
UC San Diego
UC San Diego Previously Published Works

Title
Rule-based Policy Regularization for Reinforcement Learning-based Building Control

Permalink
https://escholarship.org/uc/item/88g8p97s

Authors
Liu, Hsin-Yu
Balaji, Bharathan
Gupta, Rajesh
et al.

Publication Date
2023-06-20

DOI
10.1145/3575813.3595202

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NoDerivatives License, availalbe at https://creativecommons.org/licenses/by-nd/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/88g8p97s
https://escholarship.org/uc/item/88g8p97s#author
https://creativecommons.org/licenses/by-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

Rule-based Policy Regularization for
Reinforcement Learning-based Building Control

Hsin-Yu Liu∗
hyl001@eng.ucsd.edu

University of California, San Diego
La Jolla, CA, USA

Bharathan Balaji∗∗
bhabalaj@amazon.com

Amazon
USA

Rajesh Gupta
gupta@ucsd.edu

University of California, San Diego
La Jolla, CA, USA

Dezhi Hong∗∗
hondezhi@amazon.com

Amazon
USA

ABSTRACT
Rule-based control (RBC) is widely adopted in buildings due to its
stability and robustness. It resembles a behavior cloning methodol-
ogy refined by human experts; however, it is incapable of adapting
to distribution drifts. Reinforcement learning (RL) can adapt to
changes but needs to learn from scratch in the online setting. On
the other hand, the learning ability is limited in offline settings
due to extrapolation errors caused by selecting out-of-distribution
actions. In this paper, we explore how to incorporate RL with a rule-
based control policy to combine their strengths to continuously
learn a scalable and robust policy in both online and offline settings.
We start with representative online and offline RLmethods, TD3 and
TD3+BC, respectively. Then, we develop a dynamically weighted
actor loss function to selectively choose which policy for RL models
to learn from at each training iteration. With extensive experiments
across various weather conditions in both deterministic and sto-
chastic scenarios, we demonstrate that our algorithm, rule-based
incorporated control regularization (RUBICON), outperforms state-
of-the-art methods in offline settings by 40.7% and improves the
baseline method by 49.7% in online settings with respect to a re-
ward consisting of thermal comfort and energy consumption in
building-RL environments.

CCS CONCEPTS
• Computing methodologies→ Reinforcement learning.

ACM Reference Format:
Hsin-Yu Liu∗, Bharathan Balaji∗∗, Rajesh Gupta, and Dezhi Hong∗∗. 2023.
Rule-based Policy Regularization for Reinforcement Learning-based Build-
ing Control. In The 14th ACM International Conference on Future Energy
Systems (e-Energy ’23), June 20–23, 2023, Orlando, FL, USA. ACM, New York,
NY, USA, 24 pages. https://doi.org/10.1145/3575813.3595202

∗Corresponding author.
∗∗ Work unrelated to Amazon.

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs International 4.0 License.

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0032-3/23/06.
https://doi.org/10.1145/3575813.3595202

1 INTRODUCTION
Buildings typically implement rule-based control, which adjusts
the setpoints of actuators to co-optimize occupants’ thermal com-
fort and energy efficiency. These rule-based control (RBC) systems
codify the problem-solving know-how of human experts, akin to
behavioral cloning policy learned from expert demonstration [13].
RBC is stable, robust, and without uncertainty, but lacks the flexi-
bility to evolve over time.

Reinforcement learning (RL) can adapt to changes in the environ-
ment with a data-driven approach and improves the performance of
HVAC systems control [45]. In online RL, the training of the control
policy relies on a simulator that models the HVAC system. We use
established building-RL simulation environments – Sinergym [17]
for our experiments. However, when such a simulation model is not
available, offline RL can be used to train a policy based on historical
data [50]. We focus on improving upon existing RL algorithms for
HVAC control where a rule-based policy already exists, which is
a common scenario in real-world implementations. By combining
the advantages of RL and rule-based methods, we aim to develop
a stable and scalable algorithm without learning from scratch and
utilize the existing knowledge.

In our work, we seek to answer the following research questions:
How can we incorporate reinforcement learning models with
an existing rule-based control policy to improve models’ per-
formance? Could this method be implemented in both online
and offline settings as a unified approach?

RL regularization methods are typically tailored specifically to
online or offline settings. For example, online methods encourage
exploration to either improve estimations of non-greedy actions’
values or to encourage the exploration to find an optimal policy [11].
On the other hand, offline methods favor exploitation since it is
unlikely for offline models to accurately estimate uncharted state-
action values with a static dataset [10, 46].

Our method builds on TD3+BC [8], a representative offline RL
algorithm. TD3+BC makes minimal changes by adding a behavior
cloning term to regularize the online TD3 [9] policy. In TD3+BC, the
only policy to learn from is the behavioral policy that generates the
buffer. Our dynamically-weighted algorithm regularizes RL policy
using the better policy between an existing RBC policy and the
behavioral policy. It can be incorporated into any existing actor-
critic RL algorithms with minimal changes.

242

https://doi.org/10.1145/3575813.3595202
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3575813.3595202
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575813.3595202&domain=pdf&date_stamp=2023-06-16

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Hsin-Yu Liu∗ , Bharathan Balaji∗∗ , Rajesh Gupta, and Dezhi Hong∗∗

Behavioral
policy

RBC

CriticReplay
buffer 𝓓

𝜋!"#(𝑠)

𝜋"(𝑠)

Actor

𝜋!!"# = 𝑎𝑟𝑔𝑚𝑎𝑔𝑥" 	{𝑄+#(𝑠, 𝜋$%& (𝑠)), 𝑄+#(𝑠, 𝜋%(𝑠))}

𝜋 = 𝑎𝑟𝑔𝑚𝑎𝑥"[𝜆𝑄 𝑠, 𝜋 𝑠 − 𝜉 𝜋 𝑠 − 𝜋!!"# 𝑠
'
]

(𝑠, 𝑎, 𝑠!, 𝑟)

Select actions Estimate valuesSample transitions Train actor

𝑄&$(𝑠,𝜋!"#(𝑠))

𝑄&$(𝑠, 𝜋"(𝑠))

Figure 1: The flow of RUBICON: We incorporate the RBC policy and selectively update the actor with the policy (between RBC
and behavioral) that has a higher estimated mean Q-value. It is a unified method for both online and offline approaches.

RUBICON considers RBC as a safe reference policy in which
RL training can learn and improve. The actor selectively trains on
either RBC or behavioral policy, depending on which policy yields
a higher averaged Q-value in a mini-batch estimated by the critic
network. The flow of RUBICON is shown in Fig. 1. Our proposed
approach is distinct from prior work in the following aspects:
• We develop a unified regularization approach for both online
and offline RL methods with minimal algorithmic modifica-
tion.
• Rule-based control policy is directly incorporated into the
policy update step to provide stability and robustness.
• We introduce a dynamic weighting method in actor-critic
settings. The actor loss is varied from time step to time step
depending on the average Q-value estimate of behavioral
policy and RBC policy predicted from the value networks.

To our knowledge, previously RBC is only used as hard constraints
or heuristics in RL settings, and we are the first to incorporate an
existing RBC policy directly into actor-critic algorithms.

2 RELATEDWORK
BuildingRL control Prior research has demonstrated that building
RL control policy could outperform RBC in both online and offline
settings. Researchers have studied extensively for HVAC control
with online RL methods [12, 44, 48]. Zhang et al. [51] developed
a framework for whole building HVAC (heating, ventilation, air-
conditioning) control in online settings to achieve a 16.7% heating
demand reduction cf. RBC control. OCTOPUS holistically controls
subsystems in modern buildings to get a 14.26% energy saving cf.
RBC policy [6]. Yang et al. [47] implemented an RL control for
LowEx building systems with a 11.47% improvement on cumulative
net power output than RBC.

With offline RL, Zhang et al. [50] applied a state-of-the-art
method and demonstrated a 12 ∼ 35% of reduction in ramping. Liu
et al. [26] incorporated a Kullback-Leibler (KL) divergence con-
straint during the training of an offline RL agent to penalize poli-
cies that are far away from the previous updates for stability, and
achieve a 16.7% of energy reduction cf. the default RBC control.

RL + RBC The combination of RL and RBC has been explored
in many studies, where RBCs are primarily used as auxiliary con-
straints or guiding mechanism. Lee et al. [23] propose to use two
modules in their control flow, one for continuous control with

RL agent and a discrete one controlled by RBC. Wang et al. [43]
improve RL with low-level rule-based trajectory modification to
achieve a safe and efficient lane-change behavior. Zhu et al. [52]
incorporate RBC for generating the closed-loop trajectory and re-
ducing the exploration space for RL pre-processing. Berenji [4] use
a learning process to fine-tune the performance of a rule-based
controller. Radaideh and Shirvan [30] first train RL proximal policy
optimization (PPO) [32] agents to master matching some of the
problem rules and constraints, then RL is used to inject experiences
to guide various evolutionary/stochastic algorithms. Likmeta et al.
[24] learn RBC parameters via RL methods. These previous meth-
ods incorporate RBC in the flow as heuristics or as hard constraints.
Instead, we directly incorporate RBC policy in RL training in an
algorithmic way.

Online RL regularization The online baseline we compare to
in the evaluation is a state-of-the-art algorithm: TD3. It applies tar-
get policy smoothing regularization to avoid overfitting in the value
estimate with deterministic policies. TRPO [31] uses a trust region
constraint based on KL-divergence between old and new policy dis-
tributions for robust policy updates. SAC [11] uses soft policy itera-
tion for learning optimal maximum entropy policies. Munchausen-
RL [42] regularizes policy updates with a KL-divergence penalty
similar to TRPO, and adds a scaled entropy term to penalize policy
that is far from uniform policy.

Offline RL regularization Offline RL is more conservative
compared with online methods as it depends only on the logged
interactions generated by unknown policies. It suffers from extrapo-
lation errors induced by selecting out-of-distribution actions. Since
offline RL policies are learned entirely from a static dataset, it is un-
likely for value networks to accurately estimate values when there
is no sufficient state-action visitation. Thus, regularization methods
become more prominent in offline settings. Batch-constrained deep
Q-learning (BCQ) [10], one of the pioneers of offline RL, ascribes
extrapolation errors to three main factors: absent data, model bias,
and training mismatch. It mitigates the errors by deploying a vari-
ational autoencoder (VAE) to reconstruct the action given a state
using the data collected by the behavioral policy. Then regular-
ize the divergence between the learned policy and the behavioral
policy. The offline baseline method we compare to in our study is
TD3+BC. It starts from the online method TD3, and adds a behavior
cloning term in the policy update to regularize the actor to imi-
tate the behavioral policy and avoid selecting out-of-distribution

243

Rule-based Policy Regularization for
Reinforcement Learning-based Building Control e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

actions. BRAC [46] studies both value penalty and policy regu-
larization with multiple divergence metrics (KL, maximum mean
discrepancy (MMD), and Wasserstein) to regularize the actor’s pol-
icy based on the behavioral policy. FisherBRC [20] incorporates a
gradient penalty regularizer for the state-action value offset term
and demonstrates the equivalence to Fisher divergence regular-
ization. CQL [21] learns a conservative, lower-bound estimate in
the value network via regularizing Q-values. Model-based method,
e.g. COMBO [49] regularizes the value function on out-of-support
transitions generated via environment dynamic models’ rollouts.

Conservative RL Turchetta et al. [40] use a priori unknown
safety constraint that depends on state-action and satisfies certain
regularity conditions with a Gaussian prior. Alshiekh et al. [3]
propose to synthesize a reactive system called a shield to monitor
the actions and correct them if violations are caused. Sui et al. [37]
use a pre-specified "safety" threshold as a requirement and express
it via a Gaussian process prior.

All of these prior works use data collected by a behavioral policy
and do not assume access to any existing policy. The behavioral
policy used in experiments is typically an unknown or partially
trained agent. In contrast, we assume direct access to a robust
behavioral policy in the form of rule-based control. While this
assumption may not hold for other applications where there might
not be pre-existing policies, rule-based control policies are routinely
deployed in industrial control settings, such as building HVAC
control.

We incorporate a robust reference policy derived by human ex-
perts to improve RL policy. The rule-based control policy reduces
uncertainty due to its deterministic behavior. On the opposite, the
deep learning model is affected by random initialization conditions,
even if trained on the same dataset, as varied initialization con-
ditions might lead to different policies. RUBICON demonstrates
a substantial reduction of standard deviations between different
randomly initialized conditions across varied tasks.

3 BACKGROUND
In reinforcement learning, an agent interacts with the environ-
ment and sequentially selects actions based on its policy at ev-
ery time step. The problem can be formulated as a Markov Deci-
sion Process (MDP) defined by a tuple (S,A,R, 𝑝, 𝛾), with state
space S, action space A, reward function R, transition dynam-
ics 𝑝 , and discount factor 𝛾∈[0, 1). The goal is to maximize the
expectation of the cumulative discounted rewards, denoted by
𝑅𝑡=

∑∞
𝑖=𝑡+1 𝛾

𝑖𝑟 (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1) [38]. The agent’s behavior is determined
by a policy 𝜋 : S → A, which maps states to actions either in
a deterministic approach or with a probability distribution. The
expected return following the policy from a given state 𝑠 is the
action-value function 𝑄𝜋 (𝑠, 𝑎) = E𝜋 [

∑∞
𝑡=0 𝛾

𝑡𝑅𝑡+1 |𝑠0 = 𝑠, 𝑎0 = 𝑎]
by taking action 𝑎.

We conduct our experiments with the building RL environ-
ments [17]. The objective of the agent is to maintain a comfortable
thermal environment with minimal energy use. The state consists
of indoor/outdoor temperatures, time/day, occupant count, thermal
comfort, and related sensor data. The action adjusts the tempera-
ture setpoint of the thermostat. The reward is a linear combination

of occupants’ thermal comfort and energy consumption. The en-
vironment is a single-floor building divided into 5 zones, with 1
interior and 4 exterior rooms.

The details about the RL settings in our problem are described
below:

• State: Site outdoor air dry bulb temperature, site outdoor air
relative humidity, site wind speed, site wind direction, site
diffuse solar radiation rate per area, site direct solar radiation
rate per area, zone thermostat heating setpoint temperature,
zone thermostat cooling setpoint temperature, zone air tem-
perature, zone thermal comfort mean radiant temperature,
zone air relative humidity, zone thermal comfort clothing
value, zone thermal comfort Fanger model PPD (predicted
percentage of dissatisfied), zone people occupant count, peo-
ple air temperature, facility total HVAC electricity demand
rate, current day, current month, and current hour.
• Action: Heating setpoint and cooling setpoint in continuous
settings for the interior zones.
• Reward: We follow the default linear reward setting, which
considers the energy consumption and the absolute differ-
ence to temperature comfort.
• Environment: A single floor buildingwith an area of 463.6𝑚2

divided into 5 zones, 1 interior, and 4 exteriors. The HVAC
system is a packaged VAV (variable air volume) (DX (direct
expansion) cooling coil and gas heating coils) with fully auto-
sized input. And the simulation period of one episode is a full
year. The weather types are classified according to the U.S.
Department of Energy (DOE) standard [28]. The weather
type details and their representative geometric locations are
listed below based on TMY3 datasets [22]:
– Cool marine: Washington, USA. The mean annual tem-
perature and mean annual relative humidity are 9.3°C and
81.1% respectively.

– Hot dry: Arizona, USA with mean annual temperature of
21.7°C and a mean annual relative humidity of 34.9%

– Mixed humid: New York, USA with a mean annual tem-
perature of 12.6°C and a mean annual relative humidity of
68.5%

4 RULE-BASED INCORPORATED CONTROL
REGULARIZATION

Our goal is to improve an agent’s ability to learn with the assistance
of human experts’ domain knowledge in both online and offline set-
tings. In certain problems, we could configure accurate simulators
as oracles so we can safely learn with online RL methods or there
might be existing simulators. For example, in robotic control [39],
Go [35], and video games [27]. However, for most real-world prob-
lems, it is unlikely or it is time-consuming and requires a domain
expertise to build a functional simulator for each environment (e.g.
building thermal simulators), or it can be dangerous or risky to
evaluate partially trained policy directly in real environments(e.g.
healthcare and financial trading). Offline RL algorithms, on the
other hand, rely on historical data collected by an existing but un-
known behavioral policy. The objective is to learn a policy that
improves on the behavioral policy measured by episodic rewards. In

244

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Hsin-Yu Liu∗ , Bharathan Balaji∗∗ , Rajesh Gupta, and Dezhi Hong∗∗

Online approachOffline approach

Static buffers
𝑠,𝑎, 𝑠! , 𝑟 ~𝒟"

Simulator
𝑇 𝑠! 𝑠, 𝑎 , 𝑟(𝑠, 𝑎)

RBC policy
𝜋#$%(𝑠)

BRL models
𝜋&ℬ 𝑠 , 𝑄(ℬ(𝑠, 𝑎)

Online-RL
models

𝜋& 𝑠 , 𝑄((𝑠,𝑎)
Real

environment

Train and
evaluate

Selectively
learn from
RBC

Deploy on environment

Dynamic buffers
𝑠, 𝑎, 𝑠! , 𝑟 ~𝒟)

Learn from buffer
transitions

Save to buffer

Learn from buffer
transitions

Deploy on environment

Selectively
learn from
RBC

Figure 2: Our proposed method, RUBICON, incorporates RBC into RL to improve stability in building HVAC control.
It could be applied to both online and offline approaches.

Fig. 2, we illustrate how RUBICON accommodates both the online
and offline training paradigms.

Our algorithm builds on existing actor-critic algorithms TD3
and TD3+BC. We only modify the policy update with the incorpo-
rated rule-based control policy selectively and use the critic as-is.
Therefore, we focus our discussion on the policy update of the al-
gorithm. TD3 is derived from DDPG [34], it mitigates the function
approximation error with double Q-learning and delayed policy
updates. TD3+BC is an offline RL algorithm adapted from TD3, and
is one of the state-of-the-art offline RL methods evaluated with
D4RL datasets [7]. TD3+BC adds a behavior cloning term to the
policy update step to penalize the policy that is far away from
the behavioral policy (Eq. 1). The blue-colored terms indicate the
changes from TD3 to TD3+BC.

𝜋 = arg max
𝜋

E(𝑠,𝑎)∼D
[
𝜆𝑄 (𝑠, 𝜋 (𝑠)) − (𝜋 (𝑠) − 𝑎)2

]
(1)

𝜆 =
𝛼

1
𝑁

∑
(𝑠𝑖 ,𝑎𝑖) |𝑄 (𝑠𝑖 , 𝑎𝑖) |

(2)

In Eq. 1, 𝜆 is decided by the averaged mini-batch Q-estimate and
a hyperaparameter 𝛼 to adjust between RL and imitation learning
(Eq. 2), where 𝑁 is the size of the batch.

Our method, RUBICON, dynamically weighs both TD3 and
TD3+BC’s policy update steps with either RBC policy or behavioral
policy in each training iteration. In Eq. 3, we replace the actions
𝑎 sampled from the buffers in Eq. 1 with 𝜋𝑄𝑚𝑎𝑥

(𝑠) and add a hy-
perparameter 𝜉 to integrate TD3 and TD3+BC methods as one.
Red-colored terms (in Eq. 3) indicate the changes from TD3 and
TD3+BC to our method. We replace the notation of sampled actions
𝑎 in TD3+BC with behavioral policy 𝜋𝑏 (𝑠) to avoid confusion. De-
tails of the hyperparameter settings in our work are in Appendix C.

𝜋 = arg max
𝜋

E𝑠∼D
[
𝜆𝑄 (𝑠, 𝜋 (𝑠)) − 𝜉 (𝜋 (𝑠) − 𝜋𝑄𝑚𝑎𝑥

(𝑠))2
]

(3)

𝜋𝑄𝑚𝑎𝑥
(𝑠) = arg max

𝜋
{𝑄 (𝑠, 𝜋𝑏 (𝑠)), 𝑄 (𝑠, 𝜋𝑟𝑏𝑐 (𝑠))} (4)

Every time when the policy is being updated, given the states
𝑠 of the sampled mini-batch, the behavioral policy 𝜋𝑏 (𝑠) and the
RBC policy 𝜋𝑟𝑏𝑐 (𝑠) select actions in a deterministic fashion. The
state-action pairs’ Q-values are estimated by the critic, the average
of the Q-value estimations in the mini-batches are 𝑄 (𝑠, 𝜋𝑏 (𝑠)) and
𝑄 (𝑠, 𝜋𝑟𝑏𝑐 (𝑠)). The actor models dynamically choose the selected
actions decided by the policy with a higher average Q-value to
be regularized from in each policy update step, i.e. the actor loss
function is dynamically weighted. By describing it as dynamically
weighted, it means that the actor loss is changing from one iteration
to another since it is automatically decided by Eq. 4. In offline set-
tings the actor loss is either regularized with the behavioral policy
or the RBC policy; in online settings, it is either regularized with
the RBC policy or learning as is without behavioral cloning term.
In online settings, the behavioral policies are the older versions
of the policy used to generate the transitions in the buffer, and in
offline settings, it is an unknown policy.

The reason we choose the average as the metric to decide which
set of transitions to learn from instead of selecting each transition
with higher estimated value (each batch is a combination of 𝜋𝑏 (𝑠)
and 𝜋𝑟𝑏𝑐 (𝑠)) is that if we choose by each transition we will lose
the information on which state-action visitations lead to worse val-
ues, the model will then suffer from the imbalanced data problem.
The credit-blame assignment is essential in RL learning conver-
gence and the experience replay can help speed up the propagation
process [25]. Furthermore, the over-estimation of Q-values would
be more severe. The algorithm of our method is given in Alg. 1.
Changes from baselines to our method are highlighted in blue.
Where 𝑑 is the policy update frequency, the noise 𝜖 added to the
policy is sampled with Gaussian N(0, 𝜎) and clipped by 𝑐 . In both
online and offline approaches, the policy update follows Eq. 3 and 4
with different hyperparameter settings.

Our rule-based control algorithm is described in Alg. 2. It is de-
rived from the rule-based controller in Sinergym’s [17] example.
For the purpose of computation efficiency and to fit the batch set-
tings in our algorithm, we vectorize the original RBC policy. The

245

Rule-based Policy Regularization for
Reinforcement Learning-based Building Control e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

rules are simple and intuitive, and could generalize well: First, we
get the datetime information we need from the states. Then, we
get the seasonal comfort temperature zone for every transition. If
the indoor air temperature (IAT) is below the lower bound of the
comfort zone, then we set both cooling and heating setpoints a
degree higher (measured in Celcius degrees). On the opposite, if the
IAT is above the upper bound of the comfort zone, then we set both
the heating and cooling setpoints a degree lower than the current
setpoints. Finally, we examine if the current datetime is in the office
hours. If not, then the setpoints are set to be (18.33, 23.33) (°C) for
the purpose of energy reduction since occupants’ thermal comfort
is not important in these time periods assuming zero occupancy.

Algorithm 1: RUBICON
Initialize critic networks𝑄𝜃1 ,𝑄𝜃2 ,actor network 𝜋𝜙 , with random
parameters 𝜃1, 𝜃2, 𝜙 , target networks 𝜃 ′1 ← 𝜃1, 𝜃 ′2 ← 𝜃2, 𝜙 ′ ← 𝜙 ,
RBC policy 𝜋𝑟𝑏𝑐 , and replay buffer or load buffer B

for 𝑡 = 1 to T do
if online then

Select action with exploration noise
𝑎 ∼ 𝜋𝜙 (𝑠) + 𝜖 , 𝜖 ∼ N(0, 𝜎)
Observe reward 𝑟 and next state 𝑠′
Store transition (𝑠, 𝑎, 𝑟, 𝑠′) in B

Sample mini-batch of 𝑁 transitions (𝑠, 𝑎, 𝑟, 𝑠′) from B
𝑎̃ ← 𝜋𝜙 ′ (𝑠′) + 𝜖 , 𝜖 ∼ 𝑐𝑙𝑖𝑝 (N(0, 𝜎̃), −𝑐, 𝑐)
𝑦 ← 𝑟 + 𝛾 min𝑗=1,2 𝑄𝜃 ′

𝑗
(𝑠′, 𝑎̃)

Update critics 𝜃 𝑗 ← arg min𝜃 𝑗
𝑁 −1 ∑(𝑦 − 𝑄𝜃 𝑗

(𝑠, 𝑎))2

if 𝑡 mod 𝑑 then
Update 𝜙 by policy gradient:
∇𝜙 𝐽 (𝜙) = 𝑁 −1 ∑ ∇𝑎𝑄𝜃1 (𝑠, 𝑎) |𝑎=𝜋𝜙 (𝑠)∇𝜙𝜋𝜙 (𝑠)
Policy update follows Eq. 3 and 4
Calculate ∇𝜙 𝐽 (𝜙)
Update target networks:
𝜃 ′
𝑗
← 𝜏𝜃 𝑗 + (1 − 𝜏)𝜃 ′𝑗

𝜙 ′ ← 𝜏𝜙 + (1 − 𝜏)𝜙 ′

Algorithm 2: Rule-based control policy
Input :Current datetime 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑡 , indoor air temperature

𝐼𝐴𝑇 , zone thermostat heating setpoint temperature 𝑎ℎ ,
and zone thermostat cooling setpoint temperature 𝑎𝑐 ,
obtained from the states with size 𝑁

Output :Actions selected by RBC
for 𝑖 in 𝑁 do

𝑠𝑒𝑎𝑠𝑜𝑛_𝑐𝑜𝑚𝑓 𝑜𝑟𝑡_𝑧𝑜𝑛𝑒𝑖 =
𝑔𝑒𝑡_𝑠𝑒𝑎𝑠𝑜𝑛_𝑐𝑜𝑚𝑓 𝑜𝑟𝑡 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑡𝑖)

if 𝐼𝐴𝑇𝑖 >=𝑚𝑎𝑥 (𝑠𝑒𝑎𝑠𝑜𝑛_𝑐𝑜𝑚𝑓 𝑜𝑟𝑡_𝑧𝑜𝑛𝑒𝑖) then
𝑎ℎ𝑖 = 𝑎ℎ𝑖 − 1
𝑎𝑐𝑖 = 𝑎𝑐𝑖 − 1

if 𝐼𝐴𝑇𝑖 <𝑚𝑖𝑛 (𝑠𝑒𝑎𝑠𝑜𝑛_𝑐𝑜𝑚𝑓 𝑜𝑟𝑡_𝑧𝑜𝑛𝑒𝑖) then
𝑎ℎ𝑖 = 𝑎ℎ𝑖 + 1
𝑎𝑐𝑖 = 𝑎𝑐𝑖 + 1

𝑎𝑖 = (𝑎ℎ𝑖 , 𝑎𝑐𝑖)
if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑡𝑖 .𝑤𝑒𝑒𝑘𝑑𝑎𝑦 ≥ 5 or 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑡𝑖 .ℎ𝑜𝑢𝑟 in
range(22,6) then

𝑎𝑖 = (18.33, 23.33)(°C)

5 EXPERIMENTS
In our experiments, there are two environment response types:
deterministic and stochastic. A Gaussian noise with 𝜇=0 and 𝜎=2.5
is added to the outside temperature from episode to episode in the
stochastic environments. And three weather types: hot, cool, and
mixed. In the results of all the tables and figures, “hot-deterministic”
indicates that the task is learned and evaluated with the hot weather
condition and deterministic environment. Similarly, we have all six
combinations such as “cool-stochastic”, etc. All scores in this paper
are normalized with expert policy as 100 and random policy as 0.

5.1 Offline approach
5.1.1 Main Experiment. First, we consider the offline approach,
where no simulator exists but historical data is available. We follow
the standard procedure for BRL evaluation [7]:

(1.) Train behavioral agents for 500K time steps, then compare
the most representative algorithms DDPG, TD3, and SAC (learning
curves are shown in Fig. 12). The online methods we compare are
described below:
• DDPG: Deep deterministic policy gradient is a method that
combines the actor-critic approach and deep Q-network
(DQN) [27]. It is capable of dealing with continuous action
space problems via policy gradient in a deterministic ap-
proach which outperforms the stochastic policy methods in
high-dimensional tasks.
• SAC: Soft actor-critic, an off-policy maximum entropy RL
algorithm that encourages exploration. They empirically
show that SAC yields a better sample efficiency than DDPG.
• TD3: Twin delayed deep deterministic policy gradient al-
gorithm, it reduces overestimation with double Q-learning,
combines with target networks to limit errors from imprecise
function approximation.

(2.) Select the best agent as our expert agent and generate buffers
with it for 500K time steps. A medium agent is trained “halfway”,
which means that an agent is trained most closely to an agent with
the evaluation performance half the performance as the expert
agent. And a random agent which samples actions randomly and
generates buffers.

(3.) Train BRL models for 500K time steps and evaluate the policy
every 25K time steps in all buffers mentioned above in step (2.).
We show the detailed learning curves in Appendix B. Normalized
and averaged scores across runs are shown in Table 1. The offline
methods we compare with are listed below:
• TD3+BC: An offline version of TD3, it adds a behavior
cloning term to regularize policy towards behavioral pol-
icy combined with mini-batch Q-values and buffer states
normalization for stability improvement.
• CQL: Conservative Q-learning, derived from SAC, it learns a
lower-bound estimate of the value function by regularizing
the Q-values during training.
• BCQ: Batch-constrained deep Q-learning, it implements a
variational autoencoder (VAE) [19] to reconstruct the action
given the state. And adds perturbation in actor on the policy,
the degree of perturbation and size of mini-batch can be
adjusted in order to behavemore like a traditional RLmethod
or imitation learning.

246

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Hsin-Yu Liu∗ , Bharathan Balaji∗∗ , Rajesh Gupta, and Dezhi Hong∗∗

• BC: Behavior cloning, we train a VAE to reconstruct action
given state. It simply imitates the behavioral agent without
reward signals.

In Table 1, we observe that RUBICON outperforms all other
benchmarks in overall score across weather types, random seeds,
and environment types. To breakdown the reward scores into the
optimization objectives, RUBICON achieves an overall 10.11% of
energy reduction and 34.44% in comfort penalty cf. to the state-of-
the-art method CQL. Other BRL methods show good performance
either in specific tasks or with a specific randomly initialized config-
uration; however, overall they are more unstable cf. RUBICON. Our
method provides more robust and more consistent performance
across all variants and demonstrates the ability to generalize across
various weather types and response modes of tasks. Also, as we
can see in Fig. 3, learning from both medium buffer and RBC policy,
RUBICON improves on both their best performances. The standard
deviation of RUBICON’s scores is the least among the policies eval-
uated, which means our policy is the most stable one cf. others. We
include the BRL learning curves with expert and random buffers in
Appendix B

In the following sections, we conducted several robustness and
ablation experiments to demonstrate the necessity of our enhance-
ments.

5.1.2 Transfer experiment. In a real-world scenariowherewemight
have existing building control data in one building, but no data for
a new building with different weather data distribution. Given exist-
ing buffers and we want to use them as prior knowledge to combine
with RBC policy and transfer the model to another weather type
where we have no data. We experiment with the medium buffers in
stochastic environments. The results shown in Table 5 and Fig. 4 in-
dicate that our method is capable of transferring from one weather
condition to another with comparable performance without any
hyperparameter or RBC policy change. As the results demonstrate,
due to the diversity of the mixed weather, RUBICON improves
learning in cool and hot weather. On the other hand, transfer from
monotonic weather conditions leads to worse returns.

5.1.3 Ablation Experiments.

RBC buffer experiments. To differentiate RUBICON from di-
rectly learning from RBC buffers, we conduct the experiment of
BRL models learning from the RBC buffers, i.e. learns from a buffer
generated by RBC policy. The learning curves are illustrated in
Figure 5. The results in Table 6 indicate that even when learning
with RBC buffers with RBC policy itself, RUBICON could still out-
perform RBC policy due to its learning ability. However, due to the
monotony of RBC policy, the improvement is limited. It shows the
importance of incorporating RBC policy and RL policy.

Mixed buffer experiments. In order to evaluate if mixing the
buffers (of RBC buffer and the original buffer to learn from) is
equivalent to RUBICON, we conduct experiments by mixing 50%
of transitions in RBC buffer with 50% of transition in the original
buffer to learn from. The result is shown in Figure 6 and Table 9.
It indicates our selective algorithm is necessary to dynamically
decide if RBC policy or the behavioral policy to learn from instead
of randomly trained on both.

5.1.4 Robustness Experiments.

Data efficiency experiment. We conduct the experiments with
buffers of only one year of data (35, 040 transitions). Data efficiency
is a challenge for model-free RL to yield accurate value estimation
as it is considered data inefficient generally. This experiment is de-
signed to observe how RUBICON adapts in a scenario where there
is insufficient data. In Table 2, we observe that our method still
outperforms its baseline overall. Although it dominates with ran-
dom buffers and has comparable performance with expert buffers,
it does not learn well with medium buffers. The root cause is the
similarity of the quality of actions between medium buffers and
RBC policy, which causes the critic to misjudge which action to pick
between them. However, RUBICON still outperforms the baseline in
other two types of buffers since the value estimation differences be-
tween (𝜋𝑏 (𝑠), 𝑠) and (𝜋𝑟𝑏𝑐 (𝑠), 𝑠) are more distinguishable in these
scenarios.

Policy analysis experiment. Since Q-value prediction is usually
overestimated, we use immediate rewards as references to examine
the quality of the inferences of Q-networks. We pre-train a reward
model 𝑅𝜓 (𝑠, 𝑎) using the data in the buffer to predict reward 𝑟 given
state 𝑠 and selected action 𝑎 with 200K iterations with the buffer
as our training data. At each iteration of the policy update, we
record the policy 𝜋 (𝑠) and the predicted rewards in each batch, i.e.,
𝑟 = 𝑅𝜓 (𝑠, 𝜋 (𝑠)). We plot the distributions of reward in action spaces
in Fig. 7. It demonstrates that RUBICON selects the actions in a
wider range cf. TD3+BC, nonetheless, with a reward distribution of
higher values. The distribution shown is with 10% of data randomly
selected from the entire training for better visualization.

5.2 Online approach
5.2.1 Main Experiment. In the online approach, it is assumed that
an oracle exists for accurate simulations. In real-world applications,
researchers train online models in simulation environments before
deployment in real buildings. Experimental results comparing TD3
and our method can be found in Table 3. In five out of six tasks, our
method outperforms TD3 in averaged scores and with a substan-
tially smaller standard deviation across runs. The learning curves
are illustrated in Fig. 8. In terms of the optimization objectives, RU-
BICON yields a 13.16% of energy reduction and 17.86% reduction
in comfort penalty.

These results empirically show that our method strengthens the
learning process not only in the offline approach but also in the
online approach.

5.2.2 Hyperparameter experiment. Deep-RL is sensitive to hyper-
parameter tuning [2], thus, we keep the original neural network
architectures and hyperparameter settings for a fair comparison.
Since all the authors of these methods have optimized the hyper-
parameters across various tasks and randomly initialized condi-
tions. However, for the online settings, we introduce the behavioral
cloning term in the actor loss.We conduct hyperparameter optimiza-
tion experiments for the optimized settings. When the behavioral
policy’s mean Q-value of the batch is higher than RBC policy, the

1Some scores with a standard deviation of 0 is caused by the round down of
normalized scores, they are negligible numbers. But not exact zeros.

247

Rule-based Policy Regularization for
Reinforcement Learning-based Building Control e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

Figure 3: Learning curves of RUBICON and the baseline method TD3+BC with medium buffers. All learning curves are plotted
with solid lines indicating averaged values and the half-transparent region is one standard deviation.

Figure 4: Learning curves of BRL models transferred from other weather types

248

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Hsin-Yu Liu∗ , Bharathan Balaji∗∗ , Rajesh Gupta, and Dezhi Hong∗∗

Figure 5: Learning curves of RUBICON learns from RBC buffers

Figure 6: Learning curves comparing RUBICON and TD3+BC to TD3+BC learns from a mixture of 50% amount of transitions
from the random buffer and 50% amount of transitions from the RBC buffer in stochastic environments

249

Rule-based Policy Regularization for
Reinforcement Learning-based Building Control e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

Table 1: BRL methods benchmark: Average normalized score over the final 5 evaluations and 3 random seeds.
Values followed by ± correspond to standard deviation over the last 5 evaluations across runs. 1

Environment Buffer RUBICON TD3+BC CQL BCQ BC
hot-deterministic Expert 86.13±17.83 99.72±0.42 100±0 -32.01±95.46 -89.2±14.84
hot-deterministic Medium 64.91±18.02 -49.58±13.52 67.64±32.83 13.4±51.24 -26.74±26.47
hot-deterministic Random 62.7±14.36 -45.73±44.8 -23.19±76.76 69.2±33.61 -12.55±74.63

mixed-deterministic Expert 81±25.94 94.66±7.36 100±0 -6.22±84.27 -95.46±14.78
mixed-deterministic Medium 86.84±12.39 36.23±56.33 37.36±86.8 64.45±37.4 -27.82±63.16
mixed-deterministic Random 68.83±4.93 -13.71±57.06 -23.46±83.61 -65.29±48.84 -103.4±7.45
cool-deterministic Expert 98±2.78 81.11±16.88 100±0 -29.74±95.89 27.76±102.15
cool-deterministic Medium 72.2±8.07 -49.97±36.4 55.44±49 70.18±14.42 8.62±45.32
cool-deterministic Random 66.5±0 -58.4±19.25 12.98±73.04 27.77±63.67 10.48±70.79
hot-stochastic Expert 99.01±0.56 77.69±30.48 99.49±0.24 -15.34±84.51 -72.86±38.25
hot-stochastic Medium 59.72±5.29 -14.84±66.04 39.92±56.67 -62.2±5.25 31.22±66.26
hot-stochastic Random 68.83±21.26 -1.82±73.31 36.64±67.61 -1.23±68.86 -10.45±61.91

mixed-stochastic Expert 94.16±8.12 96.6±2.14 99.77±0.21 -108.38±2.83 -102.02±9.26
mixed-stochastic Medium 87.23±12.34 9.48±81.06 80.13±20.78 70.75±9.9 38.66±48.02
mixed-stochastic Random 67.03±6.26 28.01±72.79 94.04±5.87 -109.46±0.77 -107.41±4.36
cool-stochastic Expert 53.58±65.53 78.27±31.08 99.97±0.32 -115.85±0.98 28.15±101.52
cool-stochastic Medium 68.07±0.46 16.09±69.41 81.56±18.01 -11.55±56.13 25.44±35.57
cool-stochastic Random 67.55±1.14 -44.33±36.36 -97.35±11.07 -53.92±78.06 -50.37±83.99

Sum 1352.37±225.38 339.49±714.77 960.98±582.88 -295.48±832.17 -527.93±868.81

Figure 7: Reward distribution in action spaces of hot-continuous environment learns from medium buffer, from left to right:
RUBICON (1.842/1.978/-0.577), TD3+BC (1.534/1.332/-0.668), and buffer (0.908/0.915/-0.799); tuples are the values of (action1

range/action2 range/reward mean).

actor loss follows the original TD3 algorithm. On the opposite, with
RBC policy having a higher mean Q-value, the weighting 𝜆 and its
hyperparameter 𝛼 (see Eq. 2 and Alg. 1) should be optimized since
we cannot assume the model’s behavior is similar to the offline
setting. It is mentioned in the TD3+BC paper that the value of 𝛼 de-
cides if the model learns similarly to RL (𝛼=4) or imitation learning
(𝛼=1) and the default value set in TD3+BC is 𝛼 =2.5. We experiment
on the values {1, 2.5, 4} to observe how it affects the performance
of our models in all tasks. The result (See Table 4) shows that when
𝛼=1 the model gives the highest scores and the least variance. This
indicates that the agent should imitate RBC policy even more than
the offline setting (𝛼 = 2.5) in order to achieve a more optimal
policy.

6 CONCLUSION AND FUTUREWORKS
In this paper, we explored how rule-based control policies can be
incorporated into reinforcement learning as regularization to im-
prove both of their performance. Our method can be implemented
on the baseline methods with minimal changes and is straight-
forward and intuitive. We applied our method in building HVAC
control simulation environments in both online and offline settings,
demonstrating its practical usage regardless of the existence of a
valid environment simulator. We empirically demonstrate that our
method outperforms state-of-the-art offline/batch reinforcement
learning methods and improves from its online baseline by a sub-
stantial amount in building HVAC control tasks where rule-based
control is robust and a standard in real-world settings. We expect

250

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Hsin-Yu Liu∗ , Bharathan Balaji∗∗ , Rajesh Gupta, and Dezhi Hong∗∗

Figure 8: Learning curves comparing online RUBICON and TD3

Table 2: Data reduction experiment
Environment Buffer RUBICON TD3+BC

hot-deterministic Expert 89.65±9.12 74.96±12.38
hot-deterministic Medium -6.92±78.43 79.37±25.5
hot-deterministic Random 90.41±5.47 -24.18±59.62

mixed-deterministic Expert 43.09±60.36 93.77±8.71
mixed-deterministic Medium 48.24±54.32 98.67±2.28
mixed-deterministic Random 82.89±10.19 72.58±6.91
cool-deterministic Expert 89.52±11.28 86.45±8.62
cool-deterministic Medium -11.56±62.82 47.61±17.66
cool-deterministic Random 35.92±43.24 42.59±72.43
hot-stochastic Expert 80.35±25.8 89.02±5.51
hot-stochastic Medium 5.3±43.33 10.79±56.47
hot-stochastic Random 62.26±18.59 26.43±52.33

mixed-stochastic Expert 78.08±25.78 85.25±12.96
mixed-stochastic Medium 66.02±17.68 72.17±16.14
mixed-stochastic Random 55.26±29.19 -86.21±25.92
cool-stochastic Expert 98.18±2.56 39.04±86.35
cool-stochastic Medium 73.16±19.56 38.68±39.93
cool-stochastic Random 69.76±5.46 -49.5±9.75

Sum . 1049.61±523.18 797.49±519.47

Table 3: Online RUBICON and TD3 comparison 1
Environment RUBICON TD3

hot-deterministic 79.08±12.24 51.83±49.93
mixed-deterministic 72.34±0.00 23.46±41.01
cool-deterministic 66.52±0.00 66.3±41.66
hot-stochastic 83.64±8.25 71.8±21.51

mixed-stochastic 72.24±0.49 8.5±66.61
cool-stochastic 68.14±0.65 73.38±16.61

Sum 441.99±21.64 295.29±237.36

our study, open-sourced code bases and dataset2 would encourage
both domains and RL experts to explore more opportunities for the
combination of existing policies and RL and extend this concept to
more real-world applications.

For future works, we plan to enhance the interpretability of the
decision-making process in our experiments, we aim to develop
transparent and interpretable algorithms for RL agents via Explain-
able RL (XRL) [1, 16, 36]. Also, using the ensemble Q-networks for
a more accurate Q-value estimation.

ACKNOWLEDGMENTS
This work was supported in part by the CONIX Research Center,
one of six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

2For the dataset please refer to our B2RL (https://github.com/HYDesmondLiu/B2RL)
repository. And for the codes please refer to our RUBICON (https://github.com/
HYDesmondLiu/RUBICON) repository.

251

https://github.com/HYDesmondLiu/B2RL
https://github.com/HYDesmondLiu/RUBICON
https://github.com/HYDesmondLiu/RUBICON

Rule-based Policy Regularization for
Reinforcement Learning-based Building Control e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

REFERENCES
[1] Tameem Adel, Alexander Rosenberg, and Been Kim. 2019. Learning to Explain:

An Information-Theoretic Perspective on Model Interpretation. In Advances in
Neural Information Processing Systems (NeurIPS). 10027–10036.

[2] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and
Marc Bellemare. 2021. Deep reinforcement learning at the edge of the statistical
precipice. Advances in neural information processing systems 34 (2021), 29304–
29320.

[3] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. 2018. Safe reinforcement learning via shielding. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[4] Hamid R Berenji. 1992. A reinforcement learning—based architecture for fuzzy
logic control. International Journal of Approximate Reasoning 6, 2 (1992), 267–292.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[6] Xianzhong Ding, Wan Du, and Alberto Cerpa. 2019. OCTOPUS: Deep reinforce-
ment learning for holistic smart building control. In BuildSys. 326–335.

[7] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. 2020.
D4rl: Datasets for deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219 (2020).

[8] Scott Fujimoto and Shixiang Shane Gu. 2021. A minimalist approach to offline
reinforcement learning. Advances in neural information processing systems 34
(2021), 20132–20145.

[9] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing function ap-
proximation error in actor-critic methods. In International conference on machine
learning. PMLR, 1587–1596.

[10] Scott Fujimoto, David Meger, and Doina Precup. 2019. Off-policy deep reinforce-
ment learning without exploration. In ICML. PMLR, 2052–2062.

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning. PMLR, 1861–
1870.

[12] Mengjie Han, Ross May, Xingxing Zhang, Xinru Wang, Song Pan, Da Yan, Yuan
Jin, and Liguo Xu. 2019. A review of reinforcement learning methodologies
for controlling occupant comfort in buildings. Sustainable Cities and Society 51
(2019), 101748.

[13] Frederick Hayes-Roth. 1985. Rule-based systems. Commun. ACM 28, 9 (1985),
921–932.

[14] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. 2018. Deep reinforcement learning that matters. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 32.

[15] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, and Jeff Braga. 2021.
CleanRL: High-quality Single-file Implementations of Deep Reinforcement Learn-
ing Algorithms. arXiv preprint arXiv:2111.08819 (2021).

[16] Lu Jiang, Tong Xiao, and Thomas Huang. 2018. Learning to Explain: A Framework
for Machine Learning Explanations. In Advances in Neural Information Processing
Systems (NeurIPS). 9810–9820.

[17] Javier Jiménez-Raboso, Alejandro Campoy-Nieves, Antonio Manjavacas-Lucas,
Juan Gómez-Romero, and Miguel Molina-Solana. 2021. Sinergym: a building
simulation and control framework for training reinforcement learning agents. In
Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation. 319–323.

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[19] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[20] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. 2021. Offline re-
inforcement learning with fisher divergence critic regularization. In International
Conference on Machine Learning. PMLR, 5774–5783.

[21] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conserva-
tive q-learning for offline reinforcement learning. Advances in Neural Information
Processing Systems 33 (2020), 1179–1191.

[22] National Renewable Energy Laboratory. 2008. TMY3 Datasets.
[23] Daeil Lee, Awwal Mohammed Arigi, and Jonghyun Kim. 2020. Algorithm for

autonomous power-increase operation using deep reinforcement learning and a
rule-based system. IEEE Access 8 (2020), 196727–196746.

[24] Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, Riccardo Giol, Mar-
cello Restelli, and Danilo Romano. 2020. Combining reinforcement learning
with rule-based controllers for transparent and general decision-making in au-
tonomous driving. Robotics and Autonomous Systems 131 (2020), 103568.

[25] Long-Ji Lin. 1992. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine learning 8, 3 (1992), 293–321.

[26] Hsin-Yu Liu, Bharathan Balaji, Sicun Gao, Rajesh Gupta, and Dezhi Hong. 2022.
Safe HVAC Control via Batch Reinforcement Learning. In 2022 ACM/IEEE 13th
International Conference on Cyber-Physical Systems (ICCPS). IEEE, 181–192.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[28] Department of Energy. 2023. Prototype Building Models. https://www.
energycodes.gov/prototype-building-models#TMY3

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[30] Majdi I Radaideh and Koroush Shirvan. 2021. Rule-based reinforcement learning
methodology to inform evolutionary algorithms for constrained optimization of
engineering applications. Knowledge-Based Systems 217 (2021), 106836.

[31] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In International conference on machine
learning. PMLR, 1889–1897.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[33] Takuma Seno and Michita Imai. 2021. d3rlpy: An Offline Deep Reinforcement
Learning Library. arXiv preprint arXiv:2111.03788 (2021).

[34] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. 2014. Deterministic policy gradient algorithms. In International
conference on machine learning. PMLR, 387–395.

[35] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. nature 550,
7676 (2017), 354–359.

[36] Przemysław Spurek, Damian Szymański, and Tomasz Tajmajer. 2019. Towards
Interpretable Reinforcement Learning Using Attention Augmented Agents. In
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA).
IEEE, 3239–3245.

[37] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. 2015. Safe explo-
ration for optimization with Gaussian processes. In International conference on
machine learning. PMLR, 997–1005.

[38] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[39] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ international conference on intelligent
robots and systems. IEEE, 5026–5033.

[40] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. 2016. Safe exploration
in finite markov decision processes with gaussian processes. Advances in Neural
Information Processing Systems 29 (2016).

[41] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy
array: a structure for efficient numerical computation. Computing in science &
engineering 13, 2 (2011), 22–30.

[42] Nino Vieillard, Olivier Pietquin, and Matthieu Geist. 2020. Munchausen rein-
forcement learning. Advances in Neural Information Processing Systems 33 (2020),
4235–4246.

[43] Junjie Wang, Qichao Zhang, Dongbin Zhao, and Yaran Chen. 2019. Lane change
decision-making through deep reinforcement learning with rule-based con-
straints. In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE,
1–6.

[44] Zhe Wang and Tianzhen Hong. 2020. Reinforcement learning for building con-
trols: The opportunities and challenges. Applied Energy 269 (2020), 115036.

[45] Tianshu Wei, Yanzhi Wang, and Qi Zhu. 2017. Deep reinforcement learning
for building HVAC control. In Proceedings of the 54th annual design automation
conference 2017. 1–6.

[46] Yifan Wu, George Tucker, and Ofir Nachum. 2019. Behavior regularized offline
reinforcement learning. arXiv preprint arXiv:1911.11361 (2019).

[47] Lei Yang, Zoltan Nagy, Philippe Goffin, and Arno Schlueter. 2015. Reinforcement
learning for optimal control of low exergy buildings. Applied Energy 156 (2015),
577–586.

[48] Liang Yu, Shuqi Qin, Meng Zhang, Chao Shen, Tao Jiang, and Xiaohong Guan.
2020. Deep Reinforcement Learning for Smart Building Energy Management: A
Survey. arXiv preprint arXiv:2008.05074 (2020).

[49] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and
Chelsea Finn. 2021. Combo: Conservative offlinemodel-based policy optimization.
Advances in neural information processing systems 34 (2021), 28954–28967.

[50] Chi Zhang, Sanmukh Rao Kuppannagari, and Viktor K Prasanna. 2022. Safe
Building HVAC Control via Batch Reinforcement Learning. IEEE Transactions on
Sustainable Computing 7, 4 (2022), 923–934.

[51] Zhiang Zhang, Adrian Chong, Yuqi Pan, Chenlu Zhang, and Khee Poh Lam. 2019.
Whole building energy model for HVAC optimal control: A practical framework
based on deep reinforcement learning. Energy and Buildings 199 (2019), 472–490.

[52] Yuanyang Zhu, Zhi Wang, Chunlin Chen, and Daoyi Dong. 2021. Rule-based
reinforcement learning for efficient robot navigation with space reduction.
IEEE/ASME Transactions on Mechatronics 27, 2 (2021), 846–857.

252

https://www.energycodes.gov/prototype-building-models#TMY3
https://www.energycodes.gov/prototype-building-models#TMY3

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Hsin-Yu Liu∗ , Bharathan Balaji∗∗ , Rajesh Gupta, and Dezhi Hong∗∗

A EXPERIMENT DETAILS
• Software
– Python: 3.9.12
– Pytorch: 1.12.1+cu113 [29]
– Sinergym: 1.9.5 [17]
– Gym: 0.21.0 [5]
– Numpy: 1.23.1 [41]
– CUDA: 11.2
• Hardware
– CPU: Intel Xeon Gold 6230 (2.10 GHz)
– GPU: NVidia RTX A6000
• Average training/evaluation time forRUBICON: 4 hours
45 minutes 18 seconds
• Benchmark implementations
– DDPG:We adopt theDDPG implementation in TD3 author-
provided implementation

– TD3: Author-provided implementation
– SAC: We adopt CleanRL [15] implementation due to soft-
ware version conflict with author-provided repository

– TD3+BC: Author-provided implementation
– CQL: We adopt d3rlpy [33] implementation due to soft-
ware version conflict with the author-provided repository

– BCQ: Author-provided implementation

B LEARNING CURVES, DETAILED SCORES,
AND ADDITIONAL EXPERIMENTS
• BRL learningWe illustrate the learning curves of BRLmeth-
ods learn from different quality of buffers for better visual-
ization of comparison in Fig. 9, 10 and 11
• Behavioral agents The behavioral agents’ learning curves
are demonstrated in Fig. 12
• CQL+RUBICON Since CQL demonstrates better perfor-
mance compared to other methods except for RUBICON (see
Table 1), we conduct experiments combining CQL and our
RUBICONmethod to learn from random andmedium buffers
since the performance of CQL-expert is already extremely
well. The results in Figure 13, 14 and Table 7, 8 indicate
that RUBICON also improves CQL. However, it does not
consistently improve CQL’s performance from task to task,
which is not as we observe from TD3+BC to RUBICON learn
from random/medium buffers (see Figure 11, 3). Also, the
improvement is limited and does not even reach the RBC
policy performance, thus we did not continue exploring the
possibility of combining CQL with RUBICON.
• Learn from worsened RBC policies We run another abla-
tion experiment to observe how the quality of RBC policy
affects the performance compared with RUBICON and base-
line TD3+BC. We design two worsened RBC policies: The
first one is a biased RBC where we modify the change in
setpoints (𝑎ℎ𝑖 and 𝑎𝑐𝑖) from 1 to 5 in Algo. 2, we name this
method "RBC_CB" in Figure 15. The other is to replace RBC
with random policy, it is named as "RBC_Random". From
the results in Table 10 we could find that even with con-
stantly worsened RBC policy it still improves from baseline,
However, it is still too aggressive for the models to learn a

robust policy. And with random policy as a worsened RBC it
is almost equivalent as no reference policy, the performance
is similar to our baseline TD3+BC.
• Non-selective experiments In this experiment, we remove
the dynamically weighted regularization. Instead, we regu-
larize the behavioral policy and RBC policy simultaneously
in every iteration of training (see Eq. 5). The experimental
results are shown in Table 11. We observe that regularizing
both policies at the same time deteriorates the model per-
formance cf. RUBICON. Since in each iteration, one of RBC
policy 𝜋𝑟𝑏𝑐 (𝑠) and behavioral policy 𝜋𝑏 (𝑠) yields a better
action selection compared to the other. It emphasizes the
necessity of dynamic weighting in the policy update steps.

𝜋 = arg max
𝜋

E(𝑠,𝑎)∼D
[
𝜆𝑄 (𝑠, 𝜋 (𝑠)) − (𝜋 (𝑠) − 𝑎)2 − (𝜋 (𝑠) − 𝜋𝑟𝑏𝑐 (𝑠))2

]
(5)

All learning curves are normalized with random policy as 0
and expert policy as 100, averaged with 3 random seeds and the
scores shown in tables are the average and standard deviation last
5 evaluations.

C MODEL PARAMETERS
We list the hyperparameters used in this paper for reproducibility.
Unless mentioned otherwise, we keep the original hyperparameters
setups as the implementations listed in Appendix A since DRLmeth-
ods are sensitive to hyperparameter tuning [14] (see Table 12, 13, 14,
and 15).

253

https://github.com/sfujim/TD3
https://github.com/sfujim/TD3
https://github.com/sfujim/TD3
https://github.com/vwxyzjn/cleanrl
https://github.com/sfujim/TD3_BC
https://github.com/takuseno/d3rlpy
https://github.com/sfujim/BCQ

Rule-based Policy Regularization for
Reinforcement Learning-based Building Control e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

Figure 9: Learning curves of BRL models learn from expert buffers.

254

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Hsin-Yu Liu∗ , Bharathan Balaji∗∗ , Rajesh Gupta, and Dezhi Hong∗∗

Figure 10: Learning curves of BRL models learn from medium buffers.

255

Rule-based Policy Regularization for
Reinforcement Learning-based Building Control e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

Figure 11: Learning curves of BRL models learn from random buffers

256

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Hsin-Yu Liu∗ , Bharathan Balaji∗∗ , Rajesh Gupta, and Dezhi Hong∗∗

Figure 12: Learning curves of behavioral model training, behavioral models are trained
with 500K time steps before generating buffers.

257

Rule-based Policy Regularization for
Reinforcement Learning-based Building Control e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

Figure 13: Learning curves of CQL, CQL+RUBICON, and RUBICON learn from random buffers

258

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Hsin-Yu Liu∗ , Bharathan Balaji∗∗ , Rajesh Gupta, and Dezhi Hong∗∗

Figure 14: Learning curves of CQL, CQL+RUBICON, and RUBICON learn from medium buffers

259

Rule-based Policy Regularization for
Reinforcement Learning-based Building Control e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

Figure 15: Learning curves of RUBICON learns from worsened RBC compared with TD3+BC and RUBICON

260

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Hsin-Yu Liu∗ , Bharathan Balaji∗∗ , Rajesh Gupta, and Dezhi Hong∗∗

Figure 16: Learning curves of online RUBICON hyperparameter optimization

261

Rule-based Policy Regularization for
Reinforcement Learning-based Building Control e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

Table 4: Hyperparameter experiment. 1
Environment 𝛼 = 1 𝛼 = 2.5 𝛼 = 4

hot-deterministic 79.08±12.24 70.76±20.28 23.83±68.3
mixed-deterministic 72.34±0.00 71.92±0.52 72.26±0.05
cool-deterministic 66.52±0.00 53.28±23.81 68.16±4.69
hot-stochastic 83.64±8.25 73.92±20.24 65.13±28.08

mixed-stochastic 72.24±0.49 72.24±0.49 72.24±0.49
cool-stochastic 68.14±0.65 45.46±28.4 12.38±77.7

Sum 441.99±21.64 387.58±93.74 347.08±130.01

Table 5: Transfer experiment
Environment Trans. from RUBICON_Trans. RUBICON
hot-stochastic cool-stochastic 71.42±3.1 59.72±5.29

mixed-stochastic cool-stochastic 84.93±16.92 87.23±12.34
cool-stochastic hot-stochastic 54.07±0.85 68.07±0.46
mixed-stochastic hot-stochastic 81.02±20.09 87.23±12.34
cool-stochastic mixed-stochastic 72.39±0.68 68.07±0.46
hot-stochastic mixed-stochastic 75.26±3.3 59.72±5.29

Sum 439.09±44.94 430.04±36.18

Table 6: RUBICON learns from buffers generated by RBC compared with RBC buffer performance
Environment RUBICON RBC

hot-deterministic 67.92±22.51 57.9
mixed-deterministic 73.68±1.96 50.12
cool-deterministic 72.28±6.53 59.15
hot-stochastic 53.83±0.8 57.92

mixed-stochastic 72.46±0.68 50.22
cool-stochastic 53.35±20.36 58.48

Sum 393.53±52.85 333.79

Table 7: CQL+RUBICON learns from random buffer compared with CQL and RUBICON 1
Environment RUBICON CQL_RUBICON CQL

hot-deterministic 62.7±14.36 48.37±10.12 -23.19±76.76
mixed-deterministic 68.83±4.93 -2±85.18 -23.46±83.61
cool-deterministic 66.5±0 88.98±13.24 12.98±73.04
hot-stochastic 68.83±21.26 -47.04±45.48 36.64±67.61

mixed-stochastic 67.03±6.26 38.08±49.17 94.04±5.87
cool-stochastic 67.55±1.14 -73.76±20.51 -97.35±11.07

Sum 401.47±47.98 52.64±223.72 -0.32±317.97

Table 8: Scores of CQL+RUBICON learns from medium buffer compared with CQL and RUBICON
Environment RUBICON CQL_RUBICON CQL

hot-deterministic 64.91±18.02 43.03±55.26 67.64±32.83
mixed-deterministic 86.84±12.39 73.4±37.59 37.36±86.8
cool-deterministic 72.2±8.07 85.24±17.33 55.44±49
hot-stochastic 59.72±5.29 9.39±58.72 39.92±56.67

mixed-stochastic 87.23±12.34 90.14±9.37 80.13±20.78
cool-stochastic 68.07±0.46 91.05±11.39 81.56±18.01

Sum 438.98±56.59 392.26±189.69 362.07±264.11

262

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Hsin-Yu Liu∗ , Bharathan Balaji∗∗ , Rajesh Gupta, and Dezhi Hong∗∗

Table 9: Scores of TD3+BC learns from a mixture of random buffer and RBC buffer
compared with RUBICON learns from random buffer 1

Environment TD3+BC_Mixed RUBICON TD3+BC
hot-deterministic 0.02±59.76 62.7±14.36 -45.73±44.8

mixed-deterministic 70.66±15.45 68.83±4.93 -13.71±57.06
cool-deterministic 59.01±40.92 66.5±0 -58.4±19.25
hot-stochastic 57.93±5.6 68.83±21.26 -1.82±73.31

mixed-stochastic 74.08±8.7 67.03±6.26 28.01±72.79
cool-stochastic 71.67±35.04 67.55±1.14 -44.33±36.36

Sum 333.4±165.5 401.47±47.98 -135.98±303.60

Table 10: Comparison between RUBICON, TD3+BC, and worsened RBCs 1
Environment RUBICON TD3+BC RBC_CB RBC_Random

hot-deterministic 62.7±14.36 -45.73±44.8 34.06±27.13 -47.72±25.11
mixed-deterministic 68.83±4.93 -13.71±57.06 -33.89±38.47 36.39±72.08
cool-deterministic 66.5±0 -58.4±19.25 70.64±5.85 -48.84±25.93
hot-stochastic 68.83±21.26 -1.82±73.31 33.81±36.94 -67.7±5.66

mixed-stochastic 67.03±6.26 28.01±72.79 71.22±2.64 -4.07±52.46
cool-stochastic 67.55±1.14 -44.33±36.36 65.84±3.06 -5.9±74.12

Sum 401.47±47.98 -135.98±303.60 241.69±114.12 -137.85±255.38

Table 11: Non-selective experiment 1
Environment Buffer RUBICON RUBICON w/o DW

hot-deterministic Expert 86.13±17.83 -19.8±63.89
hot-deterministic Medium 64.91±18.02 47.26±12.89
hot-deterministic Random 62.7±14.36 -19.8±63.89

mixed-deterministic Expert 81±25.94 -75.6±29.46
mixed-deterministic Medium 86.84±12.39 42.99±48.04
mixed-deterministic Random 68.83±4.93 -75.6±29.46
cool-deterministic Expert 98±2.78 41.3±20.53
cool-deterministic Medium 72.2±8.07 36.54±67.84
cool-deterministic Random 66.5±0 41.3±20.53
hot-stochastic Expert 99.01±0.56 57.68±22.3
hot-stochastic Medium 59.72±5.29 29.26±45.5
hot-stochastic Random 68.83±21.26 57.68±22.3

mixed-stochastic Expert 94.16±8.12 40.57±44.91
mixed-stochastic Medium 87.23±12.34 55.6±33.53
mixed-stochastic Random 67.03±6.26 40.57±44.91
cool-stochastic Expert 53.58±65.53 -68.84±27.46
cool-stochastic Medium 68.07±0.46 8.01±61.1
cool-stochastic Random 67.55±1.14 -68.84±27.46

Sum 1352.37±225.38 170.3±686.1

263

Rule-based Policy Regularization for
Reinforcement Learning-based Building Control e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

Table 12: TD3, TD3+BC, and RUBICON hyperparameters
Hyperparameter Value
Optimizer Adam [18]
Critic learning rate 3𝑒−4

Actor learning rate 3𝑒−4

Mini-batch size 256
Discount factor 0.99

Algorithm hyperparameters Target update rate 5𝑒−3

Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2
TD3+BC 𝛼 2.5
RUBICON online 𝛼 1
RUBICON offline 𝛼 2.5
RUBICON online 𝜉 0 if 𝑄 (𝑠, 𝜋𝑏 (𝑠)) ≥ 𝑄 (𝑠, 𝜋𝑟𝑏𝑐 (𝑠)) else 1
RUBICON offline 𝜉 1
Critic hidden dimension 256
Critic hidden layers 2
Critic activation function ReLU

Network architecture Actor hidden dimension 256
Actor hidden layers 2
Actor activation function ReLU

Table 13: SAC/CQL hyperparameters
Hyperparameter Value
Optimizer Adam
Critic learning rate 1𝑒−3

Actor learning rate 3𝑒−4/1𝑒−4

Mini-batch size 256
Discount factor 0.99
Target update rate 5𝑒−3

Algorithm hyperparameters Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2
SAC entropy auto-tuning True
CQL 𝛼 threshold 10
CQL conservative weight 5.0
CQL number of sampled actions 10
Critic hidden dimension 256
Critic hidden layers 3
Critic activation function ReLU

Network architecture Actor hidden dimension 256
Actor hidden layers 3
Actor activation function ReLU

264

e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Hsin-Yu Liu∗ , Bharathan Balaji∗∗ , Rajesh Gupta, and Dezhi Hong∗∗

Table 14: DDPG hyperparameters
Hyperparameter Value
Optimizer Adam
Critic learning rate 1𝑒−3

Actor learning rate 1𝑒−4

Mini-batch size 64
Algorithm hyperparameters Discount factor 0.99

Target update rate 1𝑒−3

Policy noise N(0, 0.1)
Policy noise clipping (-0.5, 0.5)
Policy update frequency 1
Critic hidden dimension 400/300
Critic hidden layers 2
Critic activation function ReLU

Network architecture Actor hidden dimension 400/300
Actor hidden layers 2
Actor activation function ReLU

Table 15: BCQ/BC hyperparameters
Hyperparameter Value
Optimizer Adam
Critic learning rate 1𝑒−3

Actor learning rate 1𝑒−4

Mini-batch size 100
Algorithm hyperparameters Discount factor 0.99

Target update rate 5𝑒−3

Minimum weighting 0.75
Max perturbation 0.05
Critic hidden dimension 400/300
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dimension 400/300

Network architecture Actor hidden layers 2
Actor activation function ReLU
VAE hidden dimension 750
VAE latent vector clipping (-0.5, 0.5)

265

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Rule-based incorporated control regularization
	5 Experiments
	5.1 Offline approach
	5.2 Online approach

	6 Conclusion and Future Works
	Acknowledgments
	References
	A Experiment details
	B Learning curves, detailed scores, and additional experiments
	C Model parameters

