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Environmental Engineering, Cornell University, Ithaca, NY, USA cDepartment of Environmental 
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Abstract

There is increasing interest in using meta-omics association studies to investigate contaminant 

biotransformations. The general strategy is to characterize the complete set of genes, transcripts, or 

enzymes from in situ environmental communities and use the abundances of particular genes, 

transcripts, or enzymes to establish associations with the communities’ potential to biotransform 

one or more contaminants. The associations can then be used to generate hypotheses about the 

underlying biological causes of particular biotransformations. While meta-omics association 

studies are undoubtedly powerful, they have a tendency to generate large numbers of non-causal 

associations, making it potentially difficult to identify the genes, transcripts, or enzymes that cause 

or promote a particular biotransformation. In this perspective, we describe general scenarios that 

could lead to pervasive non-causal associations or conceal causal associations. We next explore 

our own published data for evidence of pervasive non-causal associations. Finally, we evaluate 

whether causal associations could be identified despite the discussed limitations. Analysis of our 

own published data suggests that, despite their limitations, meta-omics association studies might 

still be useful for improving our understanding and predicting the contaminant biotransformation 

capacities of microbial communities.

Why use meta-omics association studies?

Biotransformation mediated by environmental microbial communities is one of the most 

efficient mechanisms to reduce environmental exposure to chemical contaminants.1,2 Our 

ability to predict the potential of a microbial community to biotransform specific chemical 

contaminants is therefore important not only for chemical risk assessment3 but also for 

environmental engineering applications such as soil bioremediation, wastewater treatment, 

and drinking water production.4,5 Establishing the relationships between particular 

contaminant biotransformations and the genes or gene products (i.e., transcripts or enzymes) 

that cause or promote those biotransformations is important for understanding and predicting 

the biotransformation capacity of a complex microbial community.6,7
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Conventionally, establishing causal relationships between contaminant biotransformations 

and genes or gene products has been achieved by characterizing microorganisms in pure or 

enrichment cultures where the contaminant of concern serves as a growth substrate and the 

responsible genes or gene products could be directly enriched and characterized.8–10 An 

important limitation of this approach is that it is susceptible to culturing biases and can lead 

to the enrichment of microorganisms, genes, or gene products that are environmentally 

irrelevant.11 A second limitation is that the approach is often not appropriate for co-

metabolic contaminant biotransformations, which are likely important biotransformation 

mechanisms for trace organic contaminants.12,13 The main problem is that co-metabolic 

biotransformations do not support growth, thus making it challenging to directly enrich the 

responsible microorganisms, genes, and gene products. This problem also affects other 

recent methodological advances in the field of contaminant biotransformation research, such 

as stable isotope probing (SIP) or microautoradiography combined with fluorescence in situ 
hybridization (MAR-FISH). These methods rely on the incorporation of isotope-labelled 

compounds into new biomass14,15, and are therefore not likely to be helpful for identifying 

the biological determinants of co-metabolic biotransformations.

Given these limitations along with the increasing accessibility of high-throughput 

sequencing and mass spectrometry techniques, there is growing interest in using molecular 

data generated via meta-omics methodologies (i.e., methodologies that attempt to 

characterize the complete set of genes, transcripts, or enzymes of a community) to elucidate 

causal associations with biotransformations.16–20 The general strategy is to isolate and 

characterize aggregate DNA, RNA, or proteins from in situ environmental communities and 

use the abundances of genes or gene products to establish associations that reflect the 

communities’ potential for biotransforming one or more contaminants (referred to here as a 

meta-omics association study). In this context, we use the term “association” to refer to a 

statistical relationship between two variables, which may be described quantitatively (e.g., a 

linear or monotonic relationship) or qualitatively (e.g., a co-occurrence relationship). The 

associations can then be used to generate hypotheses about possible causal relationships 

between contaminant biotransformations and particular genes or gene products. Important 

advantages of meta-omics association studies are that they avoid culturing biases, do not 

require that the contaminants of interest be used as growth substrates, and may help to 

identify the responsible organisms.

Overarching challenge

While powerful, an important limitation of meta-omics association studies is that they 

typically invoke the principle of “guilt by association”. The principle can be illustrated as 

follows: consider a meta-omics association study that tests for associations between the rate 

of a particular contaminant biotransformation and the abundance of a particular gene or gene 

product. If a positive association is observed, then it generates the hypothesis that the 

associated gene or gene product causes or promotes that biotransformation. Further 

experiments are then required to explicitly test the validity of that hypothesis. While the 

principle of “guilt by association” is undoubtedly useful for particular types of 

investigations,21,22 we believe there are significant challenges when applying the principle 

to meta-omics association studies with microbial communities. Below we discuss three 
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potential limitations of the principle. We note that we do not consider limitations of a 

technical nature, such as inaccurate annotations of enzyme functions or insufficient 

sequencing depth. While these technical limitations may mask genuine associations or 

generate false associations, they have been discussed in detail elsewhere23. We instead focus 

on limitations that we believe are valid regardless of the quality or completeness of the 

metaome dataset, and are therefore likely to persist regardless of future technological 

advances.

Limitation 1: an association may reflect a genuine but non-causal 

relationship

A meta-omics association study could, in principle, generate large numbers of associations 

that are genuine (i.e., they are not Type I or false positive errors) but nevertheless do not 

emerge from causal relationships between specific genes or gene products and a particular 

contaminant biotransformation (we refer to these as genuine but non-causal associations). 

While genuine but non-causal associations are of value for certain types of ecological 

questions (e.g. assessing co-occurrence patterns and generating hypotheses about potential 

interactions), they are unlikely to help identify the genes or gene products that cause or 

promote a particular biotransformation. Instead, their presence could make it exceedingly 

difficult to experimentally validate which of the associated genes or gene products actually 

cause or promote the biotransformation of interest. Below we describe three general 

scenarios that could lead to the generation of genuine but non-causal positive associations 

(Fig. 1). We note that we do not discuss general scenarios that could generate genuine but 

non-causal negative associations. While negative associations are of value, they are unlikely 

to generate meaningful hypotheses about the genes or gene products that cause or promote a 

particular biotransformation. Thus, unless specifically stated, we use the term association to 

refer to a positive association for the remainder of this manuscript.

One general scenario is “intracellular hitchhiking” (Fig. 1A). Consider a microbial strain 

that carries a gene or gene product (designated as G1) that causes or promotes a particular 

contaminant biotransformation (Fig. 1A). Because G1 causes or promotes that 

biotransformation, we might expect a causal association between the abundance of G1 and 

the rate of that particular biotransformation (Fig. 1D; the relationship is depicted as linear 

for simplicity, but could be of any monotonic form). However, the same strain that carries G1 

likely carries many other genes or gene products (designated as G2 to Gn) that cause or 

promote entirely unrelated functions. For example, G2 might be an enzyme that 

biotransforms a different substrate but continues to be synthesized even when that substrate 

is not present within the cell’s local environment (i.e., the enzyme is constitutively 

expressed).24–26 The consequence is that, even though causal relationships do not exist 

between G2 to Gn and the biotransformation of interest, the co-occurrence of G2 to Gn and 

G1 within the same cell could generate large numbers of genuine but non-causal associations 

(Fig. 1D; the relationships are again depicted as linear for simplicity, but could be of any 

monotonic form). Considering that a single microbial strain typically carries several 

thousand genes and gene products, the size of G2 to Gn could be exceedingly large and 
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“intracellular hitchhiking” could result in far more genuine but non-causal associations than 

causal associations.

A second general scenario is “intercellular facilitation” (Fig. 1B). Consider again a microbial 

strain that carries G1 that causes or promotes a particular contaminant biotransformation 

(Fig. 1B). We might again expect an association between the abundance of G1 and the rate 

of that particular biotransformation (Fig. 1D). However, the same strain that carries G1 

might perform another function that positively affects the growth of a second microbial 

strain. For example, the strain that carries G1 might secrete a metabolite that promotes the 

growth of the second strain.27,28 If the second strain carries other genes or gene products 

(designated as G2 to Gn) that do not affect the biotransformation of interest, the abundances 

of G2 to Gn might nevertheless associate with the rate of that biotransformation even though 

they do not cause or promote that biotransformation (Fig. 1D). The result is again a 

potentially large number of genuine but non-causal associations. Moreover, for every 

additional “intercellular facilitation”, there is a new set of genuine but non-causal 

associations that could emerge by “intracellular hitchhiking”, thus leading to potentially 

large numbers of genuine but non-causal associations.

A third general scenario is “habitat co-occurrence” (Fig. 1C). Consider two different 

microbial strains that co-occur together in a particular habitat but do not otherwise interact 

with each other. For example, the two strains might be particularly well adapted to a specific 

environment such as plant root surfaces, arctic lakes, or hot springs. One strain carries gene 

or gene product G1 that causes or promotes a particular contaminant biotransformation while 

the other strain carries genes or gene products G2 to Gn that do not cause or promote that 

biotransformation. The consequence of habitat co-occurrence is that, while only G1 causes 

or promotes that biotransformation, genuine but non-causal associations could occur 

between the abundances of G2 to Gn and the rate of that biotransformation. This scenario is 

especially likely when meta-omics association studies are conducted across one or more 

environmental gradients, which is often the case.29 Moreover, for every additional co-

occurring strain there are again new sets of possible genuine but non-causal associations that 

could emerge by “intracellular hitchhiking” and “intercellular facilitation”, thus leading to 

even larger numbers of genuine but non-causal associations.

While the above arguments may appear pessimistic, we presented these arguments as if only 

one microbial strain carries G1, and therefore only one strain is responsible for a particular 

contaminant biotransformation. This may not be the typical case, and instead a large number 

of different strains might carry G1 and contribute to that particular contaminant 

biotransformation. If G1 were widely distributed among different strains (i.e., if there were 

many strains that carry G1), then this could prevent the emergence of some genuine but non-

causal associations. For example, consider intracellular hitchhiking. If many strains carry 

G1, but carry somewhat different compositions of G2 to Gn, then this could weaken or 

prevent the emergence of genuine but non-causal associations with any particular member of 

G2 to Gn. Therefore, it remains unclear, and most likely depends on the functions examined, 

how pervasive genuine but non-causal associations may be when using meta-omics 

association studies.
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To test for evidence of pervasive non-causal associations, we examined data from our own 

recent research on contaminant biotransformations by activated sludge communities. We 

performed a meta-transcriptome association study where we used readily available 

sequencing methodologies to quantify the associations between the abundances of 5200 

different transcripts and the biotransformation rate constants for atenolol among ten different 

wastewater treatment plant (WWTP) communities. All of the original data have been 

published elsewhere29–31 and are publically available (MG-RAST project number 6015 

using the SEED subsystems database and an e-value cutoff of 10−5). We reasoned that, if the 

three general scenarios described for Limitation 1 are pervasive, then the distribution of 

significant associations should be skewed towards positive associations (i.e., all three of the 

general scenarios generate genuine but non-causal positive associations). In contrast, if the 

three general scenarios described for Limitation 1 are no more pervasive than scenarios that 

could generate negative associations, then the distribution of significant associations should 

be distributed about zero (i.e., there should be an approximately equal number of positive 

and negative associations). Indeed, we observed data that is consistent with the former 

expectation. The distribution of correlation coefficients with the biotransformation rate 

constants for atenolol showed a clear bias towards positive values (Fig. 2A) and the mean 

value of 0.16 was significantly greater than zero (P < 10−16; one-tailed, one-sample student’s 

t-test). Moreover, when we randomized the biotransformation rate constants of atenolol 

across the ten WWTPs and recalculated the correlation coefficients, the distribution of 

correlation coefficients was centered about zero (Fig. 2B) and the mean was not significantly 

different from zero (P > 0.05; two-tailed, one-sample student’s t-test). These outcomes 

therefore provide support that the three general scenarios described for Limitation 1 are of 

potential concern and may indeed generate significant numbers of genuine but non-causal 

associations.

Limitation 2: a causal relationship may not result in an association

Another typical assumption of the “guilt by association” principle is that a causal 

relationship between a gene or gene product and a biotransformation must lead to a positive 

association between the abundance of that gene or gene product and the rate of that 

biotransformation. However, this need not necessarily be true. Below we identify three 

general scenarios whereby a causal relationship between a gene or gene product and a 

biotransformation might not result in a positive association (Fig. 3).

One general scenario is uncontrolled biological variation (Fig. 3A). As an illustrative 

example, consider a situation where there are two variants of the enzyme G1 (designated G1a 

and G1b) that catalyze a particular contaminant biotransformation, but each variant is 

expressed preferentially in different microbial communities (Fig. 3A). If the catalytic 

activities of G1a and G1b were identical, then we would expect an association between the 

total abundance of G1 (i.e., the sum of G1a and G1b) and the rate of that particular 

biotransformation among the different microbial communities (Fig. 3B; the relationships are 

depicted as linear for simplicity, but could be of any monotonic form). However, if the 

catalytic activity of G1a were greater than that of G1b, then the association between the total 

abundance of G1 and the rate of that particular biotransformation may weaken or, in an 

extreme case, disappear (Fig. 3B; although community B expresses large numbers of G1b, it 
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has a low biotransformation rate because of the poor catalytic activity of G1b). Such a 

scenario is biologically plausible, as different variants of the same class of enzymes can have 

surprisingly different catalytic activities.32

A second general scenario is that the abundance of the catalytic enzyme does not determine 

the rate of a particular contaminant biotransformation (Fig. 3C). Instead, other factors may 

determine the rate of that particular biotransformation. For example, the rate might be 

determined by the accumulation of metabolic intermediates within the cell that repress the 

activity of the catalytic enzyme (i.e., product inhibition).24 In this case, the rate might be 

determined by the abundance of downstream enzymes that consume the intermediates (Fig. 

3C, enzyme G2). Alternatively, the rate might be determined by the availability of co-factors 

required for enzyme activity33 or by the transport of the contaminant into the cell.34 For all 

of these cases, the abundance of the genes or gene products for the catalytic enzyme may not 

associate with the rate of that particular biotransformation (Fig. 3D), regardless of the fact 

that the catalytic enzyme causes that particular biotransformation.

Finally, a third general scenario is that proportional relationships might not exist between 

different levels of genetic information processing, enzyme synthesis, and enzyme activity. A 

wide range of transcriptional, translational, and post-translational regulation mechanisms are 

known that may prevent the number of genes, transcripts, or enzymes from associating with 

enzyme activities.35 In other words, two communities with identical abundances of a 

particular gene or enzyme might nevertheless have substantially different enzyme activities. 

In extreme cases, these regulatory mechanisms could completely prevent an association from 

emerging between the abundances of genes or gene products and enzyme activities.

Limitation 3: multiple comparisons

In our view, a single aspect of meta-omics exemplifies both an important potential and a 

major peril of meta-omics association studies; meta-omics methodologies can quantify the 

abundances of many thousands of different genes and gene products in parallel. The 

potential is that we can test for associations between the abundances of an unprecedented 

number of genes or gene products and the rate of a particular contaminant 

biotransformation, thus enabling highly comprehensive explorations when there are no a 
priori expectations of the responsible genes or gene products. For example, using our own 

data, we could test whether each of the approximately 5200 different transcripts associates 

with the biotransformation rate constants for atenolol. The peril, however, is that we create 

an enormous multiple hypothesis testing problem. Multiple hypothesis testing occurs when 

one uses the same dataset (in this case a metatranscriptome dataset) to test more than one 

hypothesis. Consider a scenario where we want to test for associations between the 

abundances of individual genes or gene products and the rate of a particular 

biotransformation at a significance level of 0.05. If we test for associations with 20 different 

genes or gene products, then we would expect one false association (20 tests × 0.05 

significance level). However, if we test for associations with 5200 individual genes or gene 

products, then we would expect 260 false associations (5200 tests × 0.05 significance level). 

Thus, the number of false associations could far exceed the number of genuine associations. 

How then do we separate false associations from genuine associations?
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The conventional approach to address this problem is to adjust the required significance 

level for multiple hypothesis testing. The simplest (but among the least powerful) method is 

the Bonferroni correction, which controls the family-wise error rate.36 As an illustrative 

example, assume that we want to test each individual hypothesis at a significance level of 

0.05. In order to maintain this individual significance level after multiple hypothesis testing, 

we would define an effective required significance level as the desired significance level for 

an individual hypothesis test divided by the number of hypotheses tested. Thus, if the 

desired significance level for an individual hypothesis test is 0.05, then the effective required 

significance level is 0.05/5200 or 9.6 × 10−6.

Unfortunately, most meta-omics association studies with microbial communities do not 

analyze sufficient numbers of independent samples (designated as n) to obtain P-values that 

are equal to or smaller than this value. As a concrete example, we measured the correlation 

coefficients between the abundances of each of the 5200 transcripts from our previous study 

and the rate of ammonia removal (available for nine of the ten activated sludge 

communities37). In this case, we had prior knowledge that the abundance of ammonia 

monooxygenase transcripts causally associated with the rate of ammonia removal.30 Given 

this prior knowledge, we asked the following question: for the association between the 

number of ammonia monooxygenase transcripts and the rate of ammonia removal, how 

many independent activated sludge metatranscriptomes (n) would we have had to sequence 

in order for the correlation coefficient to be significant after accounting for multiple 

hypothesis testing? We can readily estimate this because the P-value solely depends on the 

magnitude of the correlation coefficient and n. We specified the desired P-value at 9.6 × 

10−6 and measured the magnitude of the correlation coefficient (rho = 0.78, unpublished 

data), thus leaving n as the only unknown variable. We found that n = 24, which means that 

we would have had to sequence at least 24 activated sludge metatranscriptomes for the 

correlation coefficient, and thus the known causal association, to be statistically significant. 

While sequencing the metatranscriptomes of 24 activated sludge communities is within the 

capabilities of some environmental microbiology laboratories, it far exceeds the amount of 

sequencing that is typically generated for most studies in the field. If this level of sequencing 

were not accessible, then studies must rely more heavily on careful experimental design, 

sample selection, and data processing to maximize the accuracy of quantifications, and thus 

generate stronger associations.

A future perspective for meta-omics association studies?

All of the above limitations may theoretically impede the use of meta-omics associations 

studies to identify causal relationships between micropollutant biotransformations and genes 

or gene products. We therefore queried our own data with atenolol biotransformation to 

investigate whether, despite these limitations, we could observe patterns that pointed towards 

causal relationships. In our experiments, WWTP communities quantitatively transformed 

atenolol into atenolol acid via primary amide hydrolysis.30 When sorting the correlation 

coefficients between transcript abundances and atenolol biotransformation rate constants by 

their significance level (i.e., their P-values), we found a cluster of highly significant 

associations with gene transcripts encoding different urease subunits as well as transcripts 

encoding other parts of the urea cycle (i.e., urea ABC transporters, urea carboxylases, and 
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urea carboxylase-related transporters/permeases). In total, we found 13 urea cycle-related 

transcripts among 281 transcripts that had significant associations (P < 0.05, without 

correcting for multiple hypothesis testing). In contrast, we only found seven urea cycle-

related transcripts in the remaining 4952 transcripts that did not have significant 

associations. Urease catalyzes the hydrolysis of urea (a primary amide) to ammonium and 

CO2. It is therefore plausible that urease might also catalyze the reaction of atenolol to 

atenolol acid. Indeed, we found positive and monotonic associations between the atenolol 

biotransformation rate constants and the gene transcripts encoding the alpha and gamma 

subunits of urease (Fig. 4; Spearman rank correlation tests, P < 0.007). However, the final 

establishment of causality would require further experiments targeting the specific genes or 

gene products through, e.g., loss-of-function genetic manipulations or characterizations of 

purified enzymes.

In summary, our own data indicate that, despite the above limitations, meta-omics 

association studies might indeed allow us to uncover candidate genes or gene products that 

are likely to cause or promote specific micropollutant biotransformations. If combined with 

rational approaches to limit the number of candidate genes, e.g., based on a comparison of 

reaction similarity with known enzymatic reactions38,39 to limit the number of hypotheses 

that are tested, we believe that meta-omics association studies are a promising approach to 

understand and predict variability in contaminant biotransformation performance among 

different microbial communities.
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Water impact

One of the main challenges in contaminant biotransformation research is to identify the 

genes or gene products that cause or affect particular biotransformations. Meta-omics 

association studies are rapidly gaining attention as a possible approach to address this 

challenge, but meta-omics association studies have inherent limitations of both technical 

and biological natures. While the technical limitations have been discussed in detail (e.g., 
accuracy of functional annotations, sequencing depth, etc.), the biological limitations 

remain largely unaddressed. In this perspective manuscript, we describe general 

biological scenarios that could prevent meta-omics association studies from identifying 

the genes or gene products that cause particular contaminant biotransformations. We next 

explore our own published data to test the relevance of the discussed biological scenarios. 

We finally synthesize our findings and present our perspective about the potential of 

meta-omics investigations to investigate contaminant biotransformations in the face of 

their inherent biological limitations.
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Fig. 1. 
Possible scenarios that could generate genuine but non-causal positive associations. G1 is a 

gene or gene product that causes or promotes a particular biotransformation of interest while 

G2–Gn are genes or gene products that perform unrelated functions. There are at least three 

plausible scenarios whereby the abundances of G2–Gn could associate with the rate of that 

particular biotransformation, including (A) intracellular hitchhiking, (B) intercellular 

facilitation, and (C) habitat co-occurrence. (D) Each of these three plausible scenarios could 

generate genuine but non-causal positive associations. While we use linear positive 

associations for illustrative purposes, any monotonic positive association could occur.
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Fig. 2. 
Distribution of correlation coefficients for the associations between atenolol 

biotransformation rate constants and transcript abundances. Frequency distribution of 

Spearman rank correlation coefficients (A) between transcript abundances and the measured 

atenolol biotransformation rate constants among the ten activated sludge communities 

sourced; and (B) between transcript abundances and the randomly scrambled atenolol 

biotransformation rate constants. Transcript abundances were obtained from the 

metatranscriptome association study described in the text.
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Fig. 3. 
Possible scenarios that could prevent a causal association from emerging. G1 is a gene or 

gene product that catalyzes a particular biotransformation of interest. There are at least two 

plausible scenarios whereby the abundance of G1 might not associate with the rate of that 

particular biotransformation. (A) Uncontrolled biological variation, such as differences in 

the catalytic activities of different enzyme variants (G1a and G1b), could affect the 

association. (B) The association may be positive or may disappear completely depending on 

the relative catalytic activities of the different variants of G1. While we use linear 
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associations for illustrative purposes, any monotonic association could occur. (C) The 

catalytic enzyme might not determine the rate of a particular biotransformation. In these 

scenarios, the shaded elements indicate potential alternative determinants of the rate of a 

particular biotransformation. (D) This would result in no association.
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Fig. 4. 
Associations between the rarified abundances of urease transcripts and the biotransformation 

rate constants of atenolol. Each data point is for one individual wastewater treatment plant 

community. Open squares are for the urease alpha subunit and the filled squares are for the 

urease beta subunit. The first-order biotransformation rate constants were normalized to total 

suspended solids (TSS).
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