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Niels A. Taatgen (n.a.taatgen@rug.nl)
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Groningen 9747 AG Netherlands

Abstract

The  primitive  elements  of  skill  theory  proposes  a  set  of
approximately  2000  primitive  information  processing
elements (PRIMs) (Taatgen, 2013) that compose all cognitive
acts by combining and recombining to produce learning and
transfer.  By  this  theory,  learning  is  transfer  and  transfer
results  from learning as  the primitive  elements  combine  to
form new elements based on task demands and these more
complex  elements  are  reused  later  in  learning  (thereby
producing increase in skill) and repurposed by different tasks
(thereby  producing  transfer).  We  illustrate  PRIMs  in  this
paper by producing two models of the Balance Beam Task
(BBT) and of the Take the Best heuristic (TTB).  Although
BBT  and  TTB  do  not,  on  the  surface,  possess  much  in
common, when run in a transfer paradigm (TTB-to-BBT or
BBT-to-TTB)  each  model  harvests  PRIMs  created  by  its
predecessor, thereby demonstrating positive transfer.

Keywords: Balance  Beam;  Take  the  Best;  ACTransfer;
primitive information processing elements (PRIMs)

Introduction
For  decades  cognitive  scientists  have  been  studying  the
amazing phenomenon of learning.  Many researchers  have
developed theories and models of skill acquisition, but none
have  fully  captured  the mechanism behind  learning.  This
illusive  concept  not  only  covers  the  development  and
refinement of a single isolated skill, but also the influence of
previous experience and its influence on future learning.

Ever  since  Thorndike  and  Woodworth's  (1901)  formal
introduction  of  the  concept,  transfer  has  been  a  topic
touched on by numerous researchers. Some work in the field
includes Singley (1989) and, most recently, Taatgen (2013).

Besides  transfer  scientists  have  also  been  interested  in
peoples'  capacity  to  learn  and  reason  at  different  ages.
Inhelder  and  Piaget  (1958)  proposed  a  multi-stage  model
which has been supported by the results of many decision
making tasks (Siegler 1976, 1981). We decided to use these
stages in modeling Goldstein and Gigerenzer's (1996) Take
the Best heuristic in the form of a decision making task.

Both Piaget's Balance Beam Task (BBT) and Gigerenzer's
Take  The  Best  heuristic  (TTB)  have  been  a  focus  of
cognitive modeling (Van Rijn 2003, Nellen 2003). By using
Taatgen's ACTransfer modeling framework (Taatgen, 2013)
we  can  create  models  for  both  BBT  and  TTB and  then
analyze the transfer between them.

We  chose  these  two  tasks  because  they  both  produce
distinct behaviors depending on the developmental stage of
the  subject.  Specifically,  the  way  in  which  multiple
dimensions are handled changes depending on which stage
the subject is currently in.

If task-specific skills are guided by task-general strategies
we should see some of the general strategies being acquired
in one task transfer to another. We explore this hypothesis
by training on either the BBT and TTB task to see whether
prior  training  on  one  seemingly  unrelated  task  improves
performance on the other. We can analyze both the transfer
between tasks, but also the transfer between stages within a
task.

At present, our work is free of empirical data and based
solely  on  the  concepts  and  parameters  of  ACTransfer.
Hence,  what we present here are theory-based predictions
free of parameter tuning to empirical data.

Balance Beam Task
The balance beam task has been a focus of study for many
years. This task was originally developed by Piaget (1958)
and  extensively  studied  by  Siegler  (1976,  1981),  among
many others. The task involves a subject (typically a child
around age 11) being shown a balance beam with a certain
number of equally massive weights on each side at certain
specific  distances  from the fulcrum,  with the beam being
held  from tipping  in  either  direction.  The subject  is  then
asked which direction the balance beam will fall (or if it will
stay balanced) upon release.  After the subject submits their
answer the beam is then allowed to tilt, showing the correct
answer.

The methods used by children performing this task were
said by Inhelder and Piaget to reflect developmental stages,
and  not  experience-based  changes  in  strategies.  However,
our immediate interest in this task is not with its history in
developmental  psychology  but  as  a  demonstration  of
general  transfer with the ACTransfer theory.  The 4 stages
are:

Stage 1 Subject only considers a single dimension (in this
case usually the number of weights on each side),
the subject  then makes a decision based on only
that factor.
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Stage 2 Subject considers various factors until one is found
to support an individual side or all known  factors
are considered and therefore must balance.

Stage 3 Subject considers all factors and chooses the side
with  the  most  number  of  supporting  factors
(guesses if it's a tie).

Stage 4 The value of each factor is added up (or multiplied
if they have been taught the torque rule), this is the
final  stage.  Multiplication  is  usually  not
considered,  unless  explicitly  taught,  because
addition so often  yields  the  correct  answer.  This
stage is not in the model.

Take The Best
Take the Best tasks (Gigerenzer, et al . 1996, 1999) involve
a subject  being given two options along with facts  about
each, and then choosing the best option. An example of this
is determining which city is larger, given a list of facts about
each.  Take  the  Best  can  be  used  as  a  time-pressured
algorithm that looks at the most important factors first. In
time-pressured situations it is important to make a decision
as quickly as possible, but there may not necessarily have a
hard  time  limit.  To  make  this  model  comparable  to  the
balance  beam  task  no  time-pressure  is  considered.  The
stages in this task are similar to that in the balance beam
task, except that in this task any number of dimensions can
be  considered  (in  this  model  we  restrict  it  to  three)  as
opposed to the balance beam's built-in limit of two. As well
as  the  difference  in  the  number  of  possible  dimensions,
Take  the  Best  only  has  three  stages  (opposed  to  balance
beam's four stages), these stages are:

Stage 1 Subject only considers first dimension and answers
based on that.

Stage 2  Subject  considers  a  sequence  of  new dimensions
until a fact which supports a single option is found.
If this evidence is not found and the list of known
dimensions  is  exhausted  than  the  subject  will
answer that all options are equal.

Stage 3 Subject considers all known dimensions and adds
together  how  many  dimensions  support  each
option.  Once  all  dimensions  are  analyzed  the
number of facts supporting each side are compared,
if equal it is answered that all options are equal.

Previous Models
Models have been made for both the Balance Beam Task
and Take  the  Best,  each  emphasizing their  own features.
The  closest  models  to  this  one  are  Van  Rijn's  (2003)
Balance Beam ACT-R model and Nellen's (2003) Take the
Best ACT-R model (because ACTransfer is built on top of
ACT-R). The Balance Beam Task has been focused on by
mostly  psychology  and  cognitive  science  while  Take  the

Best is used in artificial intelligence for decision making in
limited information, time-pressured environments.

ACTransfer
ACTransfer  (Taatgen,  2013)  is  a  cognitive  modeling

framework built on top of ACT-R, a widely used framework
in the field of computational cognitive modeling (Anderson,
2007). The purpose of ACTransfer is to model and measure
transfer  between  tasks.  For  example,  the  classically  used
cognitive  experiment  which  tested  typists  learning  to  use
different  text  editors,  and assessed how learning one task
influences how quickly one learns another, can be modeled
very well in this framework. ACTransfer is able to model
this phenomenon by breaking up traditional production rules
in  to  more  basic  generalized  elements  called  Primitive
Information Processing Elements (PRIMs). PRIMs come in
three different varieties, which all act upon slots in ACT-R's
buffers. One kind copies information between slots, another
kind compares two slots for equality, and the third writes to
the slots from declarative memory (Taatgen, 2013).

As each combination of PRIMs is used those connections
become stronger and faster, thus improving performance on
other tasks that share the same combination of PRIMs. Not
always do tasks that share PRIMs have surface similarities.
ACTransfer  has  shown  unexpected  connections  between
several tasks (Taatgen, 2013). However, it is fair to say that
the exploration of transfer between the TTB and BBT tasks
represents a minor milestone in the application of the theory
to predict general transfer.

ACTransfer models can be run to show the estimated time
to  complete  certain  tasks.  These  estimations  can  then  be
used  to  calculate  the  transfer  between  tasks  with  the
equation developed by Katona (1940).  In  basic terms, the
percent  transfer is the improvement on the task by trial  n
after  training  on  a  different  task,  divided  by  the
improvement on the task by trial n after training on the same
task. If Pl(1) is performance on that task on trial 1, and Pl(n)
is performance on trial n after performing that task on trials
1 through (n-1), and Pt(n) is performance on that task on
trial  n after performing a different task on trials 1 through
(n-1): %Transfer = ( ( Pl(1) – Pt(n) ) / ( Pl(1) – Pl(n) ) )  *
100.

Transfer  should  be  expected  between  any  models  that
share  similar  production  rules.  The  tasks  analyzed  here
mostly share actions such as memory retrieval (translating
data from the world into something usable by the model),
buffer  comparison (deciding if two values are equal),  and
response (an active response given by the model to choose
an option).  These rules  become more complex as in later
stages as illustrated by Figure 1 below.

Some similarities were unavoidable between the tasks, but
others were focused on by the modeler with the logic that a
single human would perform all of these tasks in a relatively
similar  way.  Nonetheless,  the  transfer  between  models
should be most representative of the similarities between the
tasks.
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The Model
The model created for this paper examines stages 1 through 
3 of the Balance Beam Task and stages 1 through 3 of the 
Take the Best task using the ACTransfer framework. While 
stage 3 of both tasks are theoretically the same, they are 
modeled differently. Because the balance beam task is only 
comparing two dimensions, no sense of counting or number 
comparison is used, only congruency between the last 
remembered dimension and the current dimension. The 
Balance Beam models also do not contain an internal list of 
properties (unlike the Take the Best models) because they 
only look at two dimensions. It is plausible that the Balance 
Beam models in general do not need any sort of list. A list 
may be unnecessary because all that's needed for their 
heuristics is just a memory of whether they retrieved a 
property yet. This model does not aim to include any of the 
nuanced between stage properties like no-feedback 
transitions, rather it only looks at transfer. What we hope to 
see is transfer between the models, showing that learning 
one of the previous stages helps in learning the next stage 
and/or the other task.

Balance Beam Task Implementation
The balance beam task is implemented with three distinct
stages. The first stage, which models the first psychological
stage  mentioned  earlier,  interacts  with  the  simulated
environment to observe the first property (semantically this
is weight, but the model has no concept of that). The model
then uses its declarative memory to retrieve the fact relevant
to that observation, which it answers upon. Every time any
of the models observes the environment they also perform
this  fact  retrieval,  the  logic  behind  it  being  that  an
observation by itself is not usable knowledge until parsed.

The second stage  of the balance beam model starts the
same  as  the  first,  except  it  does  not  always  answer
immediately. If the first property does not explicitly support
the left or right side falling (that the beam will balance) then
the  environment  is  queried  again  for  a  fact.  When  this
second fact is retrieved (it is recognized as the second by
virtue of its working memory being full) it is used to give
the  answer  (because  the  first  fact  must  necessarily  have
been 'balance').

Figure 1: A graph of the various PRIMs (small circles) connecting the various models (large
circles). (BB means Balance Beam Task)
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The third stage of the balance beam model works the same
way as the second stage, except that it always observes both
dimensions and does not immediately answer based on the
second  observation.  Instead  the  third  stage  uses  the
conditions of  its  production rules  to  determine if the two
dimensions  of  evidence  are  congruous  (in  which  case  it
answers  the side they suggest),  if one dimension suggests
'balance' (in which case it chooses the other dimension), or
if the evidence is incongruous (in which case it guesses the
answer).

Take The Best Implementation
For Take the Best, the first stage is similar to the first stage
of the Balance Beam model. The largest difference, for both
this stage and the rest of the Take the Best stages, being that
the model  observes  a  specific,  predetermined,  property in
the environment. This is different than the balance beam in
that the model actually specifies which fact it is observing
(rather  than  just  “the  next  fact”),  after  the  first  stage  the
model  must  use  declarative  and  working  memory  to
determine the next dimension.

The second stage acts with the same basic principle as the
balance beam's second stage, except instead of considering
only  two  dimensions  it  continuously  observes  new
dimensions  until  either  evidence  is  found  to  support  one
choice  over  the  other  or  its  list  of  known dimensions  is
exhausted. This stage could hypothetically consider any

number of dimensions, unlike stages 2 and 3 of the Balance
Beam model.

The  third  stage  of  the  Take  the  Best  model  is  more
involved than any of the other stages. Like stage 3 of the
Balance  Beam  model  it  considers  all  known  dimensions
before  deciding,  but  instead  of  being  able  to  just  store  a
single  dimension  in  working  memory  it  must  count  how
many pieces  of  evidence  it  observes  in  support  for  each
option. After the list of dimensions is exhausted it compares
the two numbers  in working memory to determine which
side has more evidence. In this model it can only count up
to three,  but with more facts in working memory it could
work on any number of dimensions.

Results
Using Katona's transfer equation stated earlier with an n of
101 we found the results shown in Table 2.

The leftmost column denotes which task the model was
trained on for the first 100 trials. The topmost row denotes
which task the model was tested on for the 101st trial, except
for  the  “no  training”  row  in  which  the  task  was  tested
without  any  prior  training  (for  the  purpose  of  getting  a
baseline).  The  “Difference”  rows  show  the  difference  in
time between the model attempting the task with no prior
training (the first row) and its attempt at the task after 100
trials of training (the task trained on is specified in the left-
most  column).  The  “Transfer”  rows  show  the  percent
transfer  derived  from  Katona's  equation.  For  the  stages

Table 2: Results of training and testing the model within and between tasks.
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testing  is  done  on  that  stage  only  (e.g.  Stage  3  Balance
Beam  Task  training  is  independent  of  training  any  other
stages, it simply means a completely fresh model was run
on  stage  3  for  100  trials  before  a  101st testing  trial  on
whatever condition was specified)

Analysis
In the Balance Beam Task, the 70% transfer between stage
1 and stage  2 indicates  that  learning stage  1 does indeed
help in learning stage  2,  similar  results  are seen  between
stage  2 and 3 with a  70% transfer.  The transfer  between
stages  1  and  3  is  only  49%  though,  showing  that  the
intermediate stage 2 clearly assists the transition.

Take  the  Best  shows  similar  results,  although  not  as
strongly. 36% transfer between stage 1 and 2 show that they
are related, but not as closely as the balance beam stages.
30% transfer between stage 2 and 3 show similar existent,
yet  weak results.  The mere 7% transfer  between stages  1
and 3 indicate that virtually no transfer occurs between the
two,  showing  again  that  stage  2  is  very  important  to
transition to the final stage.

Horizontal  transfer  between  tasks  is  not  symmetrical,
showing that  going from Take the Best  to Balance Beam
carries,  in general, higher transfer.  This suggests that take
Take the Best is a more complex task, which was expected
given the increased number of dimensions. Looking at each
stage individually, stage 1 carries the highest transfer with
43% going from the Balance Beam Task (BBT) to Take the
Best (TTB) and 50% going from BBT to TTB, again this is
reasonable given the simplicity and shared heuristics of the
two stages. Stage 2 is the second most closely associated,
with  30% transfer  in  either  direction.  Stage  3  shows the
largest  discrepancy in directionality with 15% going from
BBT  to  TTB and  27% going  from TTB to  BBT.  These
values  for  stage  3 could  be  explained  by the  addition  of
counting and comparing values in the Take the Best model.

An interesting result of this model is that there is more
transfer  between  Take  the  Best  and  Balance  Beam  at
equivalent stages than there is between Take the Best at any
particular stage and the next stage up. Notably,  this same
effect does not appear going from the Balance Beam Task to
Take the Best. This conclusion seems to support the idea of
a  unified  stage  of  development  in  one  sense.  This
conclusion can also be explained as Take the Best being a
task  that  has  stages  which  are  particularly  difficult  to
advance  through  and  the  Balance  Beam  Task  being
generally easier.

One of  the biggest  problems with this paper's  model is
that  some  stages  go  through  radically  different  paths  of
production rules depending on what kind of trial  they are
dealing  with.  For  example,  stage  2 in  both the tasks  can
either  be  very  quick,  requiring  a  look  at  only  the  first
dimension,  or  take  a  longer  time,  requiring  looking  at
multiple dimensions if the first dimension does not indicate
a specific option to choose. Because of this discrepancy the
model will encounter certain levels of difficulty much less

frequently than others, so the training on these rarer types of
trials would be much less developed.

Conclusion
These  models  show  how  important  intermediate

developmental  stages  are  to  the  development  of  decision
making. Expecting a child to jump from stage 1 to stage 3,
skipping  stage  2,  in  any  of  these  tasks  would  be
unreasonable given the increased ease of going through the
intermediate stage. Transfer between the tasks showed that
going from a more complicated task to a less complicated
one had the highest transferability, but initially learning the
less  complex  task  would  help  a  child  learn  the  more
complicated one, especially at earlier developmental stages.

ACTransfer  has  proven  itself  to  be  a  powerful  tool  in
exploring  learning  and  transfer  that  can  lead  to  some
surprising results. This framework could be used to support
ideas  such  as   Bavelier's  (2003)  notion  of  video  games
improving  certain  cognitive  functions.  It  would  be  no
surprise to see a task as complex as a video game to activate
a plethora of PRIMs which are also used in a number of
other tasks.

This  framework  could  also  push  forward  educational
entertainment. Perhaps instead of directly teaching children
the contents of traditional lesson plans we could use tasks
similar  to  activities  they willingly partake  in  during their
free  time.  Having  them learn  these  skills,  with  low-level
connections to the desired skill that is trying to be taught,
we could hide away rigorous practice in tasks that students
enjoy, possibly even without their knowledge.

We see ACTransfer as ushering in a new age of modeling
which could lead the way forward to discovering a whole
array  of  connections  between  tasks  that  we  never  knew
existed.  Once  these  connections  are  discovered  there  lies
endless  possibilities  for  skill  training  and  learning  in
general.
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