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Abstract. Two sets of complexes of Co-triarylcorrole-bispyridine complexes, Co[TpXPC](py)2 

and Co[Br8TpXPC](py)2 have been synthesized, where TpXPC refers to a meso-tris(para-X-

phenyl)corrole ligand with X = CF3, H, Me, and OMe and Br8TpXPC to the corresponding β-

octabrominated ligand. The axial pyridines in these complexes were found to be labile and, in 

dilute solutions in dichloromethane, the complexes dissociate almost completely to the five-

coordinate monopyridine complexes. Upon addition of a small quantity of pyridine, the 

complexes revert back to the six-coordinate forms. These transformations are accompanied by 

dramatic changes in color and optical spectra. 1H NMR spectroscopy and X-ray crystallography 

have confirmed that the bispyridine complexes are authentic low-spin Co(III) species. Strong 

substituent effects on the Soret maxima and broken-symmetry DFT calculations, on the other 

hand, indicate a CoII-corrole•2– formulation for the five-coordinate Co[TpXPC](py) series. The 

calculations implicate a Co(dz2)-corrole(“a2u”) orbital interaction as responsible for the metal-

ligand antiferromagnetic coupling that leads to the open-shell singlet ground state of these 

species. Furthermore, the calculations predict two low-energy S = 1 intermediate-spin Co(III) 

states, a scenario that we have been able to experimentally corroborate with temperature-

dependent EPR studies. Our findings add to the growing body of evidence for noninnocent 

electronic structures among first-row transition metal corrole derivatives. 
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Introduction. Cobalt-corrole-bispyridine complexes, Co[Cor](py)2, are currently of great 

interest as efficient catalysts of both proton reduction and water oxidation under ambient 

conditions.1,2,3,4,5 An essential aspect of the catalytic mechanisms is the lability of the axial 

pyridine ligands which allows the generation of five- and four-coordinate Co corrole 

intermediates that can engage in further reactivity.6,7,8 The coordinatively unsaturated character 

of these intermediates also facilitates their attachment to carbon nanotubes9 and other 

nanomaterials, affording nanoconjugates with potentially improved catalytic properties relative 

to the original molecular catalysts. Somewhat surprisingly, the five-coordinate Co-corrole-

pyridine intermediates, Co[Cor](py), remain poorly characterized; indeed, except for Co-corrole-

triphenylphosphine complexes,10,11 which are stable and readily amenable to structural 

characterization, five-coordinate Co corroles in general remain relatively little explored. In this 

study, we have investigated the nature of the Co center in Co[Cor](py) intermediates, in 

particular, whether it is low-spin Co(III), intermediate-spin Co(III), or for that matter even 

Co(II), the last in conjunction with an oxidized corrole•2– ligand. Toward this end, we examined 

two sets of complexes, Co[TpXPC](py)n and Co[Br8TpXPC](py)n (n = 1, 2, Figure 1), where 

TpXPC denotes a meso-tris(para-X-phenyl)corrole ligand with X = CF3, H, Me, and OMe and 

Br8TpXPC the corresponding β-octabrominated ligand. Like Co[TPFPC](py)2 [TPFPC = meso-

tris(pentafluorophenyl)corrole] studied by Gross and coworkers,8 the present 

Co[Y8TpXPC](py)2 (Y = H, Br) complexes were found to dissociate essentially completely in 

dilute dichloromethane solution to afford the five-coordinate complexes Co[TpXPC](py). The 

latter revert back to the six-coordinate forms upon the addition of a small quantity of pyridine. 

These interconversions are accompanied by dramatic color changes, since the five- and six-

coordinate complexes are yellowish-brown and emerald-green in solution, respectively. The two 

different coordination states thus could be independently characterized with multiple solution-

phase analytical tools, as described below. 

 Results and discussion. (a) Synthesis and proof of composition. The complexes in 

both the Co[TpXPC](py)2 and Co[Br8TpXPC](py)2 (X = CF3, H, Me, OMe) series were 

synthesized via the interaction of the corresponding free-base corroles12,13 with Co(II) acetate in 

pyridine at 100°C over approximately 30 min, followed by column chromatography on silica gel. 

For chromatographic purification of the β-unsubstituted Co[TpXPC](py)2 complexes, it was 

necessary to include a small amount (∼1-2%) of pyridine in the n-hexane/dichloromethane  
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Figure 1. Molecules studied in this work. 

 

eluent mixture, failing which, the complexes underwent severe decomposition in contact with 

silica. The β-octabrominated complexes proved more stable and could be chromatographed with 

simply n-hexane/dichloromethane as eluent. For long-term stability in solution, however, a small 

quantity of added pyridine proved essential. For all eight bispyridine complexes, proof of purity 

came from clean thin-layer chromatograms, electrospray ionization mass spectra, and fully 

assigned, diamagnetic 1H NMR spectra, all obtained in the presence of a small quantity of 

pyridine. Furthermore, X-ray quality crystals were obtained for two of the complexes, 

Co[TpMePC](py)2 and Co[Br8TpMePC](py)2, by diffusion of methanol vapor into concentrated 

CH2Cl2 or CHCl3 solutions of the complexes containing a small amount of added pyridine. 

Again, the presence of added pyridine was crucial. Crystallization in the absence of pyridine led 

to poor quality crystals of six-coordinate Co isocorrole complexes with a pyridine and a chloride 

as the axial ligands. Attempts to obtain satisfactory elemental analyses for the bispyridine 

complexes were also thwarted by the requirement of traces of added pyridine for the stability of 

the compounds. 
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 Figure 2 depicts the X-ray structures of Co[TpMePC](py)2 and Co[Br8TpMePC](py)2 and 

Tables 1 and 2 present key crystallographic data and metal-ligand bond distances, respectively. 

While an essentially planar macrocycle was found for Co[TpMePC](py)2, the corrole macrocycle 

in Co[Br8TpMePC](py)2 was found to exhibit mild ruffling as well as very slight saddling. The 

ruffling and saddling dihedrals, as defined earlier,14 were found to range over 13.7-25.7° and 1.9-

5.9°, respectively. Because of the rigidity imposed by the C1-C19 bipyrrole linkage, corroles are 

much more resistant to nonplanar distortions than porphyrins, and ruffling, in particular, is 

energetically very costly.14 Thus, only a handful of corrole structures are known that are mildly 

ruffled and none that is strongly ruffled.15,16 The Co-N distances involving the corrole nitrogens 

are particularly short, 1.88 ± 0.03 Å, and those involving the axial pyridines only slightly longer, 

1.98 ± 0.01 Å. These distances, which are in excellent accord with literature values for other Co-

corrole-bispyridine structures,2,5,6,8,17,18,19,20,21 are clearly indicative of a low-spin Co(III) 

center. 

 
Table 1. Crystallographic data for Co[TpMePC](py)2 and Co[Br8TpMePC](py)2. 

Sample Co[TpMePC](py)2·CH2Cl2 Co[Br8TpMePC](py)2.2CHCl3 
Chemical Formula C51H41Cl2CoN6 C52H33Br8N6Cl6Co 

Formula mass 867.73 1652.75 
Crystal system Monoclinic Monoclinic 
Space group P21/n P21/c 

λ (Å) 0.77490 0.7749 
a (Å) 18.1623(7) 15.5987(6) 
b (Å) 9.7531(4) 20.4468(8) 
c (Å) 24.6826(9) 17.4670(7) 
α (°) 90 90 
β (°) 109.337(2) 96.297(3) 
γ (°) 90 90 

Z 4 4 
V (Å3) 4125.6(3) 5537.4(4) 

Temperature (K) 100(2) 100(2) 
ρ (g/cm3) 1.397 1.982 

Measured reflections 65324 67585 
Unique reflections 16257 9842 

Parameters 551 698 
Restraints 1 192 

Rint 0.0555 0.0519 
θ range (°) 2.468 - 37.109 2.113 – 27.555 

R1, wR2 all data 0.0900, 0.1753 0.0483, 0.1202 
S (GooF) all data 1.021 1.026 

Max/min res. Dens. (e/Å3) 1.057/-0.671 1.909/-0.974 
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Figure 2. X-ray structures of (a) Co[TpMePC](py)2 and (b) Co[Br8TpMePC](py)2 (top and side 

views). 
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Table 2. Selected crystallographic distances (Å) for Co[TpMePC](py)2 and 

Co[Br8TpMePC](py)2. 

Co[TpMePC](py)2 Co[Br8TpMePC](py)2 
Co(1)-N(1) 1.8675(17) Co(1)-N(1) 1.889(5) 
Co(1)-N(2) 1.9005(17) Co(1)-N(2) 1.904(5) 
Co(1)-N(3) 1.9015(16) Co(1)-N(3) 1.913(5) 
Co(1) N(4) 1.8689(17) Co(1)-N(4) 1.877(5) 
Co(1)-N(100) 1.9940(16) Co(1)-N(5) 1.968(5) 
Co(1)-N(200) 1.9871(17) Co(1)-N(6) 1.994(5) 
 

 (b) 1H NMR spectroscopy. Sharp, diamagnetic 1H NMR spectra could be obtained for 

the nonbrominated Co[TpXPC](py)2 series in benzene-d6 even without added pyridine. The axial 

pyridine hydrogens, which integrated as 4:4:2, were found at relatively high field, as a result of 

the diamagnetic ring current of the corrole macrocycle. Interestingly, in more polar NMR 

solvents such as CDCl3, CD2Cl2, and CD3CN, only very broad and weak signals could be 

observed, suggesting rapid dissociation and reassociation of the axial pyridines on the NMR time 

scale. In contrast, freshly prepared22 Co[Br8TpXPC](py)2 complexes yielded sharp 1H NMR 

spectra even in CDCl3, attesting to the higher stability of these complexes with respect to 

dissociation of the axial pyridines. 

 The chemical shifts of the pyridine protons were found to exhibit some interesting 

features. Thus, the chemical shifts of the ortho protons, which are the most strongly shielded by 

the corrole’s aromatic ring current, were found to undergo a marked downfield shift with 

increasingly electron-donating character of the meso-aryl para substituent X. For example, the 

pyridine ortho-H’s of Co[TpCF3PC](py)2 resonate at 2.54 ppm, whereas those of 

Co[TpOMePC](py)2 resonate at 3.70 ppm (Figure 4). Interestingly, the chemical shifts of the 

pyridine ortho protons of the Co[Br8TpXPC](py)2 series were found not to exhibit a similar 

substituent dependence. Instead, they were found to exhibit a strong solvent effect. Changing the 

NMR solvent from CDCl3 to benzene-d6 result in strong upfield shifts for the meta and para 

protons (but not the ortho protons). Thus, for Co[Br8TpOMePC](py)2, the pyridine meta-H’s of 

shift from 5.41 ppm in CDCl3 to 4.09 benzene-d6, while the same change of solvent shifts the 

para-H’s from 6.29 ppm to 4.90 ppm (Figure 5). The reasons underlying these solvent effects are 

not entirely clear, but stacking interactions involving the axial pyridines and benzene may 

provide a potential rationale. 
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Figure 3. 1H NMR spectra encompassing the pyridine protons of Co[TpXPC](py)2 derivatives; 

the substituent X is specified in blue.  

 

 
Figure 4. Comparison of 1H NMR chemical shifts for pyridine protons for 

Co[Y8TpOMePC](py)2 (Y = H, Br): (a) Co[TpOMePC](py)2 in benzene-d6,  (b) 

Co[Br8TpOMePC](py)2 in benzene-d6, and (c) Co[Br8TpOMePC](py)2 in CDCl3.  
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 (c) UV-vis spectroscopy. The bispyridine complexes Co[TpXPC](py)2 and 

Co[Br8TpXPC](py)2, which are very dark green in the solid state, dissolve in noncoordinating 

solvents such as dichloromethane or chloroform to yield yellowish-brown solutions. Upon 

addition of a small quantity of pyridine (~0.5%), the solutions turn a brilliant emerald-green, 

accompanied by dramatic changes in the optical spectra, which include a strongly redshifted 

Soret band and a greatly intensified Q band (Figure 3 and Table 3). Following earlier studies by 

Guilard et. al.6,7 and Gross et. al.,8 the dark green solutions are most reasonably assigned to the 

six-coordinate bispyridine complexes, whereas the main chromophore in the brown solutions is 

thought to be the five-coordinate Co[Cor](py) form. 

 A key motivation for studying the two series of complexes with varying meso-aryl para 

substituents was to examine substituent effects on their Soret maxima, which can shed light on 

the innocence or noninnocence of the corrole macrocycle, an expectation that proved amply 

rewarded. Over a long series of studies,23 we have shown that Soret maxima of innocent 

metallotriarylcorroles, such as CrO and MoO corroles,24 TcO25  and ReO26  corroles, RuN27 and 

OsN28 corroles, and Au29,30,31 corroles, are insensitive to the meso-aryl para substituent X. In 

contrast, the Soret maxima of noninnocent metallotriarylcorroles, of which Mn,32 Fe,32,33,34, 

35,36,37   Cu,38,39,40,41,42,43,44,45,46 and certain Pt47 corroles provide salient examples, undergo 

marked redshifts with increasing electron-donating character of the substituent X. As shown in 

Figure 3 and Table 3, we encounter both behaviors in this study. Thus, the Soret maxima of the 

bispyridine complexes, Co[TpXPC](py)2, are largely insensitive to X consistent with an innocent 

low-spin–CoIII-corrole3– electronic description. In contrast, in the absence of added pyridine, the 

Soret maxima of the brown solutions containing five-coordinate Co[TpXPC](py) complexes 

redshift monotonically with increasing electron-donating character of X, shifting from 386 nm 

for X = CF3 to 402 nm for X = OMe, suggesting a noninnocent CoII-corrole•2–-like formulation. 
 

Table. 3. Soret maxima (nm) for the Co complexes studied. 
 
Series 

 
Solvent 

para-substituent X 

CF3 H Me OMe 
Co[TpXPC](py) CH2Cl2 386 388 393 402 

Co[Br8TpXPC](py) CH2Cl2 396 392 391 392 

Co[TpXPC](py)2 CH2Cl2 + 0.5% py  442, 453 (sh) 437, 452  437, 453  434, 453  

Co[Br8TpXPC](py)2 CH2Cl2 + 0.5% py 447, 460 445, 461 445, 461 446, 462 
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Figure 5. UV-vis spectra of (a) Co[TpCF3PC](py)2, (b) the Co[TpXPC](py)2 series in CH2Cl2, (c) 

the Co[TpXPC](py)2 series in CH2Cl2 with 0.5% pyridine, (d) Co[Br8TpCF3PC](py)2, (e) the 

Co[Br8TpXPC](py)2 series in CH2Cl2, (f) the Co[Br8TpXPC](py)2 series in CH2Cl2 with 0.5% 

pyridine. 

 

 Interestingly, for the β-octabrominated Co[Br8TpXPC](py)2 series, the Soret maxima are 

relatively invariant with respect to the substituent X even in neat CH2Cl2. Although it is tempting 

to interpret this observation as suggesting a relatively innocent octabromocorrole ligand in the 

five-coordinate monopyridine complexes, we believe that that is in fact not the case. TDDFT 

studies on Cu corroles suggest that the key substituent-sensitive feature under the Soret envelope 
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consists of one or more aryl-to-corrole•2– charge transfer transitions.48 For planar β-octabromo-

meso-triarylcorrole complexes, steric inhibition of resonance is thought to inhibit such 

transitions, thus providing a rationale for the relative substituent-insensitivity of the Soret 

maxima. A similar difference in behavior between the TpXPC and Br8TpXPC has also been 

noted for FeNO corroles, which are also believed to be noninnocent.36 

 (d) DFT calculations. DFT calculations have long provided a qualitatively excellent 

description of ligand noninnocence in metalloporphyrin and metallocorrole systems.49,50 Here as 

well, all-electron B3LYP-D3/STO-TZP calculations on Co[TPC](py) (TPC = meso-

triphenylcorrole, i.e., TpXPC with X = H) afforded compelling support for the CoII-corrole•2– 

formulation of the five-coordinate monopyridine complexes. The use of a Cs symmetry 

constraint allowed us to evaluate three different solutions, a broken-symmetry MS = 0 solution 

and two MS = 1 solutions with A´ and A´´ symmetry. The ground state was found to correspond 

to the MS = 0 solution (S0). An examination of the valence MOs and broken-symmetry spin 

density profile clearly revealed a Co(II) center antiferromagnetically coupled to a corrole radical 

via a Co(dz2)-corrole(“a2u”) orbital interaction (Figure 6). It is worth noting that this orbital 

interaction is very common for five-coordinate first-row transition metal corroles and in 

particular has been noted for MnCl,32 FeCl,32 and FeNO35,36 corroles. The lowest triplet state 

(T1), at an energy of 0.13 eV relative to the ground state, turned out to be not the corresponding 

ferromagnetically coupled state, but rather an intermediate-spin Co(III) state with a 

dxy
2dxz

2dyz
1dz2

1 electronic configuration, where the Co(dyz) orbital transforms as a´´ under Cs 

symmetry. Another intermediate-spin Co(III) state with a dxy
2dxz

1dyz
2dz2

1 electronic configuration 

(T2) was found to be only 0.09 eV higher than T1. 

 

(e) EPR spectroscopy. Solutions of Co[TpXPC](py)2 (X=H, Me) and 

Co[Br8TpXPC](py)2 (X=H, Me) in 2:1 CH2Cl2/toluene, where the five-coordinate monopyridine 

forms are expected to dominate, all yielded similar X-band EPR spectra at room temperature (SI, 

Fig. S25). In all cases, they were centered around g = 2, moderately broad (FWHH ≈ 50 G), and 

devoid of resolvable hyperfine interactions, as expected for strongly delocalized spin systems. 

The room-temperature solution spectra exhibited distinct inflection points, consistent with a 

slightly split triplet and/or a narrow distribution of g-values. In frozen glasses at low temperature 

(T = 69-125 K), the inflection points were smeared out, suggesting that they result from slight 

anisotropies rather than unresolved hyperfine couplings. (Figure 7).  
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Figure 6. Inset: Broken-symmetry spin density plot (contour 0.005 e/Å3), Mulliken spin 

populations, and skeletal bond distances (Å) for the S0 ground state. Also shown are spin density 

plots for the T1 and T2 states. 

 

 
 

Figure 7. Solution and solid-state (frozen-glass) X-band EPR spectra of Co[Br8TpMePC](py). 

Modulation 1 G; microwave power 63 mW. The relative intensities are arbitrary.  
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For the frozen-glass samples, the EPR signal intensities were found to increase with 

temperature, contrary to what would be expected for a relaxation-broadened Co-centered system. 

The temperature variation for the frozen solution of Co[Br8TpMePC](py) could be modeled with 

a Boltzmann expression (see Figure S26 in SI), assuming an EPR-silent ground state and a triplet 

state ~0.01 eV higher in energy. Although this singlet-triplet gap is smaller than that obtained 

from the calculations, the overall picture of a singlet ground state with thermally accessible 

triplet states is corroborated. 

 

 (f) Electrochemistry.51 The complexes synthesized were also examined with cyclic 

voltammetry with the goal of obtaining additional insight into the nature of the five-coordinate 

monopyridine complexes. Measurements in dichlororomethane without added pyridine generally 

revealed two reversible oxidations and two quasireversible or irreversible reductions. The 

relatively high first reduction potentials, ~ –0.32 ± 0.04 V for Co[TpXPC](py) and –0.06 ± 0.03 

V for Co[Br8TpXPC](py), are consistent with a CoII(py)-corrole•2–/CoII(py)-corrole3– reduction 

(Figure 8 and Table 4). In the presence of 0.5% pyridine, however, the reductions proved 

complex, reversible in some cases and irreversible for others, and generally not interpretable in 

the absence of additional spectroscopic studies. Interestingly, the presence of pyridine led to only 

small changes in the first oxidation potentials. Following Kadish and coworkers,7 the first 

oxidations of the bispyridine complexes are expected to be corrole-centered, i.e., CoIII(py)2-Cor3– 

→ CoIII(py)2-Cor•2–. It is not unreasonable, in our view, that oxidation of the five-coordinate 

monopyridine complexes, i.e., the CoII(py)-corrole•2– → [CoIII(py)-corrole•2– ↔CoII(py)-corrole–] 

process, occurs at approximately the same potential. 
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Figure 8. Cyclic voltammograms of (a) Co[TpCF3PC](py)2 and (b) Co[Br8TpCF3PC](py)2 in 

different solvents, each with 0.1 M TBAP. Scan rate: 0.1 V/s.  

 



Ganguly et. al. 

 15 

Table 4. Redox potentials of the complexes synthesized in two different solvent systems  

Series X Eox2 Eox1 Ered1 Ered2 

Co[TpXPC](py)2 in 

CH2Cl2 

CF3 1.03 0.35 −0.28 −1.64 

H 0.93 0.24 −0.31 −1.70 

Me 0.89 0.22 −0.33 −1.73 

OMe 0.82 0.18 −0.36 −1.78 

Co[TpXPC](py)2 in 

CH2Cl2 with 1% py 

CF3 0.86 0.33 −0.36a −1.62 

H 0.78 0.19 −0.44a −1.75 

Me 0.76 0.14 −0.46a −1.74 

OMe 0.74 0.12 −0.43a −1.81 

Co[Br8TpXPC](py)2 in 

CH2Cl2 

CF3 1.38 0.83 −0.04 −1.19 

H 1.32 0.71  −0.06 −1.20 

Me 1.29 0.67 −0.07 −1.23 

OMe 1.21 0.67 −0.09 −1.27 

Co[Br8TpXPC](py)2 in 

CH2Cl2 with 1% py 

CF3 1.33 0.83 −0.09a −1.18 

H 1.22 0.69 −0.21a −1.21 

Me 1.22 0.67 −0.21a −1.27 

OMe 1.19 0.66 −0.19a −1.32 
a peak potential during anodic sweep 

 

 Conclusion. Our X-ray crystallographic and 1H NMR studies have confirmed that Co-

traiarylcorrole-bispyridine complexes are authentic Co(III) complexes, as long supposed. More 

interestingly, substituent effects on the Soret maxima and broken-symmetry DFT calculations 

strongly support a CoII-corrole•2– formulation for the corresponding five-coordinate 

monopyridine complexes. Such a ground state corresponds to an antiferromagnetically coupled, 

open-shell singlet, where a Co(dz2)-corrole(“a2u”) orbital overlap mediates the metal-ligand spin 

coupling. The calculations also predict low-energy, potentially thermally accessible triplet states 

with intermediate-spin Co(III) centers, a scenario that has been experimentally corroborated with 

EPR spectroscopy. The study underscores – yet again23 – the broad prevalence of ligand 

noninnocence among first-row transition metal corrole derivatives. 
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Experimental section 

 Materials.  All reagents and solvents were used as purchased unless otherwise noted. 

Silica gel 150 (35-70 μm particle size, Davisil) was used as the stationary phase for flash 

chromatography and silica gel 60 preparative thin-layer chromatographic (PLC) plates (20 x 20 

cm, 0.5 mm thick, Merck) were used for final purification of the products. CHROMASOLV® 

HPLC-grade n-hexane and dichloromethane were used as solvents for column chromatography. 

For electrochemical measurements, anhydrous dichloromethane was predried with CaH2 and 

stored over 3Å molecular sieves prior to distillation. Tetrakis(n-butyl)ammonium perchlorate 

(Sigma-Aldrich, TBAP), recrystallized three times from absolute ethanol, vacuum-dried at 40°C 

for two days, and stored in a desiccator for at least two weeks, was used as the supporting 

electrolyte.  The starting materials, free-base corroles H3[TpXPC]12 and free-base β-

octabromocorroles H3[Br8TpXPC]52,13 (X = CF3, H, Me, OMe), were synthesized as previously 

reported.53 Cobalt(II) acetate tetrahydrate (Merck) and pyridine (≥ 99%, Sigma-Aldrich) were 

both used as received. 

 Instrumentation. UV-vis spectra were recorded on an Agilent Cary 8454 UV-Visible 

spectrophotometer in CH2Cl2. Cyclic voltammetry experiments were performed with an EG&G 

Princeton Applied Research Model 263A potentiostat equipped with a three-electrode system 

consisting of a glassy carbon working electrode, a platinum wire counterelectrode, and a 

saturated calomel reference electrode (SCE). The reference electrode was separated from bulk 

solution by a fritted-glass bridge filled with the solvent/supporting electrolyte mixture. All 

potentials were referenced to the SCE. A scan rate of 100 mV/s was used. The anhydrous 

dichloromethane solutions were purged with argon for at least 5 min prior to electrochemical 

measurements and an argon blanket was maintained over the solutions during the measurements. 

X-band EPR spectra were recorded with a Bruker Elexsys E500 equipped with a Bruker ER 

4116 DM dual-mode cavity, an EIP 538B frequency counter and an ER035M NMR gaussmeter. 

Low-temperature measurements were conducted by use of an Oxford Intruments Mercury iTC 

temperature controller, using liq. N2 as a coolant. Pumping allowed a base temperature of 69 K 
1H NMR spectra were recorded at room temperature on a 400 MHz Bruker Avance III HD 

spectrometer equipped with a 5 mm BB/1H (BB = 19F, 31P-15N) SmartProbe in CDCl3 and C6D6. 

High resolution electrospray ionization (HR-ESI) mass spectra were obtained on an LTQ 

Orbitrap XL spectrometer. 
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 Synthesis of cobalt-triarylcorrole-bispyridine complexes. A detailed procedure is 

described below for Co[TpCF3PC](py)2. A similar procedure was also followed for synthesis of 

the other Co[TpXPC](py)2 complexes, except for details of the chromatographic purifications, 

which are specified below. 

 Synthesis of Co[TpCF3PC](py)2. A 50-mL round-bottom flask equipped with a 

magnetic stir-bar was charged with free-base tris(4-trifluoromethylphenyl)corrole (0.035 g, 0.048 

mmol) dissolved in pyridine (10 mL). To this solution was added 10 equiv of Co(OAc)2•4H2O 

(0.12 g, 0.48 mmol). The reaction flask was then fitted with a reflux condenser and heated on an 

oil bath at 100°C with stirring for 25-30 min, whereupon completion of metal insertion was 

confirmed by UV-vis spectroscopy and/or mass spectrometry. Upon cooling, the solution was 

rotary evaporated to dryness under high vacuum to yield. The resulting dark greenish-brown 

residue was redissolved in a minimum volume of dichloromethane containing a couple of drops 

of pyridine and chromatographed on a silica gel column (10 cm in height) with n-

hexane/dichloromethane/pyridine (2:1:0.02, subsequently 1:1:0.02) as eluent. The front-running, 

emerald-green band was collected and identified as the title compound. Recrystallization from a 

mixture of 3:1 n-hexane/dichloromethane with a few drops of pyridine afforded the pure product 

(0.04 g, 0.042 mmol, 87.5%). UV-vis (CH2Cl2) λmax [nm, ε x 10-4 (M-1cm-1)]: 386 (10.02). UV-

vis (CH2Cl2, 0.5% pyridine) λmax [nm, ε x 10-4 (M-1cm-1)]: 442 (8.13), 453 (sh) (7.24), 582 (1.14), 

623 (3.31). 1H NMR (benzene-d6, 25°C) δ: 9.24 (d, J = 4.1 Hz, 2H, β-pyrrolic), 9.01 (d, J = 4.1 

Hz, 2H, β-pyrrolic), 8.82-8.72 (m, 4H, β-pyrrolic), 8.26 (d, J = 7.9 Hz, 4H, 5,15-o/m-aryl), 8.17 

(d, J = 7.9 Hz, 2H, 10-o/m-aryl), 7.75 (d, J = 8.0 Hz, 4H, 5,15-o/m-aryl), 7.70 (d, J = 8.1 Hz, 2H, 

10-o/m-aryl), 5.06 (s, 2H, p-H of pyridine), 4.49 (s, 4H, m-H of pyridine), 2.54 (br s, 4H, o-H of 

pyridine). HRMS (major isotopomers in presence of a drop of pyridine, M = C40H20N4F9Co): 

[M]+ (0.35) 786.0802 (expt), 786.0871 (calcd); [M + py]+ (1.00) 865.1284 (expt), 865.1294 

(calc);  [M + 2 py]+ (0.90)  944.1715 (expt), 944. 1715 (calc). 

 Synthesis of Co[TPC](py)2. Silica gel column chromatography with 1:1:0.02 n-

hexane/dichloromethane/pyridine as eluent followed by recrystallization from 3:1 n-

hexane/CH2Cl2 with a few drops of pyridine afforded the pure product (0.038 g, 0.051 mmol, 

77%). UV-vis (CH2Cl2) λmax [nm, ε x 10-4 (M-1cm-1)]: 388 (10.35). UV-vis (CH2Cl2, 0.5% 

pyridine) λmax [nm, ε x 10-4 (M-1cm-1)]: 437 (6.86), 452 (6.03), 582 (0.95), 623 (3.09). 1H NMR 

(benzene-d6, 25°C) δ: 9.05 (d, J = 4.3 Hz, 2H, β-pyrrolic), 8.93 (d, J = 4.6 Hz, 2H, β-pyrrolic), 

8.76-8.70 (m, 4H, β-pyrrolic), 8.40-8.35 (m, 4H, 5,15-o/m-aryl), 8.30-8.25 (m, 2H, 10-o/m-aryl), 
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7.53-7.41 (m, 9H, 5,15, & 10-o/m/p-aryl), 5.08 (s, 2H, p-H of pyridine), 4.54 (s, 4H, m-H of 

pyridine), 3.18 (br s, 4H, o-H of pyridine). HRMS (major isotopomers in presence of a drop of 

pyridine, M = C37H23N4Co): [M]+ (0.70) 582.1225 (expt), 582.1249 (calc); [M + py]+ (1.00) 

661.1676 (expt), 661. 1671 (calc);  [M + 2 py]+ (0.30) 740.2100 (expt), 740.2093 (calc). 

 Synthesis of Co[TpMePC](py)2. Silica gel column chromatography with 1:1:0.02 n-

hexane/dichloromethane/pyridine as eluent followed by recrystallization from 3:1 n-

hexane/CH2Cl2 with a few drops of pyridine afforded the pure product (0.0395 g, 0.05 mmol, 

82%). UV-vis (CH2Cl2) λmax [nm, ε x 10-4 (M-1cm-1)]: 393 (9.90). UV-vis (CH2Cl2, 0.5% 

pyridine) λmax [nm, ε x 10-4 (M-1cm-1)]: 437 (6.73), 453 (5.87), 581 (0.96), 625 (3.05). 1H NMR 

(benzene-d6, 25°C) δ: 8.96 (d, J = 4.3 Hz, 2H, β-pyrrolic), 8.86 (d, J = 4.7 Hz, 2H, β-pyrrolic), 

8.69 (d, J = 4.6 Hz, 2H, β-pyrrolic), 8.65 (s, 2H, β-pyrrolic), 8.28 (d, J = 7.8 Hz, 4H, 5,15-o/m-

aryl), 8.20 (d, J = 7.8 Hz, 2H, 10-o/m-aryl), 7.31-7.22 (m, 6H, 5,15, & 10-o/m-aryl), 5.08 (s, 2H, 

p-H of pyridine), 4.57 (s, 4H, m-H of pyridine), 3.51 (br s, 4H, o-H of pyridine), 2.31 

(overlapping s, 9H, 5,10,15-Me). HRMS (major isotopomers in presence of a drop of pyridine, 

M = C40H29N4Co): [M]+ (0.80) 624.1691 (expt), 624.1719 (calc); [M + py]+ (1.00) 703.2148 

(expt), 703.2141 (calc); [M + 2 py]+ (0.25) 782.2572 (expt), 782.2563 (calc). 

 X-ray quality crystals were obtained by diffusion of methanol vapour over one week into 

a concentrated CH2Cl2 solution of the complex containing few drops of pyridine. 

 Synthesis of Co[TpOMePC](py)2. Silica gel column chromatography with 2:3:0.025 n-

hexane/dichloromethane/pyridine as eluent followed by recrystallization from 2:1 n-

hexane/CH2Cl2 with a few drops of pyridine afforded the pure product (0.0393 g, 0.047 mmol, 

83.5%). UV-vis (CH2Cl2) λmax [nm, ε x 10-4 (M-1cm-1)]: 402 (10.13). UV-vis (CH2Cl2, 0.5% 

pyridine) λmax [nm, ε x 10-4 (M-1cm-1)]: 434 (7.87), 453 (6.66), 582 (1.23), 627 (3.47). 1H NMR 

(benzene-d6, 25°C) δ: 9.0 (d, J = 4.2 Hz, 2H, β-pyrrolic), 8.91 (d, J = 4.6 Hz, 2H, β-pyrrolic), 

8.76 (d, J = 4.3 Hz, 2H, β-pyrrolic), 8.70 (s, 2H, β-pyrrolic), 8.29 (d, J = 8.3 Hz, 4H, 5,15-o/m-

aryl), 8.22 (d, J = 8.3 Hz, 2H, 10-o/m-aryl), 7.13-7.04 (m, 6H, 5,15, & 10-o/m-aryl), 5.19 (s, 2H, 

p-H of pyridine), 4.69 (s, 4H, m-H of pyridine), 3.70 (broad-s, 4H, o-H of pyridine), 3.49 

(overlapping s, 9H, 5,10,15-OMe). HRMS (major isotopomers in presence of a drop of pyridine, 

M = C40H29N4O3Co): [M]+ (1.00) 672.1536 (expt), 672.1566 (calc); [M + py]+ (1.00) 751.1989 

(expt), 751.1988 (calc); [M + 2 py]+ (0.25) 830.2414 (expt), 830.2410 (calc). 

 Synthesis of cobalt–β-octabromocorrole–bispyridine complexes. A detailed procedure 

is described below for Co[Br8TpMePC](py)2; the other β-octabromocorrole complexes were 
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synthesized via a similar protocol, except for the optimum chromatographic purification, which 

is indicated separately for each complex. 

 Synthesis of Co[Br8TpMePC](py)2. A 50 mL round-bottomed flask equipped with a 

magnetic stir-bar was charged with free-base tris(4-trimethylphenyl)corrole (0.025 g, 0.021 

mmol) dissolved in pyridine (8-10 mL). To this solution was added 6 equiv of Co(OAc)2•4H2O 

(0.0314 g, 0.126 mmol) The reaction flask was then fitted with a reflux condenser and heated on 

an oil bath at 100°C with stirring for 30 min, whereupon completion of metal insertion was 

confirmed by UV-Vis spectroscopy and mass spectrometry. Upon cooling, the solution was 

rotary evaporated under high vacuum to yield a dark brown residue. The residue was redissolved 

in a minimum volume of dichloromethane and was chromatographed on a silica gel column 

(length 12 cm) with 3:1 n-hexane/dichloromethane as eluent. The product eluted as a greenish-

brown band, which was collected and evaporated to dryness. Final purification was carried out 

with PLC using 2:1 n-hexane/CH2Cl2 as eluent. The front brown band contained pure product 

Co[Br8TpMePC](py)2 (0.0214g, 0.015 mmol, 71.4%). UV-vis (CH2Cl2) λmax [nm, ε x 10-4 (M-

1cm-1)]: 391 (7.31). UV-vis (CH2Cl2, 0.5% pyridine) λmax [nm, ε x 10-4 (M-1cm-1)]: 445 (7.94), 

461 (7.60), 593 (1.41), 629 (2.71). 1H NMR (CDCl3, 25°C) δ: 7.62 (d, J = 7.8 Hz, 4H, 5,15-o/m-

aryl), 7.56 (d, J = 7.8 Hz, 2H, 10-o/m-aryl), 7.43 (d, J = 7.7 Hz, 4H, 5,15-o/m-aryl), 7.35 (d, J = 

7.8 Hz, 2H, 10-o/m-aryl), 6.30 (s, 2H, p-H of pyridine), 5.44 (s, 4H, , m-H of pyridine), 2.67 (s, 

6H, 5,15-Me protons), 2.62 (s, 3H, 10-Me), 2.07 (broad-s, 4H, o-H of pyridine). HRMS (major 

isotopomer in the presence of a drop of pyridine, M = C40H21N4Br8Co): [M + 2py + H]+ 

1414.5393 (expt), 1414.5410 (calc). 

 X-ray quality crystals were obtained by diffusion of methanol vapour over several days 

into a concentrated CHCl3 solution of the complex containing few drops of pyridine. 

 Synthesis of Co[Br8TPC](py)2. Silica gel column chromatography with 2:1 n-

hexane/CH2Cl2 followed by PLC with 3:2 n-hexane/CH2Cl2 as eluent afforded pure 

Co[Br8TPC](py)2 (0.0233 g, 0.017 mmol, 77%). UV-vis (CH2Cl2) λmax [nm, ε x 10-4 (M-1cm-1)]: 

392 (6.29). UV-vis (CH2Cl2, 0.5% pyridine) λmax [nm, ε x 10-4 (M-1cm-1)]: 445 (6.78), 461 (6.37), 

593 (1.15), 628 (2.17). 1H NMR (CDCl3, 25°C) δ: 7.79-7.66 (m, 9H, meso-aryl), 7.62 (t, J = 7.5 

Hz, 4H, 5,15-o/m-aryl), 7.57-7.52 (m, 2H, 10-o/m-aryl), 6.29 (t, J = 7.1 Hz, 2H, p-H of pyridine), 

5.41 (s, 4H, m-H of pyridine), 1.89 (br s, 4H, o-H of pyridine). HRMS (major isotopomer in the 

presence of a drop of pyridine, M = C37H15N4Br8Co): [M + 2py + H]+ 1372.4912 (expt), 

1372.4937 (calc). 
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 Synthesis of Co[Br8TpOMePC](py)2. Silica gel column chromatography with 1:2 n-

hexane/CH2Cl2 followed by PLC with 3:7 n-hexane/CH2Cl2 as eluent afforded pure 

Co[Br8TpOMePC](py)2 (0.0217 g, 0.0148 mmol, 74.2%). UV-vis (CH2Cl2) λmax [nm, ε x 10-4 

(M-1cm-1)]: 392 (7.19). UV-vis (CH2Cl2, 0.5% pyridine) λmax [nm, ε x 10-4 (M-1cm-1)]: 446 (7.83), 

462 (7.34), 593 (1.26), 629 (2.50). 1H NMR (CDCl3, 25°C) δ: 7.63 (d, J = 8.3 Hz, 4H, 5,15-o/m-

aryl), 7.58 (d, J = 8.4 Hz, 2H, 10-o/m-aryl), 7.17 (d, J = 8.4 Hz, 4H, 5,15-o/m-aryl), 7.10 (d, J = 

8.4 Hz, 2H, 10-o/m-aryl), 6.29 (t, J = 7.1 Hz, 2H,  p-H of pyridine), 5.41 (s, 4H, m-H of 

pyridine), 4.06 (s, 6H, 5,15-OMe), 4.03 (s, 3H, 10-OMe), 2.0 (br s, 4H, o-H of pyridine). HRMS 

(major isotopomer in the presence of a drop of pyridine, M = C40H21N4Br8O3Co): [M + 2py + 

H]+ 1462.5242 (expt), 1462.5254 (calc). 

 Synthesis of Co[Br8TpCF3PC](py)2. Silica gel column chromatography with 3:1 n-

hexane/CH2Cl2 followed by PLC with 2:1 n-hexane/CH2Cl2 as eluent afforded pure 

Co[Br8TpCF3PC](py)2 (0.0223 g, 0.01415 mmol, 78.6%). UV-vis (CH2Cl2) λmax [nm, ε x 10-4 

(M-1cm-1)]: 396 (6.48). UV-vis (CH2Cl2, 0.5% pyridine) λmax [nm, ε x 10-4 (M-1cm-1)]: 447 (7.79), 

460 (6.72), 593 (1.36), 625 (2.19). 1H NMR (CDCl3, 25°C) δ: 7.92-7.81 (m, 12H, meso-aryl), 

6.31 (t, J = 7.2 Hz, 2H, p-H of pyridine), 5.42 (s, 4H, m-H of pyridine). HRMS (major 

isotopomer in the presence of a drop of pyridine, M = C40H12N4Br8F9Co): [M + 2py + H]+ 

1575.4503 (expt), 1575.4484(calc). 

 Crystal Structure Determination. X-ray diffraction data were collected on beamline 

11.3.1 at the Advanced Light Source, Lawrence Berkeley National Laboratory, using a Bruker 

D8 diffractometer equipped with a PHOTON100 CMOS detector operating in shutterless mode. 

The crystal, coated in protective oil, was mounted on a MiTeGen® kapton micromount and 

placed under a nitrogen stream at 100(2) K provided by an Oxford Cryostream 800 Plus low-

temperature apparatus. Diffraction data were collected using synchrotron radiation 

monochromated using silicon(111) to a wavelength of 0.7749(1)Å. An approximate full-sphere 

of data was collected using a combination of phi and omega scans with scan speeds of 4° per 

second for the phi scans and 1 degree per second for the omega scans at 2θ = 0 and -45, 

respectively. The structures were solved by intrinsic phasing (SHELXT)54 and refined by full-

matrix least squares on F2 (SHELXL-2014).55 All non-hydrogen atoms were refined 

anisotropically. Hydrogen atoms were geometrically calculated and refined as riding atoms. 

Additional crystallographic information has been summarized in Table 1 and 2 and full details 

can be found in the crystallographic information files provided as Supplementary Information. 
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Computational methods. All DFT calculations were carried with the B3LYP56,57 

exchange-correlation functional (20% Hartree-Fock exchange), in conjunction with Grimme’s 

D3 dispersion correction,58 and all electron STO-TZP basis sets, as implemented in the ADF 

2014 program system.59 

Supporting Information Available. 1H NMR spectra, mass spectra, EPR spectra, and 

B3LYP/STO-TZP optimized coordinates (19 pages).  
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