we used the same questions.

Following Tauber, Navarro, Perfors, and Steyvers (2017),
we did not allow participants to submit values smaller than
the observed value and instead prompted participants to re-
submit a valid value. Participants received the same domain

as in the RG and DE tasks and two additional domains. Do-
mains were shown interlaced, with the RG and DE domain
always being shown third in the sequence.

Survey: Finally, participants completed a short survey
about their expertise for the domains in the CE block (on a
scale from 0 [no knowledge] to 6 [expert]), as well as their
age and gender, which they could decline to answer.

Results
Decile Elicitation
Participants only rarely corrected their estimates (M = 11.63,
SD = 1.58 submissions for 10 deciles). To allow us to de-
rive conditional expectations corresponding to the DE task,
we first fitted three target distributions (Normal, Gamma, and
Pareto) to participants’ data by minimizing mean-squared er-
ror (MSE) on the deciles, similar to the fitting procedure in
Gosling (2018).

Participants were best fit by the Normal distribution (73%)
or the Gamma distribution (27%), and no participant was
best-fit by the Pareto distribution. This split across Nor-
mal and Gamma distributions was fairly consistent across
domains, with NFL (100%), lifespans (90%), movie gross
(70%), and baking times (70%) all strongly favoring Normal-
ity. Only for movie lengths (60% Normal) and pharaohs (50%
Normal), participants were more frequently fit by a Gamma
distribution. For individual DE data and the corresponding
environmental data, see Figure 2.

Random Generation
Overall, participants produced numbers close to the targeted
60 numbers (M = 59.08, SD = 1.15). We again fitted the
three candidate distributions for direct comparison to the DE
task. In contrast to the DE data, we now fitted distributions
directly to the samples via maximum-likelihood estimation.
In contrast to the DE task, we find most responses were fit
better by the more flexible Gamma distribution (82%) over
the Normal distribution (18%).

This preference was consistent across conditions, with bak-
ing times, movie gross, pharaohs (100%), and movie lengths
(80%) being better fit by Gamma distributions, and NFL
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Figure 2: Per-participant cumulative density functions (col-
ored lines) corresponding to the DE task along with environ-
mental data (dashed line). Lifespans and Pharaoh reigns are
in years, cake baking times and movie lengths in minutes,
movie gross earnings in millions of USD.

(60% Normal) and lifespans (50% Normal). For the empir-
ical cumulative distribution function (ECDF) corresponding
to participants’ RG data, see Figure 3.
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Figure 3: Per-participant cumulative density functions (col-
ored lines) corresponding to the RG task along with environ-
mental data (dashed line).

Matching Environmental Statistics
Next, we assessed how closely both tasks could reproduce the
environmental data. One deviation from environmental statis-
tics was immediately apparent – participants’ DE and RG
data for lifespans. These results were surprising since we had
expected participants to have well-established beliefs about
lifespans. One possible explanation for this consistent mis-
match could be that participants misinterpreted the prompt,
producing random sequences and deciles matching the age
distribution of living people instead.

We calculated the maximum absolute difference between
the environmental data and either the DE task or the ECDF
of the RG task (Kolmogorov–Smirnov or KS distances). To

0.0 0.2 0.4 0.6 0.8 1.0
KS

Lifespans

Pharaohs

Cakes

Movie Gross

Movie Lengths

NFL

RG
DE

Figure 4: KS distance between environmental distributions
and elicitation data.

ensure that all cumulative density functions (CDF) were de-
fined on the same domains, we used a linear interpolation of
the ground-truth ECDF and limited the evaluation points for
RG to the 11 deciles, as presented in the DE task. While KS
distances were slightly lower for the RG task compared to
DE (MDE = 0.40, SDDE = 0.18; MRG = 0.36, SDRG = 0.19),
KS distances varied considerably across domains, see Figure
4. We did not find a significant effect of task on KS dis-
tances when fitting a linear mixed-effects model, KS ∼ task,
with varying intercepts for domain and participants (β= 0.02,
SE = 0.01, t(59) = 1.75, p = .085).

As an exploratory analysis, we compared the variance of
the environmental data to that of participants’ RG and DE
data. If the RG or DE variance is smaller than the envi-
ronmental variance, this suggests that people recall a small
set of environmental values to perform the tasks, similar to
the model suggested by Mozer et al. (2008). If participants
instead reproduce environmental statistics, as suggested by
Griffiths and Tenenbaum (2006), we would expect RG and
DE variance to match the environmental variance. Finally, if
RG or DE variance is larger than the environmental variance,
this suggests that participants use a more complex and poten-
tially adaptive (Feldman, 2013) statistical inference. To re-
produce variances from DE data, we sampled a large (10000)
random sample via inverse sampling. We then subtracted
the task variance (RG or DE) from the environmental vari-
ance. Since domains considerably differed in their variance,
we standardized the variances by dividing by the domain-
specific SD. A linear mixed-effects model with sum-contrast
codes for task type (RG or DE) and random intercepts per
participant and domain found a small negative effect of task
type (β = −0.21, SE = 0.07, t(5) = −3.00, p = .039), with
marginal means for DE suggesting a larger difference be-
tween task and environmental variance (M = −0.85, SE =
0.28) than for RG (M = −0.42, SE = 0.28). Overall, there
was a negative, albeit insignificant, intercept, suggesting that
task variance was at least not smaller than empirical variance
(β =−0.63, SE = 0.27, t(5) =−2.35, p = .066).
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Testing Signatures of NFL Knowledge in RG: One ad-
vantage of RG over alternative prior elicitation methods is
that RG can potentially investigate idiosyncratic distributions.
This is especially important when distributions exhibit “gaps”
of low density or even impossible values. Alternative elic-
itation methods would require the experimenter to focus on
these regions a-priori and ensure that methods exhibit appro-
priate resolution in the low-density areas. In practice, this
can be problematic since prior elicitation is usually adopted
when detailed knowledge of the distribution is not available.
In contrast, eliciting knowledge via RG can, in principle, re-
veal these characteristic gaps, as knowledgeable participants
would likely deem them salient and memorable features of
their acquired knowledge. To test this hypothesis, we eval-
uated if participants in the NFL condition reproduced char-
acteristics of the distribution over NFL scores and how their
self-reported expertise affected this relationship. Due to the
scoring rules in the NFL, some scores are improbable, or have
not occurred in professional practice at all, see Figure 5.

0 20 40 60
Total points scored by one team

Fr
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nc

y

0 1 2 3 4 5 6 7 8 910

Figure 5: Points scored by one team in the history of the NFL.
Due to its complex scoring rules, some final scores are ex-
tremely infrequent, or have not occurred at all.

First, we tested how strongly participants’ RG distributions
correlated with the environmental distribution. We correlated
individual participants’ frequencies with environmental fre-
quencies for low team scores (0-10 points scored), and found
that on average, participant frequencies correlated signifi-
cantly with environmental frequencies (M = 0.43, SD= 0.29,
t(9) = 4.7, p < .001). In addition to establishing that par-
ticipants’ frequencies were positively related to environmen-
tal statistics, we were also interested in the relationship be-
tween participants’ self-reported expertise and how closely
the shape of their RG distribution over low NFL scores resem-
bled the true distribution. We calculated the Wasserstein, or
earth mover’s distance, for frequencies of scores in the range
of 0-10 for each participant. The subset of participants in
our study who performed the RG and DE tasks for the NFL
domain did not consider themselves knowledgeable for NFL
scores (M = 1.7, SD = 1.57, min = 0, max = 4, out of a max-
imum score of 6). Nevertheless, we found a small negative
relationship between self-reported expertise and similarity of
the RG distributions to the low-range environmental scores
when regressing Wasserstein distances with centered exper-

tise ratings (β=−2.08, SE = 0.90, t(8)=−2.325, p= .049).

Conditional Expectation
On average, participants’ CE data matched ground-truth dis-
tributions well, see Figure 6, though we are mainly interested
in how well RG and DE predict these judgments as a measure
of their internal validity.
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Figure 6: Participants’ conditional expectations (y-axis) given
an observation (x-axis) in the CE task and conditional expec-
tations derived from environmental data (dashed lines).

To assess how well the distributions elicited in RG and
DE tasks matched participants’ CE judgments, we followed
previous work by sampling from the conditional distribution
elicited in the DE or RG task and predicting the median of the
obtained distribution (Griffiths & Tenenbaum, 2006; Mozer et
al., 2008; Tauber et al., 2017). We then used the normalized
root mean-squared deviation (NRMSE; Mozer et al., 2008) to
assess how well this prediction fit the CE task.

To obtain samples from the RG task, we sampled with re-
placement from the empirical distribution and dropped values
smaller than the observed value in the CE task. To sample
from the DE task, we used two approximations of the dis-
tribution implied by participants’ DE data. First, we used
the best-fitting distributions and sampled from the conditional
distribution. Alternatively, we sampled using inverse trans-
form sampling, which allowed us to map uniform samples to
the max entropy distribution implied by DE via the CDF.

Overall, both RG and DE data were similar in predicting
participants’ CE behavior. Thirty-two participants were best
fit by RG (52%), whereas 28 were best fit by DE (15 via best-
fit distributions, 13 via max entropy, 25%, and 22%, respec-
tively).

We then assessed which of the two tasks produced lower er-
rors by fitting a linear mixed-effects model with a main effect
of task and random intercepts for participants and domains.
We found a significant effect of task on NRMSE (β = 0.18,
t(59) = 2.06, SE = 0.09, p = .044), with marginal means
for RG (M = 1.17, SE = 0.2) lower than DE (M = 1.53,
SE = 0.2), see Figure 7. Finally, we also assessed how the
aggregation of RG data performed in predicting participants’
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Figure 7: Predicting participants’ CE from their RG data, the distribution corresponding to DE (or max-entropy interpolation,
DEMEnt). Both DE and RG were competitive with predictions based on the full set of environmental data (dashed line). Overall,
RG produced lower NRMSE than DE and this fit could be further improved by aggregating across participants (RGagg).

CEs. A linear mixed-effects model contrasting RG and ag-
gregations of RG on NRMSE, with random intercepts for do-
main and participant, found a significant effect (β = 0.14,
t(59) = 3.01, p = .004), with marginal means for aggrega-
tion significantly lower (M = 0.89, SE = 0.14) than non-
aggregated RG (M = 1.17, SE = 0.14). These results show
that pooling small groups of RG data can produce consistent
elicitation of participants’ implicit knowledge and suggests
that longer generation tasks may produce even better results.

Order Effects and Distribution Spread
To assess if the order of tasks affected the standardized range
of the DE distributions, we fitted a linear mixed-effects model
with a random intercept per domain. In contrast to our hy-
pothesis that there would be carryover effects, we found
no significant effect of task order on DE ranges (β = 0.67,
t(53) = 0.03, SE = 24.76, p = .98) and ranges for orders in
which DE was performed first (M = 154, SD = 63.1) were
almost identical to RG first (M = 153, SD = 63.1).

Discussion
Our work investigated whether random generation tasks can
be used to elicit people’s implicit beliefs about the distri-
bution of everyday quantities. When we assessed the inter-
nal validity of random generation by predicting participants’
judgments in a conditional expectation task, we found that
overall, random generation could capture participants’ judg-
ments as well as decile elicitation. Furthermore, these predic-
tions could be significantly improved by aggregating small
groups of participants. Next, we found that random gener-
ation could reproduce environmental data as accurately as
decile elicitation. We then explored the ability of random
generation tasks to reproduce fine details of the environmen-
tal distributions — information that is challenging to uncover
with alternative elicitation methods. Our results suggest that

people are generally aware of the shapes of environmental
distributions, even those fine details embodied in the distri-
bution of NFL final scores, and people’s ability to reproduce
these details increased with expertise. In addition, we found
that the elicited variances were as large or larger than those
of the environmental distributions, suggesting that people in-
fer distributions of values, rather than perfectly remembering
a small set of experienced values (Spicer, Sanborn, & Beier-
holm, 2020).

While these results suggest that random generation is on-
par with decile elicitation in assessing peoples’ beliefs, our
results also highlight the complementary strengths of the ap-
proaches. For example, our results suggest that decile elic-
itation can bias participants towards linear interpolation of
deciles which could explain the better fit of Gaussian distribu-
tions across domains. In contrast, the random generation task
exhibited more skewed distributions, suggesting that partici-
pants produced more flexible, or possibly noisy, distributions.
In addition to the advantages highlighted here, random gen-
eration has an additional advantage as an elicitation method
— it is not limited to numerical domains. Thus, it could be
used more widely to elicit people’s beliefs for domains that
can be easily verbalized, and we are currently exploring this
possibility.

However, we do not believe that a method will be univer-
sally preferable or that random generation does not exhibit
potential task-specific biases. Instead, we take these results to
suggest that prior elicitation should ideally use several com-
plementary methodologies, and random generation offers at-
tractive features such as producing data at a high pace and
not requiring assumptions about the underlying distribution
(Mikkola et al., 2021). Future work should establish the per-
formance of combinations of elicitation methods and assess
random generation tasks in the context of modern alternatives
(Sanborn, Griffiths, & Shiffrin, 2010).
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