UC Irvine

UC Irvine Previously Published Works

Title

Vertical partitioning of CO2 production within a temperate forest soil

Permalink

https://escholarship.org/uc/item/88g0x067

Journal

Global Change Biology, 13(4)

ISSN

1354-1013

Authors

DAVIDSON, ERIC A SAVAGE, KATHLEEN E TRUMBORE, SUSAN E et al.

Publication Date

2007

DOI

10.1111/j.1365-2486.2007.01335.x

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

CORRIGENDUM

Vertical partitioning of CO₂ production within a temperate forest soil

ERIC A. DAVIDSON*, KATHLEEN E. SAVAGE*, SUSAN E. TRUMBORE† and WERNER BORKEN* \ddagger

*Woods Hole Research Center, PO Box 296, Woods Hole, MA 02543, USA, †Department of Earth Systems Science, University of California, Irvine, CA 92697-3100, USA, ‡Department of Soil Ecology, University of Bayreuth, 95448 Bayreuth, Germany

Eqn (6) of this paper (*Global Change Biology,* **12**, 944–956), which appeared on p. 947, contained a typographical error. The correct equation is as follows:

$$C_z = [C_\infty \times (1 - e^{-az})] + 0.04,$$
 (6)

where C_z is the CO₂ concentration (percent by volume) at depth z (cm), C_{∞} is the fitted asymptote of CO₂ concentration at infinite depth, "a" is a fitted parameter that characterizes the sharpness of the curve, and 0.04 is the approximate concentration of CO₂ at the soil surface.

Eqn (7) of this paper, which appeared on p. 947, also contained a typographical error. The correct equation is as follows:

$$Flux = D_P \times dC/dz \times (52700/T), \tag{7}$$

where the flux is expressed as $g \, C \, m^{-2} \, h^{-1}$, 52 700 is a units conversion factor, T is the soil air temperature in Kelvin, D_P is the effective diffusivity from Eqn (3), and dC/dz is the concentration gradient at depth estimated from Eqn (8).