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Abstract

Homological mirror symmetry for the genus 2 curve in an abelian variety and its
generalized Strominger-Yau-Zaslow mirror

by

Catherine Kendall Asaro Cannizzo

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Denis Auroux, Chair

Motivated by observations in physics, mirror symmetry is the concept that certain mani-
folds come in pairs X and Y such that the complex geometry on X mirrors the symplectic
geometry on Y . It allows one to deduce information about Y from known properties of X.
Strominger-Yau-Zaslow (1996) described how such pairs arise geometrically as torus fibra-
tions with the same base and related fibers, known as SYZ mirror symmetry. Kontsevich
(1994) conjectured that a complex invariant on X (the bounded derived category of coherent
sheaves) should be equivalent to a symplectic invariant of Y (the Fukaya category). This
is known as homological mirror symmetry. In this project, we first use the construction of
SYZ mirrors for hypersurfaces in abelian varieties following Abouzaid-Auroux-Katzarkov,
in order to obtain X and Y as manifolds. The complex manifold comes from the genus 2
curve as a hypersurface in its Jacobian torus, and we equip the SYZ mirror manifold with a
symplectic form. We then describe an embedding of the category on the complex side into
a cohomological Fukaya-Seidel category of Y as a symplectic fibration. While our fibration
is one of the first nonexact, non-Lefschetz fibrations to be equipped with a Fukaya category,
the main geometric idea in defining it is the same as in Seidel’s construction for Fukaya
categories of Lefschetz fibrations.
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Chapter 1

Introduction, background, and set-up

1.1 Statement of thesis result and approach

In this work, the pronoun “we” is used to denote the author along with the reader.

Theorem 1.1.1 ([Can]). Let ι : H := Σ2 ↪→ V be a genus 2 curve embedded into an abelian
variety V of complex dimension 2. There exists a mirror (Y, v0), which is a symplectic
fibration with fiber denoted V ∨ that is mirror to V , and V ∨ is also an abelian variety of
complex dimension 2. Then there is a commutative diagram as below, where vertical arrows
are cohomologically fully faithful embeddings as functors between categories:

DbCoh(V )
i∗
- DbCoh(H)

y

H0(Fuk(V ∨))

HMS

?

∩

∪
- H0(FS(Y, v0))

HMS (C.)

?

∩

(1.1)

Remark 1.1.2 (Explanation of the diagram). The top row is a functor between bounded
derived categories of coherent sheaves. It will suffice to consider line bundles in our case. The
bottom row is a functor between the Fukaya and Fukaya-Seidel categories. The morphism
spaces in these categories are chain complexes and morphisms are not associative but satisfy
associativity relations that involve arbitrarily many morphisms, hence are A∞-categories.
The statement discussed in this thesis concerns the cohomological Fukaya categories where
we pass to cohomology in the morphisms groups, hence obtaining an actual category. The
construction of the diagram with A∞-functors, namely checking that higher order composi-
tion maps match in addition to objects, morphisms and composition, is a future direction.

Remark 1.1.3. Note that HMS for abelian varieties of arbitrary dimension and quotient
lattice was discussed in [Fuk02] using more advanced machinery. We present a different
argument for this particular case.
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Remark 1.1.4. (Previous work on HMS for the genus 2 curve) Seidel proved HMS with the
A-model of the genus 2 surface [Sei11], i.e. the symplectic side, so we consider the B-model or
complex structure on the genus 2 curve. The complex mirror Seidel constructs is a crepant
resolution of C3/Z5, quotienting by the rotation group, so the singularity at zero is resolved
while preserving the first Chern class), and it is equipped with a superpotential. The critical
locus of the superpotential in his paper and the mirror in this paper are the same. One
future direction is to further explore how his mirror is related to the mirror considered in
this paper. Note: we are not in the exact case as in [Sei08], namely ω is not exact because
we have compact fibers in a symplectic fibration with nonzero volume, and we are not in
monotone case, which is discussed later. We are in the Calabi-Yau setting on the mirror,
c1 = 0, and it is a Landau-Ginzburg model.

Outline of proof of Theorem 1.1.1. The approach we take is:

• Embed the genus 2 curve as a hypersurface in an abelian variety V .

• Blow up V ×C along Σ2×{0} so Σ2 is the critical locus of a holomorphic function on the
blow-up X, as described in [AAK16] for obtaining SYZ mirrors for hypersurfaces of toric
varieties. This comes equipped with a Lagrangian torus fibration.

• Use SYZ to get a complex mirror Y two dimensions higher than Σ2 and equip that mirror
with a holomorphic function v0 that encodes behavior that is mirror to Σ2.

• Both sides are Kähler so instead consider the B-model on the genus 2 curve and construct
an A-model on the mirror. Note that involutivity is expected when the pair is Calabi-Yau,
so one could have started with the mirror as the A-model and construct X as in [AAK16,
§8] or [CLL12].

• Prove the existence of the fully-faithful embedding on the cohomological level for the
mirror abelian varieties.

• Prove the same for Σ2 and (Y, v0).

• Future directions: prove the subcategory of Lagrangians considered generates the Fukaya
category. Prove an A∞-equivalence instead of an equivalence on cohomological categories.

Remark 1.1.5. We are in the general type case where c1 < 0 on the genus 2 curve, that’s
why the mirror is a noncompact LG model. Also because of the blow-up, we are in the
setting of a non-toric Lagrangian fibration. This is because toric means it comes from a
moment map, and here we start with a moment map but then perform operations on the
base which still give a Lagrangian torus fibration but no longer from a moment map. In
[AAK16] for example the last coordinate comes from a moment map, but not the rest of
it. The Fukaya category on X would be the setting of M. Liu and J. Hicks. Conversely in
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[CLL12], they take the SYZ mirror on Y and account for sphere bubbles that show up in
that case.

1.2 The B-side manifold

Complex geometry

Remark 1.2.1 (The input for building a SYZ mirror is a Lagrangian torus fibration). Given
a Lagrangian torus fibration on a symplectic manifold, the SYZ construction [SYZ96] pro-
duces a candidate mirror complex manifold by prescribing dual fibers over the same base.
The points of a dual fiber are parametrized by unitary flat connections on the trivial line
bundle on the original fiber. This process is discussed explicitly in [Aur07].

Constructing a suitable Lagrangian torus fibration is a hard problem. R. Guadagni’s thesis
finds Lagrangian torus fibrations on central fibers of toric degenerations, which will be the
setting of the mirror Y in our case. However there is not an obvious Lagrangian torus
fibration on, or toric degeneration to, Σ2. Abouzaid-Auroux-Katzarkov [AAK16] construct
Lagrangian torus fibrations on blow-ups of hypersurfaces in toric varieties, which we adapt
to the abelian variety case here.

Definition 1.2.2 (Definition of abelian variety). The abelian variety V is topologically T 4

and its complex structure is defined as follows:

V := (C∗)2/ΓB

ΓB := Z 〈γ′, γ′′〉 ⊂ Z2, γ′ :=

(
2
1

)
, γ′′ :=

(
1
2

)
ΓB y (C∗)2, γ · (x1, x2) := (τ−γ1x1, τ

−γ2x2)

(1.2)

where γ ∈ ΓB has Z2-coordinates (γ1, γ2) and τ ∈ R parametrizes a family of complex
structures, which will be mirror to a family of symplectic structures on the mirror. The
complex structure is the ΓB-quotient of the usual J0 that is multiplication by i on (C∗)2 at
every point.

Remark 1.2.3 (Additive and multiplicative lattice viewpoints of abelian variety). There
are equivalent ways to describe an abelian variety: the lattice can act multiplicatively as
above, or equivalently it can act additively as we will describe below. This latter viewpoint
allows us to understand the cohomology of V and is described in [BL04] and [Pol03].

The following lattice Γ acts additively on C2, and the quotient gives a product torus denoted
TB×TF , which corresponds to the norms and angles of the multiplicative complex coordinates
previously described on V . We define the lattices for TB and TF first, and then Γ.

ΓB := Z
〈(

2
1

)
,

(
1
2

)〉
, ΓF := Z2, Γ := − log τ · ΓB + 2πiΓF ⊂ C2 (1.3)
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Now we define the abelian variety with additive structure:

V+ := C2/Γ ∼= R2
u1,u2

/ΓB × R2
v1,v2

/ΓF =: TB × TF

The additive structure maps to the multiplicative structure under the exponential map:

V+ = C2/Γ 3 (−u1 log τ+2πiv1,−u2 log τ+2πiv2)
exp7−−→ (τ−u1e2πiv1 , τ−u2e2πiv2) ∈ V = (C∗)2/ΓB

We see that u1 and u2 encode the norms of the complex coordinates (x1, x2) on V while v1

and v2 are the angles. The reason for the subscript B is to denote the base of a moment map
from the standard T 2-rotation action (α1, α2) · (x1, x2) := (e2πiα1x1, e

2πiα2x2) and F the fiber,
i.e. obtained from rotating angles under an orbit for fixed norms (|x1|, |x2|). In particular,
the ΓF no longer acts in the multiplicative setting. So in the TF direction, properties on V+

should be trivial in order to pass to V under the exponential map.

In the reverse direction (− 1
log τ
| log(x)|, 1

2πi
(log(x) − log |x|)) gives the isomorphism V

∼=−→
TB × TF where x = (x1, x2) so this is written in vector notation. Typically τ is small,
e.g. τ = e−2π. As τ goes to zero the primitive lattice vectors in − log τ · ΓB lengthen.

Claim 1.2.4 (Cohomology of abelian variety V ). Hn(V ;Z) ∼= ∧n Hom(Γ,Z)

Sketch, c.f. [BL04, §1.3]. It suffices to work with V+ since it is homeomorphic to V .

Γ = π1(V+) = H1(V+;Z) ∴ H1(V+;Z) = Hom(Γ,Z)

The second equality follows because Γ is abelian and H1 is the abelianization of π1. The
third equality follows from the universal coefficient theorem and lack of torsion. So using the
Künneth formula, its compatibility with the cup product, and the de Rham isomorphism we
obtain a map which is an isomorphism of rings by induction:

n∧
Hom(Γ,Z) ∼=

n∧
H1(V ;Z)

∪−→ Hn(V ;Z)

Corollary 1.2.5 ([Pol03, §1]). Complex line bundles on V are topologically classified by
their first Chern class, which is a skew-symmetric bilinear form E : Γ× Γ→ Z.

Proof. For a complex line bundle, c1(L) ∈ H2(V ;Z) ∼= ∧2 Hom(Γ,Z) by the previous claim,
and ∧2 Hom(Γ,Z) ∼= Hom(∧2Γ,Z).

We want to determine which forms E arise as the first Chern class of a holomorphic line
bundle. These are precisely the L for which c1(L) ∈ H1,1(V ). So the next step is to consider
Pic(V ) and the Hodge decomposition on abelian varieties, then find a description in terms
of the lattice Γ as we did above for the topological cohomology.
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Claim 1.2.6. Holomorphic line bundles on V are classified by

H1(π1(V+);H0(O∗
Ṽ+

)) ∼= H1(V+,O∗) (1.4)

Sketch from [BL04]. This theory is from [BL04, Appendix B], where elements of the left
hand side of Equation 1.4 are referred to as factors of automorphy. This isomorphism is the
analogue of the equivalence of Cartier divisors and line bundles on complex manifolds, but
with the addition of Γ-equivariance. In other words, factors of automorphy are functions
whose vanishing set, i.e. divisor, is Γ-invariant. The notion of a group action is equiva-
lent to the notion of a cocycle, hence this invariance is encoded in the cohomology group
H1(π1(V+);H0(O∗

Ṽ+
)). The right hand side H1(V+,O∗) ∼= Pic(V+) consists of holomorphic

line bundles on C2/Γ. Note that Ṽ+ = C2.

Let π : C2 → V+ be the universal covering. The isomorphism of Equation 1.4 is constructed
as follows, c.f. [BL04, Proposition B.1]. Line bundles over V+ have a nice description because
the cocycle condition on charts over V+ is equivalent to the condition that Γ has a group
action on C2 on a collection of charts in the universal cover, each one a lift of an open set
on the base. We now describe this.

• Let {Ui} be a covering of V+. A holomorphic line bundle is defined by gluing Ui × C to
Uj ×C by a holomorphic transition function gij acting on the C factor. Alternatively, we
can lift each Ui to Wi so that π|Wi

: Wi → Ui is a biholomorphism. In particular, π−1
i (x)

and π−1
j (x) are two lifts of the same point, so by definition of the universal cover they

differ by some element γij ∈ Γ.

• Thus we can alternatively think of the transition functions as a function f of one of the
lifts and the γij that records the change between π−1

i (x) and π−1
j (x). Namely π−1

j (x) =

γijπ
−1
i (x) for some γij ∈ Γ. Then define

f(γij, π
−1
i (x)) := gij

• Because Γ acts on C2, the group action implies γijγjk = γik. The fact that such a gij is a
cocycle on a line bundle implies

gijgjk = gik

∴ f(γij, π
−1
i (x))f(γjk, π

−1
j (x)) = f(γik, π

−1
i (x))

∴ f(γij, π
−1
i (x))f(γjk, γijπ

−1
i (x))) = f(γijγjk, π

−1
i (x))

⇐⇒ [f ] ∈ H1(Γ, H0(O∗C2))

(1.5)

i.e. f is a factor of automorphy.

• Concretely, by considering what cocycles and coboundaries map to under gij 7→ f(γij, π
−1
i (·))

we obtain Čech cohomology groups with the discrete topology on Γ and taking values in the
sheafO∗C2 . In particular the image gives a representative of a class inH1(π1(V+);H0(O∗

Ṽ+
)).



6

• A trivial line bundle implies transition functions are of the form gij = hj/hi. So letting
gij = f(γij, π

−1
i ) = hj/hi we can define a function h on the universal cover by

h(π−1
i (x)) := h(π−1

j (x)) · hi
hj

• So this corresponds to a coboundary (γ, x̃) 7→ h(γ · x̃)h(x̃)−1 for some h ∈ H0(O∗C2).

• This correspondence is an isomorphism on cohomology, see [BL04, Proposition B.1].

• Note that there is an analogous result for all higher degree cohomology as well.

Claim 1.2.7. H1,1(V+) ∼= HomC(C2,C)⊗ HomC(C2,C)

Proof. On the complex vector space C2, recall we have a decomposition (C2)1,0 ⊕ (C2)0,1

[Huy05, Lemma 1.2.5]. Then (T 1,0C2)∗ = HomC(C2,C) and (T 0,1C2)∗ = HomC(C2,C) see
[BL04, Theorem 1.4.1]. If tv is translation by v on the torus, we can extend (p, q) forms on
C2 to all of the torus by pulling back by dt−v. So H1,1(V+) ∼= HomC(C2,C)⊗HomC(C2,C).

Corollary 1.2.8 (C.f [BL04, Proposition 2.1.6]). A complex line bundle L admits a holo-
morphic structure if and only if the class c1(L) is a (1, 1) form, i.e. E(i·, i·) = E(·, ·), and
E(Γ,Γ) ⊆ Z. In particular, holomorphic line bundles on V+ correspond with 2× 2 hermitian
matrices with the same integral property.

Remark 1.2.9. The exponential short exact sequence of sheaves 0 → Z → O exp−−→ O∗ → 1

gives a long exact sequence containing H1(V,O∗) ∼= Pic(V )
−c1−−→ H2(V ;Z) ⊆ H2(V ;C) =

H0,2(V ) ⊕H1,1(V ) ⊕H2,0(V ). In particular, c1(L) ∈ H1,1(V ) if and only if taking a wedge
product with generators of H0,2 and H2,0 gives zero.

Note that H(·, ·) := E(i(·), ·) + iE(·, ·) is a Hermitian form, see [Huy05, Lemma 1.2.15].
Define L by multiplicators eγ (or factors of automorphy in [BL04]) i.e. Γ → O∗(V ) which
describe the necessarily Γ-periodic gluing functions of the line as we go around elements of
π1(V ).

Lemma 1.2.10 (C.f. [Pol03, Theorem 1.3] and [BL04, Appell-Humbert Theorem 2.2.3]).
The Picard group Pic(V+) of holomorphic line bundles on V+ is isomorphic to the set of all
pairs (H,α) for Hermitian forms H : C2 × C2 → C and ImH(Γ,Γ) ⊆ Z and α : Γ → U(1)
satisfying α(γ + γ̃) = exp(πiE(γ, γ̃))α(γ)α(γ̃), where E = ImH.

Sketch proof from [Pol03, Chapter 2] and [BL04, Chapter 2]. In [Pol03, §2.3] Polishchuk de-
scribes how the holomorphic structures are parametrized by an α : Γ→ U(1) that satisfies

α(γ + γ̃) = exp(πiE(γ, γ̃))α(γ)α(γ̃)



7

as do [BL04, Proposition 2.2.2]. (Note that α in the former is denoted χ in the latter.) Then
the factor of automorphy for a choice of (H,α) (where E = ImH) is

(γ, v) 7→ α(γ) exp(πH(v, γ) +
π

2
H(γ, γ))

This factor of automorphy is a natural definition from the perspective of [BD16] where we
have the notion of generalized Heisenberg groups. In our case the relevant group is the
semi-direct product U(1)× C2 with group law

(γ, v) · (γ̃, ṽ) = (exp(πiE(v, ṽ))γγ̃, v + ṽ)

The key point about Heisenberg groups is a uniqueness of unitary irreducible representa-
tions, a theorem due to Stone and von Neumann. The Fock representation gives the factor
of automorphy from above.

Conversely, suppose we have a factor of automorphy f for a holomorphic line bundle L.
Because it is nonvanishing we can express f = exp(2πig) for some holomorphic function g.
Then by [BL04, Theorem 2.1.2] the first Chern class corresponds to the alternating form

EL(γ, γ̃) = g(γ̃, v + γ) + g(γ, v)− g(γ, v + γ̃)− g(γ̃, v)

for all γ, γ̃ ∈ Γ = − log τΓB + 2πiΓF and any choice of v ∈ C2 (it turns out this expression
is independent of v). As we saw above, E corresponds to a Hermitian form when L is holo-
morphic, and also E(Γ,Γ) ⊆ Z. We can also construct an α : Γ→ U(1) as described at the
bottom of [BL04, pg 31].

So this completes the sketch of the isomorphism in the Lemma.

Example 1.2.11. Recall that for a complex line bundle on an abelian variety, c1(L) can
be represented by an alternating form E : Γ × Γ → Z for Γ ⊂ C2. Thus taking R linear
combinations we can extend this to an R-linear form E : C2×C2 → R. With respect to the
basis given by the generators of ΓB and ΓF in Remark 1.3, this gives a 4 by 4 skew-symmetric
matrix with respect to ΓB × ΓF .

In the example of our setting here, we want the line bundle to be trivial in the TF directions.
That is, E(iv, iw) = 0 for v, w ∈ Z2. When L is a holomorphic line bundle, we saw in
Corollary 1.2.8 that this implies E(iv, iw) = E(v, w). Hence E is a block matrix

ΓB ΓF( )
ΓB 0 ∗
ΓF −∗ 0
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This produces a corollary of Corollary 1.2.8 above.

Corollary 1.2.12. Holomorphic line bundles on V+ that pass under exp to holomorphic line
bundles on V correspond with real integral symmetric 2× 2 matrices.

Proof. On V+ we can input generic elements of ΓB + iΓF as E(γ+ iw, γ̃+ iv). By the above,

this is ImH for some hermitian form H =

(
a b

b a

)
so a ∈ R.

(γ1 + iw1 γ2 + iw2)

(
a b+ ic

b− ic d

)(
γ̃1 + iv1

γ̃2 + iv2

)
(1.6)

In particular, since E(iw, iv) = 0 we find that

E(iw, iv) = ImH(iw, iv) = Im(aw1v1 + bw1v2 + icw1v2 + bw2v1 + dw2v2 − icv1w2)

= c(w1v2 − v1w2) = 0 ∀w, v ∈ Z2

∴ c = 0

and H is real hence symmetric.

Corollary 1.2.13. We can express a holomorphic line bundle on V with a factor of auto-
morphy given by

(γ, x) 7→ xλ(γ)τκ(γ)

where λ ∈ hom(ΓB,Z2) = hom(ΓB,Γ
∗
F ) corresponds to the first Chern class and κ(γ) is a real

degree 2 polynomial whose quadratic part is determined by the first Chern class and whose
linear part determines the holomorphic structure.

Proof. The factor of automorphy as described above (or see [Pol03, Equation (1.2.2)] and
following discussion) corresponds with a choice of (H,α) and equals

(γ, v) 7→ α(γ) exp(πH(v, γ) +
π

2
H(γ, γ))

We calculate the expression in the exponential (note that an element in the Γ of this particular
situation is γ + iw ∈ ΓB + iΓF )

πH(− 1

log τ
log x, γ + iw) +

π

2
H(γ + iw, γ + iw)

= π[− 1

log τ
(log x)THγ +

1

2
H(γ, γ) +

1

2
H(w,w)] + iπ(− 1

log τ
)[(log x)THw]

= π[(− 1

log τ
)(log x)THγ +

1

2
H(γ, γ)]
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where the second line follows because H is real and symmetric, and in the third line we’ve
taken w = 0 since the result should not depend on the angle ΓF directions. So we can set

(− log τ)λ(γ) := Hγ

κ(γ) :=
1

2
H(γ, γ) + log(α(γ))

(1.7)

for H(ΓB,ΓB) ⊆ (− log τ)Z. We will give the choice of H used in this thesis in an example
below.

Example 1.2.14. Recall Example 1.2.11. Let

H := (− log τ)

(
2 1
1 2

)−1

Then this defines

L → V

L = (C∗)2 × C/ΓB, γ · (x1, x2, v) := (τ−γ1x1, τ
−γ2x2, τ

κ(γ)xλ(γ)v)

Hom(ΓB,Z2) 3 λ : γ′ 7→
(

1
0

)
, γ′′ 7→

(
0
1

)
κ(n1γ

′ + n2γ
′′) := −1

2

(
n1 n2

)(2 1
1 2

)(
n1

n2

)
Claim 1.2.15.

κ(n1γ
′ + n2γ

′′) = −1

2
nT
(

2 1
1 2

)
n

satisfies the cocycle condition.

Proof. We want the above definition of κ to satisfy the requirements of a group action
γ2 · (γ1 · (x, v)) = (γ2 ◦ γ1) · (x, v).

(x1, x2, v)
γ1

7−→ (τ−γ
1
1x1, τ

−γ1
2x2, τ

κ(γ1)xλ(γ
1)v)

(xnew, vnew) := (τ−γ
1
1x1, τ

−γ1
2x2, τ

κ(γ1)xλ(γ
1)v)

γ2

7−→ (τ−γ
2
1−γ

1
1x1, τ

−γ2
2−γ

1
2x2, τ

κ(γ2)xnew
λ(γ2)vnew)

= (τ−γ
2
1−γ

1
1x1, τ

−γ2
2−γ

1
2x2, τ

κ(γ2)(τ−γ
1

x)λ(γ
2)
(
τκ(γ

1)xλ(γ
1)v
)

)

= (τ−γ
1−γ2

x, τκ(γ
1)+κ(γ2)−〈γ1,λ(γ2)〉xλ(γ

1)+λ(γ2)v)

On the other hand, applying γ2 ◦ γ1

(x1, x2, v) 7→ (τ−γ
1−γ2x, τκ(γ1+γ2)xλ(γ1+γ2)v)
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and we know λ is a homomorphism. So to check the two maps agree we need to check that

κ(γ1) + κ(γ2)−
〈
γ1, λ(γ2)

〉
= κ(γ1 + γ2)

This is satisfied by a quadratic form, so we make a choice of form M :=

(
2 1
1 2

)
so that the

geometry of the diagrams later on are in a standard form. Define

κ(n1γ
′ + n2γ

′′) = −1

2
nT
(

2 1
1 2

)
n

Then both sides equal −1
2
n1Mn1− 1

2
n2Mn2−n1Mn2 because γ1 = Mn1 and λ(γ2) = n2 by

definition.

Claim 1.2.16. Sections of lines bundles on V are functions on (C∗)2 with the periodicity
property

s(γ · x) = τκ(γ)xλ(γ)s(x)

so have a Fourier expansion.

Proof. A section s : V → L must have the same transition functions as the line bundle, if
we consider the Cartier data.

s(γ · x)/s(x) = τκ(γ)xλ(γ)

Corollary 1.2.17. Let L be the degree (1, 1) line bundle defined above. Then H0(V,L⊗l)
has the following basis of sections:

se,l :=
∑
γ

τ−lκ(γ+
γe,l
l

)x−lλ(γ)−λ(γe,l)

where γe,l = sγ′ + tγ′′, 0 ≤ s, t < l.

Claim 1.2.18 (Genus 2 curve). H = Σ2 is a hypersurface in V defined by the vanishing of
the section s : V → L:

s(x) =
∑
γ∈ΓB

x−λ(γ)τ−κ(γ)

(1.8)

Proof. By the adjunction formula, T ∗H = KH
∼= (KV ⊗L)|H . Since V is an abelian variety,

its tangent bundle is trivializable so KH
∼= L|H . Recall deg(KH) =

∫
H
c1(KH) =

∫
H
c1(L) =

2g − 2. Since L is obtained by winding once in the x1 and x2 directions respectively, it
has degree 2 and hence g = 2. Alternatively, see Figure 1.1 where the solid blue denotes
the behavior of the vanishing of s(x) where |xi| =: τ−ξi is very large or equivalently τ ≈ 0
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for variables ξi defined as − logτ |xi|. In the limit as τ → 0 the limit of the vanishing of
s is denoted by the dotted line. So identifying opposite ends of the fundamental domain
parallelogram and rotating by 2π gives a genus 2 curve. This limiting behavior is described
in more detail below using the notion of the tropicalization of a function.

Figure 1.1: Quotient by ΓB

Remark 1.2.19. The ΓB lattice chosen above produces the blue curve of horizontal and
vertical line segments in Figure 1.1, which we use throughout this thesis. A different choice
of generators would give rise to different pictures but the methods used here should be the
same.

Relation between invariants on X and H

Theorem 1.2.20 (Construction of Lagrangian torus fibration from [AAK16, §4] ). Recall
x = (x1, x2) are the periodic coordinates on V . Let y ∈ C be the coordinate on the C factor
and s : V → L the function defined above. Then define

X := BlH×{0}V × C ⊂ P(L ⊕O)

= graph[s(x) : y]

= {(x, y, [s(x) : y]) ∈ (P(L ⊕O)→ V × C)}
= {(x, y, [u : v]) | s(x)v = yu}

(1.9)

a subset of the P1-bundle P(L ⊕ O) on V × C. The claim is that X admits a Lagrangian
torus fibration.

Idea of proof. A toric variety has a natural torus action (with an orbit that is dense in the
variety) so this torus action naturally gives a Lagrangian torus fibration from the moment
map. There is also an S1 rotation action on the y-coordinate. Using cut and paste methods
on the base of the moment map which correspond to blowing-up the total space, one produces
a Lagrangian torus fibration on X.
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Lemma 1.2.21. H = Crit(y).

Proof. The zero fiber is the union of the proper transform of V and the exceptional divisor.
Let p be the blow-down map:

p : X → V × C, (x, y, (u : v)) 7→ (x, y)

The definition of the proper transform is

Ṽ := p−1(V \H × {0})

Geometrically Ṽ is a copy of V , i.e. the closure of the part of V away from H in the blow-up
which fills in the rest of the V copy. Also define the P1-bundle coming from the blow-down
map over H, and a section sp of that bundle.

exceptional divisor E := {(x, 0, (u : v)) | x ∈ H} = p−1(H × {0})
p|E : E → H × {0}
sp : H → E, sp(x) := (x, 0, (1 : 0))

Now we can see H as the critical locus of the y fibration, as the fixed point set of the
S1-action that rotates y, namely (x, eiθy, (e−iθu : v)).

y−1(0) = {(x, 0, (u : v)) | s(x)v = 0 · u}
= {(x, 0, (1 : 0))} ∪ {(x, 0, (u : v)) | s(x) = 0}
= Ṽ ∪ E

The claim is that Ṽ and E intersect in sp(H) ∼= H. Being in E implies s(x) = 0 ∴ x ∈ H.
Being in Ṽ implies v = 0 hence we can scale u 6= 0 so that u = 1. Thus

Ṽ ∩ E = sp(H) ∼= H = Crit(y)

Symplectic invariants

Remark 1.2.22. If dimC V = 1, then the zero fiber of y : X → C involves a normal crossings
divisor of the form ab = 0, which for dimensional reasons produces a Lefschetz singularity.
Hence Seidel’s Fukaya category of Lefschetz fibrations [Sei08] can be used, and in this case
H = a point. We would want an analogue of that Fukaya category with H = Σ2 as the
critical locus, which requires going up a dimension.

Proposition 1.2.23 (Proposing a Fukaya category of Morse-Bott fibration [AAK16]). The
normal bundle to H×0 in V ×C is L⊕O. Once we blow up along H×{0}, then H = Σ2 is
the intersection of two divisors in a normal crossing singularity and forms the critical locus
of a Morse-Bott fibration given by y : (x, y, (u : v)) 7→ y. Then Fuk(H) is conjectured by
[AAK16, Corollary 7.8] to be equivalent to a Fukaya category Fs(X, y) which AAK describe,
because Lagrangians in H can be parallel transported from the central fiber to obtain non-
compact Lagrangians in X admissible with respect to the superpotential y.
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Complex invariants

The bounded derived category of coherent sheaves on X and H are related as follows.

Lemma 1.2.24 (Orlov [APS]). There is a semi-orthogonal decomposition

DbCoh(X) =
〈
DbCoh(H), Db(V × C)

〉
Dependence on choice of genus 2 curve

Claim 1.2.25. Any genus 2 curve can be embedded into an abelian variety of complex
dimension 2.

Proof. Fixing a point x0 ∈ Σ2 the map Σ2 3 x 7→ O(x − x0) ∈ Pic0(Σ2) is injective
[Huy05, Proposition 2.3.34]. Then Pic0(Σ2) is isomorphic to the Jacobian of Σ2, which
is an abelian variety, [For91, §21.7]. Explicitly, let {ω1, ω2} ∈ H1,0(Σ2) be a basis and take
α1, . . . , α4 ∈ H1(Σ2;Z) to be a basis on homology. Let c be a chain on Σ2 so that ∂c = x−x0.
Then the embedding is

Σ2 3 x 7→ (

∫
c

ω1,

∫
c

ω2) ∈ Jac(Σ2) = C2/Per(ω1, ω2), P er(ω1, ω2) := Z{
〈

(

∫
αi

ω1,

∫
αi

ω2)

〉
}i

Note that the definition of Pic(Σ2) as holomorphic line bundles [Huy05] versus as divisors
modulo principal divisors [For91, §21.6] are equivalent: any complex curve can be embedded
into projective space using sections of a line bundle of suitably high degree [For91, Theorem
17.22], Hhnce the map Div(Σ2) 3 D → O(D) ∈ Pic(Σ2) is surjective [Huy05, Corollary
5.3.7].)

Corollary 1.2.26. Varying the genus 2 curve corresponds with varying the complex structure
parameters of V (and hence of X). The complex structure limit has an enumerative meaning
in the mirror map, see [CLL12]. Thus this will also vary the Kähler parameters of Y via the
mirror map.

1.3 Background on toric varieties

The SYZ mirror Y is defined using the machinery of toric varieties to obtain a variety Ỹ and
then Y := Ỹ /ΓB. Toric varieties are a combinatorial way to produce charts and transitions
functions defining a manifold.

We will then define a symplectic form on Y , the first step in equipping Y with a Fukaya
category and then proving HMS with that category. Since Y is locally toric, as a quotient
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of a toric variety Ỹ by a discrete group, and toric varieties constructed from a polytope
naturally come with a line bundle, we use sections of that line bundle to define a metric that
will give rise to the symplectic form.

We build the theory needed to define that line bundle. Here is the plan of action.

The background here is based on [CLS11, p 59, p128] and [Ful93, Chapter 1].

Characters and 1-parameter subgroups

Let Y∆ be the toric variety associated to a polytope ∆ as will be described. In this thesis we
will use the following theory for Y∆ = CP2(3) i.e. CP2 blown up at three points, as well as a
related toric variety of infinite type [KL19] described later. The Orbit-Cone correspondence
explains how combinatorial data (cones) gives geometric data (orbits). The data is encoded
in a vector space of characters MR which are functions on Y∆, and a vector space NR of “co-
characters” that generates 1-parameter subgroups (PS) in Y∆, respectively. The subscript R
means we tensor a lattice with R. In particular M is the “algebra” and N is the “geometry”
in this algebraic geometry setting of toric varieties.

Definition 1.3.1 (Notation). We fix some notation. We will consider examples of n = 2
and n = 3 below.

• Geometry: N := Zn vectors encode the 1-PS parametrized by C∗ in the torus TN :=
(C∗)n which is dense in the toric variety. N ⊗Z C∗ = TN and NR := N ⊗Z R.

• Algebra: M = HomZ(N,Z) encodes both linear functionals on N (combinatorial level)
and functions on the toric variety (manifold level). In [AAK16] elements of M are
called weight vectors because exponentiating them gives toric monomials which are
characters i.e. functions on the toric variety.

• MR = Rn and define a nondegenerate pairing MR ×NR → R by 〈ei, fj〉 = fj(ei) = δij.

Definition 1.3.2 (Cone). A cone σ ⊂ NR is an intersection of half spaces H+
u := {n ∈ NR |

〈u, n〉 ≥ 0} for a set of normal vectors u ∈ M . For example, take u1 = e1 and u2 = e2 to
get the first quadrant e1, e2 ≥ 0. Then σ consists of convex linear combinations of lattice
vectors called rays ρ, the set of which is denoted σ(1).

The dual cone σ∨ ⊂MR is defined to be the intersection of dual half-spaces as follows.

σ∨ := {m ∈MR | 〈m,n〉 ≥ 0 ∀n ∈ σ} =
⋂

n∈σ(1)

{m ∈MR | 〈m,n〉 ≥ 0}
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Definition 1.3.3 (Strongly convex rational polyhedral cone). Strongly convex means σ is
not generated by ±e for any direction e (or equivalently σ ∩−σ = {0}), and rational means
σ has integral generators, namely they are in Zn.

Remark 1.3.4. If m1, . . . ,ms generate σ∨, then these are the normal vectors of the half-
spaces in σ i.e. σ = H+

m1
∩ . . . H+

ms . So the upshot is that σ∨ encodes the collection of these
normal vectors, where its edges are facets of σ. More generally a face τ in σ corresponds to
one, call it τ ∗, of complementary dimension in σ∨ namely τ⊥ ∩ σ∨, and conversely.

Definition 1.3.5 (Character). Let Sσ := σ∨∩M be the lattice points in the dual cone. Then
elements of the coordinate ring C[Sσ] are functions locally defined on Y∆ called characters
or toric monomials. They are C-linear combinations of elements in the set {χu | u ∈ Sσ}.
Define an open set on the toric variety as:

Uσ := SpecC[Sσ]

In particular, because Sσ is a semi-group, meaning we can add elements and it contains zero,
then the set of elements χu has a natural ring structure as one expects for the coordinate
ring of functions.

Remark 1.3.6 (Notation). We will use the letter u to denote lattice elements in N . We
will reserve the letter m to refer to points in MR or M and n will denote elements of NR.
This is to be consistent with [CLS11].

Definition 1.3.7 (Affine charts and functions). An affine or local chart on Y∆ is SpecC[Sσ].
In particular, all local charts contain the dense torus (C∗)n = SpecC[χ±e1 , . . . , χ±en ] because

M = SpanZ+
〈±e1, . . . ,±en〉 ⊃ {u ∈ σ∨(1)}

and rays generate the semi-group Sσ. A local function is given by characters χu as follows.
A character is a homomorphism from the dense torus to C∗:

χu : (C∗)n → C∗, (t1, . . . , tn) 7→ tu := tu11 · . . . · tunn , u =
n∑
i=1

uiei

Fix a basis {u1, . . . , uk} for Sσ in the sense that {±u1, . . . ,±ul, ul+1, . . . , uk} generates Sσ over
Z+ and {u1, . . . , uk} has no relations (the minimal generators). This gives the coordinate
chart with local complex coordinates χu1 , . . . , χuk if σ is a strongly convex cone:

(χu1 , . . . , χuk) : Uσ → Ck

Remark 1.3.8. This chart has image given by a potentially singular n-dimensional subva-
riety of Ck. In particular for maximal cones, k = n, the ui form a Z-basis of M , and we
obtain a smooth variety and an affine manifold chart in the usual sense, mapping Uσ to the
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local model Cn.

In the other case when the ui are not a Z-basis for M , we will have some relations among
them. In particular,

C[Sσ] ∼= C[χu1 , . . . , χuk ]/I

where I is a toric ideal that records these relations. In the example of CP2 below, Example
1.3.13, we will not need to quotient by toric ideals.

A suitable closure of this chart gives the toric variety. Later we will look at when a character
extends to a function on the whole toric variety, i.e. a partial or full compactification of
(C∗)n, meaning we let the coordinates tend to 0 or infinity. This illustrates how M gives rise
to functions.

Definition 1.3.9 (Toric variety). Recall that cones σ give affine charts. A fan is a collection
of cones arranged in a way that tell us how to glue local charts, namely what the transition
functions on the manifold are. A fan is a collection of cones σi ⊂ NR so that

• every face of a cone is a cone

• τij := σi ∩ σj is a face of both σi, σj hence we glue Uσi to Uσj along Uτij

Suppose σ1 and σ2 are two maximal cones so that τ = σ1 ∩ σ2 is (n− 1)-dimensional.

Claim 1.3.10. τ = Hm ∩ σ1 = Hm ∩ σ2 for m ∈ σ∨1 ∩ (−σ2)∨ ∩M .

In particular, the semi-group Sτ now has the ±m direction whereas σ1 only had m and σ2

only had −m. This corresponds to inverting the coordinate χm in the two charts from C[Sσ1 ]
and C[Sσ2 ], which will now be required to be nonzero. We glue these two charts along

Uτ = (Uσ1)χm = (Uσ2)χ−m

We can see how N gives rise to 1 parameter subgroups.

Definition 1.3.11 (1 parameter-subgroup (PS)). Given v =
∑n

i=1 vifi ∈ N , we get a 1-PS
λv via the multiplicative homomorphism:

λv : C∗ → (C∗)n, t 7→ (tv1 , . . . , tvn)

For example v = (1, 1) gives the complex 1-PS (t, t)t∈C∗ ⊂ (C∗)2. This gives a 1-dimensional
submanifold in Uσ by taking the image of (χu1 , . . . , χuk) on {λv(t)}t∈C∗ .

Remark 1.3.12. We can compose characters and 1-PS to get a character of C∗ by

χu ◦ λv(t) = t`, ` = 〈u, v〉

In particular we can see N geometrically as the dense torus by collecting all the 1-PS via

N ⊗Z C∗ : v ⊗ t 7→ λv(t)
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Example 1.3.13 (CP2). The fan has three cones, with rays generated by v1 = f1, v2 = f2,
and v3 = −f1 − f2 in NR.

Dual cones of functionals non-negative on the original cones are

σ∨1 = span(e1, e2)

σ∨2 = span(−e1,−e1 + e2)

σ∨3 = span(−e2, e1 − e2)

The vectors in these pairs don’t have relations between them, so they correspond to variables
of an affine chart isomorphic to C[x, y]. In other words, we don’t need to quotient by a toric
ideal I that would record relations between the generators. The choice of generator in each
case gives a complex coordinate on the chart.

Uσ1 = SpecC[χ1,0, χ0,1] ∼= C2 3 (χ1,0, χ0,1)

Uσ2 = SpecC[χ−1,0, χ−1,1] ∼= C2 3 (χ−1,0, χ−1,1)

Uσ3 = SpecC[χ0,−1, χ1,−1] ∼= C2 3 (χ0,−1, χ1,−1)

If τ = σ1∩σ2, then this corresponds to inverting χ1,0 and τ∨ is H+
(1,0). A choice of generators

gives a choice of coordinates, and the two different natural choices give us the coordinate
change.

C[Sσ1 ] = C[χ(1,0), χ(0,1)] ⊂ C[χ±(1,0), χ(0,1)] = C[Sτ ] SpecC[χ±(1,0), χ(0,1)]→ SpecC[χ(1,0), χ(0,1)]

and

C[χ−(1,0), χ(−1,1)] ⊂ C[χ±(1,0), χ(−1,1)] SpecC[χ±(1,0), χ(−1,1)]→ SpecC[χ−(1,0), χ(−1,1)]

Note that C[χ±(1,0), χ(0,1)] = C[χ±(1,0), χ(−1,1)] and under Spec we get Uτ . The choice of
generators give us an identification with C∗ × C which then includes, as the identity map,
into C2 in the two charts. The two different choices of this identification give us the transition
map.

g12(χ(1,0), χ(0,1)) :=

(
1

χ(1,0)
,
χ(0,1)

χ(1,0)

)
This recovers how we think about CP2 3 [z0 : z1 : z2] with χ(1,0) = z1/z0 and χ(0,1) = z2/z0.
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Orbit-cone correspondence

To understand equivariant divisors, we need to understand how the combinatorial data gives
us the geometric data. Divisors correspond to the vanishing of a coordinate on the variety.
This can be read off from the fan via the “Orbit-Cone Correspondence.”

Lemma 1.3.14 (Orbit-Cone correspondence). There is a 1-1 correspondence between n− k
dimensional (C∗)n-orbits of a point in the toric variety, and k dimensional cones of the fan,
e.g. between divisors and rays.

Proof. The idea is “every 1-parameter subgroup corresponding to a point in the interior of
a cone in N limits to the same limit point.” (Recall the correspondence between points of
N and 1-parameter subgroups in Definition 1.3.11.) That point gives the vector that defines
the direction of the 1-PS. By algebraic geometry, a point on a toric variety is a semigroup
homomorphism Sσ = C[σ∨ ∩M ] → C i.e. a map SpecC → Uσ. Recall that M encodes the
functions on the toric variety. So such an assignment is determining what all the functions
equal at the point; knowing all the functions at a given point is the same information as
knowing the point. Given v ∈ σ∩N we can assign coordinates to the associated point using
the following map on a basis of σ∨ ∩M :

σ∨ ∩M 3 u 7→ lim
t→0

χu(λv(t)) = t〈u,v〉 ∈ C

Now we use the following claim to see why all vectors of a cone give the same limit point,
hence giving the Orbit-Cone correspondence by taking the orbit of that cone’s limit point.

Claim 1.3.15. All 1-PS arising from directions v ∈ int(σ) ∩N limit to the same point.

Proof. For clarification we will use subscripts ubdry, uint to differentiate between the two cases
of functions we need to check on each v (namely u not in the interior of the dual cone σ∨ ⊂M
and u in the interior). We see that:

1. ubdry ∈ σ∨ ∩ σ⊥ implies 〈ubdry, v〉 = 0 for all v ∈ σ hence

lim
t→0

χu(λv(t)) = t〈u,v〉 = 1

2. uint ∈ σ∨\(σ∨ ∩ σ⊥) implies that, on the one hand 〈uint, v〉 ≥ 0 for all v ∈ int(σ) ∩N
by definition of σ∨ but on the other hand 〈uint, v〉 6= 0 for v in the interior of σ and
uint /∈ σ⊥. Thus

lim
t→0

χu(λv(t)) = t〈u,v〉 = 0

To finish the proof of the Orbit-Cone correspondence, we let the orbit corresponding to the
cone σ be (C∗)n · p where p is the point limt→0(χu1(λv(t)), . . . , χuk(λv(t))) for some v ∈ σ
and u1, . . . , uk generators for Sσ. We can choose any v by the previous claim.
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Example 1.3.16 (CP2). The fan has cones and dual cones:

{0}, {0}∨ = MR ∼= R2

ρ1 = 〈(1, 0)〉 , ρ2 = 〈(0, 1)〉 , ρ3 = 〈−1,−1〉
ρ∨1 = 〈±(0, 1), (1, 0)〉 , ρ∨2 = 〈±(1, 0), (0, 1)〉 , ρ∨3 = 〈±(−1, 1), (−1, 0)〉
σ1 = 〈(1, 0), (0, 1)〉 , σ2 = 〈(1, 0), (−1,−1)〉 , σ3 = 〈(0, 1), (−1,−1)〉
σ∨1 = 〈(1, 0), (0, 1)〉 , σ∨2 = 〈(0, 1), (1,−1)〉 , σ∨3 = 〈(−1, 0), (−1, 1)〉

The limit points γσ that generate the orbits corresponding to cones σ are the points sending
vectors m ∈ σ⊥ ∩ σ∨ to 1 and the rest of σ∨ to 0. Let (t1, t2) ∈ (C∗)2 be coordinates on the
dense toric orbit. The generators taken for Sρi are listed below in the exponents.

λ(0,0)(t) = (1, 1), γ{0} = lim
t→0

(χ(1,0)(1, 1), χ(0,1)(1, 1)) = (1, 1) =⇒ (C∗)2

λ(1,0)(t) = (t, 1), γρ1 = lim
t→0

(χ(0,1)(t, 1), χ(1,0)(t, 1)) = (1, 0) =⇒ C∗ × {0}

λ(0,1)(t) = (1, t), γρ2 = lim
t→0

(χ(1,0)(1, t), χ(0,1)(1, t)) = (1, 0) =⇒ C∗ × {0}

λ(−1,−1)(t) = (t−1, t−1), γρ3 = lim
t→0

(χ(−1,1)(t−1, t−1), χ(−1,0)(t−1, t−1)) = (1, 0) =⇒ C∗ × {0}

Taking the closures in the toric variety, we have three toric divisors, i.e. divisors invariant
under the (C∗)n action.

Claim 1.3.17. Let O(σ) denote the orbit corresponding to a cone σ under the Orbit-Cone
correspondence. Then the toric divisor given by the closure of an orbit has the following
description:

O(τ) =
⋃
τ≤σ

O(σ)

Notation: N(σ) is lattice points in N modulo those in σ ∩N =: Nσ.

Divisors, line bundles and polytopes

The divisor-ray correspondence is a special case of the Orbit-Cone correspondence, and by
complex geometry [Huy05, §2.3] the defining functions of a divisor give transition functions
for line bundles. Below we introduce the notion of a polytope and explain why it determines
a line bundle. We’ll see that it is constructed so its edges are perpendicular to rays in a fan,
and the size of it governs the coefficient on each irreducible toric divisor (corresponding to
the rays of a fan). Then this divisor gives the line bundle corresponding to that polytope.

Definition 1.3.18 (Polytope). A polytope P ⊂MR is

P := {m ∈MR | 〈m, νi〉 ≥ −ai} ⊂MR

for finitely many i, where the νi ∈ N generate rays ρi of a fan Σ. With infinitely many i we
get more generally a polyhedron.
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Definition 1.3.19 (Faces, facets). Codimension 1 faces in the polytope are called facets,
〈u, vi〉 = −ai for some i and 〈u, vj〉 > −aj for j 6= i. Higher codimension faces have
〈u, vi〉 = −ai for more than one i.

Definition 1.3.20 (Obtaining fan from P : vertices of full dimensional lattice polytope
correspond with toric charts, c.f. [CLS11, p 76]). Given polytope P with vertices v, we
translate each vertex to the origin and take the cone spanned by its edges, namely Cv :=
Cone(P ∩M − v) ⊂MR. The corresponding cone of the fan is defined to be

σv := C∨v = Cone(νi | ith face contains v) ⊂ NR

Thus the chart Uσv = SpecC[Cone(P ∩M − v) ∩M ]. (More generally for a face Q of the
polytope, we have σQ is the cone on the νi of faces containing Q.) So the upshot is “local
coordinates of a toric variety can be read off from edges to a vertex of the corresponding
polytope.”

The collection of all the cones σQ can be checked to give a fan which we define to be ΣP .

Remark 1.3.21. For a discussion of the analogue of dualizing σ → σ∨ on the level of
polytopes (polytope → polar polytope), see [Ful93, §1.5, p 26]. One can pass between a
polytope P in MR to a cone given by Cone(P × {1}) ⊂ MR × R, then take the dual ∨ on
cones to get a cone in NR ×R, and show that this is a cone on the polar P 0 of P , i.e. of the
form Cone(P 0 × {1}) for the dual polytope P 0 ⊂ NR.

Definition 1.3.22 (Equivariant divisor). An equivariant or T -divisor is a linear combination
of closures of toric orbits.

Claim 1.3.23. A T -divisor is a linear combination of divisors corresponding to facets.

Proof. Rays of a fan correspond to equivariant divisors. Indeed, given a ray ρ its orthogonal
ρ⊥ has codimension 1, which means the distinguished point γρ has n − 1 ones and 1 zero
(from the one direction generated by ρ sending the codimension 1 space ρ⊥ to zero). So the
(C∗)n-orbit is dimension n− 1. Taking the closure of this gets the divisor Dρ. Namely

Dρ = O(ρ) =
⋃
ρ≤σ

O(σ)

We get a divisor from the vanishing of a coordinate.

Remark 1.3.24 (Notation). Since we now know that the i in νi and ai are indexed by facets
F of the polytope, we can use F to index them.

Definition 1.3.25 (A distinguished divisor). Let P := {m ∈ MR | 〈m, νi〉 ≥ −ai} ⊂ MR
be an integral polytope, namely ai ∈ Z. By the Orbit-Cone correspondence we can take
the closure of the corresponding orbit of each ray νF in ΣP to obtain the toric divisor DF .
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We may then construct a toric variety YP from this fan. Finally we define the distinguished
divisor in YP to be

D :=
∑
F

aFDF

Remark 1.3.26. The integral condition allows us to define the divisor and later embed YP
into projective space since D will correspond to an ample line bundle.

Claim 1.3.27 (Sections of O(D), [CLS11][Proposition 4.3.3] ). The sections of O(D) are
given by

Γ(YP ,O(D)) =
⊕

m∈P∩M

C · χm

where P := {m ∈MR | 〈m, νF 〉 ≥ −aF} ⊂MR and D =
∑

F facet aFDF .

Proof. By definition

Γ(YP ,O(D)) = {f ∈ C(YP )∗ | div(f) +D ≥ 0} ∪ {0}

where C(YP )∗ consists of invertible rational functions on YP . Note that

Supp(D) ∩ TN = ∅

because TN is the orbit where all coordinates are nonzero and Supp(D) consists of DF , which
contain orbits where at least one coordinate is zero. Hence D|TN = 0 and div(f)|TN ≥ 0
i.e. f is a regular function on TN = SpecC[M ]. We deduce that f ∈ SpecC[M ] and thus

Γ(YP ,O(D)) ⊂ C[M ]

Write f =
∑

m∈A cmχ
m over some subset A ⊂ M and complex coefficients cm. Note that

Γ(YP ,O(D)) is a TN -invariant subset, under the action

TN y Γ(YP ,O(D)) : t · f := f ◦ t−1

TN y TN : t · p := (t1p1, . . . , tnpn)

because DF are TN -invariant and f and f ◦ t−1 have the same vanishing set. In particular,
let

B = span{χm | m ∈ A }

Since χm : TN → C∗ is a homomorphism, we see that TN preserves the space spanned by χm

because
t · χm(p) = χm(t−1 · p) = χm(t−1)χm(p) ∴ t · χm = χm(t−1)χm

so W := B ∩ Γ(YP ,O(D)) (which is finite dimensional because f is a finite sum), as an
intersection of TN -invariant subspaces is also TN -invariant. Now we apply some results of
linear algebra. Note that the TN -action consists of linear maps on the finite-dimensional
space W , so gives rise to commuting finite-dimensional matrices (as TN is a commutative
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group) so the matrices can all be simultaneously diagonalized, i.e. we can find a basis of
eigenvectors for W . In particular, by representation theory we can write the representation
TN → GL(W ) as a direct sum of 1-dimensional representations, namely characters χm. So
the upshot is that, f ∈ W is expressed as a sum of characters in C[M ] and also as a sum
of characters in W , but by uniqueness those two expressions are the same. So χm ∈ W for
m ∈ A and f ∈

⊕
χm∈Γ(YP ,O(D)) C · χm thus

Γ(YP ,O(D)) =
⊕

χm∈Γ(YP ,O(D))

C · χm

The final step is as follows. Pick a global section χm. The condition div(χm) + D ≥ 0,
looking at coefficients, is equivalent to the statement

〈m, νF 〉+ aF ≥ 0

In other words, this is equivalent to m ∈ P . But since χm is a character that means m ∈M
hence this is equivalent to m ∈ P ∩M and we get the final result

Γ(YP ,O(D)) =
⊕

m∈P∩M

C · χm

Claim 1.3.28 (Basepoint free, [CLS11][Proposition 6.1.1). ] There does not exist a point
p ∈ YP where χmi(p) = 0 for all mi ∈ P ∩M . In other words, O(D) is basepoint free, because
Γ(YP ,O(D)) =

⊕
mi∈P∩M χmi .

Proof. Recall that faces Q ⊂ P give cones σQ that describe the fan of the polytope ΣP . We
show that for each affine piece UσQ , there is a global section which does not vanish on that
piece. Since the UσQ cover the toric variety, that will suffice.

Write the face Q =
⋂
F⊃Q F as an intersection of facets. Hence

Q := {m ∈MR | 〈m, νF 〉 = −aF , ∀F ⊃ Q} ⊂MR

Pick a lattice point mQ ∈ Q, e.g. a vertex. Then χmQ is a global section of O(D) by Claim
1.3.27. Furthermore 〈mQ, νF 〉 + aF = 0 for F ⊃ Q means that the order of vanishing of
χmQ +D along UσQ is zero.

(div(χmQ) +D)|UσQ =
∑
F⊃Q

(〈mQ, νF 〉+ aF )DF = 0

In other words, χmQ(UσQ) 6= 0.
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Corollary 1.3.29 (Definition of a symplectic form, [Huy05][Example 4.1.2]). Recall by Claim
1.3.27 that

Γ(YP ,O(D)) =
⊕

mi∈P∩M

χmi

Because O(D) is basepoint free by Claim 1.3.28, these basis elements do not simultaneously
vanish at any point p ∈ YP . Hence we can define a Kähler form by

ωP :=
i

2π
∂∂h, h =

1∑s
i=1 |χmi|2

where | · | refers to the standard norm in C since χmi are complex coordinates.

Remark 1.3.30. O(D) is an ample line bundle, which implies that Y∆ can be viewed as a
variety in a projective space. The reason it is ample can be found in [CLS11], and is because
of the combinatorics of the polytope. Some multiple kP of the polytope is normal (Chapter
2) which implies the polytope is ample (definition in Chapter 2) which is seen later to be
equivalent to the line bundle being ample (Chapter 6). A very ample polytope intuitively has
enough lattice points, corresponding to there being enough sections to define an embedding.

1.4 The A-side manifold

We have the toric background, so the next step is to describe the tools we use to construct
the polytope for Ỹ . Since (Y, v0) for a suitable holomorphic function v0 should be mirror
to H = Σ2 ⊂ V , we would expect that the polytope is built from information about the
genus 2 curve. We can glean combinatorial data from the defining section s by taking its
tropicalization.

Tropicalization of theta function

Definition 1.4.1 (Tropicalization). Let f(x) =
∑

a∈A⊂Zn cax
aτ ρ(a). Let ξ = (ξ1, . . . , ξn) be

Log coordinates so defined by
|xi| = τ−ξi

Then

f =
∑
a

ca

(
x

|x|

)a
τ ρ(a)−〈a,ξ〉

In particular, the tropical limit corresponds to τ → 0, i.e. rescaling |xi| so that ξi remains
constant. As τ → 0 we see that the leading order term in f is the one with the smallest
exponent on τ . Then the tropicalization of f is the negative of this, namely

Trop(f) := −min
a∈A

ρ(a)− 〈a, ξ〉 = max
a∈A
〈a, ξ〉 − ρ(a)
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Claim 1.4.2. Let s be the theta function above. The tropicalization ϕ := Trop s satisfies
the following periodicity property

ϕ(ξ + γ̃) = ϕ(ξ)− κ(γ̃) + 〈ξ, λ(γ̃)〉 (1.10)

Proof. Recall

s(x) =
∑
γ∈ΓB

τ−κ(γ)x−λ(γ)

where

κ(γ) = −1

2
λ(γ)TMλ(γ), M =

(
2 1
1 2

)
λ(γ′) =

(
1
0

)
, λ(γ′′) =

(
0
1

)
Let x = τ ξ. Then this becomes

s(x) =
∑
γ∈ΓB

τ−κ(γ)−〈ξ,λ(γ)〉

So letting τ → 0 we see that the leading term is the minimum exponent or the maximum of
its negative, namely

ϕ(ξ) := Trop(s)(ξ) := max
γ

κ(γ) + 〈ξ, λ(γ)〉 (1.11)

Since κ is negative definite of degree 2 and λ is positive of degree 1, this should have a
maximum. We have the following periodicity property:

ϕ(ξ + γ̃) = max
γ

κ(γ) + 〈ξ + γ̃, λ(γ)〉

= max
γ

κ(γ) + 〈ξ, λ(γ)〉+ 〈γ̃, λ(γ)〉

We know that
κ(γ − γ̃) = κ(γ) + κ(γ̃) + λ(γ)TMλ(γ̃)

and
Mλ(γ̃) = γ̃

by the above convention for λ(γ). So we can rewrite the expression for the tropicalization as

ϕ(ξ + γ̃) = max
γ
〈ξ, λ(γ)〉+ [κ(γ − γ̃)− κ(γ̃)]

=

(
max
γ

κ(γ − γ̃) + 〈ξ, λ(γ − γ̃)〉
)
− κ(γ̃) + 〈ξ, λ(γ̃)〉

This implies that
ϕ(ξ + γ̃) = ϕ(ξ)− κ(γ̃) + 〈ξ, λ(γ̃)〉
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Definition 1.4.3 (Vanishing set of tropicalization). The vanishing of Trop(f), denoted
V (Trop(f)), is defined to be where two leading order exponents are equal because they can
cancel each other out in the limit to get zero.

Claim 1.4.4. V (Trop s) ⊂ R2 is a honeycomb shape that is a tiling by hexagons.

Proof. Let ξ = 0. Then Trop(s)(0) is the maximum over γ of κ(γ). Note that κ(γ) is a
negative definite form so at most it can be zero. Hence ϕ(0) = 0, and since the maximum
continues to be achieved by γ = 0 for ξ in a neighborhood of the origin, the function ϕ is
identically zero in a neighborhood of the origin, which we call the (0, 0) tile. We let the
(m,n) tile be obtained by moving m times in the γ′ direction and n times in the γ′′ direction
from the (0, 0) tile. Now we want to know what happens when we change tiles in order to
find the vanishing of the tropicalization.

In what follows in this section ξ is always in the (0, 0) tile, and we translate by elements of
ΓB and use the periodicity property of ϕ to see how its value changes. Let γ̃ = γ′ := (2, 1).
Then the above equation tells us that for ξ in the (0, 0) tile

ϕ(ξ + γ′) = 0 +
1

2
(1, 0)M(1, 0)T + ξ1 = ξ1 + 1

So setting this equal to 0 we should find where the two piecewise linear components meet.
ξ1 + 1 = 0 =⇒ ξ1 = −1. Since ξ1 = −1 exactly when the first component of ξ + γ′ is equal
to −1 + 2 = 1, we find that the (0, 0) and (1, 0) tiles meet along the line ξ1 = 1.

Similarly we see what happens when we move in the γ′′ = (1, 2) direction. For ξ in the (0, 0)
tile

ϕ(ξ + γ′′) = 0 +
1

2
(0, 1)M(0, 1)T + ξ2 = ξ2 + 1

and similarly we find that the (0, 0) tile and (0, 1) tile intersect along ξ2 = 1.

Next we consider moving in the negative γ′ and γ′′ directions. Then

ϕ(ξ − γ′) = 0 +
1

2
(−1, 0)M(−1, 0)T − ξ1 = −ξ1 + 1

so −ξ1 + 1 = 0 =⇒ ξ1 = 1 so the two tiles intersect along the line ξ1 = −1. And similarly
along ξ2 = −1 for the (0, 0) and (0,−1) tile.

We almost have the hexagonal shape of CP2 blown up in three points. We just check γ′′−γ′
and γ′ − γ′′ when ξ is again in the (0, 0) tile.

ϕ(ξ+γ′′−γ′) = ϕ(ξ+γ′′)+
1

2
(−1, 0)M(−1, 0)T+〈ξ + γ′′, λ(−γ′)〉 = ξ2+1+1−ξ1−1 = −ξ1+ξ2+1
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which, setting equal to 0 we get ξ1−ξ2 = 1. This line is parametrized as (t+1, t) which means
the vanishing of the tropicalization there is (t+ 1, t) + γ′′ − γ′ = (t+ 1, t) + (1, 2)− (2, 1) =
(t + 1, t) + (−1, 1) = (t, t + 1). This intersects the line ξ1 = −1 when t = −1 and the line
ξ2 = 1 when t = 0 so those are the bounds i.e. the line segment from (−1, 0) to (0, 1).

Final edge:

ϕ(ξ+γ′−γ′′) = ϕ(ξ+γ′)+
1

2
(0,−1)M(0,−1)T +〈ξ, λ(−γ′′)〉 = ξ1 +1+1−ξ2−1 = ξ1−ξ2 +1

so (t, t+ 1) + (2, 1)− (1, 2) = (t, t+ 1) + (1,−1) = (t+ 1, t) which intersects ξ1 = 1 at t = 0
and ξ2 = −1 at t = −1 so we get the line segment from (0,−1) to (1, 0).

(0, 0)

ξ2 = −1

(t+ 1, t),−1 ≤ t ≤ 0

Figure 1.2: The (0,0) tile delimited by the tropical curve

So by periodicity, this picture tiles the plane, and the slope of the (m,n) tile is going to be
mξ1 + nξ2 + κ(mγ′ + nγ′′) by Equation 1.11.

Outline: definition of (Y, v0) and ω

The smooth manifold Y is constructed as a portion of a toric variety Ỹ quotiented by ΓB
acting properly discontinuously via holomorphic maps. The defining polytope is

∆Ỹ := {(ξ1, ξ2, η) ∈ R3 | η ≥ Trop(s)(ξ)}
∆Y := (∆Ỹ )|η≤T l/ΓB where

γ · (ξ1, ξ2, η) := (ξ1 + γ1, ξ2 + γ2, η − κ(γ) + 〈ξ, λ(γ)〉)
∵ Trop(s)(ξ + γ) = Trop(s)(ξ)− κ(γ) + 〈ξ, λ(γ)〉

(1.12)

The polytope ∆Ỹ is illustrated in Figure 1.7, where η is bounded below by the expression in
the center of the tile, and comes out of the page. We discuss the complex coordinates on Y
below. For now we give a definition.
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Definition 1.4.5 ([AAK16][Definition 1.2]). (Y, v0) is a generalized SYZ mirror for H = Σ2.

Remark 1.4.6. Note that one can apply SYZ in the reverse direction by starting with a
Lagrangian torus fibration on Y minus a divisor to recover X as its complex mirror, see
[AAK16, §8] or [CLL12].

Pair of pants: the local model

We describe an illustrative example of generalized SYZ that is the local model of our setting.

Example 1.4.7 ([AAK16][§9.1]). Suppose H ⊂ V is the pair of pants f(x1, x2) := 1 + x1 +
x2 = 0 in V = (C∗)2. This is a pair of pants because x1 ∈ C∗\{−1} and a cylinder minus a
point is a pair of pants. Recall the definition of Trop(f) in Definition 1.4.1.

So in the pair of pants example, ρ ≡ 0 and A = {(0, 0), (1, 0), (0, 1)} hence Trop(f)(ξ1, ξ2) =
max{0, ξ1, ξ2}. If ξ1, ξ2 < 0 then 0 is the maximum, if ξ1 > ξ2 > 0 then ξ1 is the maximum
and if ξ2 > ξ1 > 0 then ξ2 is the maximum. So the zero set (Definition 1.4.3) of Trop(f) is
the following picture

Figure 1.3: Trop(1 + x1 + x2) = 0

and the moment polytope is ∆ := {(ξ, η) | η ≥ Trop(f)(ξ)} ⊂ Rn+1 which gives

η ≥ ξ1

η ≥ ξ2

η ≥ 0

Figure 1.4: Moment polytope ⊂ R3

Under a linear transformation on (ξ1, ξ2, η) this polytope becomes R3
≥0. Then the corre-

sponding toric variety is SpecC[x, y, z] = C3. The superpotential is v0 = xyz and we get the
expected mirror to the pair of pants, (C3, xyz).
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ω determines ΓB-action on complex coordinates

We want to construct a symplectic form ω so that 1) it is Kähler i.e. compatible with the
complex structure inherited from the complex toric coordinates, 2) v0 := xyz is a symplectic
fibration and 3) it is toric, i.e. invariant under the torus action.

Because of 3), it suffices to define the symplectic form in terms of the norms of the complex
coordinates. To ensure 1), we define ω locally as i

2π
∂∂ of a suitable Kähler potential, where

∂∂ is taken with respect to the local complex toric coordinates. To ensure 2) we need all
fibers to be symplectic when we restrict the symplectic form. The central fiber is the toric
variety with moment polytope given by the hexagon in Figure 1.5, quotiented by ΓB. This
comes equipped with a symplectic form as described in the theory of Section 1.3 with the
toric variety CP2(3 points). As we move away from v0 = 0 but still near a vertex of the
polytope, the toric variety is locally modelled on the (C3, xyz) picture that was the local
model of Example 1.4.7. So we will use bump functions to interpolate between the toric
symplectic form of CP2(3 points) and the standard form on C3.

Figure 1.5: Moment polytope for central fiber of (Y, v0) when H = Σ2.

We explain the pictorial motivation for how the symplectic form is constructed in the one
dimension down case.

Example 1.4.8. Let H be a point inside an elliptic curve. Then the polytope ∆Ỹ is two-
dimensional, so we can draw it.

A fiber of v0 : Ỹ → C is topologically a cylinder with necks getting pinched in a periodic way
as |v0| → 0, degenerating to a string of P1’s over the central fiber. Around the widest parts
of the cylinder, it looks like a portion of a sphere, and P1 comes canonically equipped with
the Fubini-Study form. On the other hand, neighborhoods of the vertices of the polytope
give charts C2 and the local picture of the Lefschetz fibration C2 → C, (x, y) 7→ xy where
cylinders degenerate to a cone over zero. In particular, C2 comes canonically equipped with
the standard form ωstd. When the toric coordinates are very small, the Fubini-Study form
and the standard form are approximately the same by a Taylor expansion of log. So a
symplectic form can be constructed by interpolating between these two Kähler forms.
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Figure 1.6: In one dimension lower, the boundary of ∆Ỹ is the moment map image of a
string of P1’s. In the polytope, |v0| increases in the (0, 1) direction. In the fibration v0, |v0|
is the radius of the circle in the base.

Lemma 1.4.9. Let rx = |x| etc. and 0 < T << 1 be a constant. In the case of H = Σ2, the
symplectic form will interpolate between (C3, ωstd) with Kähler potential 1

3
T 2(r2

x + r2
y + r2

z)
from charts locally around the vertices, and the toric Kähler form induced by the hexagon as
CP2(3 points), the blow-up at three points. The Kähler potential is the logarithm of the sum
of squares of suitably scaled sections corresponding to lattice points, as described in Corollary
1.3.29.

Set gxy := log(1 + |T ax|2)(1 + |T by|2)(1 + |T cxy|2) for some (a, b, c). Then (a, b, c) = (1, 1, 2)
has the correct symmetries for ω to be compatible with the ΓB-action and define a symplectic
form on the quotient Ỹ /ΓB.

Remark 1.4.10. When Trx and Try are both small, we have gxy ≈ (Trx)
2 + (Try)

2.

Remark 1.4.11. Consider Figure 1.7, depicting the three dimensional ∆Ỹ of this thesis. By
toric geometry we know (x, y) must map to some scaling of (y−1, xy) as drawn in that figure.
We will define a suitable (α, β) in what follows so that the scaling is (x, y) 7→ (Tαy−1, T βxy).

Definition 1.4.12. Define G = Z/6 y Ỹ to rotate the hexagon clockwise as follows, where
g is the generator of G:

g · (x, y) = (Tαy−1, T βxy) (1.13)

More specifically, this action on (x, y) determines an action on Ỹ by prescribing it to restrict
to an action on a fiber of v0, either a generic one or the degenerate central one. In other words,
the action on the z coordinate is g ·z = T−α−βyz so that v0 = xyz 7→ Tα+β−α−βy−1 ·xy ·yz =
xyz is preserved.
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x
z =

v0

xy

y

T−3v−1
0 z

y

T 3v0x

T−3v−1
0 z

T 3v0y

x

T−2y−1

Tv0z
−1 = TxyTv0x

−1 = Tyz

T−2y−1

T 4v2
0z
−1

T−2x−1

Tv0y
−1

Tv0z
−1 = Txy

T−2x−1

T−2z−1
Tv0x

−1

Tv0y
−1

−ξ2 − 1

−ξ1 − 1

0

Figure 1.7: Depiction of ∆Ỹ in the Σ2 case. The coordinates indicate a ΓB-action which we
motivate and define in the next sections. Magenta parallelogram = fundamental domain for
ΓB action, with diagonal P1 at center. Each vertex is a C3 chart. Coordinate transitions
will be explained in Lemma 1.4.9. Expressions in the center of tiles indicate e.g. η ≥ ϕ(ξ) =
−ξ1− 1 over that tile. Equations of the 6 edges imply tile(0,0) is given by (ξ1, ξ2) ∈ {(ξ1, ξ2) |
−1 ≤ ξ1, ξ2,−ξ1 + ξ2 ≤ 1}.

Claim 1.4.13. Under G, if gxy maps to a Kähler potential that differs by a harmonic
function, namely by log |Tα/2y|2, then the symplectic area of the P1 along the y-axis is 1.

Proof. We consider the calculation along the z-axis, which suffices because that along the
y-axis is analogous once we have the symmetries. Note that the symplectic area of the P1

along the z-axis is 1, by Stokes’ theorem. Recall P1 has an open covering U0, U∞ and charts
φ0 and φ1 sending [z0 : z1] to z1/z0 and z0/z1 respectively. We want to split up the integration
over P1 into these two charts, but only the portion of the chart up to where they intersect
(else we integrate over too much). So we have z is the coordinate on φ0(U0) ∼= C then it is
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1/(Tαz) on φ∞(U∞) and |z| = |1/Tαz| =⇒ |z| = 1/Tα/2. Then let D0 be the disc in φ0(U0)
and D∞ the corresponding in the other one. Let F0, F∞ be the Kähler potential in the two
charts. ∫

P1

i

2π
∂∂F =

i

2π
[

∫
φ−1
0 (D0)

d(∂F ) +

∫
−φ−1
∞ (D∞)

d(∂F )]

=
i

2π
[

∫
∂D0

∂(φ−1
0 )∗F −

∫
∂D∞

∂(φ−1
∞ )∗F ]

=
i

2π

∫
C

1/Tα/2

∂(F0 − F∞)

=
i

2π

∫
C

1/Tα/2

∂ log(|Tα/2z|2) =
i

2π

∫
C

1/Tα/2

Tαzdz

|Tα/2z|2

=
i

2π

∫ 2π

0

eiθ(−i)e−iθdθ = 1

Proof of main Lemma 1.4.9.

g∗ log(1 + |T ax|2)(1 + |T by|2)(1 + |T cxy|2) = log(1 + |T a+αy−1|2)(1 + |T b+βxy|2)(1 + |T c+α+βx|2)

gxy = log(1 + |T ax|2)(1 + |T by|2)(1 + |T cxy|2)

We expect the two potentials to differ by log |T by|2 because y becomes y−1 under g. So
comparing exponents we obtain:

b = −a− α
a = c+ α + β

c = b+ β

We have 5 unknowns and 3 equations so should be able to reduce to 2 unknowns. Namely
write (a, b, c) in terms of (α, β) and then, requiring x ↔ y symmetry, we impose a = b and
determine α in terms of β.

a = c+ α + β = (b+ β) + α + β = (−a− α) + α + 2β

=⇒ a = β

=⇒ b = −α− β
a = b ∴ α = −2β

=⇒ c = b+ β = 2β

∴ gxy = log(1 + |T βx|2)(1 + |T βy|2)(1 + |T 2βxy|2)

Choose β = 1 =⇒ gxy = log(1 + |Tx|2)(1 + |Ty|2)(1 + |T 2xy|2)
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Since we set β = 1, we see that along the x axis (so y and z axes by symmetry), the complex
modulus changes by T−2. So the value of y becomes large when we apply g, but the new
coordinate system there, called (x′′, y′′, z′′) later on, will have the same small values as at
(x, y, z).

We see in the next section why (α, β) = (−2, 1) and g · (x, y) = (T−2y−1, Txy) determine
the ΓB-action depicted in Figure 1.7. Then this allows us to define Y as the quotient Ỹ /ΓB
where Ỹ is constructed from ∆Ỹ as explained in Section 1.3.

The definition of Y

Remark 1.4.14 (Convention). The convention is that moving up and right in Figure 1.7 is
negative since the powers of T << 1 are positive, hence decreasing values in the coordinates
corresponds with moving in the negative direction of the group action. That is, the actions
of γ′ and γ′′ map the coordinates (x, y, z) to the charts centered at (−2,−1) and (−1,−2)
respectively in Figure 1.7.

Definition 1.4.15 (Definition of the ΓB-action). The ΓB-action on (x, y, z) can be read off
from the Z/6-action defined above in Definition 1.4.12 as follows. Namely, g2 maps (x, y, z) to
the coordinate system centered at (ξ1, ξ2) = (1, 2) as −γ′′ would, but it permutes the coordi-
nate directions by a rotation. Indeed, g sends (x, y, z) 7→ (T−2y−1, Txy, Tyz). After undoing
this permutation in g so the directions are preserved, i.e. (x, y, z) 7→ (Tyz, T−2y−1, Txy) =
(Tv0x

−1, T−2y−1, T v0z
−1), we can define the ΓB-action by similarly permuting the resulting

coordinates from applying g2:

(−γ′′) · (x, y, z) := (x, T 3v0y, T
−3v−1

0 z)

Definition 1.4.16 (Definition of Y ). Now we may define Y via the quotient Ỹ /ΓB:

∆Ỹ := {(ξ1, ξ2, η) ∈ R3 | η ≥ Trop(s)(ξ)}
∆Y := (∆Ỹ )|η≤T l/ΓB where Equation 1.10 implies

γ · (ξ1, ξ2, η) := (ξ1 + γ1, ξ2 + γ2, η − κ(γ) + 〈ξ, λ(γ)〉)
(1.14)

Every vertex of ∆Ỹ corresponds to three complex coordinates which we can write in terms of
(x, y, z) (and v0 = xyz). Figure 1.7 lists these coordinates, which we gather here for clarity
as charts Un,gk where γ = n1γ

′+n2γ
′′ denotes the center of the tile in ∆Ỹ we are looking at,

when projected to the first two coordinates, and gk denotes how far around the hexagon we
are. The gk allows us to index the charts, but as noted in Definition 1.4.15 the coordinates
are a permutation of the coordinates gk · (x, y, z) so the subscript is mainly for indexing. The
transition maps are

(x, y, z) 7→ σgn · (gn ◦ γ) · (x, y, z), n ∈ Z/6, γ ∈ ΓB
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for a suitable permutation σgn on the coordinates that depends on n, see Definition 1.4.15.
Going clockwise around on the (0, 0) tile from (x, y, z):

• U0,g0 : (x, y, z)

• U0,g : (Tv0x
−1, T−2y−1, T v0z

−1) =: (x′′, y′′, z′′)

• U0,g2 : (x, T 3v0y, T
−3v−1

0 z) =: (−γ′′) · (x, y, z)

• U0,g3 : (T−2x−1, T−2y−1, T 4v2
0z
−1)

• U0,g4 : (T 3v0x, y, T
−3v−1

0 z) =: (−γ′) · (x, y, z)

• U0,g5 : (T−2x−1, T v0y
−1, T v0z

−1) =: (x′, y′, z′)

• Going along the z axis we get to the g−1 vertex in the (−1, 0) tile:

• U(−1,0),g−1 : (Tv0x
−1, T v0y

−1, T−2z−1) =: (x′′′, y′′′, z′′′)

The upshot is that for |v0| = T l with T << 1 and l sufficiently small, ΓB acts properly
discontinuously and holomorphically so the quotient is a well-defined complex manifold Y .

Calculation of coordinates from Z/6 action. Since g · (x, y) = (T−2y−1, Txy), applying the
group action twice we find

(x, y) ∼ (T−2y−1, Txy) ∼ (T−2(T−1x−1y−1), T (T−2T−1)(Txy)) = (T−3x−1y−1, x)

In particular ΓB fixes v0 = xyz so we may rewrite the transformed y-coordinate as T 3v0y to
obtain the γ′′ action, after suitable permutation σg2 :

σg2 · g2 · (x, y, z) =: −γ′′ · (x, y, z) = (x, T 3v0y, T
−3v−1

0 z)

The γ′ calculation is similar. To find the coordinate system (x′′′, y′′′, z′′′), we first move
down and left by γ′ action to be in the (0,−1) tile, then rotate by g−1 and finally ap-
ply a suitable permutation. Since g−1 · (x, y) = (Txy, T−2x−1) we obtain g−1 · (x, y, z) =
(Tv0z

−1, T−2x−1, T v0y
−1). Then:

γ′ · (x, y, z) = (T−3v−1
0 x, y, T 3v0z)

g−1 · (T−3v−1
0 x, y, T 3v0z) = (Tv0(T 3v0z)−1, T−2(T−3v−1

0 x)−1, T v0y
−1)

= (T−2z−1, T v0x
−1, T v0y

−1)

∴ (x′′′, y′′′, z′′′) := σg−1 · g−1 · γ′ · (x, y, z) = (Tv0x
−1, T v0y

−1, T−2z−1)

The calculations to obtain the remaining coordinates in the charts listed above are similar.
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Remark 1.4.17. Note that the symmetry properties required for ω told us what complex
structure was needed (it produces a product complex structure), which by mirror symmetry
will correspond to a specific symplectic form on A-model of X. We label some of the green
chart coordinates of Figure 1.7 with new primed-variables in the list in Definition 1.4.16
above.

Corollary 1.4.18 (Complex structure on Y ). The complex structure is obtained by first
identifying toric charts for each vertex of the polytope ∆Ỹ by gluing (x, y, z) to the new
coordinate system of each of the other vertices. Then we quotient by the action of ΓB, which
rescales the coordinates while preserving v0 = xyz, so that the fibers of v0 on the quotient
are abelian varieties. In terms of the complex coordinates the ΓB-action is:

(x, y, z) ∼ (T 3v0x, y, T
−3v−1

0 z)

(x, y, z) ∼ (x, T 3v0y, T
−3v−1

0 z)

Remark 1.4.19. Note that before the ΓB-action quotient the fibers would be (C∗)2 after
gluing all the toric charts together. The ΓB-action in complex coordinates corresponds to
passing from ∆Ỹ to ∆Y = ∆Ỹ /ΓB. We still glue toric charts by identifying monomials
according to the polytope, but we allow rescaling to happen when gluing the complex coor-
dinates. (E.g. in a lower dimension for C∗ 3 x 7→ Tx we glue a unit circle with a radius T
circle, giving a torus.)

Remark 1.4.20 (Terminology). The toric variety Ỹ is referred to as a toric variety of
“infinite-type” by [KL19], because of the infinitely many facets, where the neighborhood of
the toric divisor there is the same as our restriction to |v0| small, i.e. η small.

Definition 1.4.21 (Superpotential). The superpotential v0 is the holomorphic function Y →
C defined to be

v0(x, y, z) := xyz (1.15)

which is well-defined as a global function on Y because it is invariant under the ΓB action.

Remark 1.4.22. We will equip v0 with the structure of a symplectic fibration in Section 2,
which we then equip with a Fukaya-Seidel category in Section 4.1.

Remark 1.4.23. The ΓB-action on complex coordinates here is different than that described
in [AAK16, §10.2]. That means that Y is mirror to X with a different symplectic form than
the one considered in their paper. The complex structure there is

vm ∼ v
〈λ(γ),m〉
0 T 〈γ,m〉vm (1.16)

where they use complex coordinates v = (v1, v2). Thus setting (x, y, z) = (v−1
1 , v−1

2 , v0v1v2),
their complex structure arises from the following ΓB-action:

γ′ · (x, y, z) = (T−2v−1
0 x, T−1y, T 3v0z)

γ′′ · (x, y, z) = (T−1x, T−2v−1
0 y, T 3v0z)
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Delineating polytope into regions

Recall the polytope ∆Ỹ of Figure 1.7. We will start by defining ω in a neighborhood of a
vertex. It will be defined in terms of a new set of local real radial and angular coordinates
d and θ on Ỹ in each delineated region of Figure 1.9.

The delineations are defined in terms of the following variables. We fix |v0|(= |xyz|) = T l for
T << 1 and l a large positive constant. In the support of Figure 1.9, we have rx, ry, rz << 1
so the approximations of Equation 1.18 are valid.

We define functions φx, φy, φz which will be crucial in understanding calculations to follow.

φx(x, y, z) := logT
1 + |Tx|2

1 + |T 2yz|2

φy(x, y, z) := logT
1 + |Ty|2

1 + |T 2xz|2

φz(x, y, z) := logT
1 + |Tz|2

1 + |T 2xy|2

(1.17)

Now we can define the the local radial and angular coordinates we’ll do calculations with.
Their subscripts indicate which region of Figure 1.4 they are defined in:

I

III

V

IIIV

VI

VII

Figure 1.8: Delineate regions in ∆Ỹ around a vertex
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dI := φx −
1

2
(φy + φz)

= logT

(
1 + |Tx|2

1 + |T 2v0x−1|2
/

√
1 + |Ty|2

1 + |T 2v0y−1|2
· 1 + |Tz|2

1 + |T 2v0z−1|2

)
≈ (Trx)

2 − 1

2

(
(Try)

2 + (Trz)
2
)

for rx, ry, rz << 1

θI := φy − φz

= logT

(
1 + |Ty|2

1 + |Tz|2
· 1 + |T 2xy|2

1 + |T 2xz|2

)
≈ (Try)

2 − (Trz)
2

(1.18)

dIIA := φx −
1

2
(φy + φz) +

3

2
α6(θII) · φy ≈ T 2[r2

x −
1

2
(r2
y + r2

z) +
3

2
α6(θII) · r2

y]

dIIB := φx + φy −
1

2
φz

dIIC := φy −
1

2
(φx + φz) +

3

2
α6(−θII) · φx

θII := logT ry − logT rx

(1.19)

where α6 is a cut-off function in the angular direction that we define below. Lastly, we define

dIII := φy −
1

2
(φx + φz)

θIII := φz − φx

dV := φz −
1

2
(φx + φy)

θV := φx − φy

(1.20)

Along the axes in the top diagram of Figure 1.9 we have ry = rz < rx for the (1, 0) direction,
rx = rz < ry for the (0, 1) direction and rx = ry < rz for the (−1,−1) direction.

Definition 1.4.24 (Definition of regions in Figure 1.9). The curves delineating region I
are: on the left and right dI is constant and on the top and bottom θI is constant. We can
approximate these as rx constant and ry constant respectively, letting the other two variables
vary while |xyz| = T l remains constant. Over the origin in region VII |x| = |y| = |z| = T l/3

because the three coordinates are equal and their product is |v0| = T l. We define the
following, for a value of p sufficiently large.
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Figure 1.9: Zoom in on region I/II in left/right figures respectively

Region I

• A(rx, ry, rz) = (T l/4, T 3l/8, T 3l/8)

• B(rx, ry, rz)≈(T l/4, T 3l/8−l/p, T 3l/8+l/p).

• C(rx, ry, rz)≈(T l/4, T 3l/8+l/p, T 3l/8−l/p)

• D(rx, ry, rz) = (T l/4−l/p, T 3l/8+l/2p, T 3l/8+l/2p).
Here rx has increased while maintaining ry = rz.

• E(rx, ry, rz)≈(T l/4−l/p, T 3l/8−l/p, T 3l/8+2l/p).

• F (rx, ry, rz)≈(T l/4−l/p, T 3l/8+2l/p, T 3l/8−l/p)

The curves delineating region II are θII constant for the radially outward lines, and dIIA
or dIIB constant along angular curves. Note that dIIA constant here is approximately rx
constant.

Region II

• P1 = B ≈ (T l/4, T 3l/8−l/p, T 3l/8+l/p)

• P2 ≈ (T l/4−l/p, T 3l/8−2l/p, T 3l/8+3l/p).
This follows because the sliver from P1 to P2 is θII = logT ry − logT rx constant, while
P2 is obtained by moving E up along constant dI ≈ (Trx)

2 so rx(P2) ≈ T l/4−l/p. Then
constant θII implies:

θII(P1) ≈ 3l/8− l/p− l/4 = l/8− l/p
= θII(P2) ≈ logT ry − (l/4− l/p)

=⇒ logT ry ≈ 3l/8− 2l/p
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• Q1 ≈ (T l/4, T 3l/8−2l/p, T 3l/8+2l/p)
From P1 to Q1 along dIIA constant we increase ry by a factor of T−l/p keeping rx
approximately constant.

• Q2 ≈ (T l/4−l/p, T 3l/8−3l/p, T 3l/8+4l/p)
From Q1 to Q2 we have θII is constant and at Q1 we have θII(Q1) ≈ 3l/8−2l/p− l/4 =
l/8 − 2l/p. From P2 to Q2 we have rx approximately constant hence logT rx at Q2 is
approximately l/4− l/p so

logT ry ≈ (l/8− 2l/p) + (l/4− l/p) = 3l/8− 3l/p

The rz coordinate is determined by rxryrz = T l.

Now finally we get a condition on p. We want rx >> ry everywhere in region IIA so that
contour lines for dIIA look roughly as they are drawn and approximations for dIIA are valid.
Looking at Q1 this means T l/4 >> T 3l/8−2l/p and Q2 gives the same constraint. Hence we
need 1/8− 2/p > 0 or p > 16. E.g. take p = 17.

The rest of the regions are defined by symmetry.

1.5 The definition of the symplectic form

Now we define the symplectic form in the case of H = Σ2.

Figure 1.10: Interpolate between three potentials: F = α1gxy+α2gxz+(1−α1−α2)gyz, 0 ≤
α1, α2 ≤ 1. Region VII is where α1 = α2 = 1/3 and F = 1

3
(gxy + gxz + gyz) ≈ 2

3
((Trx)

2 +
(Try)

2 + (Trz)
2) via the log approximation.
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Definition 1.5.1 (Definition of symplectic form). We set ω = i
2π
F where F is defined locally

as follows in terms of the coordinates in Equation 1.18 and

gyz = log(1 + |Ty|2)(1 + |Tz|2)(1 + |T 2yz|2)

gxz = log(1 + |Tx|2)(1 + |Tz|2)(1 + |T 2xz|2)

gxy = log(1 + |Tx|2)(1 + |Ty|2)(1 + |T 2xy|2)

(1.21)

We introduce new bump functions α3, . . . , α6 as follows:

2

3
≤ α3(dI) = α1 + α2 ≤ 1, −1

2
≤ α4(θI) ≤

1

2
, 0 ≤ α5(dI) ≤ 1, 0 ≤ α6(θII) ≤ 1

α4(θI) · α5(dI) =
1

2
(α1 − α2)

These bump functions are smooth, increasing as functions of the specified variable, and
near the ends of their domain of definition they are constant at the bounds given. We also
require that α4 is an odd function. See the subsection below “Motivating the definition” for
an explanation of the properties of these bump functions. Now the definition is as follows,
noting that gxz − gyz = φx − φy and similarly permuting (x, y, z):

Regions g∗• in Fig 1.10: F = gxy, F = gyz, F = gxz respectively

Region I: F = gyz + α3(dI)dI + α4(θI)α5(dI)θI

Region IIA: F = gyz − α6(θII)φy + α3(dIIA)dIIA +
1

2
α5(dIIA)(φy − φz − α6(θII)φy)

Region IIB: F = (gyz − φy) + α3(dIIB)dIIB − 1

2
α5(dIIB)φz

Region IIC: F = gxz − α6(−θII)φx + α3(dIIC)dIIC +
1

2
α5(dIIC)(φx − φz − α6(−θII)φx)

Region I to Region IIA: F = gyz + α3(dI) · dI +
1

2
α5(dI) · θI

= gyz + α3(dIIA)dIIA +
1

2
α5(dIIA) · θI

Region VII: F =
1

3
(gxy + gxz + gyz)

(1.22)

These formulas match at the boundaries, which allows us to define the rest of the regions
III – VI similarly to I and II by symmetry, via permuting the coordinates (x, y, z). For
example, one can check that the formula for region IIA agrees with that for region VII when
α3 = 2

3
and α5 = 0; with that for region I when α6 = 0 and α4 = 1

2
; with that for region IIB

when α6 = 1; and with gxy when α3 = α5 = 1. The calculation is similar for the other regions.

Along the coordinate axes (namely the regions shaded red, blue, and black) we interpolate
between the relevant g∗•’s using the same formulas as in regions I, III, and V, with α3 ≡ 1.
E.g. along the rx-axis (blue region) the formula is F = 1

2
(gxy + gxz) + α4(θI)(gxy − gxz) and

similarly for the other edges.
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Since we have defined the Kähler potential locally, and it is symmetric in (x, y, z) over a
neighborhood of the origin in (ξ1, ξ2) coordinates, we may define the Kähler form every-
where by requiring it to be invariant under both the Z/6 action described earlier, and the
ΓB-action. The consistency condition for this to happen is verified in Claim 1.5.2 below.

This completes the definition of the symplectic form.

Motivating the definition

We can rearrange terms of the initial expression of F depending on α1 and α2 to motivate
the definitions of α3 and α4 · α5, as well as of the d and θ in each region. The choice of α6

and the variables in region II are chosen to interpolate between the definition of F in either
side, namely in regions I and III.

F = α1gxy + α2gxz + (1− α1 − α2)gyz

= α1 log(1 + |Tx|2)(1 + |Ty|2)(1 + |T 2xy|2) + α2 log(1 + |Tz|2)(1 + |Tx|2)(1 + |T 2xz|2)

+ (1− α1 − α2) log(1 + |Tz|2)(1 + |Ty|2)(1 + |T 2yz|2)

= gyz + (α1 + α2)φx −
(
α1 + α2

2
− α1 − α2

2

)
· φy −

(
α1 + α2

2
+
α1 − α2

2

)
· φz

= gyz + (α1 + α2)(φx −
1

2
(φy + φz)) +

1

2
(α1 − α2)(φy − φz)

Note that α1, α2, 1 − α − α2 is asymmetric but all three should be treated symmetrically,
hence we collect them as done above. In other words, if we rotate (α1, α2) thought of as a
vector by π/4, we get something proportional to(

1 −1
1 1

)(
α1

α2

)
=

(
α1 − α2

α1 + α2

)
Define α3 = α1 + α2. To obtain its bounds, we consider the geometry and how α1, α2 vary.
In the center region VII, α1 = α2 = 1/3. As we move through region I and reach the end
along the rx direction, there should not be a gyz contribution, meaning that α3 = α1 +α2 = 1
there. Hence α3 goes from 2/3 to 1 in region I.

We use α1 − α2 to define a bump function α4 that varies in the angular direction, which
we’ll denote θI and define below. There is a caveat. Note that at the start of region I,
α1 = α2 = 1/3 so α1 − α2 goes from 0 to 0 as we trace out the angle θI , but at the end of
region I we go from (α1, α2) = (0, 1) at the bottom to (α1, α2) = (1, 0) at the top, so that
α1−α2 goes between −1 and 1. Thus we need to multiply α4(θI) by another bump function
α5(dI) that goes from 0 to 1 and depends on a variable dI that increases along increasing rx,
which we’ll define next. Hence we scale the interval that α4 varies in. We require α4 to be
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an odd function for symmetry reasons. Let α4 · α5 = 1
2
(α1 − α2) so that:

F = gyz + α3(φx −
1

2
(φy + φz)) + α4 · α5(φy − φz)

The crux of the calculation that follows is that bump functions will be multiplied by the
variable they are a function of. The αi vary according to “how far around the circle” we
are, an angular direction, and “how far out from center” we are, a radial direction. So we
will introduce a set of coordinates d and θ which can be read off from the expression for F
above: dI = φx − 1

2
(φy + φz) and θI = φy − φz. We motivate geometrically why they make

sense.

We are trying to construct a symplectic form whose moment polytope is the same as the
toric polytope by Delzant’s theorem. What we can read off from the picture is how rx, ry
and rz compare to each other; even if we can’t specify their values we can observe how they
compare to one another. In particular, in Figure 1.11 we see that e.g. T 2(r2

y − r2
z) increases

in the upward vertical direction and (Trx)
2 increases in the rightward horizontal direction.

This motivates our choices for the angular and radial variables, which we can approximate
using leading order terms.

x
y

z

r2
y − r2

z increases

r2
z − r2

x increases

r2
x − r2

y increases

Figure 1.11: How the three angular directions vary

In region I, d should increase with x. In particular dI := φx− 1
2
(φy+φz) will still be increasing

with x because rx >> ry, rz when Region I starts. (Since v0 = xyz, if we fix a fiber then |x|
increasing means that |yz| decreases accordingly.)

For the angle directions, note that in the expression φx := log(1 + |Tx|2)/(1 + |T 2yz|2), the
leading order term is |Tx|2. Thus θI = φy − φz should be the angle coordinate as we saw
above and we obtain:

F = gyz + α3(dI) · dI + α4(θI) · α5(dI) · θI
We’ve now defined the Kähler potential in region I. This will define it in the corresponding
regions of III and V, by symmetry in (x, y, z). Then region II will interpolate between these.
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ω extends over the central fiber and descends to Y

Because of the construction of ω, the form extends to one on the total space including the
zero fiber. If we draw a disc around a vertex and consider all |v0| values over that disc,
we get a patch in C3 with a Kähler form which approximates the standard symplectic form
for rx, ry, rz small, i.e. we’ve transplanted part of the (C3, xyz) model fibration, which we
know is a smooth manifold and has a well-defined symplectic form. If we take a disc shape
centered in the middle of the hexagon where only one Kähler potential is at play, and then
consider all |v0| above that, we get the model toric Kähler form in the fiber, to which we will
add a term from the base of the fibration v0, to get a product symplectic form.

In the regions interpolating between these two, we get a convex linear combination of two
positive-definite Kähler potentials. In particular, we can pick ε sufficiently small that adding
ε to either of these two metrics will not affect positive-definiteness. Then fix a value of l, for
some |v0| = T l so that all bump function derivatives described below are less than epsilon.
Then we can let |v0| = T l

′
tend to zero, and the bounds will still hold because if they hold

for l they will only get smaller as l′ → ∞. In other words, once we have enough space for
the bump function derivatives, we can define them to have the same support for all v0 → 0
fibers and be constant on the rest.

Furthermore, ω extends to all of Ỹ in a ΓB invariant manner (and also in a Z/6-invariant
manner) – by using the group actions to define it in the other coordinate charts Un,gk intro-
duced in Definition 1.4.16. Then these formulas match on the overlaps of the charts and give
a well-defined 2-form on Ỹ . Moreover it descends to a well-defined 2-form on the quotient
Y as follows.

Claim 1.5.2. The form ω descends to a well-defined 2-form on the quotient Y = Ỹ /ΓB.

Proof. We saw above that the local model for ω is well-defined because all local definitions
agree on the boundaries. This is noted at the end of Definition 1.5.1. Furthermore, when we
glue coordinate charts Un,gk (see Definition 1.4.16) at each vertex of ∆Ỹ and in the center
of the hexagon tiles, the formulas agree. E.g. in Lemma 1.4.9 we show gxy is symmetric
under the Z/6-action. Lastly, the definitions along the edges must be compatible. In other
words, extending beyond regions I, III and V into the shaded black, red, and blue regions
of Figure ?? after setting α3 = α5 = 1, we check that the transformation is consistent. By
symmetry, it suffices to check along the rz-axis. In the notation of Definition 1.4.16, this
is a transformation between the main chart U0,g0 with coordinates (x, y, z) and the chart
U(−1,0),g−1 with coordinates (x′′′, y′′′, z′′′) = (Tyz, Txz, T−2z−1).

Let F denote the Kähler potential for the symplectic form in the unprimed coordinates
and F ′′′ that in the triple-primed coordinates. In the region we consider, F is given by the
formula for region V after setting α3 = α5 = 1.
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FV = gxy + dV + α4(θV ) · θV

gxy + dV = logT (1 + |Tx|2)(1 + |Ty|2)(1 + |T 2xy|2) ·

(
1 + |Tz|2

1 + |T 2xy|2
·

√
1 + |T 2xz|2
1 + |Ty|2

· 1 + |T 2yz|2
1 + |Tx|2

)
=

1

2
logT (1 + |Tx|2)(1 + |Ty|2)(1 + |T 2xz|2)(1 + |T 2yz|2) + logT (1 + |Tz|2)

θV = φx − φy

∴ g′′′xy = (
1

2
logT (1 + |T 2yz|2)(1 + |T 2xz|2)(1 + |Ty|2)(1 + |Tx|2) + logT (1 + |T−1z−1|2))

+ α4(−θV ) · (−θV )

= gxy − logT (|Tz|2)

where the last equality follows because in the first term, pulling back by the coordinate
change between (x, y, z) and (x′′′, y′′′, z′′′) just amounts to permuting the factors, and in the
second term we use that α4(−θ) = −α4(θ). Also note that θ′′′V corresponds to −θV under
the coordinate chart. Thus to go from one chart to the other we add logT (|Tz|2) which is
harmonic because log(Tz) is holomorphic and its conjugate is antiholomorphic.

Lemma 1.5.3. The definition of ω produces a well-defined symplectic form on Y .

The full proof of this is in the next chapter, showing positive-definiteness.
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Chapter 2

The symplectic form ω is
nondegenerate

The goal of this chapter is to show:

Lemma 2.0.1. The ω defined in Section 1.5 is non-degenerate on fibers of the Landau-
Ginzburg model given by v0 : Y → C.

Corollary 2.0.2. By adding a term from the base, this implies we obtain a non-degenerate
form ω on Y .

2.1 Putting bounds on the bump function derivatives

Claim 2.1.1 (Logarithmic derivatives facilitate finding estimates). Let α be any of α3, . . . , α5

and let µ be the appropriate d or θ variable. Then one can ensure that the logarithmic
derivative α

′ log = µα′(µ) is bounded by a constant over log(T l), and similarly for the second
derivative. The argument for α6 is different because its argument is already a function of
log of the norms of the complex coordinates, so we can control the regular derivative.

In particular, LogT derivatives can be made small. This is the power of writing the Kähler
potential in the form α(µ) · µ for suitable α and µ. In this section we consider derivatives of
the bump functions. So the first order derivatives will pick up terms of the form

α′(µ) · µ∗ · µ = µ∗dα/d(logT µ) ≈ (small) ·∆α/∆ logT µ

where µ∗ is some derivative of µ with respect to one of the coordinates. Recall that µ will
be approximated by a sum of squares of T times a norm. The norms are very small, on the
order of T l. However logT T

l = l so that both the numerator and the denominator change
by O(1) terms, which is then multiplied by something that can be made very small. In
particular, we divide by l which we can make as large as we like.
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Remark 2.1.2 (Checking enough space to make derivatives small, see Figure 1.9). In region
I, d ≈ T 2[r2

x − 1
2
(r2
y + r2

z)] > 0 because rx is many orders of magnitude bigger than ry and rz
get in that region. However, in the calculation for α4, we end up dividing by θ. So α4 will
need to be constant for a short while in the middle, so we don’t divide by zero. This will be
detailed below.

Also, there is enough space in θII and log dIIA for α6 and α3, α5 respectively. Recall

dIIA ≈ T 2[r2
x −

1

2
(r2
y + r2

z) +
3

2
α6 · r2

y]

Since everywhere in region IIA we have rx >> ry, the leading order term in dII is (Trx)
2.

Likewise since θII is linear in logT ry−logT rx, for it to stay constant we find that both logT ry
and logT rx increase the same amount along contour lines. At P1 and P2, θII ≈ T 3l/8−2l/p.
At Q1 and Q2, θII ≈ T l/8−2l/p. Thus the change is 2l/8 = l/4 and α

′
6 ≈ ∆α6/∆θII ≈ 4/l.

This can be made small.

Now we check dIIA for α3 and α5. At the smaller value we have dIIA ≈ (Trx)
2 at P1 which

has exponent l/2. At the larger value we get l/2 − 2l/p. So the change is 2l/p and the
derivatives in α3 and α5 are approximately p/2l times whatever the full range of αi is. Again
this can be made small.

Second-order derivatives also have enough space. In the bump functions α3, . . . , α6 the vari-
able we’re taking the derivative with respect to has space k · l for some k > 0 to move while
each of the bump functions moves through an amount 1/3 or 1. By making l really big,
we can ensure that while this is happening, the second derivative doesn’t get too big. The
graph of the bump functions won’t be linear because they have to level off at the endpoints
of their support. But with enough space, we can make sure they don’t turn too quickly from
horizontal to linear.

The argument that there is enough space in IIC follows from IIA by swapping rx and ry in
the calculations. The only variable in region IIB is dIIB and we take the two radial curves to
be where dIIB is constant, with the same amount of change in the variable as in dIIA. Note
that when rx >> ry we see that dIIB ≈ T 2[r2

x + r2
y − 1

2
r2
z ] ≈ (Trx)

2. So initially, constant
dIIB is approximately the same thing as constant rx. At some point we increase ry enough
to equal rx. Likewise, coming from region IIC we have that constant dIIB means, initially,
approximately the same thing as constant ry. So in the middle the curve interpolates be-
tween vertical (constant rx) and horizontal (constant ry). The derivatives for functions of
dIIB have enough space because dIIB goes through the same amount as dIIA and dIIC .

Checking enough space for α
′ log
3 and α

′ log
5 sufficiently small. Since α3 is a function of

T 2[dI ≈ r2
x− 1

2
(r2
y + r2

z)] ≈ (Trx)
2 in region I, we need to see how logT (Trx)

2 changes. Recall
that rx changed by l/px orders of magnitude, so logT (Trx)

2 changes by approximately 2l/px.
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Thus the log derivative can be made as small as possible, as explained above.

For α
′′ log
3 we want to know the change in slope over log d time. The derivative goes from 0

to 1
3l

in approximately l log time. Think of a bump function from 2/3 to 1. Hence all terms
involving a derivative of α3 are bounded by a constant times T 2/l.

Checking enough space for log derivatives across axes. Recall Figure 1.9 and that
from A to B ry moves through l/p orders of T magnitude while from D to E it moves through
3l/2p which is a lot more for small T .

In the calculations above, we have cut out a region where T < (ry/rz)
2 < T−1. In this region

α4 ≡ 0. To do this, we need to make sure that we have at least one order of magnitude
difference between ry and rz. This is fine in region I because we have ry and rz many orders
of magnitude apart at B and C, with even more discrepancy as we move out to E and F .
(Note however, the reverse would have happened in region II. In other words, rz gets smaller
as we move out, so rx and ry get bigger, and constant r2

y − r2
x means they will get closer and

closer together as we move out.)

Checking α
′ log
4 , function of θI. This one is a function of θI ≈ T 2[r2

y − r2
z ] or its negative.

Furthermore, we’re taking out a sliver around the axis where T < (ry/rz)
2 < 1/T . So we

need to check there’s enough space left. At the bottom where C and F are, θI ≈ −r2
z which

is on the order of −T 2(3l/8−l/py) as seen above. Then we stop when rz/ry = 1/
√
T . At this

point rz and ry are basically equal, since they are only about one T -order of magnitude apart
and both really small. At some fixed dI , we have rx ≈ T l/4−tl/px where t is fixed at some
number between 0 and 1. So rz =

√
T−1ry and:

rxryrz = T l =⇒ T l/4−tl/px · ry ·
√
T−1ry = T l =⇒ r2

y =
√
T · T 3l/4+tl/px

Hence

θI ≈ T 2[r2
y − r2

z ] = T 2r2
y

(
1−

(
rz
ry

)2
)
≈ T 2

√
T · T 3l/4+tl/px(1− T−1)

≈ −T 3l/4+tl/px+3/2 ∵ T << 1

We are checking how θI changes when we cut out this sliver to make sure α4 has enough
space for the log derivatives. We find θI decreases from order of magnitude 3l/4− 2l/py to
order of magnitude 3l/4 + tl/px + 3/2. This means a net change of

(3l/4− 2l/py)− (3l/4 + tl/px + 3/2) = −l
(

2

py
+

t

px

)
+ 3/2

with a multiple of l, so we’re still okay for the log derivative of α4 because this is the
denominator of the log derivative which can be made very large because of the l. Note that
we only care about α4 in region I since it’s constant at 1/2 when we exit the region and move
into region II.
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2.2 Converting to polar coordinates

To define the metric, we will convert to polar coordinates where it is easier. Locally the
symplectic form is i

2π
∂∂F where F is a function of |x| and |y|. So we want to transform the

derivatives in ∂∂ using the real transformation (rx, θx)↔ (x1, x2) where x = x1+ix2 = rxe
iθx ,

and similarly for y. Recall ∂x = 1
2
(∂x1 − i∂x2). Hence ∂xi = ∂xi(rx)∂rx + ∂xi(θx)∂θx implies

that

∂

∂x
=

1

2

(
∂

∂x1

− i ∂
∂x2

)
=

1

2

([
∂rx
∂x1

− i ∂rx
∂x2

]
∂

∂rx
+

[
∂rx
∂x1

− i ∂rx
∂x2

]
∂

∂θx

)
We next re-express each real partial derivatives in terms of polar coordinates r2

x = x2
1+x2

2 and
θx = tan−1(x2/x1), and similarly for y. Recall that the derivative of arctan(t) = 1/(1 + t2).

∂

∂x1

=
∂rx
∂x1

∂

∂rx
+
∂θx
∂x1

∂

∂θx

rx
∂rx
∂xi

= xi =⇒ ∂rx
∂xi

=
xi
rx

∂θx
∂x1

= −x2

r2
x

,
∂θx
∂x2

=
x1

r2
x

=⇒ ∂

∂x
=

1

2

[
e−iθx∂rx − ie−iθx/rx∂θx

]
∂

∂x
=

1

2

[
eiθx∂rx + ieiθx/rx∂θx

]
Similarly for y. We also need to rewrite the differentials dx = dx1 + idx2 and dx. Use

x1 = rx cos θx

x2 = rx sin θx

∴ dx = eiθxdrx + irxe
iθxdθx

dx = e−iθxdrx − irxe−iθxdθx
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Now we can convert ∂∂F into polar coordinates.

i∂∂F =
3∑

i,j=1

∂2F

∂zi∂zj
dzi ∧ dzj

= i
∑
i,j

(
1

2
e−iθzi

[
∂rzi − i/rzi∂θzi

]
)(

1

2
eiθzj

[
∂rzj + i/rzj∂θzj

]
)(F )(eiθi(dri + iridθi))

∧ (e−iθj (drj − irjdθj))

= i
1

4

∑
i,j

e−iθi
[
eiθj∂2

rirjF −
i

ri
∂rjFδijie

iθj

]
(eiθi(dri + iridθi)) ∧ (e−iθj (drj − irjdθj))

= i
1

4

[∑
i

(∂2
riF +

1

ri
∂riF )(dri + iridθi) ∧ (dri − iridθi)

]

+
1

4

∑
i 6=j

(∂2
rirjF )(dri + iridθi) ∧ (drj − irjdθj)


In order for this to arise from a metric, we need compatibility with J0 where J0 is induced
from multiplication by i on the complex coordinates (x, y, z) in the toric chart where they
are defined. But ω is compatible with J because it comes from a Kähler potential. J is
multiplication by i, which commutes with ∂∂.

Next we need positive-definiteness, namely ω(v, Jv) > 0 for all v 6= 0.

∂r1 =
∂x1

∂r1

∂x1 +
∂x2

∂r1

∂x2

= cos θ1∂x1 + sin θ1∂x2
∂θ1 = −r1 sin θ1∂x1 + r1 cos θ1∂x2

J(∂x1) = ∂x2 , J(∂x2) = −∂x1

=⇒ J(∂r1) =
1

r1

∂θ1

J(∂θ1) = −r1∂r1

We want g(u, v) := ω(u, Jv) to be a metric, so positive definite. In the 3d case, this gives a
6 by 6 matrix which we want to be positive definite. It’ll be block diagonal with the r block
and the θ block. The entries along the diagonal in the r block will be

gii = ω(∂ri , J∂ri) = ω(∂ri ,
1

ri
∂θi) =

1

ri
ω(∂ri , ∂θi) =

1

2
(∂2
ri
F +

1

ri
∂riF )
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which will pick up the dri ∧ dθi term, which looking back at ∂∂F above is 2
4
ridri ∧ dθi times

the F derivative term. Similarly

gij = ω(∂ri , J∂rj) =
1

rj
ω(∂ri , ∂θj)

=
1

2
(∂2
rirj
F )

2.3 Showing ω nondegenerate: C3 patch

I

III

V

IIIV

VI

VII

Figure 2.1: L) Number of potentials interpolated between. R) Zoomed in region about
vertex.

Leading order Region I terms

First we look at the terms with no derivatives of the bump functions. This should give
us a positive definite matrix so we get a metric. Then it will be enough to show that all
the remaining terms can be expressed in terms of (log-derivatives of the bump functions) ·
(bounded terms), which can be made as small as we like by making l as large as we like.
First, recall that this is the metric in polar coordinates:

∂2
rxF + 1

rx
∂rxF ∂2

rxryF ∂2
rxrzF

∂2
rxryF ∂2

ryF + 1
ry
∂ryF ∂2

ryrzF

∂2
rxrzF ∂2

ryrzF ∂2
rzF + 1

rz
∂rzF
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F = f + α3d+ α4 · α5θ

d ≈ T 2[r2
x −

1

2

(
r2
y + r2

z

)
]

θ ≈ T 2[r2
y − r2

z ]

f ≈ T 2[r2
y + r2

z ]

Note that because everywhere rx appears is as r2
x, applying ∂2

rxrx is the same as applying
∂rx/rx. Here are the terms that do not involve derivatives of the αi, where for ease of notation
subscript x means ∂rx :

2(fxx + α3dxx + α4α5θxx) fxy + α3dxy + α4α5θxy fxz + α3dxz + α4α5θxz
“ 2(fyy + α3dyy + α4α5θyy) fyz + α3dyz + α4α5θyz
“ “ 2(fzz + α3dzz + α4α5θzz)


≈ T 2

4α3 0 0
0 4− 2α3 + 4α4α5 0
0 0 4− 2α3 − 4α4α5


Derivatives of the higher order terms in the expansions above will have variables Tr∗ so will
be negligible. This is bounded below assuming we restrict the region a little, each entry is
bounded below. One of the coordinates does go to zero as the bump functions reach their
bounds. However, the one that goes to zero in the xy-plane is the z term and similarly in the
xz-plane it’s the y term. Since we add a term |xyz|2 for the base, this will ensure positive
definiteness away from the zero fiber.

Terms with derivatives of bump functions in Region I

The terms that produce derivatives of the bump functions are α3(dI)dI and α4(θI)α5(dI)θI .
Note that d in region I close to where rx = ry = rz is approximately linear in (Trx)

2, (Try)
2,

and (Trz)
2.

Some notation: Let d ≡ dI in this section. We want to allow the variable we’re taking the
derivative with respect to to vary among {rx, ry, rz}. So we denote those variables to be
{r?, r•} ∈ {rx, ry, rz}. Furthermore, ′ log means we take the log derivative dα3/d(log(dI)) =
α′3 · d. The following calculation for the second derivative applies to α5 as well, and α4 if we
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replace d with θ.

d2α3

d(log d)
= (α′3 · d)′ · d = (α′′3 · d+ α′3)d

=⇒ α′′3 · d+ α′3 =
1

d
· d2α3

d(log d)2

=⇒ α′′3 =
1

d2
·
(

d2α3

d(log d)2
− dα3

d(log d)

)
Derivatives of α3d

First order derivative 1
r?
∂r?(α3d): the term α′3d = α

′log
3 is a log derivative so can be made

arbitrarily small.

Second order derivatives:

A second order derivative of α3d involves a first order derivative of r?α
′
3d, which involves

terms like α′3d from before, as well as r?(∂•d)(α′′3d+ α′3) up to powers of T i.e. proportional
to T 2r?r•(α

′′
3d+α′3) because d is approximately linear in (Trx)

2, (Try)
2, (Trz)

2. Thus we get

T 2 r?r•
d
α
′′ log
3

If we divide numerator and denominator by r2
x we get (r?r•)/(rx)2

1− 1
2

((ry/rx)2+(rz/rx)2)
which is close to

1 on the bottom, and small or 1 on the top, because rx >> ry, rz. So we get something
bounded times something small. Thus all derivatives involving α3 lead to small terms for a
fixed sufficiently large l. Here are the calculations.

Diagonal terms for α3(d) · d:

d ≈ T 2[r2
x −

1

2

(
r2
y + r2

z

)
]

dr∗ ≈ λT 2r∗, dr∗r∗ ≈ λT 2, λ ∈ {2,−1}(
1

r∗
∂r∗ + ∂2

r∗r∗

)
(α3(d) · d) =

1

r∗
(α′3dr∗d+ α3(d) · dr∗)

+ (α′′3d
2
r∗d+ α′3dr∗r∗d+ 2α′3(d)d2

r∗ + α3(d) · dr∗r∗)

≈ 1

r∗
(α′3λT

2r∗d+ α3(d) · λT 2r∗)

+ (α′′3(λT 2r∗)
2d+ α′3λT

2d+ 2α′3(d)(λT 2r∗)
2 + α3(d) · λT 2)

= λT 2[α′3d+ α3 + λT 2α′′3r
2
∗ · d+ α′3d+ 2λT 2α′3r

2
∗ + α3(d)]

= 2λT 2[α′3(d+ (λ− 1)T 2r2
∗) + T 2r2

∗(α
′′
3d+ α′3)] + 2λT 2α3

= 2λT 2[α
′ log
3 (1 +

(λ− 1)T 2r2
∗

d
) +

T 2r2
∗

d
α
′′ log
3 ] + 2λT 2α3
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α
′ log
3 ≈ ∆α3

∆ log d
≈∝ 1

l

T 2r2
∗

d
≈ T 2r2

∗
T 2[r2

x − 1
2

(
r2
y + r2

z

)
]

=
r2
∗

r2
x − 1

2

(
r2
y + r2

z

) =
r2
∗/r

2
x

1− 1
2

(
r2y
r2x

+ r2z
r2x

) ≈ 1 or 0 ∵ rx >> ry, rz

α
′′ log
3 ≈∝ 1

l2

Off-diagonal terms for α3(d) · d where ∗ 6= ?:

dr∗r? = 0

∂2
r∗r?(α3 · d) = ∂r∗(α

′
3dr?d+ α3(d) · dr?)

= α′′3dr∗dr?d+ α′3dr?r∗d+ 2α′3dr?dr∗ + α3 · dr?r∗
= T 4λµr∗r?α

′′
3d+ 0 + 2T 4λµr∗r?α

′
3 + 0, λ, µ ∈ {2,−1}

= T 4λµ
r∗r?
d
d(α′′3d+ α′3 + α′3)

= T 4λµ
r∗r?
d

(α
′′ log
3 + α

′ log
3 )

T 2r∗r?
d

≈ r∗r?/r
2
x

1− 1
2
((ry/rx)2 + (rz/rx)2)

≈ 0 or 1

Again we see that all the derivatives of the bump functions are log derivatives and all the
terms are bounded by a constant times T 2/l.

Derivatives of α4α5θ

For α4α5θ, the first order derivative terms (dividing by whatever variable we take the deriva-
tive with respect to) involve α5(α′4θ), which is an O(1) term (recall α5 goes from 0 to 1)

times a log derivative, as well as α4(α′5θ) = α4(α
′ log
5 · θ

d
) because α5 is a function of d. So we

need to check that θ/d is bounded, independent of l. Dividing by r2
x gets a small expression

on top and close to 1 on the bottom. So these are both okay.

From first derivatives we have r?α5(α′4θ) and r?α4(α′5θ). Differentiating the r? with respect
to r• gives terms we already know are small from the previous paragraph, or zero if • 6= ?.
So we put it out front and differentiate the remaining expression. Keep in mind α4 is a
function of θ and α5 is a function of d.

• r?r•α′4α′5θ =
r?r•
d
α
′ log
4 α

′ log
5

We multiplied and divided by a d to get the α5 log derivative.

• r?r•α5(α′′4θ + α′4) = α5 ·
r?r•
θ
α
′′ log
4

The r• comes from ∂•θ. In particular, if r• = rx then we get zero because θ ≈ T 2[r2
y − r2

z ]
which means that θrx ≈ 0.
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• r?r•α4(α′′5θ) = α4 ·
r?r•
d

(α
′′ log
5 − α

′ log
5 ) · θ

d

• r?r•α4(α′5) =
r?r•
d
· α4α

′ log
5

We’ve already seen above that T 2 r?r•
d

and hence
θ

d
are bounded. So it remains to check that

T 2 r?r•
θ

is bounded. Also, we only need to consider the cases where the numerator does not

involve rx by the comment above that we get zero otherwise and that second-order partial
derivatives are symmetric. So we have to bound the following expressions:

r2
y

r2
y − r2

z

,
r2
z

r2
y − r2

z

,
ryrz
r2
y − r2

z

We are considering the top half of region I, where ry > rz. We declare that α4 is constant in

the region 1 <
(
ry
rz

)2

< 1
T

. So the support of α4 is where
(
ry
rz

)2

> 1
T

. In particular, we see

that
1(

ry
rz

)2

− 1
<

1

T−1 − 1
=

T

1− T
≈ T

So these terms are bounded, which can be seen dividing top and bottom by r2
z . Here is the

explicit calculation.

Diagonal terms 1
r•
∂r• + ∂2

r•r• and off-diagonal terms ∂2
r•r? .

θ ≈ T 2(r2
y − r2

z)

d ≈ T 2(r2
x −

1

2
(r2
y + r2

z))

θr• ≈ λ•T
2r•, λ• ∈ {0,±2}

dr• ≈ µ•T
2r•, µ• ∈ {2,−1}

1

r•
∂r•(α4α5θ) =

1

r•
(α′4θr•α5θ + α4α

′
5dr•θ + α4α5θr•)

= T 2(λ•α
′ log
4 α5 + µ•α4α

′ log
5

θ

d
+ λ•α4α5)
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∂2
r?r•(α4α5θ) = T 2∂r? [r•λ•α

′
4θα5 + r•µ•α4α

′
5θ + r•λ•α4α5]

= T 2[∂r?r•λ•α
′
4θα5 + T 2r•λ•α

′′
4θr?θα5 + T 2r•λ•α

′
4θr?α5 + T 2r•λ•α

′
4θα

′
5dr?

+ ∂r?(r•)α4α
′
5θ + T 2r•µ•α

′
4θr?α

′
5θ + T 2r•µ•α4α

′′
5dr?θ + T 2r•µ•α4α

′
5θr?

+ ∂r?(r•)λ•α4α5 + T 2r•λ•α
′
4θr?α5 + T 2r•λ•α4α

′
5dr? ]

= T 2[δ•?λ•α
′ log
4 α5 + T 2[λ•λ?

r•r?
θ

(α
′′ log
4 − α

′ log
4 )α5 + λ•λ?

r•r?
θ
α
′ log
4 α5 + λ•µ?

r•r?
d

α
′ log
4 α

′ log
5 ]

+ δ?•
θ

d
α4α

′ log
5 + µ•λ?

T 2r•r?
d

α
′ log
4 α

′ log
5 +

T 2r•r?θ

d2
α4(α

′′ log
5 − α

′ log
5 ) + µ•λ?

T 2r•r?
d

α
′ log
5

+ δ?•λ•α4α5 + λ•λ?
T 2r•r?
θ

α
′ log
4 α5 + λ•µ?

T 2r•r?
d

α4α
′ log
5 ]

We see T 2r•r?
θ

, T
2r•r?
d

, θ
d

are bounded as above and the derivatives are log derivatives.

Setting up region III and V to match Region I

In region I, rx was the dominating coordinate. In region III, ry will dominate and in region
V, rz will dominate. So we take the analogous data for half regions of III and V, by modeling
I.

x
y

z

r2
y − r2

z increases

r2
z − r2

x increases

r2
x − r2

y increases

Figure 2.2: The three angular directions

gyz = gyz + α3(dI) · dI + α4(θI)α5(dI) · θI
gyz ≈ T 2[r2

y + r2
z ]

θI ≈ T 2[r2
y − r2

z ]

dI ≈ T 2[r2
x −

1

2
(r2
y + r2

z)]
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gxy = gxy + α3(dIII) · dIII + α4(θIII)α5(dIII) · θIII
gxy ≈ T 2[r2

x + r2
z ]

θIII ≈ T 2[r2
z − r2

x]

dIII ≈ T 2[r2
y −

1

2
(r2
x + r2

z)]

FV = fV + α3(dV ) · dV + α4(θV )α5(dV ) · θV
fV ≈ T 2[r2

x + r2
y]

θV ≈ T 2[r2
x − r2

y]

dV ≈ T 2[r2
z −

1

2
(r2
x + r2

y)]

Given that we know we start out with α1gxy +α2gxz +(1−α1−α2)gyz and we know we want
to end up with the above expressions in III and V , this will determine what α3 and α4 · α5

are in those regions because the angular and radial directions are determined as above by
symmetry.

In region III: we want

F = gxy + α3(dIII) · dIII + α4(θIII)α5(dIII) · θIII

= gxz + α3

(
1

2
(gyz − gxz) +

1

2
(gxy − gxz)

)
+ α4α5(gyz − gxy)

= gxz(1− α3) + gxy(
α3

2
− α4α5) + gyz(

α3

2
+ α4α5)

= α1gxy + α2gxz + (1− α1 − α2)gyz

=⇒ α3 = 1− α2, α4 · α5 =
1

2
− α2

2
− α1

In region V: we want

F = fV + α3(dV ) · dV + α4(θV )α5(dV ) · θV

= gxy + α3

(
1

2
(gxz − gxy) +

1

2
(gyz − gxy)

)
+ α4α5(gxz − gyz)

= gxy(1− α3) + gxz(
α3

2
+ α4α5) + gyz(

α3

2
− α4α5)

= α1gxy + α2gxz + (1− α1 − α2)gyz

=⇒ α3 = 1− α1, α4 · α5 = α2 −
1

2
+
α1

2



56

Again in both cases, α3 goes from 2/3 to 1 and α4 goes from −1/2 to 1/2 while α5 scales
it by going from 0 to 1. All the calculations carry through as before with f + α3d + α4α5θ
since we’ve set up everything to be symmetric in (rx, ry, rz). The issue now is that α≥3 are
functions of d and θ, and these two variables have different definitions in each of the three
regions. So we will patch together the d coordinate across regions II, IV and VI.

The reason we only care about patching together the d is because at the boundaries of the
odd-numbered regions, α4 has leveled out to either 1/2 or −1/2, and α3, α5 only depend on
d. So we take another bump function α6, going from 0 to 1, that allows us to interpolate
between the two definitions of d by adding increasing amounts of the θ-coordinate in the
even-numbered regions. So just to recap in II, IV, VI: α3 and α5 are functions of d, which in
turn is a function of α6(θeven) · θeven. So we’re going to need to apply two levels in the chain
rule when taking derivatives with respect to rx, ry, rz.

Leading order Region IIA terms

First we get the terms not involving derivatives of the bump functions. These will form the
nondegenerate part of the metric on region II and we will show the rest of the terms can
be made sufficiently small. Since everything not a bump function is approximately linear
in (Trx)

2, (Try)
2 and (Trz)

2, we again have that 1
rx
∂rx = ∂2

rxrx . Recall 2/3 ≤ α3 ≤ 1 and
0 ≤ α5, α6 ≤ 1. Fix φ terms in first line.

F ≈ T 2[(r2
y + r2

z − α6(θII) · r2
y) + α3(dIIA) · (r2

x −
1

2
(r2
y + r2

z) +
3

2
α6(θII) · r2

y)

+
1

2
α5(dIIA) · (r2

y − r2
z − α6(θII) · r2

y)]

Off-diagonal terms ∂2
r•r? for ? 6= • are zero because derivatives of non-bump functions means

differentiating r2
∗ for some ∗. Diagonal terms we get 1

r∗
∂r∗ + ∂2

r∗r∗ = 2∂2
r∗r∗ which, applied

to (Tr∗)
2 is 2T 2. So in the (∗, ∗) entry of the matrix, the leading terms are 4T 2 times the

coefficients on r2
∗. Need to fix y one.

x : T 2(4α3) ≥ T 28/3

y : T 2(4− 4α6 − 2α3 + 6α3α6 + 2α5 − 2α5α6) = T 2[4 + (2− 2α6)(α5 − α3) + 4α6(α3 − 1)]

≥ T 2[4 + 2(0− 2/3) + 4(−1/3)] = T 2 · 4

3
z : T 2(4− 2α3 − 2α5)

Note that when α3 = α5 = 1 the z term goes to zero. However, it is bounded below in a
region where α3, α5 are bounded away from 1. In the region where it goes to 1, we add a
term to F from the base, i.e. |xyz|2, to maintain nondegeneracy. Because xyz is bounded
below in the region where we add it, we can take the partial derivatives and get something
positive definite.



57

Terms with derivatives of bump functions in Region IIA

Now we show that the bump function derivative terms can be made small. For reference:

F ≈ (gyz − α6 · (Try)2) + α3(dIIA)dIIA +
1

2
α5(dIIA) · ((Try)2 − (Trz)

2 − α6(Try)
2)

gyz ≈ T 2[r2
y + r2

z ]

dI ≈ T 2[r2
x −

1

2
(r2
y + r2

z)]

dIIA ≈ T 2[r2
x −

1

2
(r2
y + r2

z)] +
3

2
α6(log ry − log rx) · (Try)2

θI ≈ T 2[r2
y − r2

z ]

θII = log(ry/rx)

Bump function terms in F are: α6 · (Try)2, α3 · dIIA, {α5(Tr∗)
2}∗=y,z, α5α6 · (Try)2

1st term: α6(log(ry/rx)) · (Try)2

First derivative divided by r?:

1

rx
∂rx [α6(log ry − log rx))(Try)

2] = − 1

r2
x

α′6 · (Try)2 = −T 2 ·
r2
y

r2
x

α′6,

∣∣∣∣r2
y

r2
x

∣∣∣∣ < 1

1

ry
∂ry [α6(log ry − log rx))(Try)

2] =
1

r2
y

α′6 · (Try)2 + α6 · (2T 2ry) = T 2α′6 + 2T 2α6ry

1

rz
∂rz [α6(log ry − log rx)(Try)

2] = 0

α′6 ≈∝
1

l

So all bump function derivative terms from first order derivatives of this term can be made
small.

Second derivative ∂2
?•:

∂2rxrx(α6(Try)2) = ∂rx(− (Try)2

rx
α′6) =

(Try)2

r2x
(α′6 + α′′6) < T 2(α′6 + α′′6) ≈∝ T 2(

1

l
+

1

l2
), small

∂2rxry (α6(Try)2) = ∂ry (− (Try)2

rx
α′6) =

−T 2ry
rx

(2α′6 + α′′6), norm < T 2(2α′6 + α′′6)

∂2ryry (α6(Try)2) = ∂ry (T 2α′6ry + 2T 2α6r
2
y) = T 2(α′6 + α′′6 + 2α′6ry + 4α6ry) < T 2(3α′6 + α′′6 + 4α6ry)

because ry is small in region II. Note the first derivative α′6 goes from 0 to a maximum of
1/l + ε at the half way point of l/2 so the change in slope is roughly like 1/l2, still small.
(Really (1/l + ε)(2/l).) So everything is ok with the term α6r

2
y.

2nd term: α3(dIIA)dIIA
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First derivative. 1
r?
∂r?(α3dIIA) = (α′3dIIA + α3) · dIIA?

r?
.

Here are the partial derivatives of dIIA.

dIIA ≈ T 2[r2
x −

1

2
(r2
y + r2

z)] +
3

2
α6(log ry − log rx) · (Try)2

(dIIA)x
rx

=
T 2

rx
[2rx +

3

2
(α′6 ·

−1

rx
· r2

y)] = T 2[2 +
3

2
(α′6 ·

−r2
y

r2
x

)]

(dIIA)y
ry

=
T 2

ry
[−ry +

3

2
(α′6 ·

1

ry
· r2

y + 2ryα6)] = T 2[−1 +
3

2
(α′6 + 2α6)]

(dIIA)z
rz

=
T 2

rz
[−rz] = −T 2

Hence the terms in 1
r?
∂r?(α3dIIA) = (α′3dIIA + α3) · dIIA?

r?
are as follows:

• Multiplying α′3dIIA by possible terms in dIIA?
r?

:

– α′3dIIA: ? anything, from constant terms in each dIIA?
r?

– α′3dIIAα6: ? = y, since α6 only shows up in ? = y derivative

– α′3dIIAα
′
6: ? = y, ”

– α′3dIIAα
′
6 ·
(
ry
rx

)2

: ? = x only

• Multiplying α3 by dIIA?
r?

:

– α3: ? anything

– α3α6: ? = y

– α3α
′
6: ? = y

– α3α
′
6 ·
(
ry
rx

)2

: ? = x

Everything here is ok because we either get α
′ log
3 = α′3dIIA or a regular derivative of α6,

which may be multiplied by (ry/rx)
2 but rx > ry in region IIA, so derivative terms can be

made small.

Second derivative terms. We differentiate each of the first derivative terms. Let’s say P
is a term in the list above. Then we want to differentiate r?P because above we divided by r?.
Thus using the product rule with a differential operator D = ∂r• we get D(r?)P + r?D(P ).
The first term gives 0 or 1 times P , which we already know is small by the above item for
each P on the list. So we’ll only need to consider r?D(P ) for the 8 choices of P listed above.
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1. P = α′3dIIA

Then this term contributes to ∂2
r?r•(F ) via r?∂r•(P ) i.e.

r?∂r•(α
′
3dIIA) = r?α

′′
3 · (dIIA)• · dIIA + r?α

′
3(dIIA)• =

r?(dIIA)•
dIIA

α
′′ log
3

(dIIA)• terms : {T 2r•, T
2α6ry, T

2α′6ry, T
2α′6

r2y
rx
} < T 2r•,∵ α6 ≤ 1, α′6 ≈∝

1

l
,
ry
rx

< 1

T 2r?r•
dIIA

≈ r?r•

r2x − 1
2 (r2y + r2z) + 3

2α6r2y
=

r?r•/r
2
x

1− 1
2 ((ry/rx)2 + (rz/rx)2) + 3

2α6(ry/rx)2

≈ r?r•
r2x
≈∈ {0, 1} ∵ rx >> ry, rz in region IIA

∴ r?∂r•(P ) =
r?(dIIA)•
dIIA

α
′′ log
3 ≈ (bounded) · 1

l2

2. P = α′3dIIAα6 term from differentiating F first wrt y, i.e. ∂ry(F )

ry∂r•(α
′
3dIIAα6) = ry∂r•(α

′
3dIIA) · α6 + ry(α

′
3dIIA) · ∂r•(α6)

= (above case) · α6 ± α
′ log
3 α′6 · cry, c ∈ { 1

rx
,

1

ry
, 0}

= small + small

3. α′3dIIα
′
6 term from differentiating first wrt y. Same as 2, replacing α6 with α′6.

4. α′3dIIα
′
6 ·
(
ry
rx

)2

from differentiating first wrt x

rx∂r•(α
′
3dIIα

′
6 ·
(
ry
rx

)2

) = rx∂r•(α
′
3dIIα

′
6) ·
(
ry
rx

)2

+ rx(α′3dIIα
′
6) · ∂r•

(
ry
rx

)2

=
ry
rx
· ry∂r•(α′3dIIα′6)± (α

′ log
3 α′6) · crx, c ∈ {2r2y/r3x, 2ry/r2x, 0}

= (small)(previous case) + (small)(ry/rx)i, i ∈ {1, 2}
= small ∵ rx >> ry

5. P = α3: shows up in first derivative of F wrt any variable

Taking another derivative gives r?∂r•α3 = r?α
′
3(dIIA)• = α

′ log
3 · (r?(dIIA)•)/dIIA. So we

want (r?(dIIA)•)/dIIA to be bounded. This was checked in 1.

6. P = α3α6: shows up in first derivatives of F wrt y

ry∂r•(α3α6) = ry((α3)•α6 + α3(α6)•)
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The term involving the derivative of α3 is included in the previous case. The second
term gives α3α

′
6 times one of zero, ry/rx ≈ 0 or 1 so that term is a bounded term times

a small term hence also small.

7. P = α3α
′
6: ? = y. Replace α6 with α′6 in the previous case.

8. P = α3α
′
6(ry/rx)

2: ? = x. The calculation for this is identical to 4, where now the
“already-checked” part is α3α

′
6 instead of α′3dIIα

′
6.

This concludes our check of the first and second order derivatives of α3(dIIA)dIIA.

3rd term: α5 · (Tr∗)2 for ∗ ∈ {y, z}

We run through the same argument as with α3 · dIIA above, replacing dIIA with (Tr∗)
2 in

the second term.

First derivative. 1
r?
∂r?(α5(Tr∗)

2) = 1
r?
α′5(dIIA)?(Tr∗)

2 + α5 · ((Tr∗)2)?
r?

.

The partial derivatives of (Tr∗)
2 are 1

r?
∂r?((Tr∗)

2) = 2T 2 or 0.

Hence the nonzero terms in 1
r?
∂r?(α5(Tr∗)

2) are 2T 2α5 and

1

r?
α′5(dIIA)?(Tr∗)

2 = α
′ log
5

T 2r2
∗(dIIA)?
dIIAr?

Note that T 2r2∗
dIIA

and (dIIA)?
r?

are bounded. The latter was already checked in item 2.3. For the
former:

r2
∗

r2
x − 1

2
(r2
y + r2

z) + 3
2
α6r2

y

=
r2
∗/r

2
x

1− 1
2
((ry/rx)2 + (rz/rx)2) + 3

2
α6(ry/rx)2

≈ 0 ∵ rx >> ry, rz

Note that ∗ ∈ {y, z}. So first derivatives are ok since they are either non-bump function
derivatives or something bounded times a small log derivative.

Second derivative terms. We differentiate each of the first derivative terms. They are
α′5(dIIA)?(Tr∗)

2 and 2T 2r?α5. Let’s say Pr? is one of these terms, i.e. P was considered in
the previous item. Thus using the product rule with a differential operator D = ∂r• we get
D(r?)P + r?D(P ). The first term gives 0 or 1 times P , which we already know is small by
the above item for each P on the list. So we’ll only need to consider r?D(P ) for these 2
choices of P .

1. P = α′5(Tr∗)
2 (dIIA)?

r?
. This involves the following terms, where we multiply α′5(Tr∗)

2

by the four possible types of terms showing up in (dIIA)?
r?

, and check second derivatives
arising from each.
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(i) α′5(Tr∗)
2: this term contributes to ∂2

r?r•(F ) via r?∂r•(P ) i.e.

r?∂r•(α
′
5(Tr∗)

2) = r?α
′′
5 · (dIIA)• · (Tr∗)2 + r?α

′
5((Tr∗)

2)•

= (α
′′ log
5 − α

′ log
5 )

r? · (dIIA)• · (Tr∗)2

d2
IIA

+ α
′ log
5

2T 2r•r?
dIIA

Already checked bounded:
r?(dIIA)•
dIIA

∵ (1),
(Tr∗)

2

dIIA
∵ ( above ),

T 2r•r?
dIIA

∵ (1)

∴ r?∂r•(α
′
5(Tr∗)

2) = (small)(bounded) + (small)(bounded)

(ii) α′5(Tr∗)
2α6: term from differentiating F first wrt y, i.e. ∂ry(F )

ry∂r•(α
′
5(Tr∗)

2α6) = ry∂r•(α
′
5(Tr∗)

2) · α6 + ry(α
′
5(Tr∗)

2) · ∂r•(α6)

= (above case) · α6 ± α
′ log
5

(Tr∗)
2

dIIA
α′6 · cry, c ∈ { 1

rx
,

1

ry
, 0}

= (small)(bounded) + (small)(bounded)

(iii) α′5(Tr∗)
2α′6: term from differentiating first wrt y. Same as previous, replacing α6

with α′6.

(iv) α′5(Tr∗)
2α′6 ·

(
ry
rx

)2

: from differentiating first wrt x

rx∂r•(α
′
5(Tr∗)

2α′6

(
ry
rx

)2

) = rx∂r•(α
′
5(Tr∗)

2α′6) ·
(
ry
rx

)2

+ rx(α′5(Tr∗)
2α′6) · ∂r•

(
ry
rx

)2

=
ry
rx
· ry∂r•(α′5(Tr∗)

2α′6)± (α
′ log
5

(Tr∗)
2

dIIA
α′6) · crx, c ∈ {

2r2y
r3x

,
2ry
r2x

, 0}

= (small)(previous case) + (small)(ry/rx)i, i ∈ {1, 2}
= small ∵ rx >> ry

2. P = 2T 2α5: shows up in first derivative of F wrt any variable

Taking another derivative gives r?∂r•2T
2α5 = r?2T

2α′5(dIIA)• = 2T 2α
′ log
5 ·(r?(dIIA)•)/dIIA.

So we want (r?(dIIA)•)/dIIA to be bounded. This was checked in 1.

This concludes our check of the first and second order derivatives of α5(dIIA)dIIA. We have
one more remaining type of term showing up in F that we have to check first and second
order derivatives of.

4th term: α5α6 · (Try)2

1

r?
∂r?(α5(Try)

2) · α6 + α5(Try)
2 · 1

r?
∂r?α6 = (previous) · α6 ± α5(Try)

2 · c
r2
?

α′6

2nd term: ? = z =⇒ c = 0, ? = x =⇒ ≈ 0 ∵ rx >> ry, ? = y =⇒
r2
y

r2
?

= 1
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So ok on first derivatives. Finally, we check second order derivatives.

∂r• [∂r?(α5(Try)
2) · α6 + α5(Try)

2 · ∂r?(α6)] = ∂2
r•r?(α5(Try)

2) · α6 + ∂r?(α5(Try)
2)∂r•α6

+ ∂r•(α5(Try)
2)∂r?α6 + α5(Try)

2 · ∂r•∂r?(α6)

1st term ok by previous check on α5(Try)2

Terms 2,3: ∂r?(α5(Try)2) · ∂r•α6 = (α
′ log
5

(dIIA)?
dIIA

(Try)2 + 2α5T
2δy?ry) · ±1

rx or ry
· α′6

= ±[T 2α
′ log
5

(dIIA)?ry
dIIA

· ry
rx or ry

· α′6 + 2α5T
2 ry
rx or ry

· α′6]

4th term: α5(Try)
2∂r•(

α′6
rx or ry

) = α5(Try)
2

[
α′′6 ·

±1

rx or ry
· 1

rx or ry
− α′6

1

r2
x or r2

y

]
= T 2α5α

′′
6

±r2
y

r2
x, rxry, or r2

y

− T 2α5α
′
6

r2
y

r2
x or r2

y

= small, ∵ rx >> ry

=⇒ ∂r•∂r?(α5α6 · (Try)2) = (small) by 1

So the upshot is: all terms involving derivatives of bump functions can be made arbitrar-
ily small because they are multiplied by expressions which are bounded (taking either log
derivatives of α3, α5 or regular derivatives of α6.) So we get a positive-definite form, because
the terms not involving derivatives of bump functions are O(1) so they dominate, and we
already showed they give something positive-definite.

Determining functions on region IIB

We just checked in region IIA hence by symmetry region IIC, and similarly IVA, C and VIA,
C by symmetry. Swap rx ↔ ry to get to IIC and subscripts I become III.

Region IIA:

F ≈ (gyz − α6 · (Try)2) + α3(dIIA)dIIA +
1

2
α5(dIIA) · ((Try)2 − (Trz)

2 − α6(Try)
2)

gyz ≈ T 2[r2
y + r2

z ]

dI ≈ T 2[r2
x −

1

2
(r2
y + r2

z)]

dIIA ≈ T 2[r2
x −

1

2
(r2
y + r2

z)] +
3

2
α6(log ry − log rx) · (Try)2

θI ≈ T 2[r2
y − r2

z ]

θII = log(ry/rx)
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Region IIC:

F = (gxy − α6 · (Try)2) + α3(dIIC)dIIC +
1

2
α5(dIIC) · ((Trx)2 − (Trz)

2 − α6(Trx)
2)

gxy ≈ T 2[r2
x + r2

z ]

dIII ≈ T 2[r2
y −

1

2
(r2
x + r2

z)]

dIIC ≈ T 2[r2
y −

1

2
(r2
x + r2

z)] +
3

2
α6(log rx − log ry) · (Trx)2

θIII ≈ T 2[r2
x − r2

z ]

θII = log(ry/rx)

At the end of region IIA when α6 ≡ 1 we get:

F ≈ (gyz − (Try)
2) + α3(dIIA)dIIA +

1

2
α5(dIIA) · (−(Trz)

2)

gyz ≈ T 2[r2
y + r2

z ]

dI ≈ T 2[r2
x −

1

2
(r2
y + r2

z)]

dIIA ≈ T 2[r2
x + r2

y −
1

2
r2
z ]

At the end of region IIC when α6 ≡ 1 (where α6 is still defined as a function of θII):

F ≈ (gxy − (Try)
2) + α3(dIIC)dIIC +

1

2
α5(dIIC) · (−(Trz)

2)

gxy ≈ T 2[r2
x + r2

z ]

dIII ≈ T 2[r2
y −

1

2
(r2
x + r2

z)]

dIIC ≈ T 2[r2
y + r2

x −
1

2
r2
z ]

So F on region IIB should equal what it does on the two ends of IIA and IIC. Note dIIA equals
dIIC on the ends, so we take dIIB to be this common approximation dIIB :≈ T 2[r2

x+r2
y− 1

2
r2
z ].

The non-bump function at the start is (Trz)
2 for both. And finally the factor multiplying

α5 is also symmetric in x and y, namely −(Trz)
2.

Region IIB:

F ≈ T 2r2
z + α3(dIIB)dIIB +

1

2
α5(dIIB) · (−r2

z)

dIIB ≈ T 2[r2
x + r2

y −
1

2
r2
z ]
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Note that on the other ends IIA should glue to region I and IIC should glue to region III.
At the end of region IIA when α6 ≡ 0 we get:

F ≈ gyz + α3(dIIA)dIIA +
1

2
α5(dIIA) · θI

gyz ≈ T 2[r2
y + r2

z ]

θI ≈ (Try)
2 − (Trz)

2

dI ≈ T 2[r2
x −

1

2
(r2
y + r2

z)]

dIIA ≈ T 2[r2
x −

1

2
(r2
y + r2

z)]

∴ dI = dIIA

At the end of region IIC when α6 ≡ 0:

F ≈ gxy + α3(dIIC)dIIC +
1

2
α5(dIIC) · (−θIII)

gxy ≈ T 2[r2
x + r2

z ]

θIII ≈ (Trz)
2 − (Trx)

2

dIII ≈ T 2[r2
y −

1

2
(r2
x + r2

z)]

dIIC ≈ T 2[r2
y −

1

2
(r2
x + r2

z)]

∴ dIII = dIIC

Note that the region III angle here is negative what we found on the other half of region III.
This is because the two angles need to equal −(Trz)

2 in the middle of region II to glue. If
we define the symplectic form in coordinates (x′′, y′′, z′′) the same way we did with (x, y, z),
then the form glues correctly. The only remaining item is to check in region IIB, which has
different behavior than the previously checked regions.

Region IIB

The characteristics in region IIB which we did not have in regions IIA and C are 1) rx and
ry go from rx >> ry to ry >> rx, passing through rx = ry and 2) α6 ≡ 1. All of rx, ry, rz are
still small so we still have an approximation for the Kähler potential:

F ≈ T 2r2
z + α3(dIIB)dIIB +

1

2
α5(dIIB) · (−(Trz)

2)

dIIB ≈ T 2[r2
x + r2

y −
1

2
r2
z ]

Let’s repeat the calculations above for α3(dIIA) · dIIA and α5 · (Trz)2 with region IIB, and
see if they relied on rx >> ry. What we know in region IIB is that rx, ry >> rz.
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1st term: α3(dIIB)dIIB

First derivative. 1
r?
∂r?(α3dIIB) = (α′3dIIB + α3) · dIIB?

r?
.

Here are the partial derivatives of dIIB.

dIIB ≈ T 2[r2
x + r2

y −
1

2
r2
z ]

(dIIB)x
rx

≈ T 2

rx
(2rx) =

T 2

2

(dIIB)y
ry

≈ T 2

2

(dIIB)z
rz

≈ −T
2

4

Hence the terms in 1
r?
∂r?(α3dIIB) = (α′3dIIB + α3) · dIIB?

r?
are proportional to α′3dIIB (a log

derivative, so small) and α3 (not a derivative). So first derivatives are ok.

Second derivative terms. We differentiate each of the first derivative terms. Let’s say P
is a term in the list above. Then we want to differentiate r?P because above we divided by r?.
Thus using the product rule with a differential operator D = ∂r• we get D(r?)P + r?D(P ).
The first term gives 0 or 1 times P , which we already know is small by the above item for
each P on the list. So we’ll only need to consider r?D(P ) for the 2 choices of P listed above.

1. P = α′3dIIB

Then this term contributes to ∂2
r?r•(F ) via r?∂r•(P ) i.e.

r?∂r•(α
′
3dIIB) = r?α

′′
3 · (dIIB)• · dIIB + r?α

′
3(dIIB)• =

r?(dIIB)•
dIIB

α
′′ log
3

(dIIB)• terms : T 2r•

T 2r?r•
dIIB

≈ r?r•
r2
x + r2

y − 1
2
r2
z

=
r?r•/r

2
x

1 + (ry/rx)2 − 1
2
(rz/rx)2

≈ r?r•/r
2
x

1 + (ry/rx)2

(?, •) ∈ {(rx, rx), (rx, rz), (rz, rz)} =⇒ r?r•
r2
x

∈ {1, small} ∵ rx >> rz

(?, •) = (ry, rz) =⇒ ryrz
r2
x

<
ry
rx

(?, •) ∈ {(rx, ry), (ry, ry)} suffices to bound:
a

1 + a2
,

a2

1 + a2
, a = ry/rx

a2

1 + a2
≤ 1, a < 1 =⇒ a

1 + a2
< 1, a ≥ 1 =⇒ a

1 + a2
≤ a2

1 + a2
≤ 1

∴ r?∂r•(α
′
3dIIB) = (bounded)(small)
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2. P = α3

Taking another derivative gives r?∂r•α3 = r?α
′
3(dIIB)• = α

′ log
3 · (r?(dIIB)•)/dIIB. So we

want (r?(dIIB)•)/dIIB to be bounded. This was just checked above.

2nd term: α5 · (Trz)2

We run through the same argument as with α3 · dIIB above, replacing dIIB with (Trz)
2 in

the second term.

First derivative. 1
r?
∂r?(α5(Trz)

2) = 1
r?
α′5(dIIB)?(Trz)

2 + α5 · ((Trz)2)?
r?

.

The partial derivatives of (Trz)
2 are 1

r?
∂r?((Trz)

2) = 2T 2 or 0.

Hence the nonzero terms in 1
r?
∂r?(α5(Trz)

2) are 2T 2α5 and

1

r?
α′5(dIIB)?(Trz)

2 = α
′ log
5

T 2r2
z(dIIB)?

dIIB · r?

Note that T 2r2z
dIIB

and (dIIB)?
r?

are bounded. The latter is approximately constant because dIIB
is approximately linear in r2

x, r
2
y and r2

z . For the former:

r2
z

r2
x + r2

y − 1
2
r2
z

=
r2
z/r

2
x

1 +
r2y
r2x
− 1

2
((rz/rx)2)

≈ r2
z/r

2
x

1 +
r2y
r2x

≈ 0 ∵ rx >> rz

So first derivatives are ok.

Second derivative terms. We differentiate each of the first derivative terms. They are
α′5(dIIB)?(Trz)

2 and 2T 2r?α5. Let’s say Pr? is one of these terms, i.e. P was considered in
the previous item. Thus using the product rule with a differential operator D = ∂r• we get
D(r?)P + r?D(P ). The first term gives 0 or 1 times P , which we already know is small by
the above item for each P on the list. So we’ll only need to consider r?D(P ) for these 2
choices of P .
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1. P = α′5(Trz)
2 (dIIB)?

r?
. It suffices to consider α′5(Trz)

2 because (dIIB)?
r?

is a constant.

r?∂r•(α
′
5(Trz)

2) = r?α
′′
5 · (dIIB)• · (Trz)2 + r?α

′
5((Trz)

2)•

= (α
′′ log
5 − α

′ log
5 )

r? · (dIIB)• · (Trz)2

d2
IIB

+ α
′ log
5

2T 2rzr?
dIIB

Already checked bounded:
r?(dIIB)•
dIIB

,
(Trz)

2

dIIB
∵ (above)

T 2rzr?
dIIB

≈ rzr?/r
2
x

1 + (ry/rx)2 − 1
2
(rz/rx)2

≈ rzr?/r
2
x

1 + (ry/rx)2
<

r?/rx
1 + (ry/rx)2

? = x =⇒ bounded

? = y =⇒ a/(1 + a2) bounded as above

? = z =⇒ small

∴ r?∂r•(α
′
5(Trz)

2) = (small)(bounded) + (small)(bounded)

2. P = 2T 2α5: shows up in first derivative of F wrt any variable

Taking another derivative gives r?∂r•2T
2α5 = r?2T

2α′5(dIIB)• = 2T 2α
′ log
5 ·(r?(dIIB)•)/dIIB.

So we want (r?(dIIB)•)/dIIB to be bounded, which was already checked above.

This completes the calculation of positive definiteness. We flesh out the details below in
checking there’s enough space for the log derivatives, by finding approximate values for
rx, ry, rz and hence the θ and d variables to make sure their logT values vary by an amount
proportional to l.

The remainder of C3 patch

In the region between region I and region IIA the only bump functions at play are α3 and
α5 and they are allowed to vary in the same amount of space as checked above, and still
rx >> ry, rz so all the previous estimates apply.
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2.4 Showing ω nondegenerate: away from C3 patch

All the calculations above involved approximations because rx, ry, rz are all very small near
the C3 patch. Around each vertex in the unbounded polytope we have some coordinate
system with very small coordinates, so we define a symplectic form locally around all the
vertices. (An analogue to think about are the coordinates z around 0 and w = 1/z around∞
in P1. It is true that z gets very large in the w chart, but z and w are both small in the same
way so one could take log(1+|coord|2) which would look the same in each chart.) So what re-
mains to be checked is that the symplectic form glues positive-definitely along e.g. the z axis.

In the green region along the z-axis we no longer have the dV coordinate because the bump
functions α3, α5 depending on them have finished their support. However we still have an
angular coordinate to allow us to interpolate between gxz and gyz in the unprimed coordi-
nates, or gx′′′z′′′ and gy′′′z′′′ in the tripled primed coordinates at the lower left vertex. So we
need to check we have positive definiteness when only α4 is at play and rz is large. Note that
when there are no bump functions we have positive definite-ness because either we are in
region VII where we have the standard Kähler potential or we are in the center of a CP2(3)
of the toric variety of CP2 blown up at three points, which has a natural potential that can
be read off from its lattice points.

We still need to check we get something positive definite when |z| is large. Recall that the
equivalence ∼ on coordinates is precisely the transition maps coming from thinking of toric
charts. As an example think of CP2: we have C × C∗ sitting inside all the charts as the
part where they overlap. The embedding into one is (u, v) and into another is (v−1, uv−1)
so this tells us the transition map (u, v) goes to the other one. In my case, we don’t deal
with homogeneous coordinates first, the picture just goes straight to giving us the transition
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maps on toric coordinates.

In particular, we want to find the halfway point in the z coordinate when |v0| 6= 0. When
we fix a fiber, this corresponds to a toric chart gluing of (C∗)2 to itself. That z coordinate
maps to T−2z−1 and starts at T l/3. So we are still gluing two copies of C∗ to each other but
actually one starts at the circle of radius T l/3 instead of just deleting the point zero. We still
get the halfway point is T−1, it’s just we are gluing a more punctured plane than before as
in CP1. So |z| goes from T l/3 to T−1. It suffices to check just on half, because of the gluing
property we just checked in the previous item.

Given this, we check that the bump function derivatives are bounded. The Kähler potential
is of the form (f + d) + α4(θ) · θ. So we just check derivatives of α4(θ) · θ. We can use the
above calculations for this term by the following reasoning. Although |z| ≤ T−1, we may
assume that |x| and |y| are very small. Thus |T 2xz| ≤ |Tx| and |T 2yz| ≤ |Ty| hence these
quantities are very small and we have again small scale approximations for their logarithms.

θ = φx − φy = logT (1 + |Tx|2)− logT (1 + |T 2yz|2)− logT (1 + |Ty|2) + logT (1 + |T 2xz|2)

≈ 2|Tx|2 − 2|Ty|2

1

r∗

∂

∂r∗
(α4θ) = (α′4θ + α4)

θ∗
r∗

∂

∂r•
(α′4θθ∗) = α′′4θ•θθ∗ + α′4θ•θ∗ + α′4θθ∗• = (α′′4θ

2 + α′4θ) ·
θ•θ∗
θ

+ α
′ log
4 θ∗•

∂

∂r•
(α4θ∗) = α′4θ•θ∗ + α4θ∗• = α

′ log
4

θ•θ∗
θ

+ α4θ∗•

Thus we’ll need to bound the following three terms, and then check we have enough space
for the log derivatives:

• θ∗
r∗

θx
rx
≈ 4T 2,

θy
ry
≈ −4T 2,

θz
rz
≈ 0

• θ•θ∗
θ

implies we’ll need to consider r•r?
r2x−r2y

so we need to know size constraints so that the

support of α4 is away from a region where rx = ry. Recall from above that we remove
a sliver T < (rx/ry)

2 < 1/T . Also we get approximately zero unless both ∗ and • are
not z, because θ is approximately 2T 2(r2

x − r2
y). As above, we divide top and bottom

by r2
x or r2

y depending on which variable is larger, and then the numerator is at most
1 while the denominator is bounded below from the constraint T < (rx/ry)

2 < 1/T .

• θ∗• is approximately zero unless ∗ = • in which case it’s a constant, so bounded.

Note that we will have enough space for log derivatives because θ ≈ 2T 2(r2
x − r2

y) for rx, ry
very small and this was already checked earlier when θ ≈ T 2(r2

x − r2
y).
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Chapter 3

HMS for V and V ∨ abelian varieties

The SYZ mirror of a torus is an example of Family Floer theory, [Fuk02]. In particular,
Family Floer theory implies that line bundles should mirror the behavior of Lagrangians.
This is because by Serre duality Ext1(Op0 ,O) ∼= Op0 , while the intersection of the verti-
cal linear Lagrangian on a torus with any other linear Lagrangian of finite slope will have
one intersection point. We can define a line bundle at each point to correspond to the 1-
dimensional vector space generated by that intersection point on the Floer theory side, and
put a holomorphic structure on the result to get a holomorphic line bundle, c.f. [Fuk02]. We
can build a rank 1 line bundle from the fact that we have one intersection point for linear
finite-slope Lagrangians with Lpt.

The Fukaya category Fuk(V ∨)

We consider the following full subcategory of the Fukaya category Fuk(V ∨), an A∞-category.

• Objects: Let M =

(
2 1
1 2

)
and ΓB := M(Z2). We have affine action-angle coordinates

(ξ1, ξ2, θ1, θ2) on a fiber V ∨ of v0 : Y → C, where ξi are monotonic in the norms of the
complex coordinates and θi are their angles. The symplectic form on the fiber in these
coordinates is ω = dξ ∧ dθ. We consider the subcategory with objects given by the
following linear Lagrangians:

`i = {(ξ1, ξ2,−i ·M−1(ξ))}ξ∈TB=R2/M(Z2)

These are the analogue of the lines of slope i considered on an elliptic curve in [PZ98].

• Morphisms: |i − j| ≥ 1, then Hom(`i, `j) := ⊕p∈`i∩`jC · {p} ∼= C(i−j)2 by a modu-

lar arithmetic argument. Note that this is the same as h0(V,L⊗(j−i)) for j > i and
h2(V,L⊗(j−i)) for i > j which will tell us the morphism groups are isomorphic. If ξ
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corresponds to the coordinates on `i and ξ̃ on `j then they can only intersect at points
where

1) ξ ≡ ξ̃ mod M(Z2)

2) i ·M−1(ξ) ≡ j ·M−1(ξ̃) mod Z2

=⇒ i · ξ ≡ j · ξ̃ ≡ j · ξ mod M(Z2)

=⇒ ξ ∈ 1

i− j
M(Z2)

(3.1)

So let ξ = s(2, 1) + t(1, 2). Then (i − j)s and (i − j)t can be anything from 0 up to
i− j − 1 and we get (i− j)2 intersection points.

• µ1 on homs: the differential counts holomorphic bigons between intersection points.

Claim 3.0.1. There are no bigons on T 4 between any two intersection points of the
linear Lagrangian submanifolds `i ∩ `j, for i 6= j, so µ1 = 0.

Proof. From the pair (T 4, `i ∪ `j) we have

0 = π2(T 4)(= π2(R4))→ π2(T 4, `i ∪ `j)→ π1(`i ∪ `j)
∼=−→ π1(T 4)

thus π2(T 4, `i∪`j) is trivial. So any such holomorphic disc is contractible. Pick a bigon
u : D2\±1→ T 4 on T 4 between two intersection points p, q with boundary on `i ∪ `j.
Pick lifts ˜̀

i and ˜̀
j with lifted intersection point p̃ = 0.

˜̀
i = {(ξ1, ξ2, i ·M−1(ξ))}ξ∈R2

Let ∂1 and ∂2 be the two boundary components of D2\±1 mapping to `i and `j re-
spectively. Pick lifts of of u(∂i) to R4, call them γ1, γ2 such that γi(0) = p̃ and set
q̃i := γi(1). Then by contractibility of discs, q̃1 = q̃2. However

˜̀
i ∩ ˜̀

j =⇒ ξ(i) = ξ(j) =: ξ, iξ = jξ ∴ ξ = 0

since |i− j| ≥ 2. So there can only be one intersection point, not two as needed for a
nontrivial bigon.

The hom spaces are dimension (i− j)2 for i and j distinct, matching h0(V, Lj−i) only
when j > i, otherwise they live in Floer degree 2 and match h2(V, Lj−i) (a negative
line bundle).

Meanwhile, for i = j, there typically are bigons between `i and a slight Hamiltonian
perturbation of it. However it is still true that HF (`i, `i) = H∗(T 2), and the key ge-
ometric fact this relies on is that `i does not bound any discs in the torus, so self-HF



72

reduces to classical cohomology.

If i = j then CF ∗(`i, `i) = HF ∗(`i, `i) from the PSS isomorphism. So HF ∗(`i, `i) ∼=
H∗(`i) = H∗(T 2). Hence in all cases we find that HF ∗(`i, `j) ∼= Ext∗V (L⊗i,L⊗j).

• Composition, or µ2, on homs (by analogy with the [PZ98] picture for the elliptic
curve): we consider lifts ˜̀

0, ˜̀
1, ˜̀

2 and look at the possible triangles that can occur.
One obtains a sum indexed by elements of Γ, which matches the expansions for multi-
theta functions.

• Identity morphism: hom(`i, `i) ∼= H∗(V, `i) which naturally carries an identity, but I
think this requires more work. The way it’s usually done, is to show it’s isomorphic to
the Morse complex. This is done by taking a Hamiltonian that is the Morse function,
and then look at df . Critical points correspond to where df = 0 and give intersection
points in the Floer setting, also Morse trajectories are Floer trajectories for constant t
and the Floer equation and Morse equation end up being the same in this special case.
Hamiltonian perturbations are valid in a fiber, although we’ll see later not in the total
space.

The bounded derived category DbCoh(V )

Definition 3.0.2. The bounded derived category is defined as follows. Let A be the category
of coherent sheaves on V . Note that V is an abelian variety, hence a projective variety.

Claim 3.0.3. A is an abelian category, in particular has kernels and cokernels, so we can
define chain complexes of objects.

Definition 3.0.4. Define Kom(A) to be the category of chain complexes in Coh(V ), where
morphisms are chain maps and composition is composition of chain maps.

Definition 3.0.5. Define K(A) to have objects given by chain complexes as above, and
morphisms are identified under an equivalence relation ∼ which is homotopy equivalence.

Definition 3.0.6. The derived categoryD(A) has the same objects asK(A) and a morphism
A• → B• is a roof A• ← C• → B• where C• → A• is a quasi-isomorphism, i.e. a chain map
inducing an isomorphism on homology. Two morphisms are equivalent if they are dominated
in K(A) by a third object of the same sort.

Then the bounded derived category is obtained by carrying out this process after starting
with Komb(A), where we take only bounded chain complexes (zero outside a finite sequence
of objects).

Claim 3.0.7. DbCoh(V ) can be enhanced to a dg-category, namely an A∞-category where
µ≥3 = 0.
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We will not need this here, because in our setting µ1 = 0 on the Fukaya category so we can
show an equivalence of usual categories.

Claim 3.0.8. Recall L → V defined earlier. Then we claimO,L,L2 split-generateDbCoh(V ).

Remark 3.0.9. While this allows us to reduce to considering only these objects, it comes at
the expense of requiring more information about higher A∞-products. This is because other
objects will come up as complexes built fromO,L,L2, but the calculation of cohomology level
hom’s between these complexes requires knowledge of some chain-level higher compositions
amongO,L,L2. In particular we would in principle need to know all µk’s involving an
arbitrary sequence of objects taken from O,L,L2, with as many repetitions as desired among
these.

Claim 3.0.10. L as defined above is an ample line bundle.

Proof. Line bundles on complex tori are characterized by hermitian forms H (see Pol-
ishchuk book on Abelian Varieties, [Pol03]). Ample line bundles are equivalently those
with H0(V,Li) 6= 0 for some i, as is the case in this setting because Li for i > 0 has i2

sections, and also the kernel of the map V 3 x 7→ t∗xL⊗L is finite, which is equivalent to H
being non-degenerate (see [Pol03, Chapter 8.5–8.6]). But here

H =

(
2 1
1 2

)
has nonzero determinant, i.e. is nondegenerate, so that L is ample and the claim applies.

Corollary 3.0.11. The abelian variety V is projective.

For the definition of split-generate, we need some preliminary definitions.

Definition 3.0.12. A category C is triangulated if it contains all mapping cones, i.e. given
any morphism f the object Cone(f) is an object in C. Rather, it contains the shift functor,
the auto-equivalence A 7→ A[1] and it has a class of distinguished triangles.

Definition 3.0.13. A triangulated subcategory D ⊂ C is thick if it closed under taking
direct summands, i.e. E ⊕ F ∈ Ob(D) =⇒ E,F ∈ Ob(D).

Definition 3.0.14. We say a set of objects {Gi}i∈I ∈ Ob(C) split-generate C if their thick
envelope is C, namely if we take the smallest triangulated category containing the Gi which
is closed under taking direct summands, we get all of C.

Proof of claim. The following argument is from the MSRI Derived Categories summer school
[APS, Lec 5.3]. Every complex is generated by its cohomology, so it suffices to prove that
any coherent sheaf F lies in the thick envelope of O,L,L2, because then any element of
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DbCoh(V ) will be reached by the thick envelope, in other words we get that O,L,L2 split-
generate.

We saw that V is projective, so that implies Coh(V ) has enough locally frees (reference). In
particular, for sufficiently high n we have that F (n) is generated by global sections, i.e. we
have a surjective map OnX � F (n) so tensoring with O(−n) and repeating the process with
the kernel of OX(−n)n → F we get a resolution of F by locally frees:

. . . P−N → P−N+1 → . . .→ P 0 → F → 0

Define Q to be the complex obtained by cutting off in degree N :

Q := [P−N → . . .→ P−1 → P 0]

Then Q lies in the thick envelope 〈O,L,L2〉 because all the P i have Li as summands and
since 〈O,L,L2〉 is a full exceptional collection (reference) it contains all powers of L. We
have an inclusion of complexes P · → Q. The quotient is

G[N + 1] = . . .→ P−N−1 → 0→ 0 . . .→ 0

where G is defined to be cohomology in degree −N−1 since the rest of the complex is exact.
In particular, G is a coherent sheaf and we get a morphism

F → G[N + 1] ∈ ExtN+1(F,G) ∼= Ext2−N−1(G,F ⊗ ω)∗ = 0

by Serre duality. So we have

G[N ] - Q - F
0
- G[N + 1]

which implies Q ∼= G[N ] ⊕ F . We know Q is in the thick envelope, and since it’s thick,
i.e. closed under direct summands, we get that F is in it too, hence we are done.

So it is enough to prove the fully-faithful embedding of categories by looking at the functor
on O,L,L2, though at the expense of needing to know about higher A∞-products.

Towards HMS: fully-faithful embedding DbCoh(V ) ↪→Fuk(V ∨)

The functor DbCoh(V ) → Fuk(V ∨) is as follows. On objects we map L⊗k 7→ `k. Recall
Corollary 1.2.17 that H0(V,L⊗l) has the following basis of sections:

se,l :=
∑
γ

τ−lκ(γ+
γe,l
l

)x−lλ(γ)−γe,l
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where γe,l = sγ′ + tγ′′, 0 ≤ s, t < l. So on morphisms the functor does the following (where
si denotes the choices for γe,l):

hom(O,L) = H0(V,L) 3 s 7→ p ∈ hom(`0, `1) =
⊕

p∈`0∩`1

C · p = C · p

hom(O,L2) = H0(V,L2) 3 (s1, s2, s3, s4) 7→ (p1, p2, p3, p4) ∈
⊕

p∈`0∩`2

C · p, |`0 ∩ `2| = 4

hom(L,L2) ∼= hom(O,L∗ ⊗ L2) ∼= hom(O,L) = H0(V,L) 3 s 7→ p′ ∈ hom(`1, `2) = C · p′

Compatible with composition, namely:

s(x) =
∑
γ

τ−κ(γ)x−λ(γ)

s2(x) =
∑
γ̃,˜̃γ

τ−κ(γ̃)−κ(˜̃γ)x−λ(γ̃)−λ(˜̃γ)

hom(L,L2)⊗ hom(O,L) 3 s2(x) = c1s1 + c2s2 + c3s3 + c4s4

↔ µ2(p, p′) = c1p1 + c2p2 + c3p3 + c4p4

In particular, we expect the coefficients ci to be theta functions s(x) for a particular value
of x, analogous to the calculation in [PZ98]. We wish to express s2(x) in terms of this basis
for H0(V,L2). We split the sum above for s2(x) into four sums, corresponding to the four
possible parities of the coefficients on the pair γ′, γ′′ in γ̃ + ˜̃γ. We then do a coordinate
change

γ =
1

2
(γ̃ + ˜̃γ − γe), η =

1

2
(˜̃γ − γ̃ − γe)

γe ∈ {0, γ′, γ′′, γ′ + γ′′}

For example, if γ̃ + ˜̃γ = (n1 +m1)γ′ + (n2 +m2)γ′′ and n1 +m1 and n2 +m2 are both even,
that means we can write γ̃ + ˜̃γ as 2γ for some γ ∈ ΓB. If they are odd and even then we
must subtract off γ′, etc. That’s how we get the four choices for γe. Now we can write s2(x)
in terms of the si(x) by separating into four sums corresponding to the four parity choices.
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Also recall that the quadratic form κ satisfies κ(γ + η) = κ(γ) + κ(η)− 〈γ, λ(η)〉.

s2(x) =
∑
γ̃,˜̃γ

τ−κ(γ̃)−κ(˜̃γ)x−λ(γ̃+˜̃γ)

=
∑
γ,η

τ−κ(γ−η)−κ(γ+η)x−2λ(γ) + τ−κ(γ+γ′/2−η−γ′/2)−κ(γ+γ′/2+η+γ′/2)x−2λ(γ)x−1
1

+ τ−κ(γ+γ′′/2−η−γ′′/2)−κ(γ+γ′′/2+η+γ′′/2)x−2λ(γ)x−1
2

+ τ−κ(γ+(γ′+γ′′)/2−η−(γ′+γ′′)/2)−κ(γ+(γ′+γ′′)/2+η+(γ′+γ′′)/2)x−2λ(γ)(x1x2)−1

=
∑
η

τ−2κ(η)
∑
γ

τ−2κ(γ)x−2λ(γ) +
∑
η

τ−2κ(η+γ′/2)
∑
γ

τ−2κ(γ+γ′/2x−2λ(γ)x−1
1

+
∑
η

τ−2κ(η+γ′′/2)
∑
γ

τ−2κ(γ+γ′′)/2x−2λ(γ)x−1
2

+
∑
η

τ−2κ(η+(γ′+γ′′)/2)
∑
γ

τ−κ(γ+(γ′+γ′′)/2)x−2λ(γ)(x1x2)−1

=
∑
η

τ−2κ(η)s1 +
∑
η

τ−2κ(η+γ′/2)s2 +
∑
η

τ−2κ(η+γ′′/2)s3 +
∑
η

τ−2κ(η+(γ′+γ′′)/2)s4

Claim 3.0.15. The coefficients on the si match up with the triangle counts, i.e. µ2 in the
Fukaya category.

Proof. Let˜denote lifts to the universal cover R4. There are four choices for where to place
˜̀
0∩ ˜̀

2 in the triangle (the other choices producing the same triangles on the abelian variety).
From the calculation in Equation 3.1, we take these to be (γe/2, 2M

−1(γe/2)) = (γe/2, λ(γe))
because λ is the linear map M−1.

p̃e = (γe/2, λ(γe))

We know the lift p̃ of p = `0 ∩ `1 must lie on ˜̀
0 which goes through p̃e. Since there is no

change in the second two coordinates along ˜̀
0 this means λ(γe) is the angular coordinates.

And p̃ lies above (0, 0) so the first coordinate is some η ∈ ΓB.

p̃ = (η, λ(γe))

If p̃ is at (0, 0), then the lift of p′ = `1 ∩ `2 is some (ξ,M−1(ξ)) = (ξ, λ(ξ)) because ˜̀
2 would

go through the origin (assume clockwise ordering of the Lagrangians). Since it is potentially
shifted by (η, λ(γe)), we get that p̃′ = (η, λ(γe)) + (ξ, λ(ξ)) for some ξ. This ξ is determined
by the fact that p̃′p̃e lies on ˜̀

2 i.e. the angle changes by 2λ.

p̃′p̃e = 〈η + ξ − γe/2, λ(γe + ξ)− λ(γe)〉
=⇒ 2λ(η + ξ − γe/2) = λ(ξ) ∴ ξ = γe − 2η

∴ p̃′ = (γe − η, 2λ(γe − η))
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Figure 3.1: A triangle in the elliptic curve case and representative of the T 4 case

Now that we have three points of the triangle, we want to find the area. Motivated the
picture in the elliptic curve case (see Figure 3.1), we see that if we extend p̃e along the line
between p̃e and p̃ in the direction away from p̃ by the same distance that p̃ is, we get a right
triangle. This can be seen because the three sides form a Pythagorean triple:

|η − γe/2|2 + |λ(γe − 2η)|2 = (length of third side)2

So taking half the length in the base, and the same height, we get the area of the triangle:

1

2

∫
∆

dξ ∧ dθ = 〈(η − γe/2), λ(η − γe/2)〉 = −2κ(η − γe/2)

This agrees with the exponents on τ on the complex side, and hence completes the proof of
the claim.

Now we want to prove that multiplication matches up in the more general setting for i < j <
k. First we consider the line bundles. We have Hom(Li,Lj) ∼= H0(V,Lj−i) so let l := j − i
and l′ := k − j. We take the following basis for Ll:

se,l :=
∑
γ

τ−lκ(γ+
γe,l
l

)x−λ(lγ−γe,l)

In particular, γe,l = sγ′ + tγ′′ for some 0 ≤ s, t < l, which gives us l2 basis elements for
H0(V,Ll). We want to write the product of two such sections in terms of the basis for
H0(V,Ll+l′), and compare coefficients with the triangle count on the other side.

se,l · se,l′ =
∑
γ̃,˜̃γ

τ−lκ(γ̃+
γe,l
l

)−l′κ(˜̃γ+
γe,l′
l′ )x−λ(lγ̃+γe,l+l

′ ˜̃γ+γe,l′ )
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We want to write this in terms of the similar basis for H0(V,Ll+l′):

se :=
∑
γ

τ−(l+l′)κ(γ+ γe
l+l′ )x−(l+l′)λ(γ+ γe

l+l′ )

Comparing with the powers of x in the product, we define γ by considering the sum lγ̃ +
γe,l + l′ ˜̃γ + γe,l′ as an element in (l + l′)ΓB plus a remainder γe. Namely define this element
to be γ ∈ ΓB and denote the remainder as γe:

(l + l′)γ + γe := lγ̃ + γe,l + l′ ˜̃γ + γe,l′

Analogous to the (i, j, k) = (0, 1, 2) case above, we want to find a change of coordinates in
terms of new variables A,B satisfying the following equality, as exponents of τ :

(γ̃ +
γe,l
l
, ˜̃γ +

γe,l′

l′
) = (A− B

l
,A+

B

l′
)

because −lκ(A− B
l
)− l′κ(A+ B

l′
) = −(l+ l′)κ(A)−

(
1
l

+ 1
l′

)
κ(B). We will want A = γ+ γe

l+l′
,

which does hold. And B should be a function of a variable η and a remainder term, so that
η ∈ ΓB. We make the following definition for which this is true, and the motivation will
become clear when counting triangles below.

B =
ll′

l + l′

(
γ̃ +

γe,l
l
− ˜̃γ − γe,l′

l′

)
=: η − lγe

l + l′

Claim 3.0.16. η ∈ ΓB.

Proof.

η =
ll′

l + l′

(
γ̃ +

γe,l
l
− ˜̃γ − γe,l′

l′

)
+

lγe
l + l′

=
1

l + l′
(ll′γ̃ + l′γe,l −��ll′ ˜̃γ − lγe,l′ − l(l + l′)γ + l2γ̃ + lγe,l +�

�ll′ ˜̃γ + lγe,l′)

= lγ̃ + γe,l − lγ ∈ ΓB

Corollary 3.0.17.

se,l · se,l′ =
∑
γ̃,˜̃γ

τ−lκ(γ̃+
γe,l
l

)−l′κ(˜̃γ+
γe,l′
l′ )x−λ(lγ̃+γe,l+l

′ ˜̃γ+γe,l′ )

=
∑
γ,η

τ−lκ(γ+ γe
l+l′−

1
l
(η− lγe

l+l′ ))−l
′κ(γ+ γe

l+l′+
1
l′ (η−

lγe
l+l′ ))x−(l+l′)λ(γ)−λ(γe)

=
∑
η

τ−( 1
l
+ 1
l′ )κ(η− lγe

l+l′ )
∑
γ

τ−(l+l′)κ(γ+ γe
l+l′ )x−(l+l′)λ(γ)−λ(γe)
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Claim 3.0.18. The left vertical functor DbCoh(V )→ Fuk(V ∨) respects composition.

Proof. We compare the coefficients in the expression for the product of two sections with
the triangle count. Take p1, p2, p3 for `i ∩ `k, `i ∩ `j and `j ∩ `k respectively. We have (l+ l′)2

choices for `i ∩ `k as follows:

p1 = (
γe
k − i

,− k

k − i
λ(γe))

Then ~p2p1 lies on ˜̀
i so takes the form (ξ,−iλ(ξ)). Also, p2 lies on a lift of `i so is also of this

form (we use η/l so η ∈ ΓB will ultimately agree with the η used above in the multi-theta
functions), up to a shift by a lattice element, which turns out to be (0, λ(γe)).

p2 = (
η

l
,−iλ(

η

l
)− λ(γe))

~p2p1 = (
γe
k − i

− η

l
,− k

k − i
λ(γe) + iλ(

η

l
) + λ(γe)) = (ξ,−iλ(ξ))

Then p3(A,B) has two conditions as follows.

~p2p3 = (A− η

l
, B + iλ(

η

l
) + λ(γe))

∴ B + iλ(
η

l
) + λ(γe) = −jλ(A− η

l
)

~p1p3 = (A− γe
k − i

, B +
k

k − i
λ(γe))

∴ B +
k

k − i
λ(γe) = −kλ(A− γe

k − i
)

=⇒ B = −kλ(A)

=⇒ −kλ(A) = −jλ(A) + (j − i)λ(
η

l
)− λ(γe)

=⇒ (k − j)A = (i− j)η
l

+ γe

∴ A =
i− j
k − j

η

l
+

1

k − j
γe = −1

l′
η +

1

l′
γe

B = −kλ(A)

We set ζ := −η
l
+ γe

l+l′
since the expression shows up in multiple places. To get the symplectic

area of the triangle (which is the same under homotopy invariance, i.e. for any holomorphic
triangle with these corners), we take 1

2

∫
P
dξ ∧ dθ where P is the parallelogram spanned by

~a := ~p2p1 = (
γe
l + l′

− η

l
,−iλ(

γe
l + l′

− η

l
)) = (ζ,−iλ(ζ))

and to define the other vector ~b := ~p1p3 we will consider the following expression, so we
simplify it first:

−1

l′
η +

1

l′
γe −

γe
l + l′

=
l

l′
(−η

l
+

γe
l + l′

) =
l

l′
ζ
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hence we define
~b := ~p1p3 = (

l

l′
ζ,−kλ(

l

l′
ζ))

because we’ve set l̃k to go through the origin hence points on l̃k and vectors parallel to it are
both of the form (ξ,−kλ(ξ)). Finally we can compute the symplectic area.

1

2

∫
P

dξ ∧ dθ =
1

2
(aξ · bθ − aθ · bξ) =

1

2

〈
ζ,−kλ(

l

l′
ζ)

〉
− 1

2

〈
−iλ(ζ),

l

l′
ζ

〉
= (

kl

l′
− il

l′
)κ(ζ) =

l + l′

ll′
κ

(
−η +

lγe
l + l′

)
We obtain the same exponent as on τ above, namely −

(
1
l

+ 1
l′

)
κ(η− lγe

l+l′
), since κ is an even

function.

Note: rename η so doesn’t conflict with previous η ≥ φ(ξ). Note the latter η only makes
sense on Ỹ and doesn’t descend to the quotient.

Claim 3.0.19. The triangles described above bounded by `i, `j, `k are holomorphic.

Before we prove this, we recall that Lagrangian Floer theory in the setting of the example
of this paper is independent of regular or generic J , as follows.

Lemma 3.0.20. There exists a dense set Jreg ⊂ J (Y, ω) of ω-compatible almost complex
structures J such that, for all J-holomorphic maps u : D → Y with suitable Lagrangian
boundary condition, the linearized ∂-operator Du is surjective.

We postpone the proof to our discussion of regularity below in more generality.

Lemma 3.0.21. The counts µ2 for J1 and J2 on V ∨ are equal.

Sketch. This will rely on arguments from the proof of the previous statement. The argument
will be the same, but our Fredholm problem will have an additional [0, 1] factor in the Banach
bundle setup. So we will obtain a 1-dimensional manifold. There is no other boundary
expected because 1) sphere bubbling happens in codimension 2 so doesn’t appear in a 1-
dimensional space, 2) strip breaking would break off a bigon but there are no bigons on a
torus by parameter translation considerations and dimensional/index reasons (namely all
intersection points have the same index and a broken strip would have indices differing
by 2, c.f. the Morse analogue with flow lines) and 3) disc bubbling doesn’t occur because
Lagrangians don’t bound discs on a torus (since π2 is preserved upon taking the universal
cover of the torus which has no π2). Since the signed boundary of a 1-dimensional manifold
is zero, we get M(3 pts, homol class, J1) =M(3 pts, homol class, J2) for regular J1 and J2.
The existence of a dense set of regular paths is similar to the above proof for the existence
of regular J .
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Now we can prove that the triangles counted above are J-holomorphic for a particular
suitable regular J .

Proof of Claim 3.0.19. To count the triangles, we pick the most convenient J . We want J to
properly transform ∂ξ. If we vary one complex coordinate, keeping the other two constant,
that won’t work because v0 can’t remain constant, as it should on a fiber. So instead vary
one complex coordinate, then keep another and v0 constant.

Take the J that is off diagonal with λ =

(
2 1
1 2

)−1

,−λ−1 in lower left and upper right,

wrt the ξ, θ coordinates. Squares to −I and can check compatible because multiplying the
standard symplectic form from dξ ∧ dθ with this J we do indeed get a metric, i.e. positive
definite. Taking the universal cover of V ∨, we split up the resulting linear space into a
product of two planes, P := 〈ζ, λ(ζ)〉 and P ω the symplectic orthogonal complement. In
particular, P and P ω are J-holomorphic planes, by definition of J .

We then show that the triangles above, spanned by ~a and ~b which are (ζ, 0) ∈ 〈∂ξi〉i and

(0, λ(ζ)) ∈ 〈∂θi〉i up to sign, are holomorphic with respect to this J . Thus ˜̀
i is a prod-

uct, a linear triangle in the ζ, λ(ζ) plane and a constant in the symplectic orthogonal. The ξ
directions and θ directions have a suitable change of variable property because θ = −iλ(ξ)+c.

Now that we can work in components P and P ω, we have a holomorphic disc in P where J is
a complex structure (as every almost complex structure is integrable in two dimensions) with
a specified Lagrangian boundary condition so by the Riemann mapping theorem it’s unique.
Also, ˜̀

i is constant in P ω so the boundary condition of the projection of the 3-punctured
disc to that plane must be constant. A further corollary is that the discs are regular by
standard regularity arguments in the plane.

Remark 3.0.22. This J is a bit unusual compared to the standard J0 that is multiplication
by i in each component. If one thinks of a soap bubble in the corner of a room, which
minimizes area i.e. is J0-holomorphic, it will be pulled in quite a bit to the vertex of the
corner. However for this J , the area-minimizing triangles are linear.
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Chapter 4

The Fukaya category

4.1 The Fukaya-Seidel category of Y : introduction

The Fukaya category for symplectic manifolds, and the Fukaya-Seidel category for symplectic
fibrations, are A∞-categories. In what follows, we consider a subcategory of the Fukaya-Seidel
category of v0 : Y → C. We then prove, passing to the cohomology level where the A∞-
category becomes a category, that this subcategory is equivalent to the bounded derived
category of coherent sheaves on the hypersurface H = Σ2.

Remark 4.1.1 (Not exact, not compact, Hamiltonian perturbation method not used). In
[Sei08] the Fukaya category of a Lefschetz fibration has Lagrangians given by thimbles ob-
tained by parallel transporting a sphere to the singular point in the Morse singular fiber
where it gets pinched to a point. In our situation, the degenerate fiber over 0 is not a
Lefschetz singularity (i.e. modeled on

∑
i |zi|2) but instead the fiber T 4 degenerates by col-

lapsing a family of S1’s, and also collapsing a T 2 in two points. So instead, we will consider
Lagrangians that go around this singular fiber, with suitable behavior at infinity governed
by the superpotential v0. This is because it is a smoothing of two fiber Lagrangians parallel
transported to the central fiber. This is the notion of a U-shaped curve from [AS].

One difference of our set-up to that in [Sei08] is that we are in the non-exact case so there
are sphere bubbles. Also the manifold is non-compact in the base of the fibration v0, or
equivalently we can restrict to a neighborhood of the origin and then it will have boundary.
Another difference is that although Seidel in some later papers defines the Fukaya category
on U-shaped curves, he uses Hamiltonian perturbations where the symplectic form used is a
product on the base and fiber. Since the symplectic form is not a product here, we instead
use the notion of categorical localization of [AS] and Ganatra’s notes.

Example 4.1.2 (Not monotone). We are also not in the monotone setting, which is another
standard setting. To define monotone, we illustrate through the following example of Oh of
the Clifford torus [Oh93].
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Definition 4.1.3 (Maslov index of a map). Given u : (D, ∂D) → (M,L) we first trivialize
u∗TM over the disc. Then the Maslov index counts the rotation of R around the boundary
in this trivialized pullback.

Definition 4.1.4. A monotone Lagrangian L in symplectic manifold (M,ω) is such that
[ω] = k · [µ(u)] for all u ∈ π2(M,L), for some constant k. Namely, the areas of discs are
proportional to the Maslov indices of those discs.

To obtain π2(M,L) in the case of L ∼= T n the Clifford torus and M := CPn, we can use
the homotopy exact sequence for the pair of manifolds to get a split exact sequence (split
because the boundary map has an inverse map by inclusion) and then π2(CPn) follows from
the homotopy exact sequence on the fiber bundle S1 → S2n+1 → CPn.

This gives us a basis of H2(M,L) on which to check that Maslov indices and area are pro-
portional. In fact, we only need to check on two elements because the rest in the Clifford
T n are the same by symmetry. In T n, the maps wk(z) = [1 : . . . : 0 : z : 0 . . . : 0] for k > 0
have index 2 because we rotate one full rotation, so the line R is rotated twice.

The difference of Maslov index for two maps u and u′ with u|∂D = u′|∂D is
∫
u(D2)∪u′(D2))

2c1(M).

Thus the disc map w0 : D→M defined by {[z : 0 : . . . : 0]}z∈D has Maslov index 2c1(CPn) =
2(n + 1); this is because we can think of w0 as gluing on a constant disc, or equivalently a
sphere attached to T n by a slender tube, via the image of a generator in π2(CPn) under the
homotopy long exact sequence. Ultimately we find

Area(w1)

Area(w0)
=

1

n+ 1
=
µ(w1)

µ(w0)

In this thesis, all discs considered have Maslov index 2, but the areas vary as prescribed by
a formula of [CO06] which we will elaborate on later.

Now that we’ve indicated how this set-up differs from those currently in the literature, we
give an outline of the sections below that first define the Fukaya-Seidel category and then
prove the HMS statement. In Sections 4, 4, and 4 we discuss monodromy around the central
fiber in v0 : Y → C because it will be needed to define the Lagrangians in the subcategory
of FS(Y, v0) we will consider. Then Section 4.2 sets up the background needed to define the
structure maps in H0FS(Y, v0), and Section 4.3 proves the moduli spaces involved in these
structure maps have the required conditions to be put into the definition. Finally we give
the definition in Section 4.4 and show it’s well-defined for regular choices of datum.

Monodromy background

We define monodromy. This is how we will obtain Lagrangians in the total space, by par-
allel transporting Lagrangians in the fiber. We will define Darboux coordinates in local
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charts, also called action-angle coordinates. This will enable us to do symplectic geometry
calculations in the Fukaya category.

Definition 4.1.5. A symplectic fibration is a symplectic manifold (Y, ω) with a fibration
such that fibers of the fibration are symplectic with respect to ω.

Example 4.1.6. In this paper, we’ve constructed (Y, ω) so that v0 : Y → C is a symplectic
fibration.

Definition 4.1.7. The symplectic horizontal distribution of a symplectic fibration π : Y → C
to a base manifold C is H ⊂ TY such that if F is a generic fiber of π then H = TF ω is the
ω-complement, i.e.

ω(H,TF ) = 0

Definition 4.1.8. Given two points p0, p1 ∈ C and a path γ : I → C between them
(i.e. γ(0) = p0 and γ(1) = p1), the parallel transport map is a symplectomorphism Φ : Fp0 →
Fp1 defined as follows: given x ∈ Fp0 and v ∈ TxFp0 , we set Φ(x) to be γ̃(1) where γ̃ : I → Y
such that π ◦ γ̃ = γ, dπ(γ̃′) = γ′ and γ̃′ is in the horizontal distribution.

Remark 4.1.9. This last condition implies Φ is a symplectomorphism.

Definition 4.1.10. Monodromy is parallel transport around a loop going once around a
singularity in the base.

The main result of this section is the following, illustrated in Figure 4.1:

Lemma 4.1.11. The monodromy in each compartment of parallelogram TB is as follows:
away from the tropical curve we obtain (0, 0) in the upper right corner where r−1

z >> r−1
x , r−1

y ,
then (0, 1) on the right where r−1

y is the largest, (1, 0) on the left where r−1
x largest and thus

(1, 1) in the bottom left corner.

Remark 4.1.12. We say a few words to illuminate the geometry depicted in Figure 4.1. A
v0-fiber V ∨ can be described in action-angle coordinates (ξ1, ξ2, θ1, θ2). A linear Lagrangian
`i is a graph of a linear function on ξ := (ξ1, ξ2). In other words, it is parametrized by the
hexagon. When we parallel transport V ∨ about the origin, φ(`i) is still parametrized by the
hexagon but the angles have rotated according to the monodromy. This is calculated below.

Claim 4.1.13. φ(`i) is Lagrangian in V ∨ with respect to ω|V ∨ , also a symplectic form as v0

is a symplectic fibration with respect to ω.

Proof. Parallel transport is defined by taking H := (TF )ω, the symplectic complement of
the fiber. Thus the monodromy is a symplectomorphism, e.g. see [MS17], and so preserves
Lagrangians.

Remark 4.1.14 (Notation). Let F := V ∨ and hereafter F will refer to the Kähler potential
function defining the symplectic form, and a fiber of v0 will be denoted V ∨.
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(0,1)

(1,0)

(0,0)

(1,1)
ξ1

ξ2

Figure 4.1: Monodromy in fiber, thought of as a section over the parallelogram (ξ1, ξ2) 7→
(θ1(ξ1, ξ2), θ2(ξ1, ξ2)).

Remark 4.1.15 (Caveat). We next define the action-angle coordinates arising from the
symplectic form. We will find that the image of the moment map is the same as the toric
polytope, an instance of Delzant’s theorem e.g. see [MS17]. Note that a usual moment map
would land in Rn where n is the dimension of the torus, but here the moment map will land
in R3/ΓB instead.

Claim 4.1.16 (Definition of action-angle coordinates). Let θ1 := arg(x), θ2 := arg(y),
θ3 = arg(z), where x, y, z are the complex toric coordinates. They are defined in the following
region: |v0| = |xyz| ≤ T ` for sufficiently large ` where we remove a branch cut along v0 ∈ R−,
and x, y ∈ (C∗)2/ΓB. Then there exist coordinates ξ1, ξ2 so that ω|V ∨ = dξ1∧dθ1 +dξ2∧dθ2,
which we may abbreviate as dξ ∧ dθ. Note that ξ3, θ3 are not defined globally, hence the
branch cut. We have a third coordinate pair η, θη := arg(v0), where η = ξ1 + ξ2 + ξ3.

Proof. We have a local T 3-action, for which we use the symbol αi as coordinates because θi
is already used as above.

ρ : T 3 × Y → Y, ρ((α1, α2, α3), (x, y, z)) = (e2πiα1x, e2πiα2y, e2πiα3z)

In particular on the coordinate v0 this corresponds to e2πi(α1+α2+α3)v0. When v0 has made a
full rotation around the origin, the values of θ1, θ2 have changed according to the monodromy,
thus the S1-action on v0 is not globally defined. That’s why we remove the branch cut above.

The infinitesimal action of α1 and α2 on Y is expressed by the pushforwards Xi := dρ(∂αi)
for i = 1, 2. If ιXiω|V ∨ were exact, say dHi for some function Hi (known as the Hamiltonian),
then the torus action would be called a Hamiltonian group action and (H1, H2) would be
the moment map. This leads us to the caveat in Remark 4.1.15. In the setting here, ω
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is complicated so computing ιXiω|V ∨ is involved. However, we do know that differential
forms on a torus R4/Λ with Λ-periodic coordinates a1, a2, a3, a4 are generated over C by
da1, . . . , da4, non-exact because the ai aren’t globally defined. Thus there exist ΓB-periodic
functions ξ1, ξ2 so that

ιXiω|V ∨ = dξi =⇒ ω|V ∨ = dξ ∧ dθ

=⇒ ιXi

(
i

2π
∂∂F

)
=

i

2π
dιXi∂F = dξi

∴ ξ1 :=
i

2π
∂F (2πix∂x) = −1

2
xe−iθx

∂F

∂|x|

∴ ξ1 = −1

4

∂F

∂|x|2
, ξ2 = −1

4

∂F

∂|y|2

using ∂∂ = −∂∂ = −d∂, the conversion to polar coordinates from §2.2 and that F is pre-
served by rotating x, y, z as it is a function of their norms, hence the Lie derivative LXi∂F = 0
and also ∂θxF = 0. The upshot is that the moment map (ξ1, ξ2) provides periodic action-
coordinates which are monotonic increasing in |x| and |y| because of how we defined F . (But
recall the caveat, we are calling it a moment map but it takes values in a torus instead of
affine space, so we are expanding the definition of moment map here to include that case.
Typically the ξi should not be periodic.) We see that V ∨ is symplectomorphic to (T 4, ωstd).

Note that an orbit is precisely the kernel of (dξ1, dξ2) so that a preimage of a moment map
value is a T 2-orbit. Said another way, the torus action preserves the moment map. Or said
a third way, the tangent space to a fiber of the moment map is ∂θ1 , ∂θ2 .

Note that the coordinates (ξ1, ξ2, η) are periodic by ξ ∼ ξ + γ and η ≥ ϕ(ξ), so ϕ(ξ + γ) =
ϕ(ξ)− κ(γ) + 〈ξ, λ(γ)〉 implies η ∼ η − κ(γ) + 〈ξ, λ(γ)〉, when γ ∈ ΓB.

Corollary 4.1.17. The `k are Lagrangian in a fiber.

Proof. We have `k is the graph ΓkM−1(ξ). So

T`k =
〈
∂ξi + kM−1(∂θi)

〉
i=1,2

and
ω(∂ξ1 + kM−1(∂θ1), ∂ξ2 + kM−1(∂θ2)) = 0

because ω only picks up terms from dξ1 ∧ dθ1 or dξ2 ∧ dθ2.

Remark 4.1.18 (Notation). µX refers to S1-action in the last coordinate. µY refers to the
local T 3-action.

Claim 4.1.19 ([AAK16]). The function µX(x, y) is equal to the symplectic area of the disc
bounded by the orbit of (x, y).
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Proof. We claim µX(x, y) =
∫
D
ω. The integral over the disc (e.g. the CP1 moment map

image is a segment over which we can draw an elongated sphere and map a value in the
segment to the area of the part traced out in the sphere) is integral over disc with boundary
component an orbit (integral flow of X#) and the line from (x, y) around to the origin. Call
this line C. Then we can write the integral as∫

C

ιX#ω =

∫
C

dµX = µX(x, y)− µX(0, 0) = µX(x, y)

Remark 4.1.20. We are starting with a polytope, which we want to be the moment map
image with respect to some symplectic form that we construct. In particular, we find a
symplectic form so that the boundary P1’s of the hexagon have length 1.

Monodromy computations

Example 4.1.21 (One dimension down, 2D local case). The case of C2 with symplectic
fibration (x, y) 7→ xy is the setting of a Lefschetz fibration, with singular fiber given by two
copies of C from x = 0 or y = 0, and monodromy is a Dehn twist about the S1 around the
belt of the cylindrical fibers. Reference.

f(x, y) = xy and S1-action is (eiθx, e−iθy). The holomorphic vector field corresponding to
this is iz1∂z1− iz2∂z2 , whose contraction with ω = i

2
(dz1∧dz1 +dz2∧dz2) gives Hamiltonian

vector field −1
2
(|z1|2−|z2|2). We have a new set of coordinates on the two dimensional fiber:

the moment map coordinate µ and the angle coordinate of the action θ. As we approach
xy = 0, the orbit at µ-height 0, namely |x| = |y|, goes to zero. That’s one way to see how
we get the picture of a cylinder with the neck pinching to zero.

Example 4.1.22 (3D local case). We do this in steps.

• Parallel transport for holomorphic fibration.

f = xyz, |f |2 = (x2
1 + x2

2)(y2
1 + y2

2)(z2
1 + z2

2)

∇ω0f = 2
〈
x|yz|2, y|xz|2, z|xy|2

〉
⊥ (|f |2)−1(c2) = {|xyz| = c}

(4.1)

So the projection of the gradient vector field of |f |2 will be perpendicular to circle in
case. In particular, multiplying by i we get something tangent to the circle. The fact
that multiplying by i on top gives the correct horizontal lift follows because f is holo-
morphic so commutes with i. Also we will see that the gradient is a linear combination
of elements in the horizontal subspace.

• Finding horizontal subspace.
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Claim 4.1.23. X<(f), X=(f) ∈ H where H is the horizontal distribution.

Proof. A fiber is precisely a level set of f .

ker(dpf) = Tp(f
−1(c)), p ∈ f−1(c)

ker(df) = ker(d<(f)) ∩ ker(d=(f))

ker(d<(f)(·)) = ker(ω0(X<(f), ·)) 3 X<(f)

f holo =⇒ ∇(<(f)) = −J ∇(=(f))

∴ ∇(<(f)) = −JX<(f) = X=(f) =⇒ X=(f) ∈ ker(d<(f))

∴ H =
〈
X<(f), X=(f)

〉
= 〈∇(<(f)),∇(=(f))〉

(4.2)

• Calculations for parallel transport. Integrate horizontal lift of i times the gradient
suitably scaled. Because we want to cover the circle in the base.

i∇(|f |2) = 2i 〈∇<(f),∇=(f)〉 ∈ Hor
= 2i

〈
x1|y|2|z|2, x2|y|2|z|2, y1|x|2|z|2, y2|x|2|z|2, z1|x|2|y|2, z2|x|2|y|2

〉∫ θ

i∇(|f |2) = ρi∇(|f |2)(θ) = (e2iθ|y|2|z|2x, e2iθ|x|2|z|2y, e2iθ|x|2|y|2z)

(4.3)

We want to find a horizontal lift of ∂
∂θ
eiθ = iw∂/∂w. Namely df(i(∇|f |2)/g) = iw∂/∂w

for a suitable scalar function g.

df = yzdx+ xzdy + xydz

∇g0 |f |2 = 2
〈
x|yz|2, y|xz|2, z|xy|2

〉
|∇|f |2|2 = 4|xyz|2(|yz|2 + |xz|2 + |xy|2)

=⇒ (|yz|2 + |xz|2 + |xy|2) =
|∇|f |2|2

4|f |2

XH =
2i

g

〈
x|yz|2, y|xz|2, z|xy|2

〉
s.t. df(XH) = iw∂/∂w

∴
2i

g
xyz(|yz|2 + |xz|2 + |xy|2) = iw = i(xyz) =⇒ g = 2(|yz|2 + |xz|2 + |xy|2)

∴ XH =
i

|yz|2 + |xz|2 + |xy|2
〈
x|yz|2, y|xz|2, z|xy|2

〉
∴ ρXH (x, y, z, θ) = (e

iθ
|y|2|z|2

|y|2|z|2+|x|2|z|2+|x|2|y|2 x, e
iθ

|x|2|z|2

|y|2|z|2+|x|2|z|2+|x|2|y|2 y, e
iθ

|x|2|y|2

|y|2|z|2+|x|2|z|2+|x|2|y|2 z)

= (e
iθ

|x|−2

|x|−2+|y|−2+|z|−2 x, e
iθ

|y|−2

|x|−2+|y|−2+|z|−2 y, e
iθ

|z|−2

|x|−2+|y|−2+|z|−2 z)
(4.4)
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because recall w = xyz on the circle and in the last step we divide by |f |2 to make it
easier to see Dehn twisting behavior. This gives the monodromy result, Lemma 4.1.11
at the start of this section.

Example 4.1.24 (In the setting v0 : Y → C of this paper).

Claim 4.1.25. If γ(t)(v0) = e2πitv0 then the horizontal lift of γ′ is of the form

Xhor = ∂/∂θv0 + f(ξ)∂/∂θ1 + g(ξ)∂/∂θ2

Proof. Note that the Lie bracket on Lie T 3 is zero, so standard theory implies

ω(Xζ1 , Xζ2) = X[ζ1,ζ2] = 0

In particular, if we take ζ1 = (1, 0, 0) or (0, 1, 0), namely the angular tangent directions of TF
for F a fiber of v0, and ζ2 anything, then we get zero. Furthermore, since ω(X(1,0,0),−) = dξ1

we see that Xζ2 does not have ∂/∂ξ1 in it, in other words its flow preserves the moment map
coordinates ξ1 and ξ2.

In particular, let Xhor be the horizontal lift in the statement of the claim. Let X(1,0,0) be the
vector field generated by the infinitesimal action of rotating the x coordinate, keeping y and
v0 fixed. Then Xhor being horizontal implies (by definition of the moment map ξ1)

dξ1(Xhor) = ω(X(1,0,0), Xhor) = 0

Thus if φt is the flow of Xhor we see by the Chain rule

d

dt
(ξ1 ◦ φt) = 0 ∴ ξ1 ◦ φt = ξ1

and similarly with ξ2. So parallel transport preserves the moment map coordinates ξ1, ξ2.
It also preserves η because we are considering angular parallel transport, so in coordinates
π : (ξ1, ξ2, η, θx, θy, θv0) → (|w|, θw) := (|v0|, θv0) for w the coordinate on the base C of
v0 : Y → C

dπ(Xhor) = ∂/∂θv0

=⇒
(

0 0 ∂|v0|/∂η 0 0 0
0 0 0 0 0 1

)


0
0
h
f
g
a

 =

(
h∂|v0|/∂η

a

)
= (0, 1)

thus a = 1 and h = 0 because η depends on |v0|. So we get the following form for the
horizontal lift:

Xhor = ∂/∂θv0 + f∂/∂θ1 + g∂/∂θ2
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Corollary 4.1.26. Xhor = ∂/∂θv0 + f∂/∂θ1 + g∂/∂θ2 where f and g are functions of ξ1, ξ2

only.

Proof. Note we get independence of η by invariance of the moment map under radial par-
allel transport. Let ρt be the flow of the horizontal vector field Xhor from angular parallel
transport:

ρt(ξ1, ξ2, η, θ1, θ2, θv0) = (ξ1, ξ2, η, θ1 + tf, θ2 + tg, θv0 + t)

Let φα be the T 2-action (e2πiα1x, e2πiα2y, v0). This is a symplectomorphism because it is
holomorphic and preserves the norms, so commutes with ∂∂ and preserves the Kähler po-
tential F hence (φα)∗∂∂F = ∂∂F . It is also a fiberwise symplectomorphism, since it acts on
fibers. So we have:

0 = φα
∗ω(TF,H) = ω((φα)∗TF, (φα)∗H) = ω(TF, (φα)∗H)

∴ (φα)∗H = H

dπ((φα)∗Xhor) = d(π ◦ φα)(Xhor) = dπ(Xhor)

∴ (φα)∗(Xhor) ◦ φ−1
α = Xhor

=⇒ dφα(
d

dt
ρt) ◦ φ−1

α =
d

dt
(φα ◦ ρt) ◦ φ−1

α =
d

dt
(ρt)

=⇒ φα ◦ ρt = ρt ◦ φα
=⇒ (ξ1, ξ2, η, θ1 + α1 + tf(ξ, θ + α), θ2 + α2 + tg(ξ, θ + α), θv0 + t)

= (ξ1, ξ2, η, θ1 + α1 + tf(ξ, θ), θ2 + α2 + tg(ξ, θ), θv0 + t)

=⇒ f(ξ, θ + α) = f(ξ, θ), g(ξ, θ + α) = g(ξ, θ) ∀α

where we integrate the line with d
dt

to get to the next line. Thus we find that f and g are
independent of θ1, θ2. A similar argument shows they are independent of θv0 , i.e. φλ ◦ ρt =
ρt ◦ φλ for λ ∈ S1 the action on the v0 coordinate.

Fiber Lagrangians Hamiltonian isotopic to linear Lagrangians

Definition 4.1.27. Let Li be the parallel transport over a U-shape of the `i in the fiber.

Claim 4.1.28. The parallel transported `i is Hamiltonian isotopic to `i+1.

Proof. We construct an isotopy ψt : F → F in the fiber in coordinates (ξ1, ξ2, θ1, θ2). It maps
`1 to φ(`0) where φ is the monodromy. To prove ψt is a Hamiltonian isotopy, i.e. ι d

dt
ψtω = dHt

for some Ht, Banyaga’s result (cf Pascaleff notes) states that it suffices to show that the flux
of ω through cylinders traced out by generators of H1(F ) is zero.〈∫

t

ιXtω, [γ]

〉
= 〈Flux(ψt), [γ]〉 =

∫
ψt(γ)

ω = area of cylinder traced out by γ over time



91

First we define the isotopy, and set A := M−1.

ψt(ξ1, ξ2, θ1, θ2) := (ξ1, ξ2, θ1 + t(f(ξ)− A1ξ), θ2 + t(g(ξ)− A2ξ))

We note that H1(F ) has rank four since F ∼= TB × TF . If we let γ be the loop generated by
(0, 0, 1, 0) or (0, 0, 0, 1) the two angular directions, then {ψt(γ)}t is one dimensional because
ξ is constant thus the integral is zero. Now we let

γ(t) = (2t, t, 0, 0), −1

2
≤ t ≤ 1

2

The case of γ(t) = (t, 2t, 0, 0) is similar.

flux =

∫
ψt(γ)

ω =

∫
γ

ιXtω =

∫
γ

(dξ1 ∧ dθ1 + dξ2 ∧ dθ2)((f − A1)∂θ1 + (g − A2)∂θ2 ,−)

=

∫
γ

(f − A1)dξ1 + (g − A2)dξ2

=

∫ 1/2

−1/2

2f(2t, t)dt+ g(2t, t)dt

where we used that A being a linear map implies symmetry across zero, and it remains to
show that the above is zero, namely symmetry across zero in f and g. It suffices to show
that f(−ξ) = −f(ξ) and similarly with g.

To do this we recall that f and g are defined by

Xhor =
∂

∂θv0
+ f(ξ)

∂

∂θ1

+ g(ξ)
∂

∂θ2

Also recall that Xhor will be preserved by any fiber-preserving symplectomorphism, as we
saw above in the example of the T 2-action. Another fiber-preserving symplectomorphism
is φneg : (ξ, θ) 7→ (−ξ,−θ) in the fiber. It is a symplectomorphism because dξ ∧ dθ 7→
d(−ξ) ∧ d(−θ) = dξ ∧ dθ. Thus

(φneg)∗(Xhor) = Xhor ◦ φneg
=⇒ f(−ξ) = −f(ξ), g(−ξ) = −g(ξ)

So this completes the proof.

4.2 Background for defining H0(FS(Y, v0))

The following background is from [Sei08].
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Figure 4.2: Example of strip-like end

Remark 4.2.1 (Notation). We start with the symplectic fibration v0 : Y → C, which is
not exact because fibers are compact tori. Although Y does not have boundary, we will
restrict to a small disc around the origin, which does have boundary. In particular, in the
terminology of [Sei08], we do not have a horizontal boundary since fibers are tori, but we do
have a vertical boundary by taking the preimage of a compact neighborhood in the base.

The class of almost complex structures we consider are 1) compatible with the ω defined
above and 2) are equal to the standard J0 induced from the complex toric coordinates near
the boundary. We will denote this set as Jreg(Y, ∂Y ). This set is non-empty, because it
contains J0, and contractible by the same argument as for the set of all ω-compatible almost
complex structures.

Definition 4.2.2 (Domains). A punctured boundary Riemann surface S is the data of a
compact, connected, nonempty boundary Riemann surface with punctures removed on its
boundary, and the assignment of an exact Lagrangian to each component of ∂S. We further
“rigidify” by adding extra structure to S; denote punctures as “positive” or “negative” and
define strip-like ends via embeddings ε : (−∞, 0]s× [0, 1]t → D or ε : [0,∞)s× [0, 1]t → D for
the negative and positive punctures ζ± respectively, such that lims→±∞ ε(s, t) = ζ±. This is
called a Riemann surface with strip-like ends.

Example 4.2.3. In this thesis, S will be one of the unit disc D, two discs glued together
at a point on their boundary, or a disc union a configuration of spheres, in each case with
potentially some punctures. One example of a strip-like end we use later on to glue two discs
is (−∞, 0] × [0, 1] 3 (s, t) 7→ ε−(s, t) := e−π(s+it)+i

e−π(s+it)−i = z+i
z−i ◦ e

−z ◦ π · (s + it) ∈ D\{1}. Note

that −∞ is the puncture which would map to ζ− := 1 in the disc. See Figure 4.2.

Remark 4.2.4. This “rigidifies” because any operation on S must preserve the additional
data of strip-like ends, thus placing further restrictions. The strips provide a nice set of
coordinates near the punctures (namely s and t) and give a straightforward way to glue two
sections by gluing linearly in the (s, t) coordinates. See [Sei08, §(8i) and §(9k)].

Definition 4.2.5 (Maps). Let J ∈ Jreg(Y, ∂Y ). A pseudo-holomorphic map is a J-holomorphic
map u : (S, ∂S) → (Y,ti∈π0(∂S)Li). A J/pseudo-holomorphic curve is the image of such a
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map. We require
lim

s→±∞
u(εij(s, t)) ∈ Li ∩ Lj

for strip-like end εij limiting to an intersection point of Li ∩ Lj.

Remark 4.2.6 (With data of a symplectic fibration, can look at sections). We can think of
the above as a section of a trivial fibration with fixed Lagrangian boundary condition. Now
we generalize to non-trivial fibrations. Consider a holomorphic polygon in the total space of
a fibration with boundary in fiber Lagrangians parallel transported around polygon in the
base. If we project down to the base, we obtain a holomorphic polygon. This indicates we
should look at holomorphic sections.

Definition 4.2.7 (Sections). We can similarly define pseudo-holomorphic sections. Instead
of limiting to an intersection point of the transverse Lagrangians, it limits to a function
uζ(t) (for each t) which gives a possibly varying point in M for each t satisfying a suitable
derivative condition and on the intersection of two Lagrangian boundary conditions over ∂S.

Remark 4.2.8. The above assumes that Lagrangians intersect transversely. Since La-
grangians are half-dimensional, if they intersect transversely then their intersection is 0-
dimensional and we have a discrete set of points. There are a couple ways that have been
invented to account for non-transverse intersections. One is by introducing a Hamiltonian
function and flowing one Lagrangian along the symplectically dual vector field to the deriva-
tive of that Hamiltonian function, until the two Lagrangians intersect transversely. This
is what Seidel does in [Sei08]. We can do this on a fiber of the fibration, so we give the
background here.

We have a Hamiltonian function H defined on the fiber and 1-form γ defined on the base of
v0, vanishing on the boundary. In particular, we define γ to be zero near punctures where
there is no problem and nonzero near punctures where the Lagrangians do not intersect
transversally. Then maps u should satisfy the modified Cauchy-Riemann equation

(du−XH ◦ γ)0,1 = 0

with a modified boundary condition in the strip-like ends. Equivalently, u limits to an in-
tersection point of the Lagrangian and the time-1 flow under XH of the other Lagrangian
intersecting non-transversely. We can use this to compute self-homs of Lagrangians `i in the
fiber.

For the total space, we need to use a different method of perturbation, because the symplectic
form is not a product of the base and fiber. We instead use the categorical localization
method of [AS], described later.

Example 4.2.9. Let tz be the preimage of a moment map value (c1, c2) ∈ TB, intersected
with a fiber. So tz = {c1, c2, θ1, θ2}θi∈[0,2π) which in particular is invariant under parallel
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transport because that map rotates the angles. Since `i ∩ tz is the one point of `i with
(ξ1, ξ2) = (c1, c2), any pseudo-holomorphic section u must limit to that one point over the
corresponding puncture in the base.

Example 4.2.10. The intersection in tz ∩ tz is not transverse, so we’ll need to introduce
an inhomogeneous Hamiltonian term as above. This is a smooth function on the fiber (that
vanishes near the boundary of the fiber, but a torus has no boundary so this doesn’t concern
us). In our case the time-1 flow of XH is an automorphism of the fiber that is a graph on the
real norms of the coordinates |x|, |y|, |z|, chosen so that it descends to a map from the torus
to itself. The PSS isomorphic implies HF ∗(tz, tz) ∼= H∗(tz;C), the cohomology of a 2-torus.

4.3 Moduli spaces needed to define H0(FS(Y, v0))

Remark 4.3.1 (Reason for moduli spaces in the Fukaya category). The Fukaya category is
an A∞-category. This means we have objects, morphisms, and structure maps on k mor-
phisms for any natural number k that satisfy A∞-relations, which can be thought of as
higher order associativity relations on the morphisms. Objects are Lagrangians, morphisms
are intersection points, and structure maps count pseudo-holomorphic maps with boundary
punctures limiting to k input intersection points and 1 output intersection point. For the
Fukaya-Seidel category, the input is a symplectic fibration and we replace “maps” with “sec-
tions” in the above description.

To ensure we can make these counts, we first collect the maps into a set modulo reparametriza-
tion. Gromov equipped this quotient set with a topology so it is a topological space, known as
a moduli space because we mod out by automorphisms of the Riemann surface S. His result
of Gromov compactness can compactify this topological space by analyzing what behavior
can happen to a limit of pseudo-holomorphic curves, using results from complex analysis
that sill hold in the pseudo-holomorphic setting such as unique continuation and somewhere
injectivity. However, to make a count we would like a 0-dimensional compact manifold.
So we use differential geometry on function spaces to put the structure of a compact zero-
dimensional smooth manifold on the moduli space, which is a finite number that can be
counted. Here is the plan for defining the moduli spaces, fitting them into the framework of
the Fukaya-Seidel category, and then working out the HMS computation:

• Immediately below: determine homology classes in Y where curves map to.

• Section §4.3 (current): Prove existence of regular J, for which the moduli spaces in the
Fukaya category are compact 0-dimensional manifolds. This will adapt [MS12] from the
S = CP1 setting to the S = D setting with Lagrangian boundary conditions, and is also
discussed in [Sei08] and [Gan16b].
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• Section §4.4: Define the category following [AS] and prove independence of choice
of regular J and Hamiltonian isotopy class of the Lagrangian in FS(Y, v0), up to
quasi-isomorphism, by a standard continuation map argument.

• Chapter §8: Calculate the objects, morphisms, differential, and composition to find a
subcategory of H0(FS(Y, v0)) which we can show is isomorphic to the bounded derived
category of coherent sheaves on the mirror. In particular, we will need to count the moduli
spaces rather than know a count exists. For this we will use non-regular J , and then use
results from Gromov-Witten theory [KL19]. An abstract regularization theory will tie the
definition and computation together, discussed in Sections 5.1.

The last three steps involve moduli spaces. Figure 4.3 is a flow chart for how to define them
and what we hope to do with them.

Lemma 4.3.2 (Homology of Y ).

H2(Y ) ∼= H2(CP2(3)/ΓB) ∼= Z4

where all homology classes will be over Z.

Proof. Note that Y deformation retracts onto the central fiber over the contractible base.
Therefore the homology of Y is the homology of the central fiber.

We view the central fiber as a degeneration of a T 4 fiber to the central fiber, so that we
can compute homology by reading off what shrinks to a point in the cell decomposition. We
want an analogue of the one dimension lower case where T 2 degenerates to a sphere glued
at its ends. This can be seen from the torus as a quotient of a square, where one pair of
opposite edges is shrunk to a point, or in the cell decomposition we contract one 1-cell in
the construction of the 2-torus from one 0-cell, two 1-cells, and one 2-cell wrapping around
the bouquet of two circles.

In Figure 4.4, we aim to illustrate the 2-skeleton of the cell construction of T 4, viewed as a
quotient of a 4-cube. We obtain three 2-tori identified at one S1. The 2-skeleton is enough to
compute the second homology. So we find that the homology is Z3 from each T 2. In the de-
generation to the central fiber, this S1 shrinks to a point and we get a banana manifold with
three banana spheres, which recall is the boundary of the central fiber from the hexagon.
We get an additional generator now that the S1 has shrunk to a point. So the homology
is Z4. Note that the fiber is actually TB×TF instead of I4 but topologically they are the same.

Remark 4.3.3. Note that we used intuition from spectral sequences for topological fibra-
tions applied to the fibration v0 : Y → C. Note that it is a fibration in the sense of algebraic
geometry but not in the sense of algebraic topology because it does not have the homotopy
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Define composition of morphisms in Fukaya A∞-category
= structure maps defined by counting these moduli spaces
= need a notion of Poincaré duality to count
= need a notion of fundamental class of compact moduli space

=⇒ equip as manifold or singular space admitting fundamental class

Geometric regularization Abstract regularization

Compact topological space structure
on set of J-holo maps modulo Aut
= compact moduli space

Define homology class β

Select ω- and ∂-compatible J

Take set of J-holo maps to β

Quotient by Aut = quotient set

Equip with Gromov topology

Gromov compactify

Figure 4.3: Flow chart for working with moduli spaces in Fukaya categories
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Figure 4.4: 2-skeleton of cell complex from construction of T 4 as a quotient of a 4-cube

lifting property; for example over a disk about the origin we have an S1-set of choices to lift
it to due to the singularity. Namely we do not have weak homotopy equivalent fibers from
T 4 to its degenerated fiber CP2(3)/ΓB. If we were in the right situation then the second
page would be E2

p,q = Hp(C, Hq(T
4)).

Algebraically: the homology with local coefficients means we have C∗(X̃)⊗πHq(F ) where π =
π1(base) acts on the covering space Hq(Fb) 7→ b (with discrete topology) so over monodromy
in base we might see how an H1(Fb) element changes, and that will give us the action of
π. Then the differential on this chain complex is ∂ ⊗ 1. So in the case of universal cover
X̃ = base = C being contractible, then π1 is trivial so the tensor product just recovers usual
homology which is zero in degrees p > 0 and recovers the homology of the base at p = 0.

Remark 4.3.4. Note that an alternative method is to compute homology using the theory
of toric varieties from [CLS11]. Inside the toric variety X there is a dense (C∗)n. This is
n cylinders which can be retracted to n circles so π1 is Zn. Moreover, this surjects onto
π1(X), which will hence always be some quotient of Z3. For example in this case we Z4

before quotienting: we have one P1 from the center of the polytope and three more from the
blow-ups. Once we quotient we find that the three CP1’s in the banana manifold add up to
a fiber of the moment map and a pinched T 3, in particular the fourth generator is a sum of
the first three.

Let Z := ˜CP2(3)/ ∼ which has polytope given by an infinite tiling of hexagons, i.e. the
central fiber of Ỹ . The reason this is the universal cover is that π1(Z) = 0 from toric theory.
As a result, Hurewicz’s theorem implies π2(Z) = H2(Z) and π2(CP2(3)/ ∼) = π2(Z). Thus
alternatively to get H2(CP2(3)/ ∼) we may use Mayer-Vietoris as follows.

Cut out an open set in the hexagonal picture, which then retracts onto the boundary. This
gives two open sets, which in the moment map picture are a disc and its complement, inter-
secting in an S1.

Let B := D2×T 2 correspond to the disc in the moment polytope. Let Ã be the complement,
a string of 6 CP1’s in a circle and A := Ã/ΓB the banana manifold. Let
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0 = H3(Ã)⊕H3(B)→ H3(Z) = 0

→ H2(Ã ∩B) = Z3 (∗)−→ H2(Ã)⊕H2(B) = Z6 ⊕ Z→ H2(Z)→ 0

H1(Ã ∩B) = Z3 ∼=−→ H1(Ã)⊕H1(B) = Z⊕ Z2 → H1(Z) = 0

where (∗) =



1 0 0
0 1 0
−1 1 0
−1 0 0
0 −1 0
1 −1 0
0 0 1


and the second to last map is the 3-by-3 identity matrix with

respect to the three generators of H2(Ã ∩ B) = H2(S1 × T 2) (call them b for the S1 in the
moment polytope and T1, T2 for the two loops in the 2-torus fiber). Then passing to the
quotient CP2(3)/ ∼ we find that

0 = H3(A)⊕H3(B)→ H3(CP2(3)/ ∼) = 0

→ H2(A ∩B) = Z3 (∗∗)−−→ H2(A)⊕H2(B) = Z3 ⊕ Z
→ H2(CP2(3)/ ∼) = Z4 → Z · b ⊂ H1(A ∩B) = Z3


0 0 0
0 0 0
0 1 0
0 0 1


−−−−−−−−→ H1(A)⊕H1(B) = Z2 ⊕ Z2 → H1(CP2(3)/ ∼) = 0

where (∗∗) =


0 0 0
0 0 0
0 0 0
0 0 1

. So ultimately we look at the projection of the 6 P1’s mapping to

the three glued P1’s. Again we find that the homology is Z4.

Now we have the homology classes of Y where images of sphere bubbles may exist. We
also want to know relative H2 for discs with boundary in a given Lagrangian. Recall our
discussion of maps and sections above in the background section. We now define the discs we
will consider in this thesis. The homology classes in π2(Y, L) that we consider cover a disc in
the base around 0, and pass through the central fiber in one point. Varying this point using
the toric geometry of the central fiber allows one to enumerate all the homology classes, done
in [CO06]. We will discuss this below when we do the computation of the disc count for a
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particular J . Here we will just show existence of moduli spaces for a given homology class
β in H2(Y, L).

Definition 4.3.5 (Section-like maps). We select an open set around the origin, call it U .
Then we restrict ourselves to look at almost complex structures that are identically J0 out-
side of U . In particular, discs will be sections there. By Riemann mapping theorem, when
we compose the J0-holomorphic map there to the base via v0 which is also holomorphic,
there is a unique such map if we have J0 everywhere. To allow enough regularity, we will
need to consider J which can vary away from J0 inside the set U . In particular, we will
define all our Lagrangians below to be required to go through the point −1 in the base so
if we choose U to be a disc of radius smaller than 1, this allows us to conclude there are no
multiply-covered discs because they cannot wrap around the boundary. Take U to be the
disc of radius 1/2 centered at the origin.

We can also exclude disc bubbling and strip-breaking: fibers have no discs because linear
Lagrangians in tori have zero relative π2 i.e. they don’t bound discs. A disc can’t form that
wraps around the boundary of a disc over an open set around the origin, because it must
be 1-1 near −1. So another disk or strip would have to lie over a proper subset of the circle
in the base, for which the fibration is trivializable. Assuming the boundary of the disc lies
outside of U (but then need to show invariant under Hamiltonian isotopy), or by continuing
the 1-1 property near −1 of discs to the rest of the boundary of the disc, we find that such
a disc must have boundary given by a point because of the 1-1 property, but there are no
spheres in the torus, so it must be constant (or again invoke 1-1 property).

If we did have multiple covers, we may require that J depend on z ∈ S, in which case we
replace J with Jz. The text [MS12] lays this foundation for Lagrangian boundary conditions
case which is described in [Aur14] and will involve an R-family of J ’s on a strip. But we
don’t need to do that here.

Corollary 4.3.6. J-curves have some analogous properties as complex curves. For example,
the Carlemann similarity principle: a curve that satisfies almost the CR equation can be
modified by post composing with a map, to satisfy it with J0. This is in the case of symplectic
manifold R2n. Other corollaries include: unique continuation (if two J-holomorphic maps
agree on an open set, or all derivatives agree at a point, then the maps are equal). There are
only finitely many points in a preimage and only finitely many critical points. Simple curves
have open dense set of injective points.

Now that we’ve discussed the homology classes where the curves have their image in Y , we
next move to proving existence of regular J , which will allow us to construct a Fredholm
problem where the Cauchy-Riemann operator ∂J will cut out the moduli spaces as a section
of a Banach bundle, and the implicit function theorem will tell us the preimage of zero is a
manifold, which will allow us to put a smooth structure on our moduli spaces.
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Example 4.3.7. This is an infinite-dimensional Banach analogue to checking e.g. that the
function f : R3 → R defined by f(x, y, z) = x2 + y2 + z2 is regular for (x, y, z) 6= 0 because
df |(x,y,z) = (2x, 2y, 2z)T |(x,y,z)6=(0,0,0) : R3 → R is surjective hence f is a regular function and
the preimage of 1 is a smooth manifold (a sphere). In the Banach-bundle setting, regular
means not only surjective but also a right inverse exists.

The difference here is that the differential operator inputs functions, which lands us in the
world of infinite-dimensional Banach spaces. The following theory follows the arguments of
[MS12, Chapters 3–10] but for curves with boundary, also discussed in [Sei08]. An example
of the geometric regularization theory is implemented in [Weh13] for Gromov non-squeezing,
which involves illustrating how to show a family of moduli spaces varying Jt is 1 dimensional
(Fredholm), a manifold (transversality/regularity), compact (Gromov compactness) and has
boundary. A nice reference for abstract regularization theories is [Weh14].

We now proceed to prove existence of a regular J .

Lemma 4.3.8 (Geometric regularization). There exists a dense set J 1
reg ⊂ J (Y, ω) of ω-

compatible almost complex structures J that are identically J0 outside of U such that, for
all J-holomorphic maps u : (D, ∂D)→ (Y, L|γ) with Lagrangian boundary condition given by
parallel transporting a fiber Lagrangian around a U-shape in the basis from −1, the linearized
∂-operator Du is surjective.

Remark 4.3.9. We use the superscript 1 because later we will want existence of slightly
smaller sets J 2

reg and J 3
reg which are regular for a disc attached to a disc and a disc attached

to a sphere, with similar Lagrangian boundary conditions. These will be labelled 2 and 3
and will require not only surjectivity of the linearized operator but also compatible behavior
when evaluating at the intersection point.

Sketch adapting the 2nd edition book [MS12, pg 55, proof of Theorem 3.1.6 (ii)]. We give a
road map adapting McDuff-Salamon to the setting with Lagrangian boundary conditions.
The background for this was also learned from [Weh14, Lecture 9]. Details also discussed in
Denis meeting on Sept 8, 2017. Note Theorem C.1.10 in [MS12] proves we have a Fredholm
problem for the case of boundary.

Introduction. “Regularization” refers to perturbing the ∂J operator to be equivariantly
transverse to the zero section of a Fredholm bundle which we can build so that the operator
is a section of the bundle. “Geometric regularization” means the perturbations are obtained
by perturbing the almost complex structure J , so are geometric in nature. Namely the per-
turbations of ∂J are ∂J ′ − ∂J as J ′ varies. In this setting equivariance will be automatic,
as described below. Note that later on, we will need to use a non-regular J for computa-
tions and in that case we will use “abstract regularization” by adding abstract perturbations
ν which are sections of the same Fredholm bundle but are not necessarily of the form ∂J ′−∂J .
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To prove existence of regular J for discs mapping to fiber Lagrangians parallel-transported
over U-shaped curves, we show that there is a dense set of them in J `

ω(Y, U) := {J ∈ Γ(TY ) |
J2 = −1, JY \U ≡ J0, J ∈ C`}. (This is called J `

F in [Sei08] where F denotes the Lagrangian
boundary condition that is obtained by parallel transporting a fiber Lagrangian, which he
refers to as a moving boundary condition. This set of J is what’s needed in the boundary
case, see [MS12, Remark 3.2.3].) First, we define the set of all W k,p maps u and geometric
perturbations encoded by varying J :

MJ := {(u, J) | J ∈ J `
ω(Y, U),W k,p 3 u : (D, ∂D)→ (Y, L)}

For sufficiently large k, W k,p ⊂ C`. Then elliptic bootstrapping will imply that J-holomorphic
maps u are in C`. This moduli space is called “universal” because we allow J to vary. We use
W k,p because it is complete, i.e. a Banach space, which will be needed to invoke Sard-Smale
and elliptic regularity in the infinite dimensional setting of function spaces. In particular,
we wantMJ to be a C`−1 separable Banach manifold. Then we can use Sard-Smale on the
projection map (u, J)→ J to prove existence of a dense set of regular J for the disc.

Banach bundle set-up. We want to view MJ ⊂ Bk,p × J `
ω(Y, U) 3 (u, J) → J as a

Fredholm section of a Banach bundle in order to invoke Sard-Smale to get a dense set of
regular values. Fredholm is a generalization of surjectivity. We also need existence of a right
inverse, which is a requirement in the infinite-dimensional setting. E.g. see recent polyfold
paper for example where there is no right inverse and why it’s not enough. Then an implicit
function theorem will imply the set of (u, J) cut out by the zero set of this section is a
Banach submanifold of the base and not just a subset. Note that the zero-set consists of
(u, J) so that u is J-holomorphic.

Banach manifold structure on Bk,p 3 u: we construct a local Banach chart about an arbitrary
map u. The local model is TΓ(u∗TY, u∗TL) 3 ξ via u 7→ expu ξ. This is well-defined: we
always have existence of a metric so that one Lagrangian is totally geodesic [MS12, Lemma
4.3.4] and so one Lagrangian, or two, are totally geodesic from some metric. And at any
point considered there are at most two Lagrangians intersecting so this suffices. We need
totally geodesic for this to provide a chart in the case of Lagrangian boundary condition:
given a point in ∂D, move along the vector ξ planted at that point and the result will be
tangent to L so that geodesic remains in L.

Banach manifold structure on J `
ω(Y, U) 3 J , the second factor of the base of the Banach

bundle we are constructing, cf [MS12, §3.2]: again exponentiate to obtain J̇ . Three con-
ditions on J become linearized: 1) J |Y \U ≡ J0 implies J̇ |Y \U ≡ 0 (this is specific to the

Lagrangian boundary case), 2) J2 = −1 implies J̇J + JJ̇ = 0, and 3) ω(·, J ·) > 0 and
symmetric also gets linearized. A chart is constructed via J 7→ J exp(−J̇J). C.f. [Sei08]. A
fiber of the bundle will not have boundary conditions because it is given by the space where
(du)0,1 = 1

2
(du + J ◦ du ◦ j) lands in, and that doesn’t concern the boundary. One doesn’t
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know what happens to directions tangent to the boundary since J and j could twist them
around.

Now we describe how to put the structure of a Banach bundle over open sets in the base.
This will mimic the case of [MS12] because there are no boundary conditions on the fiber.
We use the exponential map to trivialize the bundle over a neighborhood N (u) in the first
factor of Bk,p × J `

ω(Y, U), and we use parallel transport to trivialize over a neighborhood
N (J). This trivializes the bundle over a neighborhood in the base, and a composition of
these gives transition maps that satisfy conditions for a Banach bundle, [MS12] and [Sei08].

Fredholm problem. A Fredholm problem is a Fredholm section of a Banach bundle.
I.e. a section whose linearization is a Fredholm operator, namely dim ker− dim coker is finite
(e.g. the projection to the tangent space of the fiber is surjective) and whose image is closed.
More generally it’s a set-up of the moduli spaces (main part and Gromov compactifying
components that are fiber products) as the zero sets of Fredholm sections. We claim that
the section (u, J) 7→ ∂J(u) is Fredholm. To take the linearization of the ∂ operator at some
map u, we have to see what happens as we vary u infinitesimally by a tangent vector ξ. That
is, we differentiate the ∂ operator in a family and take the derivative at zero. See [MS12,
Proposition 3.1.1]. Similarly we will vary J infinitesimally by tangent vector J̇ .

Fu : W k,p(S, u∗TY )→ W k−1,p(S,Λ1,0 ⊗j u∗TY )

We define Du as follows: for Du′∂J for a nearby u′ in the exp neighborhood of u, we parallel
transport back to the origin of the chart at u, take ∂J , then map forward again on the
fiber under parallel transport. Then the linearized operator Duξ will be the derivative of
this operation at the point 0. This is well-defined because of the totally geodesic condition
above. This is only when varying u. Varying J as well we get [Weh14, Lecture 9]:

Duξ +
1

2
J̇duj

In particular, this is surjective with right inverse, so is Fredholm. The reasoning is as follows.
Suppose by contradiction the image is not dense. Take a nonzero linear functional η in the
orthogonal complement to the image. Taking J̇ = 0 we see that η is orthogonal to im(Du)
as well. So it must be orthogonal to J̇duj for all J̇ . However, using bump functions, since
η 6= 0 we can construct a perturbation J̇ so η integrated on J̇ is nonzero, which gives the
contradiction, see [MS12, page 65].

It’s still possible to do this construction in the Lagrangian boundary setting because the
constructed J̇ is supported in a small neighborhood around a somewhere injective point so
will be zero near the boundary as required. Somewhere injective points are dense so we can
find one close to a given point where η is nonzero. In particular there is a neighborhood of
them. Use bump functions to construct a J̇ so that the integral of

∫
D η(J̇duj) > 0. This is
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a contradiction. So η vanishes on the open set of injective points, hence vanishes identically
by unique continuation [MS12, Theorem 2.3.2]. This is again a contradiction since η 6= 0.
Thus we find that our original assumption that the image is not dense is false. The image is
dense, and since it’s closed, it’s surjective with right inverse.

Sard-Smale: inverse function theorem. Now that we have a Fredholm problem, we can
apply the results of [MS12, Appendix A: Fredholm Theory] for Banach spaces. In particular,
we have the hypothesis of the [MS12, Theorem A.5.1 (Sard-Smale Theorem)] which relies on
the infinite-dimensional inverse function theorem, [MS12, Theorem A.3.1 (Inverse Function
Theorem)]. The result of Sard-Smale is that the set of regular J is dense in the set of all J ,
which is what we were aiming for. So we have existence of regular J .

Remark 4.3.10 (Notation). NB: the notation J̇ does not mean we can only vary J in
one direction as is usually the case with the dot notation. We use the notation as a merely
symbolic way to denote tangent vectors to the space of complex structures, which is typically
denoted Y in the literature but in this thesis Y is the A-side manifold.

Lemma 4.3.11. The set of parametrized J-holomorphic discs u : (D, ∂D) → (Y, L|γ) for
J ∈ J1

reg(Y, ∂Y ) is a finite-dimensional manifold.

Proof from [MS12, Theorem 3.1.6 (i)]. Charts are given using

Fu : W k,p(S, u∗TY )→ W k−1,p(S,Λ1,0 ⊗j u∗TY )

ξ 7→ expu ξ

and obtaining a diffeomorphism of an open set around u in F−1
u (0) to the corresponding open

set in the Banach space around 0. Regularity of J implies dFu(0) = Du is surjective. The
implicit function theorem [MS12, Theorem A.3.3] implies these are smooth manifold charts
after restricting to potentially smaller open sets. This does not depend on k, l because J-
holomorphic maps u are smooth by elliptic regularity [MS12, Proposition 3.1.10]. Note that
[MS12, Appendix B (Elliptic Regularity)] covers the necessary background with totally real
boundary conditions e.g. the Lagrangian boundary condition case here. We will not rewrite
the proofs here but will define the terminology used in that section, see also [Weh13, Lecture
4–6].

• Ck
0 : k times continuously differentiable and derivatives up those orders limit to zero at

infinity.

• Schwartz space ζ of test functions: f such that f · (
√

1 + |x|2)k ∈ C0. It is closed under
convolution and is associative. Tempered distributions ζ ′ denotes the dual space. In
particular, ζ ↪→ ζ ′ via a continuous dense injection f 7→

∫
Rn f · (·)d

nx.

• The phrase that an equality holds “in a weak sense” means, “true when integrated under
all tempered distributions.”



104

• The Fourier transform is a continuous map on Schwartz space where convolution becomes
multiplication.

• Sobolev space W s,2: those f̂ ∈ ζ ′ s.t. FT (f) · (
√

1 + |x|2)k ∈ L2. W k,p: derivatives up to
order k are in Lp in a weak sense. In particular, there is a Sobolev embedding W k,p ⊂ C l

with compact support when k >> l.

• The support of a function u is the complement of where u = 0 in a weak sense. The
singular support of a distribution means we remove, in a weak sense, u ∈ ζ with no local
compact smoothness.

• Elliptic regularity: p(D)u smooth is equivalent to singular support of p(D) being empty,
which is equivalent to u being smooth. In particular, ∂u = 0 implies u is smooth. When
p > 2 then the Lp bound on the derivative gives a compact moduli space. This fails when
p = 2, i.e. L2 norm, hence bubbling can occur and not be in the moduli space. So to
compactify we will quotient by the automorphism group of the domain and determine
what bubbling can occur. This bubbling phenomena will then need to be glued onto
the main part to get a compact manifold. See [Weh13, Lecture 7–9] for notes on this
phenomena of Gromov compactness.

Remark 4.3.12. Even for non-regular J , we can still use the above to construct a Fred-
holm problem by [MS12, Theorem C.1.10 (Riemann-Roch)], which is proven in the case of
Lagrangian boundary condition. How we get the smooth structure will be a different matter
though, because J is not regular. This is where abstract perturbations may be necessary.

Example 4.3.13 (Moduli space of domains). Deligne-Mumford space: stable curves (genus
g and k marked points) to a point. Quotient by reparam. To compactify and get all the
possible codimension 1 configurations, namely limits of stable curves, we consider a suitable
dual graph. C.f. [Sei08, §9] and Liu reference for dual graphs.

A tree encodes information for how to glue, where interior edges are assigned a gluing length,
and semi-infinite edges at either end give the resulting marked points of the final glued disc.
The idea is that we can have a family of discs, parametrized in the base by possible cyclic
configurations. We also have a gluing parameter for each interior edge. The more interior
edges we have the more dimensions the base will have because the more codimensional space
do the bubbles take up.

We then compactify the base of this family by adding in all d-leafed trees. If we have second

countable and Hausdorff on Rd+1
then we can define continuity, a topology and smoothness.

Claim is that FOOO says it’s inherited from being a subset of real locus (because gluing
parameter is real) of the Deligne-Mumford spaceM0,d+1. See also [Sei08, §13] for a discussion
of regularity of polygons and a sheaf-theoretic interpretation.
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Claim 4.3.14. Given the Fredholm section we can compute the expected dimension of the
manifold of parametrized curves, and then the moduli space of unparametrized curves will
be three less. We also have an induced orientation.

Analogue in Morse theory – when have Morse-Smale data then know the dimension of moduli
space by counting eigenvalues. Transverse intersection of unstable of x− and stable of x+.
Projection map from unstable to perp of stable. Index of a Fredholm section is spectral flow
of Hessian (versus counting eigenvalues of a Hessian matrix as in Morse case.) Spectral flow
of (J0∂t + Ss)s∈R where Du is this plus ∂s plus a compact perturbation.

Claim 4.3.15. Aut acts smoothly on the manifold of parametrized curves, hence the moduli
space M̂/Aut is a smooth manifold.

Claim 4.3.16. We can put a smooth structure on the compactified moduli space using
gluing. The configurations we glue are precisely those in Gromov compactness. This allows
us to obtain the structure of a smooth compact 0-dimensional manifold, which we can then
count.

Sketch. This is covered in [MS12] and [Weh13]. Gromov compactness follows from results
such as the isoperimetric inequality: |a(γ)| ≤ C|length(γ)|2, the removable singularity the-
orem and energy decay. This tells us what the possible limit configurations of discs are: a
disc bubble at a boundary point, a sphere bubble, or strip-breaking.

Compactifying as topological space. We then consider any disc bubble, sphere bubble,
or strip-breaking and show it is the limit of a sequence of J-holomorphic curves. This is
done by first pregluing the maps by pasting them together, which may not give something
J-holomorphic, and then Newton iterate it to a J-holomorphic map.

The upshot is that the boundary of the unparametrized moduli spaces (namely M̂/Aut\
M̂/Aut) is a fiber product of moduli spaces which agree at their intersection point. E.g. we
will have a component for moduli spaces of discs fiber product with moduli spaces of spheres
over their common intersection point, to account for sphere bubbling.

Compactifying as smooth manifold: existence of regular J for limit configura-
tions. So to finish up the sketch that the moduli spaces are compact smooth 0-dimensional
manifolds, we need to prove the existence of regular J for these additional fiber product
configurations. As described above, we can exclude disc bubbling and strip-breaking by the
geometry of Y . So we only need to consider sphere bubbling from spheres in the central
fiber. The addition of a point where the disc and sphere attach at means we need a notion
of additional data to account for these special points.

Definition 4.3.17 (Moduli space of stable maps). A stable map is given by a tree, where
each vertex α is a sphere bubble, except for the original main sphere one. The stable refers
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to the nontrivial automorphisms; in particular if we fix three points there are no nontrivial
automorphisms. A pseudocycle is when the image of the boundary of the moduli space has
codimension at least two in the total space. The virtual dimension is given by the Maslov
index minus twice the number of edges in the stable tree. That is, each bubbled off sphere
reduces dimension by 2. Semipositive means that there are no J-holo spheres of negative
Chern number for generic J – this is our setting because it’s Calabi-Yau. We define the
resulting moduli space by taking a collection of maps, quotient by reparametrization, and
then compactify.

Lemma 4.3.18 (Bolzano-Weierstrass analogue for bounded energy curves limit to trees).
The moduli space of stable maps exhibits Gromov convergence.

C.f. [MS12, Chapter 5]. Let u.c.s. := uniformly on compact subsets. If the derivatives in a
fixed homology class are bounded in W 1,p for some p > 2, then we have a Bolzano-Weierstrass
type result that any sequence has a convergent subsequence. However, in the borderline p = 2
case, as is the case here, the limit may not be in original class of curves. Gromov convergence
to a stable map: for each vertex α of tree we have a family of reparametrizations φνα. The
marked points stay fixed, at least in the limit they do.

We use the following terminology to introduce the objects required to include limits of curves,
i.e. to achieve a compact moduli space. Finite energy can still have bubbles because energy
is invariant under rescaling, argument rescales inversely whereas differential forms rescale
proportionally. However derivative may blow up as in the following example: CP1 → CP2

given by [x : y] 7→ [x2 : εy2 : xy]. Parametrizes holo curve in CP2 given by ab = εc2. As
ε→ 0, we only get curve [x : 0 : y]. However the limit of the image is actually two spheres,
ab = 0 and not just b = 0 because of rescaling in CP2. Look at ab = εc2 and let ε→ 0 to get
ab = 0.

If we remove the bubbling points, then sequence of curves converges u.c.s. to the main com-
ponent. To find the other bubbled-off components, take a new curve defined by z/Rn where
the Rn goes to infinity and add a sequence of points tending to the bubble point. Energies
of main plus bubbles should add up to original energy. Energy remains the same in limit.

ei denotes 1
2
|dui|2. To get C∞loc convergence to the main component we use the Bolzano-

Weierstrass theorem on the energy. And the reason the main component is fully defined on
S (even though we removed the bubble points) is because of removable singularity property
of pseudo-holomorphic maps.

Lemma 4.3.19 (Gromov compactness for stable maps, c.f. [MS12, Equation (5.1.5)]). The
compactification of the moduli space of unparametrized curves (i.e. equivalence classes) is a
union over possible bubble trees of unparametrized curves.
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Sketch. The reason is that these are the possible limit configurations. Equation (5.1.5) equips
the set with a topology in the situation of special points, and later on discusses gluing and
a Fredholm problem in this setting.

In particular, we’ll need gluing and a discussion of the Fredholm problem for a disc and
a sphere. We will then show that the moduli space of a somewhere injective disc union a
simple sphere is a manifold of negative dimension, meaning it is empty and can be excluded.

Lemma 4.3.20 (Excluding bubbling in our setting). There exists a dense set J 2
reg(Y, ∂Y ;D∪

P1) of J regular for the moduli space of a simple sphere in the central fiber union a somewhere
injective disk, which is section-like hence must be simple.

Corollary 4.3.21. The moduli space for the regular J above has negative dimension, this is
empty. In particular, the moduli space of any somewhere injective disk passing through the
open set U union any configuration of multiply-covered and simple spheres can be excluded.

Proof of Corollary 4.3.21. The Riemann-Roch theorem [MS12, Appendix] implies the di-
mension of the manifold cut out by the regular J is of negative dimension, specifically
dimension −2. Lazzarini’s result [Laz11] implies any disc can be decomposed into simple
discs and his other paper [Laz00] shows that any J-holomorphic disc contains a simple J-
holomorphic disc. Thus if we had a nonempty configuration as in the statement of the corol-
lary, we would have a non-constant map in the case of a simple disc union a simple sphere,
by factoring through the multiple covers and taking one simple disc that goes through the
sphere. But this is a contradiction, so there couldn’t have been any such nonempty moduli
spaces to begin with.

Proof of Lemma 4.3.20. We have dense sets of J regular for each component (the disc and
the sphere); the disc was described earlier and the sphere situation is done in [MS12, Chapter
3]. This proof will involve checking that there is still a dense set of J in the intersection
of these two dense sets which interact well at the point over 0 where the disc and sphere
intersect.

Intersect dense set of regular J for sphere and disc separately. Consider U ⊂ J 2
reg(Y, ∂Y ;D∪

P1) × J 1
reg(Y, ∂Y ) where uD(D) * uP1(P1) (in contrast with the case of just spheres where

we require the images not be equal). We have the pointwise constraint that the sphere and
disc are attached at a point. So we need transversality of the evaluation map U → Y × Y .

Using Sard-Smale we can deduce that U is a manifold, with an additional check involving
annihilators on the multiple components as follows. This is from [MS12, Chapter 6]. An Lq

form η that annihilates Duξ over W 1,p test vectors ξ which vanish on the point of intersection
of the sphere and disc, thought of either as a point on the sphere (McDuff-Salamon) or on
the disc (same proof as in [MS12] but we have less to test because the spaces are smaller
due to more geometric constraints) in fact has W k,p regularity. Recall that the elliptic boot-
strapping result of [MS12] is proven for Lagrangian boundary conditions. Via integration by
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parts we show D∗η = 0; this is Stokes’ theorem and the product rule applied to 〈η, ξ〉 which
is evaluation on the 1-form and inner product on the bundles. In particular, η and the test
vectors ξ being tangent to the Lagrangian at the boundary ensure that the relevant integral
is zero.

The implicit function theorem puts the structure of a Banach submanifold on the cross
product J 2

reg(Y, ∂Y ;D∪P1)×J 1
reg(Y, ∂Y ), at which point we use an evaluation map to ensure

transversality. Then the preimage of the diagonal is not just a subset but a submanifold,
and in particular is the desired dense set of regular J of the lemma. This is done in a series
of lemmas in [MS12, §3.4], which are valid when applying the theorems in the appendices
because these are done for Lagrangian boundary conditions.

• Want evaluation map to be transverse. The disc and sphere must intersect at 0 in the
domain since the central fiber of v0 is where H2 is nonzero. We also fix a point on the
boundary of the disc so there are no nontrivial automorphisms.

• To show the evaluation map is transverse, it’s enough to construct J̇ supported in small
balls, one on each component. Each ball should not intersect the other component. Be-
cause of the “half-way step” where we looked at U inside the product of the moduli spaces
for each component, that means we can find such open sets.

• This is possible because: 1) the Lagrangian boundary condition implies J̇ is zero near the
boundary and so if it’s only supported on a small ball in the interior it is of this form and
2) we can extend each J̇ by zero and then add them. In order to check transversality, we
want the linearized map to be surjective. So we select two tangent vectors in codomain at
(0D, 0P1), and then construct two J̇ supported in small balls around the intersection point.
This will give us transversality.

• To show existence of these J̇ , we need a regularity and vanishing result about forms η
that are zero on Du. Because then we’ll get Duξ + 1

2
J̇duj surjects onto W k−1,p spaces

which will allow us enough freedom to find the vectors above. With boundary conditions,
all the lemmas in the appendix hold as well as integration by parts because taking the
adjoint means the boundary term is d 〈η, Jξ〉ω and so on the boundary Lagrangian and
using ω-compatibility we find that term vanishes. So everything carries through in this
setting.

By Sard-Smale on this subset of the universal space where they respect the pointwise con-
straint, we get existence of a dense set of regular J for the disc and sphere so that the
evaluation map at their intersection is transverse. This concludes the proof of Lemma 4.3.20.

Limit configurations form smooth manifold. Now that we have a regular J for the
limit configuration, we prove that ∂J cuts out M̂D/Aut ×0 M̂P1/Aut transversally so it is
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a manifold. To get a manifold structure, we again want a Fredholm section of a Banach
bundle where the linearized operator is surjective with right inverse.

Let Σ be the Riemann surface given by the disc with one fixed boundary point attached to
a sphere at the origin. As above, we put a Banach manifold structure on W k,p(Σ, Y ), via
charts modelled off its tangent space, which we know is a Banach manifold. That is, we
describe maps “close to” a given map u using the exponential map: given a point u and a
tangent direction ξ at that point, we move u along the geodesic (i.e. path where the least
action is required) in the tangent direction ξ for time 1 to obtain a new map W k,p map expu ξ
that pushes u everywhere slightly in the direction of ξ.

We want to preserve the Lagrangian boundary condition on uD : D → Y , so if ξ is tangent
to L and z ∈ ∂D then uD(z) ∈ L and we want expuD ξ on ∂D to still be in L. In other words,
if we push off u in a direction ξ tangent to L, the new map should still map its boundary to
the desired Lagrangians. Said another way: a geodesic that starts in L and initial velocity
tangent to L should stay in L. This is precisely the definition of totally geodesic. Thus L
must be totally geodesic. Recall that geodesics (and minimizing action) only make sense
with a metric on Y . So we need a metric on Y for which all Lagrangians involved are totally
geodesic. The existence of a metric so that one Lagrangian is totally geodesic is proven by
Urs Frauenfelder in his diploma thesis, see [MS12, Lemma 4.3.4]. In general we at most have
two Lagrangians at an intersection point, and existence of a metric so that both Lagrangians
are totally geodesic is proven in [Mil65, Lemma 6.8], which also has a self-contained account
in the lecture notes on the Whitney Trick [Fra10, Lemma 0.6, Lec 11], the proof of which is
continued in [Fra10, Lec 12].

For the fiber of the Banach bundle, we don’t need to worry about boundary conditions
c.f. [Sei08, §(8h)].

The case of regular J and obtaining a smooth manifold from the zero set of ∂J for curves
with pointwise constraints involves a few additional checks from what we did before with
just the disc. We list them, and this follows [MS12, §3.4].

• Construct an η locally that lives in a fiber of the Banach bundle.

• Show that η has W k,p
loc regularity, which is why in previous step we look at it locally.

• Once we have regularity, we can integrate to get D∗uη = 0.

• Then we write out D∗uη and use Carleman similarity principle to see that if η is zero on
an open set it must be identically zero.

• This allows us to show that the annihilator of a certain space is zero, whence Hahn-Banach
applies to give us denseness so combining that with closedness from the Fredholm property
we find that the linearized operator when including J l in fact surjects onto W k−1,p.
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• We are still working on a single component, P1 or D. This surjection tells us that we can
find a ξ pointing in a specified direction at a specified point and tangent to moduli space.
First do former, apply previous bullet point to modify to get latter.

• Moreover one can do this in a small neighborhood around a specified point. Hence we can
add vectors that work on different components. Now we bring in P1 ∪ D.

• Since the (linearized) evaluation map is surjective on vectors, the universal moduli space
is a manifold hence we have a dense set of regular J , and so the moduli space with a
regular J is a manifold.

• Done since elliptic bootstrapping and the implicit function theorem are covered in the
appendices of [MS12] for Lagrangian boundary conditions.

• Note: we may encode asymptotic behavior via the C∞ε -topology, see [Sei08, Remark 9.9].

We have now excluded all types of bubbling behavior. So the moduli spaces M̂/Aut are al-
ready compact manifolds, and the proof is complete. We can now take their zero-dimensional
part to use in the construction of the Fukaya category below.

Corollary 4.3.22. The above is valid for a disc with any number of Lagrangians and punc-
tures with strip-like ends, because of the existence of metrics for which two Lagrangians are
totally geodesic, [Mil65, Lemma 6.8].

4.4 H0(FS(Y, v0)): definition and independence of

choices

Now we arrive at the definition of the Fukaya-Seidel category. Because of the linearity of
Lagrangians considered, they have a lift that allows for Maslov grading given by their slope,
and they have a Spin structure as well.

Definition 4.4.1. The Fukaya-Seidel category FS(Y, v0) is defined as follows, using the
categorical localization method, instead of Hamiltonian perturbation methods (as in [Sei08]):
• Objects: the Lagrangians in FS(Y, v0), i.e. in the total space, are allowed to be non-

compact. The Lagrangian Li is obtained by taking `i over −1 in the base of v0 and
parallel-transporting it around the singular fiber over zero, along U-shapes as in Figure
4.5.
Specifically, outside of a compact set around the origin, the Lagrangians must project to
rays in the plane, and they are fibered meaning the parallel transport of Lagrangians in
the fiber.
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Figure 4.5: Li = parallel transport `i around U-shaped curves in base of v0

• Morphisms: we define a directed category

hom(K,L) =


CF (K,L), if K > L

C · 1, if K = L

0, else

(4.5)

where the ordering > denotes that, outside a compact set, all the rays of K lie above all
the rays of L. If K = L, then we push the rays of one copy to lie above the rays of the
other copy as in Figure 4.5 and the unit eL is the count of discs with those Lagrangians as
boundary conditions. This pushing procedure gives Lε. We then localize at these eL, in
other words we set them to be isomorphisms. Recall that formally inverting morphisms
involves taking equivalence classes of roofs

K ← Kε → L

which is the definition of an arrow K → L when K < L, namely push up to Kε > L so
that the first arrow of the roof is a quasi-isomorphism, and then Kε → L is defined as
above.
• The differential (µ1), composition (µ2), and higher order µk count bigons, triangles, and

(k + 1)-gons respectively which are section-like maps as defined in Definition 4.3.5, and
have the usual Lagrangian boundary conditions from these Li, and are J-holomorphic for
some regular J , which exists by the above. These moduli spaces can be counted by the
theory of the previous section.
• Note that here we exclude Tz, the parallel transport of tz around a circle in the base, as

an object of the subcategory of the Fukaya category we are considering, to avoid the use
of bounding cochains in defining hom(Tz, Tz) due to disc bubbling.

Lemma 4.4.2. Correct position for homs in localized category, via Abouzaid-Seidel, Gana-
tra’s notes, Abouzaid-Auroux.

Lemma 4.4.3. The composition of roofs is a roof.

Proof. See M. Jeffs masters thesis.
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Remark 4.4.4 (Units). In Floer theory HF (V, V ) ∼= H(V ;K/2). The cohomology ring for
the 2-torus (“height zero” part of a T 4 fiber) is Z in degree zero and two, and Z⊕Z in degree
1 by the Künneth formula. We indeed have the same number of generators on the cochain
level.

Definition 4.4.5. The Donaldson-Fukaya category is obtained by passing to cohomology
on the morphism chain complexes. It is an example of a topological quantum field theory,
i.e. a functor from manifolds to vector spaces where cobordisms map to vector space homo-
morphisms.

Lemma 4.4.6. Let J1 and J2 be two regular almost complex structures. Then they give
quasi-equivalent Fukaya A∞-categories.

Proof of lemma. Seidel §8 and §(10c).

Remark 4.4.7. This is discussed in (10a) and (10b) of [Sei08], which go beyond what we
need. Section (10c) of [Sei08] contains the argument of an isomorphism of the Donaldson-
Fukaya categories.

We can construct an A∞ functor (which will be the identity as noted above), see the be-
ginning of [Sei08]. Then we don’t need to consider homotopies. This is not true in general
because µ2 could jump, but not here because all intersection points are in degree 0. We have
a linear continuation map, and all higher ones are the identity.

The classical approach of FOOO and Floer is to construct a homotopy. See [FOOO09a, p
244]: the algebraic background on homotopies is in section 4.2, then after introducing the
virtual fundamental chain the theorem is applied to the Fukaya category setting in Corollary
4.6.3 of the book or Theorem 15.19 of their 2000 preprint.

Seidel upgrades this system to the A∞-setting by packaging all the Fukaya categories for
varying choices of J indexed by i into a “total” Fukaya category, and showing that each
F(Y )i fully faithfully embeds into the total while inducing an isomorphism on cohomology
using Salamon-Zehnder’s work for an actual category. Thus all F(Y )i are quasi-isomorphic
to the same thing, hence to each other, and the proof is complete.

Note that [FOOO09a, p 244] discuss J-invariance. Algebraic homotopy invariance is dis-
cussed in section 4.2, and the main theorem is in section 4.6. In between these two they
setup the geometrical fundamental chain as an application of the algebraic theory in section
4.2

In general, a continuation map argument with a single PDE that interpolates between the
two J ’s indicates an isomorphism of Floer groups at each choice, and then Seidel in [Sei08,
§(10c)] discusses upgrading this to the A∞-category.
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Corollary 4.4.8. This category is independent of regular choices of datum so is well-defined.
In particular different values of sufficiently small T , so when defining the complex struc-
ture we have a proper holomorphic group action of ΓB that we can quotient by, give quasi-
isomorphic Fukaya categories.

Proof. Invariance under regular J is given above. Invariance under Hamiltonian perturba-
tions in the fiber has been done before in the literature. This completes the proof that we
have a well-defined Fukaya category.

Remark 4.4.9. We will technically have a mirror correspondence between a family of Fukaya
categories over T , so the complex structure JT involves scaling the standard J , and scaling
the symplectic form on the A-side. Showing invariance would involve looking at a connected
path in the space of ACS, namely that obtained by scaling this T .
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Chapter 5

The main theorem

5.1 HMS computation

Remark 5.1.1. In physics the functor (Y, v0) 7→ H0(FS(Y, v0)) can be referred to as a
topological quantum field theory or TQFT. That is, the first part of a TQFT is a functor
from certain manifolds to vector spaces. For more background, see Segal’s lecture notes
[Seg]. We will be considered with the Donaldson-Fukaya category in this thesis, and the full
A∞-categorical equivalence is a future direction. In order to pass to H0, we need to know
the differential.

Remark 5.1.2. Recall above that we stated the definition of the Fukaya-Seidel category.
However, to prove a fully faithful HMS embedding on the cohomological level, we will need
to compute the differential on FS(Y, v0) to find morphisms groups in H0(FS(Y, v0)), and not
just know the existence of the differential as above. Also, the definition above was with regu-
lar J that excluded sphere bubbling, which was proven adapting results of McDuff-Salamon:
the philosophy is that, assuming “generic J” relates to the same generic in “generic inter-
section”, the union of all points in a zero-dimensional family of spheres is two, and that of
discs in a one-dimensional family is three, so generically these two don’t intersect in a six
dimensional manifold.

However, when we compute the differential below we will use the standard J0, which is
multiplication by i in the toric coordinates, and there we cannot exclude sphere bubbling.
The reason is because of the nontriviality of H2(v−1

0 (0)), the central fiber of Y , which arises
from submanifolds that are J0-complex since v0 is holomorphic with respect to J0. Nonzero
Dolbeaut cohomology implies the spheres are not regular, i.e. by Riemann Roch and fact
that cokernel of d-bar operator is actually Dolbeaut cohomology. We use the theory of
Gromov-Witten invariants to describe the computation of spheres given in [KL19] and then
show invariance of the Fukaya category for nonregular J by polyfold theory’s use of abstract
perturbations of ∂J [BFW17] to show that polyfolds give a quasi-isomorphic Fukaya category
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as the one computed directly with J0. Thus we can match up the categories of HMS using
the direct computation of the differential with J0.

Remark 5.1.3 (Notation). Capital Mk denotes structure maps on the total space of Y and
lowercase Mk denotes structure maps on the torus fiber.

Lemma 5.1.4. ∂ : CF (`i+1, `j)[−1] → CF (`i, `j) can be computed from the data of ∂ :
CF (tz, `i)→ CF (tz, `i) over all z.

Proof. Let pj denote the intersection point of `j and tz, and let tki,j denote the kth intersection
point of `i ∩ `j, where 0 ≤ k < (i − j)2 as described in the definition of the Fukaya-
Seidel category above. We can compute the first and last vertical arrow of the diagram
below, and we want to compute the middle arrow. Let’s say the differential maps pj to
C(z) · pj where C(z), for count, is a count that we will compute, depending on z but not
j. This diagram allows us to find the middle vertical arrow. Note that upper case refers to
parallel transporting lower case fiber Lagrangians around curves in the base. The crux of
this argument is that we use the Leibniz rule. See Figure 5.1.

hom(`j, tz)⊗ hom(`i+1, `j) 3 pj ⊗ tki+1,j

M2
- hom(`i+1, tz) 3M2(pj, t

k
i+1,j)

hom(`j, tz)⊗ hom(`i, `j) 3 Cpj ⊗ ∂(tki+1,j)

∂

?
M2
- hom(`i+1, tz) 3 ∂(M2(pj, t

k
i+1,j))

∂

?

In particular, by the Leibniz rule for differentiating a product we have

M1(M2(pj, t
k
i+1,j)) = M2(M1(tki+1,j), pj) +M2(tki+1,j,M

1(pj)) = M2(M1(tki+1,j), pj)

because M1(pj) = 0, since pj is of degree 0 and there is nothing in degree 1 at the other
intersection points of the two Lagrangians; note that pi is of degree −1. Note that M1(tki+1,j)
is what we are looking for. Also, the fibration is trivial in the beige region so we can count
triangles in a fiber with points at pi, pj, and tki+1,j to get that M2(pj, t

k
i+1,j) = D(z) · pi for

some function D(z). Then M1(pi) will be computed by the homotopy argument, to get
C(z) · pj. So the equation above gives

C(z) ·D(z) · pj = M2(M1(tki+1,j), pj)

from which we can compute M1(tki+1,j).

The reason we would like to use tz and not some `j is because this will allow us to count discs
with boundary in the preimage of a moment map, as in [CO06]. The Lagrangian Tz obtained
by parallel-transporting tz around U-shaped curves corresponds to evaluation sections at the
point z on the mirror side. So once we know the morphisms groups for all tz, we know homs
between any `i and `j.
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Figure 5.1: Leibniz rule

Now we describe is the homotopy argument that will allow us to find the M1(pi). See Figures
5.2 and 5.3.

Figure 5.2: The homotopy between ∂ (left) and the count of discs we compute (right)

Remark 5.1.5. In the computation with J0, we are using a non-regular J . Thus we will
need to use an invariance of J argument that incorporates invariance under non-regular J .
We use the abstract regularization methods of polyfolds for this (perturbing ∂J0 via a section
of the Banach bundle, which may or may not be induced from perturbing J0, hence the term
“abstract”).

The computation of the Gromov-Witten invariants from [KL19] involves proving that an
open Gromov-Witten has an isomorphic Kuranishi structure as a closed Gromov-Witten
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Fredholm problem: put str of 1-manifold

on
⋃
r∈[0,1] M̂(Y, L|γ(r);βr; Jreg)/Aut

Define Lagrangian boundary L|γ(r)

Define βr ∈ H2(Y, L|γ(r))

Prove existence of Jreg :

for φ−1
r ◦ u, J regular ∀r

Go from LHS of Figure 5.2 (defn)

to RHS (computation)

= vary Lagrangian, vary J

1) vary Lagrangian, fix Jreg

2) fix at new Lagrangian, vary J

apply φr ∈ Aut(Y, ∂Y ) to β1

Construct Fredholm problem,

use J regular at r = 1

= chain homotopy, §17 of [Sei08]

Figure 5.3: Plan for computation
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invariant. This uses [Cha11] and will be discussed further. In this section we discuss the
homotopy argument. Then we discuss the computation of discs and sphere bubbles. Finally
we finish with the polyfold argument for how the computation relates to the definition.

Remark 5.1.6 (Notation). This section uses theory developed in [Sei08, §17g] for counting
pseudo-holomorphic polygon sections which pass through singular fibers. In that section, d
is called M1 here. Also L1, L2 from Seidel are tz in this setting and Q = `i. This follows
from L2 being isotopic to φ(L1). All other maps here should be named the same as Seidel’s
notation.

Lemma 5.1.7. M1 : CF (Tz, Li)→ CF (Tz, Li) is homotopic to M2(c,−) where c is a count
of discs times a suitable intersection point p.

Proof. First we note that

M1 : CF (tz, `i)→ CF (tz, φ(`i))
C−−→
φ−1

F (φ−1(tz), `i) = CF (tz, `i) ∼= C

where φ is the monodromy. We’ve used that applying the diffeomorphism φ−1 gives a bijec-
tion between intersection points, and tz is invariant under parallel transport because it only
rotates angles. So we get CF (tz, `i), which has only one intersection point.

Open Gromov-Witten invariant theory can count J0-holomorphic discs with boundary on a
moment map fiber, one marked point, and passing through the singular fiber of Y once (as is
the case because recall from the definition, because they are 1-1 and with J0 we actually get
sections of v0). However, M1 as is counts bigons through the singular fiber with boundary
on Tz and Li. So following [Sei08, §17g] we deform M1. Call the count of J0-holomorphic
discs with boundary on Tz and marked point p as count c · p. This deformation constructs
a homotopy l such that

M2(c, ·)−M1(·) = M1 ◦ l − l ◦M1 = 0

where the zero is because M1 = 0 on the torus fiber. See Figure 5.2. Below, we describe
the details from his book, filling in as needed the additional information in the slightly dif-
ferent setting of this thesis. In this setting, the analogue of the vanishing cycle that one
Dehn twists from Seidel is three families of T 2’s degenerating to S1’s which intersect at a
point. One property we need though to apply his theory is that the monodromy φ preserves
tz = {(ξ1, ξ2, θ1, θ2)})θ1,θ2∈[0,2π), which is still true here.

We start by defining k, a homotopy between d̃ := M2(c,−) and the zero map, where c is
closed hence a Floer homology representative. Set l̃ = M2(k(·), ·) +M3(c, ·, ·).

Claim 5.1.8. The claim is that (d̃, l̃) satisfy the boxed equations in [Sei08, (17.15)] which
express that d̃ is a chain map between the two CF groups on the fiber and l̃ is a homotopy
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between d̃ ◦M2 and zero.

Also, isotoping L1 and L2, and taking different choices of (d, l) satisfying these same equations
give homotopic maps, so we have a uniqueness statement and can take a limit of choices
without changing the theory.

Proof. The equations (17.15) are satisfied by definition of (d̃, l̃). So next we look at how (d, l)
depends on L1, and similarly in the tilde case. Use continuation maps a and b to go from
CF (Q,L1), CF (L0, L1) respectively to the tilde versions. Thus the maps are well-defined,
namely they have the same input. Seidel claims also that the continuation maps are com-
patible with the triangle product up to a chain homotopy. The maps in the moduli spaces
of sections for the continuation maps have boundary condition constant over Q or L1 and
realize the isotopy from L1 to L̃1 over the time 1 side of the strip-like end. The moduli space
for the chain homotopy h needed in compatibility of the triangle product is as follows: take
trivial fibration with boundary Q,L0, L1 and glue on the moduli space for a. Similarly do
with (Q,L0, L̃1) trivial, glued to b. The chain homotopy h is defined to go between these
two. Since the continuation maps are quasi-isomorphisms, we have an isomorphism on co-
homology. Likewise we can isotope L2 and still get isomorphic cohomology.

First we look at moduli spaces interpolating between the Floer complexes. Namely, δ is a
map between the two Floer complexes over the two intersection points: tz ∩ `i at each end.
And λ is a product map. These new objects δ and λ satisfy equations similar to (17.15)
but there are additional d + d̃ and l + l̃ terms respectively. The equations say that the two
chain complexes C ′ ⊕ C ⊕ C ′′ and the tilde version are isomorphic. Note that (δ, λ) is a
construction for varying (d̃, l̃) more generally, while (α, β) is a construction from varying d
by varying L1 specifically which introduces more terms than in the first case.

Next we want to see why different choices of (d, l) satisfying (17.15) give homotopic results
(a more general result than taking a different choice from isotoping L1 and L2). Pick some
such (d, l). We construct a homotopy between d and d̃ ◦ a, call it α. Similarly call β a chain
homotopy between l and l̃. The continuation maps are quasi-isomorphisms and α, β produce
a map between D and D̃ which is a quasi-isomorphism.

Claim 5.1.9. We can compute M1 using M2(c,−) and obtain quasi-isomorphic Fukaya
categories.

Proof. This is a limiting case of the uniqueness statement. Here ξ and ψ pertain to varying
the differential and product. And ξ interpolates between what Seidel refers to as d and
M2(c,−). We look at the limit of isotopies on this L1. The reason being: that was how we
varied L1 in the previous section and so in particular, that was how we varied d. So we say
d̃ is a limiting case of the previous section because of the limiting case of isotoping L̃1: here
d̃ = M2(c,−).
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Now to construct the homotopy between the choices for triangle product: we’ll look at a
parametrized family that has five parts. The first part is l as in the original (d, l) pair. The
second family is that associated to ξ(M2): glue the ξ fibration to a trivial 3-pointed disc.
Remember that ξ was the 1-parameter family interpolating between the two differential-like
options: d and M2(c,−). So we get another family, by gluing this family to a 3-pointed disc.
Effectively we are making the ξ family into a family that works on the product level. “Large
gluing length” implies this is just ξ(M2). Note that at r = 0 we get the l family at r = 1. At
the other end of the second ξ family, when r = 1, we get M2(c,M2(, )). Take a sufficiently
large closed interval [0; 1] ⊂ R4.

Remark 5.1.10. We have a composition of maps on one side of the homotopy, namely
M2(c,−). Anytime we compose two structure maps in the Fukaya category, geometrically
this corresponds to gluing the Fredholm problems producing the moduli spaces that are
counted in each structure map. So we will need to discuss gluing in this particular setting.
This is another place where our setting differs from that of Seidel. In the book, he deforms
the fibrations. However in this setting, the fibration stays the same, while the Lagrangian
boundary conditions are deformed. So we will need a gluing argument to deduce the moduli
space ⋃

r∈[0,1]

M(Jreg, Lr)

is a one dimensional smooth manifold. The following theory follows [Weh14, Lecture 9]. Also
Fall 2013, Lecture 14 of Wehrheim’s topics course and McDuff-Salamon: First done with Jz.
§10.9 deals with case of just J .

Claim 5.1.11. ⋃
r∈[0,1]

M(Jreg, Lr)

is a 1-dimensional manifold.

Outline of proof. To prove the existence of a smooth structure, we construct a Fredholm
problem. Let γr denote the varying path in the base of the fibration indicated in Figure 5.2.
Let {φr}r∈(0,1] be an isotopy of diffeomorphisms

φr : (Y, Li ∪ Tz|γ1
∼=−→ (Y, Li ∪ Tz|γr)

which induces an isomorphism φr∗ on the corresponding relative second homology groups.
Note that when r = 1, using methods above we have existence of regular J for the moduli
space of curves, and geometrical conditions allow us to exclude bubbling, so we get a compact
one-dimensional space. This J then allows us to define a Banach bundle that will be the
base of the Fredholm problem:

B̃k,p := {(φ−1
r ◦ u, r) | u : R× [0, 1]→ (Y, Li ∪ Tz|γr) ∈ W k,p}
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Alternatively we can classify the tangent space to a path in B̃ as one where the derivative
of the path at the boundary is a vector that is a sum of a vector in the tangent space to the
Lagrangian boundary and a vector corresponding to the flow of the isotopy φr. This will
give us a 1-manifold structure on the set of maps u so that ∂J(φ−1

r ◦ u) = 0, where J is the
regular J defined above.

The next step will be to Gromov compactify at the r = 0 end. Note that φr does not have
a limit at r = 0, as it becomes very degenerate and is not a diffeomorphism. So instead
we consider elements as u in this moduli space instead of φ−1

r ◦ u. Then we can modify the
gluing argument to glue together two homology classes at r = 0 to view the glued curve as a
limit of r > 0 curves. Conversely by Gromov compactness arguments we can reparametrize
to deduce that the limit of r > 0 maps will be the triangle glued to the disc as shown in
Figure 5.2. More concretely, see below.

Gluing domains. In order to preglue: trivialize the normal bundle in a neighborhood of
where we want to glue, and then interpolate linearly between the two maps. See [Weh14,
lec 3, 1 hr]. Note that even without trivializing, there are scaling functions on the normal
bundle. Take r to be the gluing parameter for the two discs in the base, which will be a
cross ratio of four points around the neck that is getting pinched to a point. Note that the
gluing parameter is e−` which goes to zero as the gluing length ` goes to infinity, which is
the configuration of two discs.

We preglue the domains as follows. We remove a neighborhood of the puncture first. In the
(s, t) coordinates on strip-like ends, we glue (s− `, t) to (s, t). That is, we place an amount `
in the R direction on one strip overlapping onto the other strip. The two parts separately give
the r = 0 case and the two parts glued together is the r = ε > 0 case. The embedding that
gives the strip-like end embedding is as follows: 1) map (−∞, 0]× [0, 1] → (−∞, 0]× [0, π]
by ·π. Then map to the lower half of an annulus by e−z, and then lastly to the right half
of a disc with a puncture at 1 by z+i

z−i . The reason why the preglued map is close to the

J-holomorphic glued map is because by continuity ∂J of the glued map is still small; if it
were constant on the glued part then it would actually be holomorphic. Since we interpolate
slowly, it is indeed close to constant. Note that there is a Gromov topology which gives a
distance metric on this space, and metrizable spaces are Hausdorff.

Next we apply Newton iteration to the preglued disc to obtain a J-holomorphic curve. The
process of gluing is as follows: take the exponential at the preglued map of the pullback
of the tangent bundle, where we can add vectors. The tangent vectors ξ are obtained by
Newton iteration (a contraction mapping principle argument), which is applicable on Banach
spaces.

The geometry of our setup implies that the moduli spaces of J-holomorphic discs do not
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limit to disc bubbling, strip breaking, or sphere bubbling for each 0 < r ≤ 1. At r = 0, we
do have a disc bubble that forms, and we know this happens by Gromov compactness. That
is, we compactify to obtain fiber products on the boundary as the zero set of a Fredholm
section. Note that we can find a J which is regular at the r = 0 configuration as well.
We consider the usual ∂ operator on each disk component, as well as the difference of the
two evaluation maps where they should meet. This also has a Fredholm setup, c.f. [Weh14,
Lecture 3, 22 mins].

After this, we then consider gluing maps to the base of v0 : Y → C, versus just the domains
as we did above, and finally we use the moment map coordinates (ξ1, ξ2, η, θ1, θ2, θ3) to glue
maps u to the total space.

Thus we have the structure of a compact 1-manifold cobordism between the r = 0 and r = 1
choices.

This completes the proof that the homotopy between M1 and M2(c,−) is well-defined as
the boundary of a 1-dimensional moduli space.

Computation of discs

In this section we take J = J0 and consider moduli spaces of discs only, for which J0 is
regular. In other words, we only consider homology classes β that arise from disks. Note
that since the set of J regular for all configurations is nonempty and dense, and the maps
are J0 sections away from a neighborhood of zero we can claim that J0 is a limit of such J
by the denseness of the regular J . I.e. have a line of J ’s limiting to J0, so the J ’s involve
perturbing J0 near the zero fiber. See the sphere picture in 5.3.

Remark 5.1.12. If we include tz parallel transported in a circle around the base of v0 :
Y → C as a Lagrangian in the subcategory we are considering, then this Lagrangian bounds
nonconstant holomorphic discs. A future direction is to incorporate and define M0 for the
category containing this Lagrangian. Note that M0 is index 2 in Z/2. In this thesis, we do
not include it in the subcategory being considered. We do still want to count the discs and
J0-spheres, but they will show up only in the c in M2(c,−) considered as a map on Floer
groups.

The following is based on [Aur07] and [CO06].

Definition 5.1.13 (Maslov class of a Lagrangian). HF (L0, L1) has a Z/N grading, up to
shifts. Can do relative (up to shifts) or absolute (no shifts). For example, N = 2. Suppose
2c1(M) = 0, so the square of the anticanonical bundle is trivializable by some section s.
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We have a map from LGr to the unit bundle of K−2 by taking det2 of a basis for each
Lagrangian. We can identify that unit bundle with S1 using the trivializing section s men-
tioned above. The upshot is that we get a map from LGr → S1. The “Maslov class” is the
pullback of [S1] which would imply that we get a homology class in LGr.

Lemma 5.1.14 ( [Aur07, §3.1] ). Let (X,ω, J) be a smooth, compact and Kähler man-
ifold. Let Ω ∈ M0(X, (T ∗(1,0)X)n) be a global meromorphic n-form, with poles along an
anti-canonical divisor D, e.g. using log coordinates. In other words, Ω−1 is a nonzero holo-
morphic section of the anti-canonical bundle on X\D.

Let L be a Lagrangian submanifold in X\D which is special, i.e. Ω|L has constant angle in
the function in local holomorphic coordinates. Let β ∈ π2(X,L) be nonzero.

Then: for this special Lagrangian L, M(β) is twice the algebraic intersection number β · [D].

Proof. The tangent space to L is real since being Lagrangian is defined by (TL)⊥ = JTL with
respect to ω(−, J−). Taking a real basis gives a nonvanishing section of K−1

X |L which we can
scale to unit length. Since we’ve normalized, this section is independent of choice of basis.
In particular, its square trivializes the square of the anticanonical bundle, i.e. 2c1(X\D) = 0.
That is, recall that M(β) measures the obstruction to extending the square of this normalized
section on L to one on a disc representing β. We can always get grading M by [Sei00], because
we have a lift to R for special Lagrangians, as follows. Ultimately have two nonvanishing unit
real sections on TL so they must be the same, one of which is the section (corresponding to
divisor D) squared. So the Maslov class of β is, via this squared section, twice the intersection
of D and β.

Theorem 5.1.15 ([CO06], [Aur07]). Consider the moduli space of J-holomorphic discs with
boundary in L and in the class of β. The virtual dimension is n− 3 + M(β). The claim is
that these moduli spaces each have one disk in them.

Proof. The reason for the dimension claim is that M(β) should be the dimension by Fred-
holm theory, but then we add n-marked points and subtract out the reparametrization action
(3 points determine an automorphism of the disc).

What we expect for dimensional reasons: since we’re looking at sections, they go through
the central fiber which is also the divisor D. They intersect D transversely once so they have
Maslov index 2. Then we assume we have one marked boundary point. So the expected
dimension is then 2 for Maslov index plus 1 for the marked point minus 3 from quotienting
by reparametrization, resulting in an expected dimension of zero. (The disc with boundary
on Tz, and fixing a point on the boundary, is a zero dimensional family, otherwise we could
rotate the disc by the T 3 action and obtain a family of discs. Fixing a boundary point cuts
the dimension down to zero so we can count.)
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Tz can be thought of as corresponding to the skyscraper sheaf. Recall before that `i meant
rotating i along the angle directions for one loop in each of the base moment map directions.
Rotating only the angle directions and not in the base gives Tz. Namely, fix the moment
map coordinates and let the angles vary. This gives the preimage of a moment map coordi-
nate A = (a1, a2, a3) and we let z = e2πiA be the exponentiated coordinates. The reason for
choosing the letter A is that the formula for counting such discs is discussed in a paper of
[CLL12] and that notation agrees with theirs.

Recall that we have complex coordinates on Y as a toric variety. So this carries a natural J0.
The additional layer of complexity is that this has holomorphic spheres. This will be con-
sidered below. We will describe the discs that appear with J0, and show this count matches
up with the theta function, then discuss a geometric regularization argument with varying
J0 that will exclude the existence of spheres for a nearby J by index and dimension reasons.

The complex dimension of the moduli space of discs with 1 marked point is 1 for the marked
point minus 3 from the automorphism group and then plus the Maslov index of the disc
class β. Since we want dimension zero, we want 1− 3 + 2β ∩D = 0 where recall the Maslov
index M(β) = 2β ∩D where D is the union of toric divisors in v−1

0 (0). So β ∩D = 1 implies
we only want to consider Maslov 2 discs which intersect the central fiber once. There are no
nontrivial Maslov zero discs by the fact that Lagrangians in the fiber do not bound discs.

We can think of the disc in the chart C∗ × C∗ × C (pull back to the universal cover, where
we know π = 1 by toric geometry). Then a disc with boundary in S1(r1)× S1(r2)× S1(r3)
means it can’t show up in the first two components (by the maximum principle) and we
obtain a disc in the last v0 coordinate. It can’t be multiply covered because we have Maslov
index 2 as the minimum and the maximum. So the discs we count correspond to picking a
point A in the moment polytope and drawing a line to a facet, which means |v0| decreases
down to 0.

Theorem 5.1.16. The count of discs equals the defining theta function, up to a change of
coordinates.

Proof. Recall that we weight by e−
∫
ω in the count, and now we find the facet equations

explicitly.

In 3D we obtain facet equations of〈
ν(Fm1,m2),

ξ1

ξ2

η

〉+ α(Fm1,m2) = 〈−m1,−m2, 1〉 · 〈ξ1, ξ2, η〉+m2
1 +m2

2 +m1m2 = 0
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and the two series are, where xi are coordinates on the complex side on V and the zi
are e2πiai where the point in the polytope we measure from is (a1, a2, a3) and the area is
2π (〈a, ν(Fm1,m2〉+ α(Fm1,m2)) (or with T Novikov parameter):

θ-function =
∑
n∈Z2

xn1
1 x

n2
2 e

1
2
nT

2 1
1 2

n

disc count by area = z3

∑
n∈Z2

zn1
1 zn2

2 e

1
2
nT

2 1
1 2

n

Shift origin to middle of tile in polytope, which will get rid of the m1,m2 additional terms.
The normal to the (m1,m2) tile is 〈−m1,−m2, 1〉. At (m1,m2) the tile moving in the
(1, 0) direction means we add 〈2, 1, z〉 which must be perpendicular to 〈−m1,−m2, 1〉 hence
z = 2m1 + m2. Similarly moving in the (0, 1) direction from the (m1,m2) tile we add
〈1, 2,m1 + 2m2〉. To get the equation of each facet, we have the normal but we also need
a point on each hexagon. We take the lower left corner, which starts at (−1,−1, 0) in the
(0, 0) tile. And we’ve just found how it increases moving in each direction.

So going from (0, 0) → (1, 0) → . . . → (m1, 0) tile we add 〈2, 1, 0〉 then 〈2, 1, 2〉 all the
way up to 〈2, 1, 2(m1 − 1)〉 hence the total gives 〈2m1,m1,m1(m1 − 1)〉. Then when we go
from (m1, 0) tile to (m1, 1) tile we add 〈1, 2,m1〉 as found above and so on until at the end
〈1, 2,m1 +m2(m2 − 1)〉. So the total added is 〈m2, 2m2,m1m2 +m2(m2 − 1)〉. Hence our
distinguished point is

〈2m1 +m2 − 1,m1 + 2m2 − 1,m1(m1 − 1) +m2(m2 − 1) +m1m2〉

which we know satisfies

〈−m1,−m2, 1〉 · < ξ1, ξ2, η > +α(Fm1,m2) = 0

so solving we find α(Fm1,m2) = m2
1 +m1m2 +m2

2 or

1

2
mT

(
2 1
1 2

)
m =

1

2
mT (2m1 +m2,m1 + 2m2) = m2

1 +m1m2 +m2
2

which is the same as the theta function.

Remark 5.1.17. We finish the remainder of the plan of computation in Figure 5.3. With J0

and no α spheres in the homology class, we know the moduli space has 1 disc by invariance.
All discs by themselves are regular for J0. Then we look at a limit of Jt-holomorphic disks
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ut as t goes to 0, namely they solve the Cauchy-Riemann equation with Jt. After possibly
passing to a subsequence, then limt→0 ut =: u0 in the Gromov topology, where by Gromov
compactness and the exclusion of disk bubbling and strip breaking we find that u0 is either
a disk or a disk union spheres. This is discussed in [CLL12, Proposition 4.30]. In particular,
it should be possible to obtain an algebraic relation between these two things similar to
the way done above when we found a chain homotopy by varying choices. We instead use
polyfold theory to prove well-definedness once we have the count, as it is well-equipped to
handle nonregular J , by abstractly perturbations of the ∂J operator.

Remark 5.1.18. More discs with J than J0 because with J some of them must converge
to disc union bubbles with J0. Note that [MS12] discuss what happens to maps as we vary
J . And in our setting, the homology class also varies when we are varying the Lagrangians.
Use invariance: to get moduli spaces with J same as with action applied to J . And then use
property of Fukaya category independent of J choices.

Computation of sphere bubbles with J0: Gromov-Witten
invariants

Claim 5.1.19. There are spheres that are not regular for J0.

See [Aur07, §4] . T 3-orbits away from the divisor over 0 are special Lagrangian wrt ∧id log xi
form. Note: if J is integrable then ∂J is complex linear so the derivative Du is the same
thing. So the cokernel for something with no (0, 2) forms (e.g. in this case true on a Riemann
surface in source space) is precisely a Dolbeault cohomology group, degree 1. If that’s not
zero, then it’s not surjective. Hence those problem sphere bubbles over zero are not regular.
The index operator gives n− 3 + c1 which is 2− 3 + 0 = −1 so dimension −1 can’t happen
which would imply those spheres do not show up, but we know that they do so it couldn’t be
regular. They appear in a higher dimensional family so are not of the expected dimension.
Only some configurations appear as a limit of moduli spaces while varying Jt.

Corollary 5.1.20. By equivariance, a constant factor appears in our setting which won’t
affect the quasi-isomorphism class of the resulting Fukaya category.

Proof of Corollary. Equivariance is discussed in [KL19]. Also, any set-up that produces the
moduli spaces will be invariant under the group action Note that [KL19] define a toric Kähler
form than here. The complex structures i.e. J0 are the same. We will be computing the area
of spheres in the boundary of the infinite-type toric variety. So a different symplectic form
just means that the CP1’s could be scaled differently. Varying the symplectic parameter
would incorporate the Kähler parameters that show up in Gromov-Witten theory, and are
called q in [KL19]. Since we fix the symplectic form here, we fix the Kähler parameters qi.

Idea of proof of sphere count. Here is a flow chart indicating the necessary background to
understand the sphere count in [KL19]. Note that they use J = J0 as we are using here.
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Kanazawa-Lau: infinite toric open mirror

limit argument CCLT: open mirror thm

Chan: oGW=cGW CCIT: closed mirror thm

Givental: I, J fns

Lemma 5.1.21 (Givental). Picard-Fuchs can compute GWI and is mirror to combinatorial
notion of periods in Hodge structure. Givental introduced the I and J functions.

Remark 5.1.22 (Closed mirror theorem: [CCIT15]). We provide a collection of resources
indicating the timeline and background for understanding Gromov-Witten invariants. J
function on one (Gromov-Witten invariants) corresponds to the I function on the other
(combinatorial). Builds on Givental: the mirror map is the coefficient on 1/z. See section
6.3 of [CK99]. Kähler and complex modulis are isomorphic, and mirror map goes between
neighborhoods of Kähler large limit point and maximally unipotent monodromy on complex
side. Picard-Fuchs is for complex moduli near maximally unipotent monodromy. It is yk in
[CK99]. And qk is for Kähler moduli. GKZ system is §5.5 in [CK99]. Picard-Fuchs is §5.1.2.
Varying complex moduli gives variation of Hodge structure. §2.6.2 introduces Givental’s
I and J functions. §11.2.5 is Givental’s mirror theorem for toric complete intersections.
Chapter 10: stack definition of moduli spaces. Equation (10.4) gives the relation between
differentials/intersection theory and GW. A reference for an introduction to stacks is [Fan01].
Proposition 10.3.4 of [CK99] gives the relation between the J-function and GW potential.
Example of mirror theorem: 11.2.1.3. Theorem 10.3.5: QM differential operator iff Picard-
Fuchs operator. Chapter 7 gives the GW definition. Coefficient on 1/z statement: [CK99,
page 151], z in [KL19] is y0 in [CK99]. Note: Givental mirror theorem, equivariance, wasn’t
complete in the original paper [Giv98], according to [CK99]. This is what [CCIT15] discuss.
Then [CCLT16] add in the result of [Cha11]:

M open
X (β + α) = M closed

X (β + α)

Equivariance was discussed in [CCIT15] because it was in the toric setting.
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Definition 5.1.23 (Kuranishi structure). Properties of a Kuranishi neighborhodd of p:

• Vp smooth finite-dimensional manifold, maybe w/ corners

• Vp × Ep → Vp called obstruction bundle. (Ep finite-dimensional real vector space.)

• Γp finite group. Acts smoothly and effectively (no non-trivial elt acts trivially) on Vp, and
Ep linearly represents the group.

• Kuranishi map sp is a smooth section of Vp × Ep (smooth map Vp → Γp) AND is Γp
equivariant.

• ψp is a topological chart, a homeo from local model s−1
p (0)/Γp to a neighborhood of p in

X.

• Vp/Γp may also be called a Kuranishi neighborhood (rather than the collection of all these
pieces of data). In fact, Vp may also be called a Kuranishi neighborhood. So three different
things could be called such a nbhd.

• op is a point that Kuranishi map sends to zero and chart sends to p.

Gromov-Witten invariants are an example of something that has a Kuranishi structure, since
the definition of the structure describes the local picture of such moduli spaces. See also
[MTFJ19].

In [KL19] there is a notion of taking a limit to get to the infinite toric case, as mine is.
Builds on CCLT open mirror theorem. Kanazawa-Lau do the sphere count: the coefficient
of 1/z is the mirror map.

Theorem 5.1.24 (Open mirror theorem in [KL19, Theorem 3.10]). Y is a toric Calabi-Yau
manifold of infinite-type. Then ∑

α

nβl+αq
α(q̌) = exp(gl(q̌))

where q(q̌) is the mirror map and

gl(q̌) :=
∑
d

(−1)(Dl·d)(−(Dl · d)− 1)!∏
p 6=l(Dp · d)!

q̌d

This concludes the proof outline for the sphere bubble count of [KL19].
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Accounting, in definition, for use of non-regular J in computation

At this point, we use polyfolds (with acknowledgement to Benjamin Fillippenko for assis-
tance). The Mβ(J) we want consider is

Mβ(J) := {(u, v) : (D, (S2)k)→ Y | u(∂D) ⊂ Tz|Cr ,

[u#v] = β, (u, (v)) ∈ C∞, evz0(0) = ev(z1)(z), ∂J(u, v) = 0} × {p}/Aut(Y, p)

which right now is a set. Define a set Bβ to be the completion of this without the J-
holomorphic condition. So similar to the geometric case, however the difference here is the
different dimensions and configurations. The whole setup has a polyfold structure, discussed
in Jiayong Li’s thesis. It contains the set of smooth maps as a dense subset. The bundle on
top of Bβ should also have a polyfold structure, and it is defined to be the right thing that
∂J lands in fiberwise.

This has a Fredholm/polyfold setup with suitable section. We can perturb, and there is
a cobordism between different perturbations, so it’s invariant under perturbations. Also
there is a cobordism between varying J . In particular, if we start with a regular J then the
perturbation is zero and we get a cobordism between that and the perturbed moduli space
which is actually a manifold. Lastly, we use W. Schmaltz’s thesis result that the pullback
of an admissible perturbation is admissible, under suitable conditions of the map, which the
one here satisfy. We find then that all the moduli spaces for different discs have the same
configuration of spheres showing up. This uses the machinery of EP groupoids in polyfolds.

By results of [CLL12], we know that the only homology clases that can appear in the com-
pactification are stable trees of the form Dij +

∑
i niαi for some integers ni and spheres αi.

The goal is then to show that if we fix Dij and compactify, we get the same compactifica-
tion for any other Dij. Namely that all the moduli spaces are isomorphic as we vary the
homology classes; applying the group action gets isomorphic moduli spaces with the same J0

and we know existence of such moduli spaces by the above discussions. That way, whatever
the count is in the compactification with Dij, the compactification with γ(Dij) will involve
isomorphic moduli spaces, so the counts will be the same and we can pull out a common
factor.

M(D + αi, J0) ∼=M(γ(D + αi), γ
∗J0)

where the isomorphism is the map given by composition with γ on the cover of Y (before
we quotient by ΓB). Note the result is holomorphic because we use γ∗J0, but know that
multiplication by scalars is a holomorphic map hence γ∗J0 = J0 and the two moduli spaces
are isomorphic.

So both GW theory and polyfold theory give equivalent FS categories as the one we cal-
culated by considering only discs with no spheres. And the count of discs gives the theta
function.
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5.2 Proof: fully-faithful embedding

DbCoh(H) ↪→H0(FS(Y, v0))

On objects we map L|⊗iH 7→ Li. If φ is the monodromy of the symplectic fibration v0 : Y → C
around the origin, then the symmetry of our definition of ω ensures that φ(`i) is Hamiltonian
isotopic to `i+1. Since Floer cohomology is invariant under Hamiltonian isotopy, we can
consider linear Lagrangians in the fibers. This allows us to obtain the bottom row of the
following diagram, whenever j ≥ i+ 2. When j < i+ 2 there are also Ext groups to consider
and we get a long exact sequence instead, namely the last horizontal map is not surjective
anymore.

Hom(Li+1,Lj) ⊗s−→Hom(Li,Lj)→H0(Li,Lj ⊗ ι∗OH)→ 0

CF (`i+1, `j)

∼=

?
∂−→ CF (`i, `j)

∼=

?

→ HF (Li, Lj)
?

→ 0

The map ∂ is part of the Floer differential on CF (Li, Lj) ∼= CF (`i+1, `j)[−1] ⊕ CF (`i, `j)
and counts holomorphic sections of v0 : Y → C with suitable Lagrangian boundary condi-
tions. The first two vertical isomorphisms on the left come from the abelian variety case.
My result is that the left-side square in the diagram commutes, which then implies that the
rightmost vertical arrow is an isomorphism as well. More precisely, I show that under the
chosen isomorphisms, the Floer differential ∂ agrees with multiplication by s ∈ H0(V,L)
up to a multiplicative factor (the open Gromov-Witten invariant in [KL19] for a particular
choice of Kähler parameter). This provides the desired isomorphism between the morphisms
groups for the functor DbCoh(H)→ FS(Y, v0) described above.
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Chapter 6

Notation

Section 1.2

• H = Σ2 the genus 2 curve

• V = (C∗)2/ΓB abelian variety of which H is a hypersurface

• L → V degree (1, 1) line bundle on V

• s : V → L multi-theta function, section of L

• λ linear form, determines Chern class of L

• κ quadratic form, determines holomorphic structure of L

Section 1.3

• M lattice of characters, or functions on toric variety

• N lattice of cocharacters, or 1-parameter subgroups of toric variety

• MR = M ⊗Z R, same for N

• m an element of M or MR

• u a lattice element in N

Section 1.4

• ∆Ỹ polytope defining Ỹ

• ∆Y = ∆Ỹ /ΓB

• (ξ1, ξ2, η) ∈MR/ΓB ∼= R3/ΓB denote coordinates on the polytope

• v0 : Y → C superpotential

• V ∨ ∼= (C∗)2/ΓB fiber of v0
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pp. 349–359.

[FOOO09a] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian in-
tersection Floer theory: anomaly and obstruction. Part I, AMS/IP Studies in
Advanced Mathematics, vol. 46, American Mathematical Society, Providence,
RI; International Press, Somerville, MA, 2009.

[FOOO09b] , Lagrangian intersection Floer theory: anomaly and obstruction. Part
II, AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical
Society, Providence, RI; International Press, Somerville, MA, 2009.

[For91] Otto Forster, Lectures on Riemann surfaces, Graduate Texts in Mathematics,
vol. 81, Springer-Verlag, New York, 1991, Translated from the 1977 German
original by Bruce Gilligan, Reprint of the 1981 English translation.

[Fra10] J Francis, Math 465, spring 2010: Topology of manifolds,
http://math.northwestern.edu/~jnkf/classes/mflds/, 2010.

[Fuk02] Kenji Fukaya, Mirror symmetry of abelian varieties and multi-theta functions,
J. Algebraic Geom. 11 (2002), no. 3, 393–512.

[Ful93] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies,
vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H.
Roever Lectures in Geometry.

[Gan16a] Sheel Ganatra, Automatically generating Fukaya categories and computing
quantum cohomology, arXiv preprint arXiv:1605.07702 (2016).

[Gan16b] , Math 257b: Topics in symplectic geometry – aspects of fukaya cate-
gories, https://dornsife.usc.edu/sheel-ganatra/math-257b/, 2016.

[GH94] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley
Classics Library, John Wiley & Sons, Inc., New York, 1994, Reprint of the
1978 original.

[Giv98] Alexander Givental, A mirror theorem for toric complete intersections, Topo-
logical field theory, primitive forms and related topics (Kyoto, 1996), Progr.
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