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Abstract: To explore the effects of altered amino acids (AAs) and the carnitine metabolism in non-
pregnant women with infertility (NPWI), pregnant women without infertility (PWI) and infertility-
treated pregnant women (ITPW) compared with non-pregnant women (NPW, control), and develop
more efficient models for the diagnosis of infertility and pregnancy, 496 samples were evaluated for
levels of 21 AAs and 55 carnitines using targeted high-performance liquid chromatography with
tandem mass spectrometry (HPLC-MS/MS). Three methods were used to screen the biomarkers
for modeling, with eight algorithms used to build and validate the model. The ROC, sensitivity,
specificity, and accuracy of the infertility diagnosis training model were higher than 0.956, 82.89, 66.64,
and 82.57%, respectively, whereas those of the validated model were higher than 0.896, 77.67, 69.72,
and 83.38%, respectively. The ROC, sensitivity, specificity, and accuracy of the pregnancy diagnosis
training model were >0.994, 96.23, 97.79, and 97.69%, respectively, whereas those of the validated
model were >0.572, 96.39, 93.03, and 94.71%, respectively. Our findings indicate that pregnancy may
alter the AA and carnitine metabolism in women with infertility to match the internal environment
of PWI. The developed model demonstrated good performance and high sensitivity for facilitating
infertility and pregnancy diagnosis.

Keywords: metabolomics; infertility; pregnancy; amino acids; carnitines

1. Introduction

With an aging population and continuous decline in fertility rates, increasing the birth
rate has emerged as a global issue that requires urgent attention. Infertility, estimated to
affect 15% of couples worldwide, refers to the inability to conceive within one year of rou-
tine, unprotected sexual intercourse [1,2]. In addition to its physiological and psychological
effects on women attempting to become pregnant, infertility is a risk factor for breast, en-
dometrial, ovarian, and other cancers [3,4]. Infertility arises for various reasons, including
endocrine, anatomical, genetic, and behavioral factors, obesity, ovulation disorders, and
anatomical diseases of the pelvic organs [5,6].

Metabolomics provides a phenotypic fingerprint of a cell, tissue, or organism by mea-
suring multiple metabolites directly [7,8]. Metabolomics has increasingly been employed
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for the identification of novel biomarkers for improved clinical strategies to uncover the
causes and development of diseases [9]. Studies have demonstrated changes in glucose,
amino acid (AA), lipid, steroid hormone, lactogen, and cortisol levels, and gut microbiota
in the serum, urine, and tissues of infertile [10,11] and pregnant women [12,13]. How-
ever, the reasons for such changes remain unclear. While various studies on infertility
and pregnancy have focused on the nutritional value of amino acids (AA) and carnitine,
there is a considerable amount of literature reporting that amino acids and carnitine are
also related to the pathogenesis of many other diseases [14,15]. Moreover, pregnancy has
been shown to affect a woman’s immune system [16], suggesting that there may be other
unknown functions of pregnancy that have not been discovered. However, studies on the
metabolomic differences between pregnancies after fertility treatment and those without
fertility treatment and the effects of pregnancy on metabolism-related aspects of infertility
are limited, hindering our understanding of the underlying factors.

Patients with suspected infertility provide a detailed history and undergo a series of
examinations, followed by laboratory assessments of ovulation, thyroid function, fallopian
tube patency, and so on. Subsequently, infertility is diagnosed by combining the results
of these and other multimodal assessments [17]. Infertility diagnosis is time-consuming
and complicated by various factors [18]. Although imaging plays an indispensable role in
assessing anatomical abnormalities, it is unsuitable for large-scale screenings [19]. Couples
diagnosed with infertility could miss their window of opportunity for treatment, highlight-
ing the importance of early intervention [20]. Therefore, a simple clinical screening index
for the early prevention of and intervention in infertility is warranted.

Machine learning is a scientific discipline that focuses on how computers learn from
data, including statistics and computer science [21]. The complexity and abundance of
biological data present opportunities for analysis using machine learning techniques [22].
Although machine learning has been used in biology for decades, its application in medicine
has attracted more and more attention in recent years [23], especially in the establishment
of diagnostic models [24].

Thus, we aimed to investigate the metabolomic differences between NPWI, ITPW,
PWI, and controls using targeted AA and carnitine metabolomics, as well as other clinical
indicators. Diagnostic models were screened and validated using eight machine learning
algorithms, providing new possibilities for the rapid diagnosis of infertility and pregnancy.

2. Materials and Methods
2.1. Participants

Patients included in this study were enrolled from Fertility and Infertility Center of
Xijing Hospital (Xi’an, China), from 1 June 2021, to 31 December 2023, and divided into four
groups, NPWI (n = 127), ITPW (n = 73), PWI (n = 114), and NPW (controls; n = 128). Fertility
was assessed and diagnosed by a specialist using revised American Society for Reproduc-
tive Medicine female infertility guidelines. All pregnancies were singleton, intrauterine
pregnancies and matched for age and gestational week between groups. The controls were
in generally good health, fertile with healthy ovarian function, had no adverse pregnancy
history and other diseases, and had normal ovulatory cycles. The exclusion criteria across
all four groups included the following: (1) history of immunosuppressive/modulatory
treatment; (2) a history of hormonal therapy; (3) a history of taking antibiotic drugs; (4) a
history of chemotherapy and radiation therapy; and (5) incomplete data or information
(Figure 1).

The research protocol was approved by the Ethics Committee of Xijing Hospital
(KY20212027-C-1). Written consent was obtained from all patients.
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Figure 1. Patient information. Flowchart of inclusion and exclusion criteria for the female
study groups.

2.2. Sera Preparation

Blood samples were collected from the peripheral veins of all enrolled patients by a
trained phlebotomist in the morning after an overnight fast. Venous blood was collected in
accelerator separation gel, heparin anticoagulation, and ethylenediaminetetraacetic acid
anticoagulant tubes for AAs, carnitine, biochemistry-related, immune-related, and routine
blood tests.

2.3. Data Collection

Serum AA and carnitine levels were analyzed using high-performance liquid chro-
matography with tandem mass spectrometry (HPLC-MS/MS). Other clinical indicators
were measured and statistically analyzed by the Clinical Laboratory Department of Xijing
Hospital, which is accredited by the ISO15189 China National Laboratory Accreditation
Committee (ISO 15189: 2022 Medical Laboratories—particular requirements for quality
and competence. ISO, Geneva, Switzerland), with the results uploaded and maintained in
the Laboratory Information System (LIS). Hospital records and patient information were
obtained from the Hospital Information System and LIS. All data were tallied by at least
three independent technicians and included patient demographics, physical and laboratory
examinations, diagnoses, and other information (Figure 1 and Table S1).

2.4. MS Analysis

Detailed sample pre-treatment methods for HPLC-MS/MS are listed in the Supple-
mental Material. For the detection of the 21 AAs and 55 carnitines, 100% acetonitrile was
used as the HPLC eluent. The optimized HPLC parameters are listed in Table S2. The
sample injection volume was 20 µL. Two experiments were performed in one MS period
in positive mode, with the optimized MS/MS parameters listed in Table S3. Experiment
1 scan type was neutral loss: loss of 102.00 Da starting from 140.00 Da and stopping at
280.00 Da; CEP starting from 13.07 and stopping at 17.46. Experiment 2 scan type was
multiple reaction monitoring.

2.5. Statistical Analyses

MS data processing was performed using the Analyst 1.6.2 software (AB Sciex, Darm-
stadt, Germany). The ChemView software (version 1.6.1) was used to convert the MS
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results into quantitative data. Data were analyzed using SPSS software (version 23.0;
IBM, Armonk, NY, USA). Normally distributed quantitative data were reported as the
mean ± standard deviation and were compared between groups using one-way analy-
sis of variance and least significant difference post-hoc test. All reported p-values were
two-tailed, and the level of statistical significance was set at p < 0.05. GraphPad Prism
version 5 (GraphPad Software, San Diego, CA, USA) and R version 3.6.2 (R Project for
Statistical Computing) were used for data visualization. Orthogonal partial least squares
discriminant analyses (OPLS−DA) were performed to identify differences between the
groups. The odds ratios (OR) of the candidate indicators were evaluated and screened
using binary logistic regression analysis. The diagnostic performance of the indicators
was analyzed using receiver operating characteristic (ROC) curves. A Venn diagram was
used to represent the indicators of consistent and differential expression. The biological
functions and pathways of the differentially expressed metabolites were analyzed using
the Small Molecule Pathway Database (SMPDB) and Kyoto Encyclopedia of Genes and
Genomes (KEGG). Fisher’s exact test was used to evaluate the enrichment of predefined
pathways in metabolites related to different groups.

2.6. Establishment of Diagnostic Models

To obtain newly developed biomarkers of infertility and pregnancy in women, we
screened AAs, carnitines, and other clinical indicators using the following three methods:
variance selection; Pearson correlation coefficient; and mutual information. Top 40 indi-
cators from each method were intersected for the final selection of potential diagnostic
indicators. Eight machine-learning classification algorithms were applied to establish diag-
nostic models to distinguish patients with infertility from healthy controls based on the
selected indicators. The algorithms included random forest, K-nearest neighbors, decision
tree, logistic regression, Gaussian Bayesian, support vector machines, AdaBoost, and ex-
treme gradient boosting. To ensure the stability of the algorithm, it was cross validated
with 5-fold of the data, with 4-fold used for training and 1-fold used for testing. Finally,
the models were evaluated using sensitivity, specificity, accuracy, positive predictive value,
negative predictive value, area under curve (AUC), and ROC curves. The flow chart is
shown in Figure 2.
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3. Results
3.1. Patient Characteristics

Figure 1 and Table S1 outline the main characteristics of the study participants and
the analyte levels, respectively. The basic information of NPWI and control women is
described in Section 2.1 and Figure 1. The two groups were matched for age and other
information. ITPW were matched with PWI in terms of gestational age and weeks, with
no statistical differences. The PWI comprised a first-, second-, and third-trimester group
(mean age: 30.52 ± 3.41, 30.92 ± 5.22, and 30.50 ± 4.71 years, respectively; gestational ages:
11.04 ± 3.77, 19.00 ± 5.27, and 31.32 ± 2.96 weeks, respectively). The ITPW comprised
a first-, second-, and third-trimester group (mean age: 31.21 ± 3.51, 31.37 ± 3.76, and
31.66 ± 3.52 years, respectively; gestational ages of 11.42 ± 2.39, 21.84 ± 4.83, and
31.78 ± 2.49 weeks, respectively).

NPWI showed significant differences in 96 indicators compared with control women.
Among these indicators, 46 increased significantly and 50 decreased significantly (including
AAs, carnitines, and their related ratios).

PWI showed significant differences in 106 indicators compared with healthy control
women. Among them, 37 increased significantly and 69 decreased significantly (including
AAs, carnitines, and their related ratios). The ITPW showed significant differences in
95 indicators when compared with those in control women. Among them, 35 increased
significantly and 60 decreased significantly (including AAs, carnitines, and their related
ratios). Conversely, only eight indicators in the ITPW were significantly different from
those in the PWI. Among these eight, four were significantly higher and four significantly
lower, with no significant differences in AAs, carnitines, or their related ratios.

3.2. Distribution of the Measured Indicators in Each Group

The OPLS−DA model, employed to analyze overall differences in indicators between
the groups, was statistically validated using permutation testing. The model revealed
an excellent separation of samples between the NPWI and control women (R2Y = 0.362,
Q2 = −0.364, Figure 3a) and between the PWI and control women (R2Y = 0.363,
Q2 = −0.360, Figure 3b). No separation was observed between ITPW and PWI
(Figure 3c). The Venn diagram of the indicators (p < 0.05) depicts a significant reduc-
tion in the indicator of difference when comparing ITPW vs. PWI to NPWI vs. control
women, decreasing from 90 to 3 (Figure 3d).
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(NPWI, red) groups. (b) Score plots of the supervised OPLS−DA model. Control (yellow) and
pregnant women without infertility (PWI, green) groups. (c) Score plots of the supervised OPLS−DA
model. infertility-treated pregnant women (ITPW, blue) and PWI (green) groups. (d) Venn dia-
gram of the indicators (p < 0.05) between ITPW vs. PWI (pink) and NPWI vs. control women
(gray). (e) Pathway analysis of significant metabolite changes between control group and NPWI
group. (f) Pathway analysis of significant metabolite changes between control group and PWI group.
(g) Pathway analysis of significant metabolite changes between control group and ITPW group.
(h) Venn diagram of the pathways with significant changes between ITPW vs. control women and
PWI (gray) vs. control women (pink).

3.3. Metabolic Pathways

Maternal physiological and metabolic processes are markedly affected during preg-
nancy [25]. Using enrichment and pathway analyses, the metabolic pathways correspond-
ing to the differential metabolites (variable importance in the projection [VIP] > 1.0) were
derived. According to the Human Metabolome Database, differential metabolites are
involved in various metabolic pathways. The SMPDB differential pathway analysis com-
paring NPWI and control women, showed that the serine-glycine metabolism, the urea
cycle, ammonia recycling, and other pathways were the most differentiated pathways
(Figure 3e). The SMPDB pathway analysis comparing PWI and control women showed that
the urea cycle and carnitine synthesis were the most differentiated pathways (Figure 3f).
The SMPDB pathway analysis comparing ITPW and control women showed that the urea
cycle and carnitine synthesis pathways were also the most differentiated (Figure 3g). Venn
plots of differential metabolic pathways obtained by comparing PWI and ITPW with control
women showed that the differential metabolic pathways were the same in the PWI and
ITPW groups (Figure 3h). Similar results were obtained with KEGG pathway analysis,
where 93.55% of the differential metabolic pathways were identical when comparing the
PWI and ITPW groups with control women.

3.4. Performance Evaluation of Candidate Indices Using Classification Algorithm

Potential biomarkers for NPWI and PWI were cross screened based on differences in
AAs, carnitine, and other clinical indicator expression levels, using three methods. Seven
indicators [octenoyl carnitine (C8:1), anti-Müllerian hormone (AMH), Pip, Gln, C4/C3,
Gln/Cit, and arginine/ornithine (Arg/Orn)] were selected as biomarkers of NPWI, with
all being significantly lower (p < 0.0001) than in control women (Figure 4a). Ten indicators
(number of neutrophils, lymphocyte percentage, neutrophil percentage, C0, albumin, urea
(BU), creatinine, Orn/Cit, Glu/Cit, and C8:1) were selected as biomarkers for PWI, with all
being significantly lower (p < 0.0001) than those in control women (Figure 4b). Additionally,
Ala, Gly, C3/C16, and uric acid (UA) were selected to attempt to distinguish between
PWI and ITPW; however, no significant differences were observed in the four indicators
(Figure 4c), suggesting that they cannot be used to distinguish ITPW from PWI.

Eight classifier algorithms were implemented to guarantee the effectiveness of the
diagnostic models established by candidate indicators. The ROC, sensitivity, specificity,
and accuracy of the model obtained from the training set of the seven indices selected for
the NPWI and control groups were >0.956, 82.89, 66.64, and 82.57, respectively (Table 1 and
Figure 4d). The ROC, sensitivity, specificity, and accuracy of the model verified using the
test set were >0.896, 77.67, 69.72, and 83.38, respectively (Table 1 and Figure 4e). For PWI
and control women, the ROC, sensitivity, specificity, and accuracy of the model obtained
using the 10 specific indicators in the training set were >0.994, 96.23, 97.79, and 97.69%,
respectively (Table 2 and Figure 4f). The ROC, sensitivity, specificity, and accuracy of the
model verified using the test set were >0.572, 96.39, 93.03, and 94.71, respectively (Table 2
and Figure 4g). For PWI and ITPW, the ROC, sensitivity, specificity, and accuracy of the
model obtained in the training set of the four different indices were >0.956, 82.28, 7.41, and
62.37%, respectively (Table 3 and Figure 4h). However, the ROC, sensitivity, specificity,
and accuracy of the model verified using the test set were >0.514, 64.87, 4.03, and 31.84,
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respectively (Table 3 and Figure 4i). The modeling of these four indicators cannot be used
to distinguish between PWI and ITPW.

Figure 4. (a) C8:1, AMH, Pip, Gln, C4/C3, Gln/Cit, and Arg/Orn levels in NPWI and control women.
(b) NEUT#, LYMPH%, NEUT%, C0, ALB, BU, CRE, Orn/Cit, Glu/Cit, and C8:1 levels in PWI and
control groups. (c) Ala, Gly, C3/C16, and UA levels in the PWI and ITPW groups. (d) Receiver
operating characteristic (ROC) curves of the model obtained from the training set of the seven
different indices selected for NPWI and control women. (e) ROC curves of the model obtained from
the verified set of the seven different indices selected for NPWI and control women. (f) ROC curves
of the model obtained from the training set of the 10 different indices selected for the PWI and control
women. (g) ROC curves of the model obtained from the verified set of the 10 different indices selected
for the PWI and control women. (h) ROC curves of the model obtained from the training set of the
four different indices selected for the PWI and ITPW. (i) ROC curves of the model obtained from the
verified set of the four different indices selected for the PWI and ITPW. Abbreviations: C8:1, octenoyl
carnitine; AMH, anti-Müllerian hormone; Pip, piperidine, Gln, glutamine; C4, butyryl carnitine; C3,
propionyl carnitine; Cit, citrulline; Arg, arginine, Orn, ornithine; NEUT#, number of neutrophils;
LYMPH%, lymphocyte percentage; NEUT%, neutrophil percentage; C0, free carnitine; ALB, albumin;
BU, urea; CRE, creatinine; Glu, glutamic acid; Ala, alanine; Gly, glycine; C16, hexadecanoyl carnitine;
UA, uric acid. ****, p < 0.0001.

3.5. Selected Indices as Independent Predictors of Infertility in Women

To further explore the potential value of the candidate infertility biomarkers, binary
logistic regression modeling was performed to determine whether the seven indicators
predicted the occurrence of infertility in women (Table S4). The ratios of the occurrence
of infertility in women for each one-unit increase in C8:1, AMH, and Arg/Orn were
50.610 (95% confidence interval [CI]: 2.601–984.879; p = 0.010), 1.522 (95% CI: 1.191–1.945;
p = 0.001), and 128.985 (95% CI: 12.963–1283.447; p = 0.000), respectively. Additionally, the
OR for each unit increase in C4/C3 was 0.680 (95% CI: 0.495–0.954; p = 0.025).
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Table 1. Evaluation of the model for NPWI and control.

Algorithms Sensitivity Specificity Accuracy PPV NPV MCC AUC

AdaBoost
Training set 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.995 (0.986–1.000)

Test set 97.60% 97.45% 97.51% 97.58% 97.45% 95.03% 0.990 (0.978–1.000)

XGBoost
Training set 97.24% 99.33% 98.24% 99.41% 97.02% 96.50% 0.994 (0.984–1.000)

Test set 92.16% 95.78% 93.76% 95.87% 91.82% 87.81% 0.988 (0.974–1.000)

DT
Training set 99.80% 99.77% 99.79% 99.81% 99.79% 99.58% 0.995 (0.986–1.000)

Test set 91.61% 94.26% 92.52% 94.53% 91.14% 85.76% 0.931 (0.898–0.964)

KNN
Training set 82.89% 93.85% 88.07% 93.79% 83.10% 76.81% 0.956 (0.930–0.982)

Test set 77.67% 90.23% 83.43% 90.27% 78.16% 68.16% 0.896 (0.856–0.936)

LR
Training set 92.31% 89.67% 91.08% 90.90% 91.32% 82.10% 0.957 (0.931–0.983)

Test set 90.31% 86.24% 87.97% 87.99% 88.50% 76.51% 0.945 (0.916–0.974)

GNB
Training set 96.86% 66.64% 82.57% 76.44% 94.95% 67.32% 0.957 (0.931–0.983)

Test set 96.17% 69.72% 83.38% 77.79% 94.26% 68.87% 0.951 (0.923–0.979)

RF
Training set 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.995 (0.986–1.000)

Test set 96.89% 94.93% 95.84% 95.27% 96.52% 91.80% 0.991 (0.979–1.000)

SVM
Training set 92.33% 94.29% 93.26% 94.78% 91.69% 86.54% 0.963 (0.939–0.987)

Test set 90.21% 94.94% 92.13% 95.02% 89.36% 84.76% 0.953 (0.926–0.980)

Table 2. Evaluation of the model for PWI and control.

Algorithms Sensitivity Specificity Accuracy PPV NPV MCC AUC

AdaBoost
Training set 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.995 (0.986–1.000)

Test set 99.13% 97.21% 98.23% 97.62% 99.13% 96.54% 0.993 (0.982–1.000)

XGBoost
Training set 98.88% 99.14% 99.01% 99.10% 98.92% 98.02% 0.994 (0.984–1.000)

Test set 96.44% 95.50% 96.02% 95.71% 96.73% 92.19% 0.990 (0.977–1.000)

DT
Training set 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.995 (0.986–1.000)

Test set 96.65% 93.03% 94.71% 93.46% 96.49% 89.81% 0.947 (0.917–0.977)

KNN
Training set 96.23% 99.12% 97.69% 99.09% 96.39% 95.41% 0.993 (0.982–1.000)

Test set 94.44% 98.22% 96.44% 98.14% 95.11% 92.96% 0.988 (0.974–1.000)

LR
Training set 99.12% 97.79% 98.46% 97.83% 99.11% 96.92% 0.994 (0.984–1.000)

Test set 99.13% 97.21% 98.23% 97.62% 99.13% 96.54% 0.992 (0.980–1.000)

GNB
Training set 98.24% 98.45% 98.35% 98.46% 98.25% 96.70% 0.994 (0.984–1.000)

Test set 96.39% 98.08% 97.34% 98.42% 96.83% 94.86% 0.991 (0.979–1.000)

RF
Training set 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.995 (0.986–1.000)

Test set 96.44% 97.21% 96.91% 97.62% 96.83% 94.05% 0.995 (0.986–1.000)

SVM
Training set 99.77% 99.34% 99.56% 99.34% 99.79% 99.12% 0.994 (0.984–1.000)

Test set 98.26% 96.55% 97.33% 96.47% 98.26% 98.26% 0.989 (0.975–1.000)
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Table 3. Evaluation of the model for PWI and ITPW.

Algorithms Sensitivity Specificity Accuracy PPV NPV MCC AUC

AdaBoost
Training set 94.02% 84.26% 90.19% 90.23% 90.11% 79.30% 0.967 (0.943–0.991)

Test set 64.87% 33.02% 52.15% 60.10% 37.78% −2.12% 0.514 (0.429–0.599)

XGBoost
Training set 90.69% 56.89% 77.43% 76.52% 79.83% 51.76% 0.852 (0.799–0.905)

Test set 77.04% 33.52% 59.72% 64.34% 47.89% 11.36% 0.550 (0.466–0.634)

DT
Training set 87.88% 67.64% 79.84% 81.84% 81.86% 59.15% 0.858 (0.806–0.910)

Test set 75.69% 31.84% 31.84% 62.97% 49.81% 9.68% 0.557 (0.473–0.641)

KNN
Training set 82.28% 57.56% 72.58% 75.02% 67.89% 41.34% 0.778 (0.713–0.843)

Test set 71.89% 37.88% 58.07% 64.63% 45.40% 9.83% 0.581 (0.498–0.664)

LR
Training set 87.80% 22.93% 62.37% 63.81% 55.33% 14.30% 0.630 (0.550–0.710)

Test set 87.56% 20.51% 61.34% 62.90% 58.74% 13.17% 0.585 (0.502–0.668)

GNB
Training set 88.06% 28.44% 64.65% 65.61% 60.33% 20.65% 0.645 (0.566–0.724)

Test set 87.39% 25.69% 63.49% 64.76% 55.16% 16.07% 0.584 (0.501–0.667)

RF
Training set 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.995 (0.986–1.000)

Test set 72.01% 23.84% 52.67% 58.97% 38.51% −3.44% 0.528 (0.443–0.613)

SVM
Training set 99.10% 7.41% 63.17% 62.42% 0.572 (0.489–0.655)

Test set 96.59% 4.03% 60.23% 60.97% 0.528 (0.443–0.613)

4. Discussion

Many couples struggle with infertility, with the risk of infertility reportedly equal
among males and females [26,27]. The causes of infertility include genetic, hormonal, and
environmental factors [28,29]. However, the cause of infertility remains unknown in ca. 30%
of couples [30]. Extensive clinical work and research has been conducted on the treatment
and diagnosis of infertility; however, additional research is necessary.

During pregnancy, the maternal body undergoes a series of changes, including changes
in metabolism and immunity [31]. For example, large granular lymphocytes are reduced
significantly during late pregnancy [32], concentrations of biochemical analytes are al-
tered [33], activity of the complement system increases [34], and coagulation parameters
and micronutrient concentrations change [35,36]. In the present study, the differences in
AA and carnitine levels were more significant in PWI than in the control, consistent with
previous reports [37]. However, the mechanisms and roles of altered AA and carnitine
metabolism during pregnancy remain unclear. C0, Orn/Cit, Glu/Cit, and C8:1 were the
indicators we screened that were significantly associated with pregnancy outcomes and
significantly different from normal controls. Manta-Vogli PD et al. found that carnitine
is abnormally active in the intermediate metabolism of pregnant women and newborns,
and the conclusion that intake of long chain polyunsaturated fatty acids during pregnancy
plays a beneficial physiological and metabolic role in the health of offspring [38] also
demonstrates the importance of our screening indicators in pregnancy.

Our study also found that AA and carnitine metabolism were altered significantly
in infertility. Cross-analysis with three screened methods and binary logistic regression
modeling analysis revealed C8:1, Arg/Orn, and AMH with the greatest differences in
the NPWI group that were also high-risk factors for disease, C4/C3 was low-risk factors
for disease. In summary, AA and carnitine metabolism disorders play crucial roles in
infertility development. However, few studies have reported on the differences in the AA
and carnitine metabolism between PWI and ITPW, and on the effects of altered AA and
carnitine metabolism during pregnancy in women with infertility. This study showed that
the metabolic changes in ITPW were not significantly different from those in PWI. The
proteomic results also showed a significant reduction in the indicator of difference when
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comparing polycystic ovary syndrome (PCOS) vs. control [39] with PCOS pregnancies vs.
PWI [40], decreasing from 126 to 35, which also validates our conclusions. All these results
suggest that gestation may remodel the AA and carnitine metabolism of women with infer-
tility, thereby correcting the internal environment of women with infertility to that of PWI.
In our study, we found that C8:1 is not only significantly correlated with both pregnancy
outcome and infertility outcome, but also an indicator of significant difference compared
with normal controls, indicating the importance of C8:1, but its role and application in the
pathogenesis and treatment of infertility still need to be further investigated.

Monitoring hormonal changes during menstruation and ovulation is complex and
not an integral part of routine care [41]. Clinical treatment is initiated only after several
unsuccessful attempts. By that time, many couples may pass their optimal childbearing
age [42]. Consequently, fertility treatments may become ineffective. The construction of
a simple, convenient, and efficient prediction model that can be implemented in daily
clinical practice remains necessary and clinically challenging. Junovich et al. reported that
endometrial CD16+ natural killer (NK) cells, interleukin-6, and vascular endothelial growth
factor were good parameters for the diagnosis of unexplained infertility [43], whereas
He et al. reported that NK cells might be a potential predictor of women with PCOS
(AUC = 0.69) [44]. However, the sensitivity, accuracy, convenience, and speed of infertility
diagnosis can still be improved. The diagnostic model in this study was effective for the
diagnosis of female infertility and pregnancy. We believe that the sensitivity and specificity
of our model are significantly higher than those of conventional biochemical parameters
and most reported parameters.

This study had several limitations. First, only a few samples from a single hospital
were included, which may introduce a certain bias. Second, all the pregnant women in
our study had a gestational age >8 weeks because it takes at least 4–5 weeks to confirm
pregnancy, and pregnant women who go to the hospital for pregnancy tests are usually at
more than five weeks of gestation. Therefore, including pregnant women whose gestational
age is <8 weeks is difficult. This requires further studies to determine whether there
are trends. In the follow-up study, we will recruit more pregnant women including all
gestational weeks from multiple centers to further verify the effectiveness of our model.

5. Conclusions

In this study, targeted metabolomics was used to analyze the concentrations of 22 AAs,
55 carnitines, and their differences in the NPWI, PWI, ITPW, and NPW groups. The find-
ings suggest that the gestational process may remodel the AA and carnitine metabolism
in women with infertility, thereby correcting the internal environment of women with
infertility to that of PWI. Moreover, relatively simple models were established with good
performance and high sensitivity that may facilitate the early detection of infertility, en-
abling timely diagnosis and treatment within the optimal reproductive window.
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