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Phenotypic data are critical for understanding biological mechanisms and consequences of genomic variation, and are pivotal for clinical 
use cases such as disease diagnostics and treatment development. For over a century, vast quantities of phenotype data have been col
lected in many different contexts covering a variety of organisms. The emerging field of phenomics focuses on integrating and interpret
ing these data to inform biological hypotheses. A major impediment in phenomics is the wide range of distinct and disconnected 
approaches to recording the observable characteristics of an organism. Phenotype data are collected and curated using free text, single 
terms or combinations of terms, using multiple vocabularies, terminologies, or ontologies. Integrating these heterogeneous and often 
siloed data enables the application of biological knowledge both within and across species. Existing integration efforts are typically lim
ited to mappings between pairs of terminologies; a generic knowledge representation that captures the full range of cross-species phe
nomics data is much needed. We have developed the Unified Phenotype Ontology (uPheno) framework, a community effort to provide 
an integration layer over domain-specific phenotype ontologies, as a single, unified, logical representation. uPheno comprises (1) a sys
tem for consistent computational definition of phenotype terms using ontology design patterns, maintained as a community library; (2) a 
hierarchical vocabulary of species-neutral phenotype terms under which their species-specific counterparts are grouped; and (3) map
ping tables between species-specific ontologies. This harmonized representation supports use cases such as cross-species integration of 
genotype-phenotype associations from different organisms and cross-species informed variant prioritization.
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Introduction
Phenotypes are observable or measurable characteristics of an 
organism resulting from the interaction of its genotype with the 
environment. Collecting and analyzing information about pheno
types, known as phenotyping, is fundamental to biological science 
and has many applications: clinicians record a patient’s pheno
typic profile to facilitate a more accurate diagnosis; researchers 
record phenotypic profiles of model organisms to assess interven
tions (genetic or drug or otherwise); database curators integrate 
phenotype data with other data types by extracting phenotypes 
from data sources that are typically unstructured. As the body 
of phenotype data has expanded, researchers have looked for 
ways to use this collective knowledge, but the disparate methods 
used to record these data have posed an impediment.

Variation in alleles of orthologous genes can result in similar 
phenotypes across species and taxa. For example, PAX6 gene mu
tations can lead to human eye phenotypes similar to the mouse 
phenotypes caused by Pax6-ortholog alleles (Lima Cunha et al. 
2019). Based on similar FOXP2 phenotypes across humans, pri
mates, mice, and even birds, important inferences can be made 
about neural mechanisms that contribute to the evolution of hu
man spoken language (Fisher and Scharff 2009). Evolutionarily 
conserved functions of myostatin gene orthologs manifest in simi
lar muscle growth phenotypes across several vertebrate species 
(Rodgers and Garikipati 2008). All these examples suggest that 
phenotypic similarity frequently correlates with the conserved 
function of gene products and regulatory networks. Identifying 
similar phenotypes across species can provide not only support
ing evidence for conserved gene function but also the possibility 
of modeling phenotypes in experimentally accessible model or
ganisms to facilitate useful discoveries in agricultural or medical 
research.

Phenotype ontologies have been developed to reduce ambiguity 
and relate similar phenotypes, making it possible for computational 
methods to group phenotypes easily. However, these ontologies 
have been developed to meet specific use cases and they are widely 
used in those communities. For example, the Human Phenotype 
Ontology (HPO) (Gargano et al. 2024) has been designed to provide 
a standardized vocabulary of phenotypic abnormalities and clinical 
features encountered in human disease and is a recognized stand
ard for the computational encoding of human phenotyping data. 
HPO enables computational inference, supports genomic and 

phenotypic analyses, and has widespread applications in clinical 
diagnostics and translational research. Similarly, the Mammalian 
Phenotype Ontology (MP) (Smith and Eppig 2009) has been devel
oped to meet the needs of mammalian model organism data. The 
specific needs of each community influence the design of each 
ontology. As a result, despite significant overlap between species- 
specific ontologies, there are notable differences in their axiomati
zation, classification, and coverage.

As the evolutionary distance between the species increases, the 
differences in their phenotype ontologies also expand. Ontologies 
for describing phenotypes of the fruit fly Drosophila melanogaster 
(Drosophila Phenotype Ontology, DPO) (Osumi-Sutherland et al. 
2013), nematode Caenorhabditis elegans (C. elegans Phenotype 
Ontology, WBPhenotype) (Schindelman et al. 2011) and the fission 
yeast S. pombe (Fission Yeast Phenotype Ontology, FYPO) (Harris 
et al. 2013), developed to address specific needs of the respective 
communities, differ extensively in terms of both term organiza
tion (the taxonomy, i.e. hierarchy of terms) and the scope (for ex
ample, anatomical, cellular, or molecular level) and granularity of 
phenotypes covered. (See Table 1 for a list of eukaryotic single and 
multicellular species-specific phenotype ontologies developed to 
describe scientific data in their respective communities).

In addition, phenotype standardization and integration across 
species is complicated by the fact that communities use different ap
proaches to annotate phenotypes: while some use pre-composed 
phenotype ontology terms (for example, HP:0007843 “Attenuation 
of retinal blood vessels”), others, such as Saccharomyces Genome 
Database (SGD) and Zebrafish Information Network (ZFIN), use a 
post-composed approach: the different constituents of the pheno
type are captured individually during the curation process using sev
eral terms from multiple domain-specific ontologies (for example: 
GO:0061304 “retinal blood vessel morphogenesis”—PATO:0002302 
“decreased process quality”) (Mungall et al. 2010).

While each approach to describing phenotypes provides stand
ardization for the use cases of a specific community, comparing 
phenotype data from more than 1 species at scale is difficult 
and/or very time consuming, as it cannot be done computational
ly. In contrast, the use of species-neutral ontologies, such as the 
Gene Ontology (GO) (Ashburner et al. 2000) and Uberon (Mungall 
et al. 2012) allows for easier interoperability across a range of tax
ons. GO is regularly used in many types of large-scale molecular 
biology experiments, including in genomics, transcriptomics, pro
teomics, or metabolomics. Annotations made in 1 species may be 

Table 1. Domain-specific phenotype ontologies currently integrated into uPheno.

Ontology Taxon
Term count (release 

version) Reference

MP Mammalia 14,206 (v2024-08-08) Smith and Eppig (2009)
HPO Homo sapiens 18,987 (v2024-08-13) Gargano et al. (2024)
Zebrafish Phenotype Ontology (ZP) Danio rerio 47,443 (v2024-04-18) https://github.com/obophenotype/zebrafish- 

phenotype-ontology
WBPhenotype Nematoda 2,649 (v2024-06-05) Schindelman et al. (2011)
DPO Drosophilidae 253 (v2024-04-25) Osumi-Sutherland et al. (2013)
Dictyostelium Phenotype Ontology 

(DDPHENO)
Dictyostelium 

discoideum
1,017 (v2023-08-26) Fey et al. (2019)

Planarian Phenotype Ontology (PLANP) Planaria 647 (v2020-03-28) Nowotarski et al. (2021)
XPO Xenopus 20,340 (v2024-04-18) Fisher et al. (2022)
FYPO Schizosaccha romyces 

pombe
8,056 (v2024-08-01) Harris et al. (2013)

Pathogen-host interaction phenotype 
ontology (PHIPO)

General 1,104 (v2024-04-04) https://github.com/PHI-base/phipo

Molecular glyco-phenotype ontology 
(MGPO)

General 120 (v2024-04-18) Gourdine et al. (2019)

Ascomycete Phenotype Ontology (APO) Ascomycota 342 (v2024-04-26) Engel et al. (2010)
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automatically applied to other species based on orthology, and 
cross-species data is easily visualized on many platforms. 
Similarly, Uberon, the cross-species anatomy ontology, can be 
used to visualize expression data across species with minimal ef
fort (Aleksander et al. 2023; Bult and Sternberg 2023). Phenomics is 
a relatively young discipline and it has yet to establish a similar le
vel of standardization to GO (Brown et al. 2018; Rahman and 
Rahman 2019). Phenomics vocabularies are developed largely as 
independent, siloed projects by different communities for differ
ent purposes, are often species-specific, and even within the 
same organism can have multiple, incompatible representations. 
This ultimately hampers the ability to compare phenotype data 
across species.

A species-neutral phenotype ontology could integrate phenotype 
data from any species, allowing for more straightforward incorpor
ation of emerging model organisms and other non-model species, 
and expanding the scope of comparative biological research. Tools 
that combine human-specific data with data from only 1 or 2 model 
organisms have already proven significant performance gains in 
variant analysis (Smedley et al. 2015), disease diagnosis (Sun and 
Hu 2016), and potential disease model identification (Dickinson 
et al. 2016). Such integrated data could help clinicians to select mod
els that best address their research questions, identify cases where 
phenotypes are or are not associated with variants in orthologous 
genes, and uncover factors that influence disease penetrance and 
severity (Cirincione et al. 2018). Phenotype integration also provides 
a robust approach to align molecular-level phenotypes across large 
evolutionary distances. For example, the reuse of phenotypic data 
and variant associations from yeast models such as Saccharomyces 
cerevisiae and Schizosaccharomyces pombe can enable predictions re
lated to the molecular basis for diseases, particularly when con
served residues are present in human orthologs.

Efforts such as the Monarch Initiative, the Alliance of Genome 
Resources, Planteome, and PhenomeNET have integrated a selec
tion of phenotype data employing a variety of methodologies such 
as the Entity–Quality (EQ) methodology (Bult and Sternberg 2023; 
Putman et al. 2024; Rodríguez-García et al. 2017; Cooper et al. 2024) 
and lexical and logical matching. The Unified Phenotype Ontology 
(uPheno) framework described here builds upon and improves 
these approaches to establish a unified structure for capturing 
phenotypic information across species, maintained as a commu
nity initiative and applied to a variety of cross-species use cases 
including clinical diagnostics, data discoverability, and data 
standardization.

Results
uPheno framework
We have developed uPheno, a framework for cross-species inte
grative phenomics. uPheno has 3 main components: the uPheno 
ontology, a library of design patterns (templates) for computation
ally tractable phenotype definitions, and a number of standar
dized mappings to connect disparate phenotype ontologies. The 
uPheno ontology currently integrates 12 species-specific pheno
type ontologies (Table 1, Supplementary Fig. 1), which are used 
by a wide range of databases from the domain of model organ
isms, including all databases participating in the Alliance of 
Genome Resources (Bult and Sternberg 2023), and leverages previ
ous efforts to integrate species-specific anatomy ontologies, most 
notably in the Uberon ontology (Haendel et al. 2014) and Cell 
Ontology (CL) (Diehl et al. 2016).

Every phenotype term in the uPheno ontology represents a devi
ation from a reference phenotype (for example, wild-type) defined 

using a specific design pattern from our library (see Data availability). 
This enables phenotype classes to be defined in a consistent logical 
framework rather than defining each phenotype class manually. 
For example, the phenotype term UPHENO:0001471 “increased 
size of the heart” can automatically be generated, along with labels 
and logical axioms, and accurately classified by instantiating an 
increasedSizeOfAnatomicalEntity pattern with a UBERON:0000948 
“heart” class from the anatomy ontology Uberon. In addition to 
the uPheno ontology, which includes logical connections to all 
species-specific ontologies, standardized mapping tables are pro
vided with direct links between species-specific and species-neutral 
ontologies.

Library of computational phenotype patterns
The majority of ontologies in biomedical sciences, especially those 
covering model organisms, are curated manually using tools such 
as Protege (Musen 2015). The use of design patterns to augment 
ontology development processes in the Open Biological and 
Biomedical Ontologies (OBO) (Jackson et al. 2021) community be
came popular with the emergence of easy-to-use templating sys
tems such as DOSDP (Osumi-Sutherland et al. 2017). Rather than 
manually specifying a term such as “abnormally increased glucose 
levels in the blood” (which includes writing a human-readable def
inition, a label, and logical axioms), a DOSDP pattern defines a tem
plate for terms of the type “abnormally increased X levels in the Y”, 
including the exact structure of the label, definition, and all its sur
rounding axioms. This ensures that all terms are consistently la
beled (which is particularly difficult in large-scale ontologies such 
as the phenotype ontologies) and consistently axiomatized. With 
the addition of reasoning to ontology build pipelines, this consistent 
axiomatization drives consistent classification (i.e. organization in a 
hierarchical structure). Some ontologies, such as ZP or XPO (Fisher 
et al. 2022), are entirely bootstrapped from phenotype patterns 
(see Discussion), which reduces the overhead of maintaining them.

We have developed 262 phenotype term templates that cover 
cases such as “abnormally increased X levels in the Y” (where X 
is a chemical entity and Y is an anatomical location), “abnormal 
X morphology” (where X is an anatomical entity), or “abnormal 
rate of X” (where X is a biological process). Details on the engineer
ing methodology can be found in the Methods section. All patterns 
are available as part of a library of phenotype patterns on GitHub 
(see Data availability).

Phenotypes that affect anatomical entities (UBERON:0001062) or 
biological processes (GO:0008150) feature prominently in the shared 
uPheno pattern library constituting approximately 75% of the pat
tern templates (Fig. 1). Patterns involving anatomical entities 
make up over 65% of patterns and cover both the morphology and 
physiology of these entities. Examples involving abnormal anatom
ical entities include the pattern abnormalLengthOfAnatomicalEntity 
which can be applied to phenotypes characterized by the abnormal 
length of any anatomical entity, such as HP:0200011 “Abnormal 
length of corpus callosum”, MP:0011999 “abnormal tail length”, 
and ZP:0022039 “head length, abnormal”.

Besides phenotypes described by anatomical entity abnormal
ities, researchers often report the alterations in biological processes 
associated with specific genetic mutations. The second most 
frequent phenotype pattern group in the uPheno library relates 
to biological processes (10.7%). For example, the pattern 
abnormallyDecreasedRateOfContinuousBiologicalProcess can be applied 
to such diverse process phenotypes as MP:0020234 “decreased ba
sal metabolism”, ZP:0101378 “glycolytic process decreased rate, ab
normal”, FBcv:0000791 “decreased speed of aging”, ZP:0001531 
“blood circulation decreased rate, abnormal”, ZP:0102933 
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“digestion decreased rate, abnormal”, and FYPO:0000419 “de
creased rate of cytokinesis”.

Over 11% of the pattern templates involve cellular (CL:0000000) 
or cellular component (GO:0005575) phenotypes. Cell component 
phenotypes can be observed in both single- and multicellular 
organisms, thus making the relevant uPheno pattern templates 
applicable to diverse taxa. For example, the abnormally 
DecreasedNumberOfCellularComponent pattern template can be 
used in cases where a decrease in the number of mitochondria 
is observed, such as HP:0040013 “Decreased mitochondrial 
number”, MP:0011629 “decreased mitochondrial number”, 
DDPHENO:0000271 “decreased number of mitochondria”, and 
FYPO:0003820 “mitochondria present in decreased numbers dur
ing vegetative growth”.

Other templates allow the standardization of phenotypic 
description and annotation related to chemical entities 
(CHEBI:24431), chemical roles (CHEBI:50906), behavioral pro
cesses (NBO:0000313), molecular function (GO:0003674), and de
velopmental processes (GO:0032502).

uPheno ontology
The uPheno ontology is a computational logic-based ontology 
built using the W3C Web Ontology Language (OWL). uPheno com
bines existing phenotype ontologies into a single ontology and in
troduces common grouping classes such as UPHENO:0082544 
“mitochondrion phenotype” (Fig. 2a). For example, HP:0001640 
“Cardiomegaly”, MP:0000274 “enlarged heart” and ZP:0000532 
“heart increased size, abnormal” all classify under a common 
species-neutral grouping UPHENO:0001471 “increased size of the 
heart”, which is in turn classified under UPHENO:0075162 “size 
of heart phenotype” (Fig. 2b). The grouping classes are primarily 
built using the uPheno pattern library and rely on external 
species-neutral ontologies for the component parts. For example, 
anatomical phenotype terms are created using anatomy terms 
from Uberon (Mungall et al. 2012; Haendel et al. 2014), cell type 
phenotype terms from CL (Diehl et al. 2016), and physiological 
and subcellular phenotypes from GO (Ashburner et al. 2000).

The overall structure of the uPheno ontology relies heavily on 
the structure of the ontologies used to build the classes. By using 
a wellestablished “entity–quality” (EQ) modeling framework (see 
Methods), we can define a phenotype in terms of its constituent 

parts (for example, an anatomical and a chemical entity) and use 
the hierarchical structure of the respective source ontologies for 
these parts to classify our phenotype terms using an automated 
logic-based reasoner such as Elk (Kazakov et al. 2014). For example, 
the phenotype UPHENO:0047922 “increased thickness of the aortic 
valve leaflet” is classified as a “heart morphology phenotype” 
(UPHENO:0076810) because “thickness” (PATO:0000915) is consid
ered a subclass of “morphology” (PATO:0000051) in the PATO ontol
ogy and the “aortic valve” (UBERON:0002137) is considered a part of 
the “heart” (UBERON:0000948). For details about this approach re
fer to the Methods section. There are currently 35782 terms in 
uPheno, of which only 7 are manually classified; all 7 are grouping 
classes such as UPHENO:3000006 “taste/olfaction phenotype” 
which are difficult to define using a simple EQ logical definition, 
see Methods. The remaining terms are defined using the auto
mated reasoning method described above. The advantage of logic- 
based reasoning compared with machine-learning approaches is 
that the reference ontologies such as PATO and UBERON have 
been curated by human experts over many years, which limits 
the potential for errors in classification.

The uPheno classes enable expressive querying and effective clas
sification of phenotypes across species. For example, a user might 
want to find all genes where perturbations alter heart morphology 
regardless of species. To achieve this, they can simply retrieve all 
subclasses of “heart morphology phenotype” (UPHENO:0076810), 
for example, using the Ontology Lookup Service (OLS) (McLaughlin 
et al. 2025; https://www.ebi.ac.uk/ols4/ontologies/upheno) (Fig. 2c). 
This straightforward retrieval of similar phenotypes across taxa 
can be used for a variety of applications, such as finding relevant lit
erature across species, identifying candidate genes for phenotypes 
with an unknown genetic basis, or comparing the phenotypic spec
trum produced by mutations in orthologous genes across species. 
The use of the EQ logical framework moreover enables querying 
for phenotypes using logical expressions. For example, a bioinforma
tician interested in heart morphology phenotypes across species 
could use an OWL class expression (‘has part’ some (morphology 
and (‘characteristic of part of’ some (‘heart’)) and (qualifier some 
abnormal)).

uPheno currently integrates 12 species-specific phenotype ontol
ogies to varying degrees; see Table 1. The deepest level of integration 
is for ontologies that cover vertebrates, such as HPO, MP, ZP, and 
XPO. The integration of other ontologies is more variable; for ex
ample, WBPhenotype, DDPHENO and DPO are well integrated, 
while FYPO and APO are at earlier stages of integration (Fig. 3).

For curation scenarios where no species-specific vocabulary 
exists, uPheno provides a standardized species-neutral vocabu
lary that can be used to capture phenotype data (see the Online 
Mendelian Inheritance in Animals (OMIA) example in Discussion).

Cross-species mappings
Cross-species mappings can be used to make datasets interoperable 
across species, for example, by linking HP phenotypes from a hu
man study to similar MP phenotypes in a mouse study. To facilitate 
these types of integrations, we publish a number of cross-species 
mappings derived from the cross-species ontologies (e.g. Uberon, 
GO) used in the logical definitions of the terms. For example, 
MP:0003855 “abnormal forelimb zeugopod morphology” maps to 
HP:0002973 “Abnormal forearm morphology” as they both are de
fined using the same anatomical term UBERON:0002386 “forelimb 
zeugopod”.

These mappings are published in a simple spreadsheet that 
complies with the exchange format Simple Standard for Sharing 
Ontological Mappings (SSSOM) (Matentzoglu and Balhoff et al. 

Fig. 1. Distribution of entity types in the uPheno pattern library. All 
phenotype definitions reference at least one affected entity. The 
percentage of patterns using an entity type relative to all pattern 
templates is indicated. The main entity categories in uPheno phenotype 
pattern templates include: anatomical entity (UBERON:0001062), 
biological process (GO:0008150), cellular component (GO:0005575), 
chemical entity (CHEBI:24431), cell (CL:0000000), role (CHEBI:50906), 
behavior process (NBO:0000313), molecular function (GO:0003674), other 
entities (BFO:0000001).
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2022), connecting phenotype terms from one species-specific 
phenotype ontology such as ZP to another, such as XPO. uPheno 
semantic similarity tables provide associations between species- 
specific phenotype terms and scores that reflect their semantic 
similarity. All cross-species mappings, semantic similarity tables 
and manually curated mappings can be obtained from the URLs 
provided in the Data availability section.

Methods
uPheno integrates existing species-specific representations of 
phenotype data developed by a broad community of model organ
ism, clinical, and research database curators, using a variety of 
methodologies. Many of these representations already exist as 
pre-composed (also known as pre-coordinated) ontologies, where 
specific terms such as “decreased circulating lysine level” are cre
ated and assigned unique, permanent identifiers (“MP:0030719”). 
Other representations instead rely on curating the different as
pects of phenotype separately (post-composition, also known as 

post-coordination). For example, ZFIN (Bradford et al. 2022) fol
lows a sophisticated post-composed curation style, selecting the 
attribute and the entity terms separately. To facilitate the integra
tion of this phenotypic data, the ZP ontology, supported by the 
uPheno effort, converts the post-composed curated content in 
the ZFIN database into a pre-coordinated ontology.

EQ framework
The computational phenotype model underlying the uPheno 
framework is an extension of the entity–attribute (or EQ) model 
which is used to describe phenotypes in terms of affected entities 
and their characteristics (Washington et al. 2009). The affected en
tities included in phenotypic characterizations are called the 
bearers of the observable attributes (also known as observable 
qualities or characteristics). For example, in the phenotype “en
larged heart” the entity, heart, bears the characteristic or quality 
of increased size.

The attribute categories (qualities) in uPheno logical axioms 
that characterize phenotypes are chosen from the Phenotype 

Fig. 2. Structure of the uPheno ontology. uPheno is a framework for consistent and logical definition of phenotype categories using ontology design 
patterns that provides a hierarchical vocabulary of species-neutral phenotype terms under which their species-specific counterparts are grouped. The 
ontology design templates are based on shared features of existing phenotypic descriptions from various model organisms and represent community 
consensus. The phenotype pattern template-adherent terms are adopted by species-specific ontologies, thereby contributing to the community-built 
uPheno framework. uPheno accelerates cross-species inference and computationally amenable comparative phenotype analysis. For example, the 
interoperable representation of heart phenotypes characterized by increased size, compared with wild-type in distinct species, such as zebrafish and 
humans, allows the cross-species identification of genes whose alleles can cause similar phenotypes. uPheno contextual hierarchy for increased size of 
the heart as displayed in the OLS.
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and Trait Ontology (PATO) (Gkoutos et al. 2005). The entities in 
uPheno can be broadly categorized as physical objects or pro
cesses. The physical objects include anatomical entities and their 
constituents, such as cells, subcellular structures or components, 
proteins, and other chemical entities. Examples of process-type 
entities include GO biological process and GO molecular function 
classes as well as categories of behavior or roles for chemical com
pounds. The entity components in uPheno include classes from 
OBO Foundry (Jackson et al. 2021) ontologies, such as Uberon, 
the CL, GO (cellular component classes), the Chemical Entities 
of Biological Interest (ChEBI), and the Neuro Behavior Ontology 
(NBO) (Ashburner et al. 2000; Haendel et al. 2014; Diehl et al. 
2016; Gkoutos et al. 2012; Hastings et al. 2016).

The most basic EQ model involves 2 primitive classes that are 
part of an asserted class expression, where the “E” entity is the 
affected entity (e.g. an anatomical entity, such as “limb”) or a 
biological process (e.g. “limb development”). The “Q” component 
is a quality (attribute) class from PATO. The equivalent class ax
ioms in uPheno follow or extend the basic EQ model to represent 
phenotypic characteristics. uPheno is intended to represent 
phenotypic states that deviate from a reference, therefore, 
they always include a PATO:0000460 “abnormal” component. 
This is expressed as an equivalent class axiom. For example, 
UPHENO:0076810 “heart morphology phenotype” is expressed in 
OWL Manchester syntax (http://www.w3.org/TR/owl2-manchester- 
syntax/) as follows: 

has part

some (

morpholo

gy and

characteristic of part of

some heart and has modifier

some abnormal)

The relationships RO:0000052 “characteristic of” and RO:0002314 
“characteristic of part of” from the OBO Relations Ontology (RO) 
(Mungall et al. 2023) are used to connect the entity that is observed 
to be phenotypically affected and the characteristic it exhibits 
(e.g. “size” or “amount”). The entity part of the EQ statement can 
be composite, i.e. comprising more than 1 entity. For example, if 
an abnormality of a biological process occurs in a particular anatom
ical location, then the entity will be defined as a biological process 
(GO:0008150) which “occurs in” (BFO:0000066) an “anatomical loca
tion” (UBERON:0001062). More complex patterns defining entities 
can be found, such as chemical entities that play a certain role (for 
example a CHEBI:25212 “metabolite” in an UBERON:0001062 “ana
tomical location”).

This formal logic representation of phenotypes in OWL enables 
the use of logical inference through automated reasoners; see 
uPheno ontology section above for an example on how the use of 
EQ statements in conjunction with reference ontologies such as 
ChEBI and Uberon enables entirely automated classification of 
phenotypes. More information about how OWL ontologies and 
reasoning can be leveraged in the biological and biomedical 
sciences can be found in Hoehndorf et al. (2015).

The DOSDP framework (and ODK)
Dead Simple OWL Design Patterns (DOSDPs) (Osumi-Sutherland 
et al. 2017) allow efficient and scalable definition of ontology term 
templates which can support the construction and maintenance 
of large numbers of ontology classes. The EQ modeling framework 
is especially well suited for template-based ontology development. 
DOSDP term templates, which are specified in YAML, support the 
specification of both logical axioms and annotation axioms (e.g. 
for synonyms, labels and definitions) with variable slots. Separate 
tables (stored as tsv or csv files) specify fillers for these variables. 
The templates and tables can be parsed and converted into OWL ax
ioms by dosdp-tools, which is part of the Ontology Development Kit 
(ODK) (Matentzoglu and Goutte-Gattat et al. 2022). The resulting ax
ioms can be built into a class hierarchy and/or incorporated into an 
existing OWL ontology by ROBOT (Jackson et al. 2019) and other ODK 
components. The release system of the uPheno ontology is imple
mented as an ODK workflow, which makes it easily executable in 
a platform-agnostic manner through Docker.

uPheno templates
uPheno phenotype pattern templates are designed to help align 
the modeling of similar or related phenotypic categories across 
multiple taxonomic domains. uPheno utilizes the DOSDP templat
ing system and the EQ framework to define phenotype templates. 
The uPheno templates are the result of collective curation by a 
community of ontology editors called the Phenotype Ontology 
Reconciliation Effort (https://obophenotype.github.io/upheno/ 
reference/reconciliationeffort/). This community effort is pivotal 
not only to the definition of phenotype templates described in 
this section, but also in their implementation in the species- 
specific phenotype ontologies. The curation process operates as 
follows: when a need for a pattern arises, a member of the com
munity requests a template. Next, another member of the 

Fig. 3. Current degree of alignment of phenotype ontologies with uPheno. 
visualization used to quantify the degree of alignment of species-specific 
phenotype ontologies with uPheno patterns: Proportion of terms that 
follow a defined uPheno pattern (uPheno-conformant EQ); follow an 
EQ-style definition (EQ, not uPheno); and terms that do not have a logical 
definition (no EQ definition). Note that this visualization only quantifies 
automatically (pattern-based) term alignment and does not include 
terms aligned using manually defined mappings such as MP to HPO 
mappings from theMGI database.
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community develops a draft template in DOSDP format and 
makes a pull request on GitHub. The broader community can re
view the pattern and provide feedback suggesting changes to 
wording, definitions, naming templates, and other aspects. Once 

the template is approved, it is presented at a specific monthly 
call that is organized by the reconciliation effort for the purpose 
of advancing uPheno patternization across the phenotype ontol
ogy editors community. All present members who approve of 
the pattern now add their signature to the template (in the form 
of an ORCID, see below), indicating their approval and their inten
tion to implement the pattern in the phenotype ontology they re
present (for example, HPO, MP, DDPHENO, etc.).

As an example, a slightly simplified version of the abnormal 
AnatomicalEntity pattern can be seen in Fig. 4. The full pattern can 
be downloaded at the URL indicated by the “pattern_iri” field.

The 2 most important elements of any pattern are the template 
for the logical definition (equivalentTo) and the list of contribu
tors. The equivalentTo field specifies the logical axiom pattern 
to be used to define the phenotype term. The contributor field is 
used to record the members of the reconciliation effort who 
have reviewed a particular pattern (see above).

The main relationships used by phenotype patterns can be 
seen in Table 2. Other relationships are used in specific cases. 
For example, GOREL:0001006 “acts on population of” is used 
for the definition of cell proliferation patterns in order to align 
with the logical definition of cell proliferation process terms in 
GO.

The uPheno patterns described here are collected and available 
in the “uPheno pattern library”, which makes it easy for phenotype 
ontology editors to identify a suitable pattern for a given pheno
type (see Data availability).

Fig. 4. DOSDP pattern for the representation of abnormal anatomical entity phenotypes. Species-specific phenotype ontologies implement this pattern in 
phenotype terms such as “Abnormality of the cardiovascular system” (HP:0001626) and “gall bladder quality, abnormal” (ZP:0006529).

Table 2. Relationships used to logically define terms in uPheno.

Relationship Meaning

characteristic of Relates the phenotypic quality to the “bearer”, 
i.e. the entity that is affected by the 
phenotype.

characteristic of 
part of

Relates the phenotypic quality to the “bearer” 
or one of its parts.

part of A general mereological relation that denotes 
parthood between 2 entities, such as an 
anatomical entity and one of its parts.

has part The inverse relationship of part of. In the 
context of our EQs, this is used to relate the 
phenotype itself to its primary quality.

towards In the case of a relational quality, i..e. a quality 
that involves 2 entities (such as “fused 
with”), the towards relation is used to 
describe the second involved entity (the first 
is related using “characteristic of”).

has modifier Phenotypes can be either normal or abnormal. 
The relation is used to connect the primary 
phenotypic quality to a respective modifier.

occurs in Used to connect biological processes to the 
anatomical entities in which they are taking 
place.
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Cross-species mappings and semantic similarity
Locating genetic variants with similar phenotypes across species 
can suggest new disease candidates, or provide new insights 
into gene function. For example, PRG4 mutations have been caus
ally implicated in “Camptodactyly of finger” (HP:0100490) pheno
types in human genetic studies, and there are mouse knockout 
(KO) models of the orthologous Prg4 gene whose phenotype anno
tations include “camptodactyly” (MP:0003807), thereby providing 
independent evidence of causality and increasing confidence 
that the gene-to-phenotype association is correct (Smith and 
Eppig 2009; Marcelino et al. 1999; Rhee et al. 2005). To leverage 
these similar phenotypes for data analysis (especially when po
tentially orthologous variants relating to analogous phenotypes 
are unknown), we publish those mappings in a standardized for
mat called the SSSOM (Matentzoglu and Balhoff et al. 2022). 
SSSOM allows the precise specification of the mapping relation, 
such as semapv:crossSpeciesExactMatch, to signify a relation be
tween 2 identical phenotypic characteristics of homologous ana
tomical structures. Metadata can also be attached to distinguish 
matches which have been determined through manual curation 
(semapv:ManualMappingCuration), lexical matching (semapv: 
LexicalMatching) and logical matching using automated reason
ing (semapv:LogicalMatching). Mapping tables are particularly 
useful for basic lookup tasks and providing cross-links between 
resources. For example, the International Mouse Phenotyping 
Consortium (IMPC) (Groza et al. 2023) and Mouse Genome 
Informatics (MGI) (Baldarelli et al. 2024) websites use mapping ta
bles to allow searching using an HPO phenotype name to discover 
data connected to an analogous MP phenotype term.

The uPheno framework also enables the computational identi
fication of semantically similar phenotypes. Similar phenotypes 
are more likely to be related to similar mechanisms, which makes 
this information very valuable for applications such as variant pri
oritization. For example, Huntington’s disease and Parkinson’s dis
ease are both neurodegenerative disorders where involuntary 
motor symptoms, chorea and tremors, respectively, are prominent 
phenotypic features. HTT gene mutations have been causally im
plicated in Huntington’s disease. We could therefore predict HTT 
might be a candidate gene for Parkinson disease based on pheno
typic similarity. This is exploited to prioritize pathogenic variants 
in tools such as Exomiser (Smedley et al. 2015), which is used widely 
in clinical practice. Estimating “phenotypic similarity” in Exomiser 
uses 2 main measures: Jaccard, which is simply a measure of how 
similar 2 phenotypes are with respect to their position in the ontol
ogy (sibling terms are more similar than distantly related terms); 
and the PhenoDigm score (Smedley et al. 2013), which is based on 
Jaccard similarity but normalizes against Information Content, 
which itself is a measure of “how informative/interesting” a pheno
type is (phenotypes that are more specific have stronger known 
gene associations and are positioned lower in the ontology hier
archy and are considered “more informative”).

Discussion
uPhenoapplications
uPheno is applicable to a variety of phenotypic analysis projects and 
tools. The IMPC (Groza et al. 2023), a global resource for whole gene 
KO mouse lines, plans to use uPheno cross-species mappings to 
make mouse phenotypes discoverable using HPO phenotype terms 
(Groza et al. 2023). Similarly, MGI has recently prototyped the use of 
cross-species mappings for discovering gene-to-phenotype associa
tions (Baldarelli et al. 2024) and intends to incorporate uPheno 

mappings into this tool. The Monarch Initiative Knowledge Graph 
(Putman et al. 2024) uses uPheno alongside the Ontology of 
Biological Attributes (OBA) (Stefancsik et al. 2023), which enables 
analyzing biomedical data across species, with a specific focus on 
phenotypes, diseases, and their genetic underpinnings.

uPheno has also been applied to the phenomics-informed 
study of disease. In a study to determine whether model organism 
phenotype data contributes to the computational discovery of hu
man gene-disease associations and to what extent, Alghamdi et. 
al. used uPheno and Pheno-e (Hoehndorf et al. 2011) (an extension 
of the PhenomeNET ontology) to semantically relate phenotypes 
resulting from loss-of-function mutations in mouse, zebrafish, 
fruit fly, and fission yeast model organisms to disease-associated 
human phenotypes (Alghamdi et al. 2022). An informatics pipeline 
developed by Cary et al. presented an Alzheimer’s disease risk as
sessment score across biological domains. The approach utilized 
phenotypes of model organism orthologs to human genes ex
tracted from the uPheno ontology (Cary et al. 2024). InpherNet is 
a machine-learning approach that can aid monogenic disease 
diagnosis where patient-based annotation is incomplete or lack
ing. It leverages the uPheno ontology to obtain organismal and 
cellular-level gene phenotype data (Yoo et al. 2021).

In disease diagnostics, variant prioritization tools such as 
Exomiser (Smedley et al. 2015), EmbedPVP (Althagafi et al. 2024), 
and EvORanker (Canavati et al. 2024) leverage uPheno’s cross- 
species phenotypic similarity mappings to improve variant priori
tization by comparing human phenotypes to those of model organ
isms like mice and zebrafish. For example, in a cohort of pediatric 
patients presenting with a range of clinical phenotypes including 
global developmental delay, seizures, and generalized hypotonia, 
(Ji et al. 2019) used Exomiser to achieve an overall molecular diag
nostic rate of 36%. The Phenotypic Inference Evaluation 
Framework (PhEval) (Bridges et al. 2024) has recently been developed 
to benchmark diagnostic yield in Exomiser when informed by simi
lar cross-species phenotypes mapped using uPheno.

uPheno can also be used to bootstrap the generation of species- 
specific phenotype ontologies. Instead of building an ontology 
manually, uPheno pattern templates and spreadsheets of relevant 
entities can be used to automate the creation of ontology terms. 
Xenbase (Fisher et al. 2023), the Xenopus model organism knowl
edgebase, has developed the Xenopus phenotype ontology (XPO) 
(Fisher et al. 2022) using uPheno templates in combination with 
high-level terms from the Xenopus Anatomy Ontology (Segerdell 
et al. 2008), the PATO and the GO. The PLANP ontology for the 
Planarian Flatworm has been generated using uPheno patterns for 
use in phenotype annotation. These terms are being used to help re
searchers identify genes with comparable phenotypes when per
turbed using RNA interference.

Limitations
While uPheno allows the species-neutral description of a pheno
type such as “abnormally enlarged heart”, it does not address 
what reference the phenotype is a comparison to (e.g. a control 
group or wild type), nor does it capture an effect size (e.g. whether 
the phenotype is slightly outside of the clinically normal range or 
significantly changed). In practice, all phenotype ontologies are 
used in contexts where different comparators and effect sizes 
are assumed. For example, for quantitative traits in the GWAS 
Catalog, the annotation with a phenotype/trait term indicates 
that the effect allele is associated with an increase/decrease in 
the trait compared with the mean of the entire sample; for binary 
traits, the trait annotation indicates that the effect allele is found 
at higher/lower frequency in cases compared with controls. Since 
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the overall goal of uPheno is to make phenotype information com
parable, it would be impractical to create different classification 
axes for every case (e.g. having an “abnormally increased heart 
size”, a “significantly increased heart size”, a “abnormally in
creased heart size compared with wild-type”). Thus, the presence 
of a phenotype term as part of, for example, a gene-to-phenotype 
association, cannot automatically be associated with a specific 
comparator or effect size. Instead, this information needs to be 
supplied in the metadata of the phenotype annotation, for ex
ample, the experimental conditions.

A second important limitation is that, while the uPheno frame
work has significantly improved the alignment of species-specific 
phenotype ontologies with each other and with uPheno, it does 
not automatically lead to their complete alignment. The imple
mentation of uPheno patterns with uPheno-conformant reference 
ontologies such as Uberon or Uberon-aligned ontologies by the 
species-specific phenotype ontologies is costly in developer time, 
so coverage for ontologies such as HPO and MP is unlikely to be 
complete in the near future. Complex phenotypes are a specific 
concern, as they are frequently described in different ways across 
species-specific phenotype ontologies. For example, “anenceph
aly” (HP:0002323, MP:0001890) share the features of the absence 
of most or all of the brain (encephalon) tissue, and both are 
deemed to be defects in the developmental process of neural 
tube closure in the respective HPO and MP definitions. It is pos
sible to incorporate these phenotypes into uPheno patterns. 
However, there is a choice of creating logical axioms that focus 
on morphological features, compared with modeling this pheno
type from a developmental process perspective. The ongoing ef
forts and collaboration of model organism ontology editors can 
remedy this, and similar problems, by not only defining shared 
uPheno templates but also reviewing their decisions which specif
ic phenotype should be defined using which pattern.

Nevertheless, significant coverage has already been reached, 
and the process of alignment is ongoing.

Future work
In the future, we would like to make uPheno more accessible to re
searchers by integrating the ontology into tools to enable use cases 
such as finding related phenotypes across species without the need 
for specialized ontology training. We also plan to improve the 
upper-level structure of the phenotype hierarchy to improve the 
findability of phenotype terms for users browsing the ontology.

uPheno has primarily focused on integrating phenomics data 
from the model organism community. We are expanding our efforts 
to include non-model animal species and address use cases relevant 
to the veterinary field. This undertaking has been driven by the team 
at the Online Mendelian Inheritance in Animals (OMIA, https://omia. 
org/home/) (Nicholas 2021) with whom we are collaborating. OMIA is 
a freely available, curated knowledge base that offers up-to-date in
formation on inherited disorders, traits, and associated genes and 
variants in animals. uPheno was chosen to represent phenotypes 
and clinical and pathological signs data in OMIA to enhance their da
ta’s computational analysis and data interoperability.

Data availability
The uPheno ontology, pattern library and associated files can 
be found here: https://github.com/obophenotype/upheno/blob/ 
master/docs/reference/data-availability.md, or at the URLs pro
vided in the text. The uPheno ontology can be browsed using OLS 
(https://www.ebi.ac.uk/ols4/ontologies/upheno).

Supplemental material available at GENETICS online.
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