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ABSTRACT

Disease mapping is an important statistical tool used by epidemiologists to assess geographic varia-
tion in disease rates and identify lurking environmental risk factors from spatial patterns. Such maps
rely upon spatial models for regionally aggregated data, where neighboring regions tend to exhibit
similar outcomes than those farther apart. We contribute to the literature on multivariate disease
mapping, which deals with measurements on multiple (two or more) diseases in each region. We
aim to disentangle associations among the multiple diseases from spatial autocorrelation in each dis-
ease. We develop Multivariate Directed Acyclic Graphical Autoregression (MDAGAR) models to
accommodate spatial and inter-disease dependence. The hierarchical construction imparts flexibility
and richness, interpretability of spatial autocorrelation and inter-disease relationships, and compu-
tational ease, but depends upon the order in which the cancers are modeled. To obviate this, we
demonstrate how Bayesian model selection and averaging across orders are easily achieved using
bridge sampling. We compare our method with a competitor using simulation studies and present
an application to multiple cancer mapping using data from the Surveillance, Epidemiology, and End
Results (SEER) Program.

Keywords: Areal data analysis; Bayesian hierarchical models; Directed acyclic graphical autoregression; Multiple
disease mapping; Multivariate areal data models.

1 Introduction

Spatially-referenced data comprising regional aggregates of health outcomes over delineated administrative units such
as counties or zip codes are widely used by epidemiologists to map mortality or morbidity rates and better understand
their geographic variation. Disease mapping, as this exercise is customarily called, employs statistical models to
present smoothed maps of rates or counts of a disease. Such maps can assist investigators in identifying lurking risk
factors (Koch, 2005) and in detecting “hot-spots” or spatial clusters emerging from common environmental and socio-
demographic effects shared by neighboring regions. By interpolating estimates of health outcome from areal data onto
a continous surface, disease mapping also generates smoothed maps for the small-area scale, adjusting for the sparsity
of data or low population size (Berke, 2004; Richardson et al., 2004).
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For a single disease, there has been a long tradition of employing Markov random fields (MRFs) (Rua and Held, 2005)
to introduce conditional dependence for the outcome in a region given its neighbors. Two conspicuous examples are
the Conditional Autoregression (CAR) (Besag, 1974; Besag et al., 1991) and Simultaneous Autoregression (SAR)
models (Kissling and Carl, 2008) that build dependence using undirected graphs to model geographic maps. More
recently, Datta et al. (2018) proposed a class of Directed Acyclic Graphical Autoregressive (DAGAR) models as a pre-
ferred alternative to CAR or SAR models in allowing better identifiability and interpretation of spatial autocorrelation
parameters.

Multivariate disease mapping is concerned with the analysis of multiple diseases that are associated among themselves
and across space. It is not uncommon to find substantial associations among different diseases sharing genetic and
environmental risk factors. Quantification of genetic correlations among multiple cancers have revealed associations
among several cancers including lung, breast, colorectal, ovarian and pancreatic cancers (Lindström et al., 2017).
Disease mapping exercises with lung and esophageal cancers have also evinced associations among them (Jin et al.,
2005). When the diseases are inherently related so that the prevalence of one in a region encourages (or inhibits)
occurrence of the other on the same unit, there can be substantial inferential benefits in jointly modeling the diseases
rather than fitting independent univariate models for each disease (see, e.g., Knorr-Held and Best, 2001; Kim et al.,
2001; Gelfand and Vounatsou, 2003; Carlin et al., 2003; Held et al., 2005; Jin et al., 2005, 2007; Zhang et al., 2009;
Diva et al., 2008; Martinez-Beneito, 2013; Marí-Dell’Olmo et al., 2014).

Broadly speaking, there are two approaches to multivariate areal modeling. One approach builds upon a linear trans-
formations of latent effects (see, e.g., Gelfand and Vounatsou, 2003; Carlin et al., 2003; Jin et al., 2005; Zhu et al.,
2005; Martinez-Beneito, 2013; Bradley et al., 2015). A different class emerges from hierarchical constructions (Jin
et al., 2005; Daniels et al., 2006) where each disease enters the model in a given sequence. Here, we build a class of
multivariate DAGAR (MDAGAR) models for multiple disease mapping by building the joint distribution hierarchi-
cally using univariate DAGAR models. We build upon the idea in Jin et al. (2005) of constructing GMCAR models,
but with some important modifications. As noted in Jin et al. (2005), the order in which the new diseases enter the
hierarchical model specifies the joint distribution. Therefore, every ordering produces a different GMCAR model,
which leads to an explosion in the number of models even for a modest number of cancers (say, more than 2 or 3
diseases). Alternatively, joint models that are invariant to ordering are constructed using linear transformations of
latent random variables (Jin et al., 2007). However, these models are cumbersome and computationally onerous to fit
and interpreting spatial autocorrelation becomes challenging.

Our current methodological innovation lies in devising a hierarchical MDAGAR model in conjunction with a bridge
sampling algorithm (Meng and Wong, 1996; Gronau et al., 2017) for choosing among differently ordered hierarchical
models. The idea is to begin with a fixed ordered set of cancers, posited to be associated with each other and across
space, and build a hierarchical model. The DAGAR specification produces a comprehensible association structure,
while bridge sampling allows us to rank differently ordered models using their marginal posterior probabilities. Since
each model corresponds to an assumed conditional dependence, the marginal posterior probabilities will indicate the
tenability of such assumptions given the data. Epidemiologists, then, will be able to use this information to establish
relationships among the diseases and spatial autocorrelation for each disease.

The balance of this paper proceeds as follows. Section 2 develops the hierarchical MDAGAR model and introduces
a bridge sampling method to select the MDAGAR with the best hierarchical order. Section 3 presents a simulation
study to compare the MDAGAR with the GMCAR model and also illustrates the bridge sampling algorithm’s efficacy
in selecting the “true” model. Section 4 applies our MDAGAR to age-adjusted incidence rates of four cancers from
the SEER database and discusses different cases with respect to predictors. Finally, in Section 5, we summarize some
concluding remarks and suggest promotion in the future research.

2 Methods

2.1 Overview of Univariate DAGAR Modeling

Let G = {V, E} be a graph corresponding to a geographic map, where V = {1, 2, . . . , k} is a fixed ordering of the
vertices of the graph representing clearly delineated regions on the map, and E = {(i, j) : i ∼ j} is the collection
of edges between the vertices representing neighboring pairs of regions. We denote two neighboring regions by ∼.
The DAGAR model, proposed by Datta et al. (2018), builds a spatial autocorrelation model for a single outcome on G
using an ordered set of vertices in V . Let N(1) be the empty set and let N(j) = {j′ < j : j′ ∼ j}, where j ∈ V \{1}.
Thus, N(j) includes geographic neighbors of region j′ that precede j in the ordered set V . Let {wi : i ∈ V} be a
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collection of k random variables defined over the map. DAGAR specifies the following autoregression,

w1 = ε1; wj =
∑

j′∈N(j)

bjj′wj′ + εj , j = 2, . . . , k , (1)

where εj
ind∼ N(0, λj) with the precision λj , and bjj′ = 0 if j′ 6∈ N(j). This implies that w ∼ N(0, τQ(ρ)), where

Q(ρ) is a spatial precision matrix that depends only upon a spatial autocorrelation parameter ρ and τ is a positive scale
parameter. The precision matrixQ(ρ) = (I −B)>F (I −B),B is a k × k strictly lower-triangular matrix and F is
a k × k diagonal matrix. The elements ofB and F are denoted by bjj′ and λj , respectively, where

bjj′ =

{
0 if j′ /∈ N(j) ;

ρ
1+(n<j−1)ρ2 if j = 2, 3, . . . , k , j′ ∈ N(j) and λj =

1 + (n<j − 1)ρ2

1− ρ2
j = 1, 2 . . . , k , (2)

n<j is the number of members in N(j) and n<1 = 0. The above definition of bjj′ is consistent with the lower-
triangular structure of B because j′ /∈ N(j) for any j′ ≥ j. The derivation of B and F as functions of a spatial
correlation parameter ρ is based upon forming local autoregressive models on embedded spanning trees of subgraphs
of G (Datta et al., 2018).

2.2 Motivating multivariate disease mapping

There is a substantial literature on joint modeling of multiple spatially oriented outcomes, some of which have been
cited in the Introduction. While it is possible to model each disease separately using a univariate DAGAR, hence inde-
pendent of each other, the resulting inference will ignore the association among the diseases. This will be manifested
in model assessment because the less dependence among diseases that a model accommodates, the farther away it will
be from the joint model in the sense of Kullback-Leibler divergence.

More formally, suppose we have two mutually exclusive sets A and B that contain labels for diseases. Let yA and
yB be the vectors of spatial outcomes over all regions corresponding to the diseases in set A and set B, respectively.
A full joint model p(y), where y =

(
y>A ,y

>
B

)>
, can be written as p(y) = p(yA) × p(yB |yA). Let C1 and C2 be

two nested subsets of diseases in A such that C2 ⊂ C1 ⊂ A. Consider two competing models, p1(y) = p(yA) ×
p(yB |yC1) and p2(y) = p(yA) × p(yB |yC2), where p1(·) and p2(·) are probability densities constructed from
the joint probability measure p(·) by imposing conditional independence such that p(yB |yA) = p(yB |yC1) and
p(yB |yA) = p(yB |yC2

), respectively. Both p1(·) and p2(·) suppress dependence by shrinking the conditional set A,
but p2(·) suppresses more than p1(·). We show below that p2(·) is farther away from p(·) than p1(·).

A straighforward application of Jensen’s inequality yields EB|C1

[
log

p(yB |yC1
)

p(yB |yC2
)

]
≥ 0, where EB |C1

[·] denotes the

conditional expectation with respect to p(yB |yC1
). Therefore,

KL(p‖p2)− KL(p‖p2) = EA,B
[
log

(
p(y)

p2(y)

)
− log

(
p(y)

p2(y)

)]
= EA,B

[
log

p1(y)

p2(y)

]
= EA,B

[
log

p(yB |yC1
)

p(yB |yC2)

]
= EB,C1

[
log

p(yB |yC1)

p(yB |yC2
)

]
= EC1

{
EB |C1

[
log

p(yB |yC1)

p(yB |yC2
)

]}
≥ 0 .

(3)

The equality EA,B [·] = EB,C1
[·] in the last row follows from the fact that the argument is a function of diseases in B,

C1 and C2 and, hence, in B and C1 because C2 ⊂ C1. The argument given in (3) is free of distributional assumptions
and is linked to the submodularity of entropy and the “information never hurts” principle; see Cover and Thomas
(1991) and, more specifically, Eq.(18) in Banerjee (2020). Apart from providing a theoretical argument in favor of
joint modeling, (3) also notes that models built upon hierarchical dependence structures depend upon the order in
which the diseases enter the model. This motivates us to pursue model averaging over the different ordered models in
a computationally efficient manner.

2.3 Multivariate DAGAR Model

Modeling multiple diseases will introduce associations among the diseases and spatial dependence for each disease.
Let yij be a disease outcome of interest for disease i in region j. For sake of clarity, we assume that yij is a continuous
variable (e.g., incidence rates) related to a set of explanatory variables through the regression model,

yij = x>ijβi + wij + eij , (4)

3
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where xij is a pi×1 vector of explanatory variables specific to disease i within region j, βi are the slopes correspond-

ing to disease i, wij is a random effect for disease i in region j, and eij
ind∼ N(0, (σ2

i )−1) is the random noise arising
from uncontrolled imperfections in the data.

Part of the residual from the explanatory variables is captured by the spatial-temporal effect wij . Let wi =
(wi1, wi2, . . . , wik)> for i = 1, 2, . . . , q. We adopt a hierarchical approach (see, e.g., Jin et al., 2005), where we
specify the joint distribution of w = (w>1 ,w

>
2 , . . . ,w

>
q )> as p(w) = p(w1)

∏q
i=2 p(wi |w<i). We model p(w1)

and each of the conditional densities p(wi |w<i) with w<i = (w>1 , . . . ,w
>
i−1)> for i ≥ 2 as univariate spatial

models. The merits of this approach include simplicity and computational efficiency while ensuring that richness in
structure is accommodated through the p(wi |w<i)’s.

We point out two important distinctions from Jin et al. (2005): (i) instead of using conditional autoregression or CAR
for the spatial dependence, we use DAGAR; and (ii) we apply a computationally efficient bridge sampling algorithms
Gronau et al. (2017) to compute the marginal posterior probabilities for each ordered model. The first distinction
allows better interpretation of spatial autocorrelation than the CAR models. The second distinction is of immense
practical value and makes this approach feasible for a much larger number of outcomes. Without this distinction,
analysts would be dealing with q! models for q diseases and choose among them based upon a model-selection metric.
That would be overly burdensome for more than 2 or 3 diseases. Details follow.

2.4 A conditional multivariate DAGAR (MDAGAR) model

The multivariate DAGAR (or MDAGAR) model is constructed as
w1 = ε1; wi = Ai1w1 +Ai2w2 + · · ·+Ai,i−1wi−1 + εi for i = 2, 3, . . . , q , (5)

where εi ∼ N(0, τiQ(ρi)) and τiQ(ρi) are univariate DAGAR precision matrices with B and F as in (2). In (5) we
model w1 as a univariate DAGAR and, progressively, the conditional density of each wi given w1, . . . ,wi−1 is also
as a DAGAR for i = 2, 3, . . . , q.

Each disease has its own distribution with its own spatial autocorrelation parameter. There are q spatial autocorrelation
parameters, {ρ1, ρ2, . . . , ρq}, corresponding to the q diseases. Given the differences in the geographic variation of
different diseases, this flexibility is desirable. Each matrix Aii′ in (5) with i′ = 1, . . . , i − 1 models the association
between diseases i and i′. We specifyAii′ = η0ii′Ik + η1ii′M , whereM is the binary adjacency matrix for the map,
i.e., mjj′ = 1 if j′ ∼ j and 0 otherwise. Coefficients η0ii′ and η1ii′ associate wij with wi′j and wi′j′ . In other words,
η0ii′ is the diagonal element inAii′ , while η1ii′ is the element in the j-th row and j′th column if j′ ∼ j. Therefore, for
the joint distribution ofw, ifA is the kq×kq strictly block-lower triangular matrix with (ii′)-th block beingAii′ = O
whenever i′ ≥ i and ε = (ε>1 , . . . , ε

>
q )>, then (5) renders w = Aw + ε.

Since I − A is still lower triangular with 1s on the diagonal, it is non-singular with det(I − A) = 1. Writing
w = (I −A)−1ε, where ε ∼ N(0,Λ) and the block diagonal matrix Λ has τ1Q(ρ1), . . . , τqQ(ρq) on the diagonal,
we obtain w ∼ N(0,Qw) for ρ = (ρ1, . . . , ρq)

> with

Qw = (I −A)>Λ(I −A) . (6)
We say that w follows MDAGAR if w ∼ N(0,Qw). Interpretation of ρ1, . . . , ρq is clear: ρ1 measures the spatial
association for the first disease, while ρi, i ≥ 2, is the residual spatial correlation in the disease i after accounting for
the first i− 1 diseases. Similarly, τ1 is the spatial precision for the first disease, while τi, i ≥ 2, is the residual spatial
precision for disease i after accounting for the first i− 1 diseases.

2.4.1 Model Implementation

We extend (4) to the following Bayesian hierarchical framework with the posterior distribution p(β,w,η,ρ, τ ,σ |y)
proportional to

p(ρ)× p(η)×
q∏
i=1

{
IG(1/τi | aτ , bτ )× IG(σ2

i | aσ, bσ)×N(βi |µβ ,V −1β )
}

×N(w |0,Qw)×
q∏
i=1

k∏
j=1

N(yij |x>ijβi + wij , 1/σ
2
i ) , (7)

where β = (β>1 ,β
>
2 , . . . ,β

>
q )>, τ = {τ1, τ2, . . . , τq}, σ = {σ2

1 , σ
2
2 , . . . , σ

2
q} and η = {η2,η3, . . . ,

ηq} with ηi = (η>i1,η
>
i2, . . . ,η

>
i,i−1)> and ηii′ = (η0ii′ , η1ii′)

> for i = 2, . . . , q and i′ = 1, . . . , i − 1. For vari-
ance parameters 1/τi and σ2

i , IG(· | a, b) is the inverse-gamma distribution with shape and rate parameters a and b,

4
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respectively. For each element in ηi we choose a normal prior N(µij , σ
2
ηij ), while the prior N(w |0,Qw) can also be

written as

p(w|τ ,η2, . . . ,ηq,ρ) ∝ τ
k
2
1 |Q(ρ1)| 12 exp

{
−τ1

2
w>1 Q(ρ1)w1

}
×

q∏
i=2

τ
k
2
i |Q(ρi)|

1
2 exp

{
−τi

2
(wi −

i−1∑
i′=1

Aii′wi′)
>Q(ρi)(wi −

i−1∑
i′=1

Aii′wi′)

}
, (8)

where det(Q(ρi)) =
∏k
j=1 λij , and wT

i Q(ρi)wi = λi1w
2
i1 +

∑k
j=2 λij(wij −

∑
j′∈N(j) bijj′wij′)

2.

We sample the parameters from the posterior distribution in (7) using Markov chain Monte Carlo (MCMC) with Gibbs
sampling and random walk metropolis (Gamerman and Lopes, 2006) as implemented in the rjags package within the
R statistical computing environment. Section S.6 presents details on the the MCMC updating scheme.

2.5 Model Selection via Bridge Sampling

It is clear from (5) that each ordering of diseases in MDAGAR will produce a different model. For the bivariate
situation, it is convenient to compare only two models (orders) by the significance of parameter estimates as well as
model performance. However, when there are more than two diseases involved in the model, at least six models (for
three diseases) will be fitted and comparing all models become cumbersome or even impracticable.

Instead, we pursue model averaging of MDAGAR models. Given a set of T = q! candidate models, say M1, . . . ,MT ,
Bayesian model selection and model averaging calculates

p(M = Mt|y) =
p(y|M = Mt)p(M = Mt)∑T
j=1 p(y|M = Mj)p(M = Mj)

, (9)

for t = 1, . . . , T (Hoeting et al., 1999). Computing the marginal likelihood p(y |Mt) in (9) is challenging. Methods
such as importance sampling (Perrakis et al., 2014) and generalized harmonic mean (Gelfand and Dey, 1994) have been
proposed as stable estimators with finite variance, but finding the required importance density with strong constraints
on the tail behavior relative to the posterior distribution is often challenging. Bridge sampling estimates the marginal
likelihood (i.e. the normalizing constant) by combining samples from two distributions: a bridge function h(·) and a
proposal distribution g(·) (Gronau et al., 2017). Let θt = {βt,σt,ρt, τt,η2,t, . . . ,ηq,t} be the set of parameters in
model Mt with prior p(θt |Mt) as defined in the first row of (7). Based on the identity,

1 =

∫
p(y|θt,Mt)p(θt|Mt)h(θt|Mt)g(θt|Mt)dθt∫
p(y|θt,Mt)p(θt|Mt)h(θt|Mt)g(θt|Mt)dθt

,

a current version of the bridge sampling estimator is

p(y|M = Mt) =
Eg(θt|Mt)[p(y|θt,Mt)p(θt|Mt)h(θt|Mt)]

Ep(θt|y,Mt)[h(θt|Mt)g(θt|Mt)]

≈
1
N2

∑N2

i=1 p(y|θ̃t,i,Mt)p(θ̃t,i|Mt)h(θ̃t,i|Mt)

1
N1

∑N1

j=1 h(θ?t,j |Mt)g(θ?t,j |Mt)

(10)

where θ?t,j ∼ p(θt |y,Mt), j = 1, . . . , N1, are N1 posterior samples and θ̃t,i ∼ g(θt|Mt), i = 1, . . . , N2, are N2

samples drawn from the proposal distribution (Gronau et al., 2017). The likelihood p(y |θt,M = Mt) is obtained by
integrating out w from (7) as

N(y |Xβ,
[
Q−1w (ρt, τt,η2,t, . . . ,ηq,t) + diag(σt)⊗ Ik

]−1
), (11)

given that y = (y>1 , . . . ,y
>
q )> with yi = (yi1, yi2, . . . , yik)>, diag(σ) is a diagonal matrix with σ2

i , i = 1, . . . , q, on
the diagonal, and X is the design matrix with Xi as block diagonal where Xi = (xi1,xi2, . . . ,xik)>. The bridge
function h(θt|Mt) is specified by the optimal choice proposed in Meng and Wong (1996),

h(θt|Mt) = C
1

s1p(y|θt,Mt)p(θt|Mt) + s2p(y|Mt)g(θt|Mt)
(12)

where C is a constant. Inserting (12) in (10) yields the estimate of p(y|M = Mt) after convergence of an iterative
scheme (Meng and Wong, 1996) as

p̂(y|Mt)
(t+1) =

1
N2

∑N2

i=1
l2,i

s1l2,i+s2p̂(y|Mt)(t)

1
N1

∑N1

j=1
1

s1l1,j+s2p̂(y|Mt)(t)

(13)

5
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where l1,j =
p(y|θ?t,j ,Mt)p(θ

?
t,j |Mt)

g(θ?t,j |Mt)
, l2,i =

p(y|θ̃t,i,Mt)p(θ̃t,i|Mt)

g(θ̃t,i|Mt)
, s1 = N1

N1+N2
and s2 = N2

N1+N2
.

Given the log marginal likelihood estimates from bridgesampling, the posterior model probability for each model
is calculated from (9) by setting prior probability of each model p(M = Mt). For Bayesian model averaging (BMA),
the model averaged posterior distribution of a quantity of interest ∆ is obtained as p(∆ |y) =

∑T
t=1 p(∆ |M =

Mt,y)p(M = Mt |y) (Hoeting et al., 1999), and the posterior mean is

E(∆ |y) =

T∑
t=1

E(∆ |M = Mt,y)p(M = Mt |y) . (14)

Setting ∆ = {β,w} fetches us the model averaged posterior estimates for spatial random effects as well as calculating
the posterior mean incidence rates as discussed in Section 4.

3 Simulation

We simulate two different experiments. The first experiment is designed to evaluate MDAGAR’s inferential perfor-
mance against GMCAR. The second experiment aims to ascertain the effectiveness of the bridge sampling algorithm
(2.5) in preferring models with a correct “ordering” of the diseases in the model.

3.1 Data generation

We compare MDAGAR’s inferential performance with GMCAR (Jin et al., 2005). We choose the 48 states of the
contiguous United States as our underlying map, where two states are treated as neighbors if they share a common
geographic boundary. We generated our outcomes yij using the model in (4) with q = 2, i.e., two outcomes, and two
covariates, x1j and x2j , with p1 = 2 and p2 = 3. We fixed the values of the covariates after generating them from
N(0, Ipi), i = 1, 2, independent across regions. The regression slopes were set to β1 = (1, 5)> and β2 = (2, 4, 5)>.

Turning to the spatial random effects, we generated values ofw =
(
w>1 ,w

>
2

)>
from a N(0,Qw) distribution, where

the precision matrix is

Qw =

[
τ1Q(ρ1) + τ2A

>
21Q(ρ2)A21 τ2A

>
21Q(ρ2)

τ2Q(ρ2)A21 τ2Q(ρ2)

]
. (15)

We set τ1 = τ2 = 0.25, ρ1 = 0.2 and ρ2 = 0.8 in (15) and takeQ(ρi) = D(ρi)
−1, whereD(ρi) = exp(−φid(j, j′)),

φi = − log(ρi) is the spatial decay for disease i and d(j, j′) refers to the distance between the embedding of the
jth and j′th vertex. The vertices are embedded on the Euclidean plane and the centroid of each state is used to
create the distance matrix. Using this exponential covariance matrix to generate the data offers a “neutral” ground
to compare the performance of MDAGAR with GMCAR. We specified A12 using fixed values of η = {η021, η121}.
Here, we considered three sets of values for η to correspond to low, medium and high correlation among diseases. We
fixed η = {0.05, 0.1} to ensure an average correlation of 0.15 (range 0.072 - 0.31); η = {0.5, 0.3} with an average
correlation of 0.55 (range 0.45 - 0.74); and η = {2.5, 0.5} with a mean correlation of 0.89 (range 0.84 - 0.94). We
generated wij’s for each of the above specifications for η and, with the values of wij generated as above, we generated
the outcome yij ∼ N(x>ijβi + wij , 1/σ

2
i ), where σ2

1 = σ2
2 = 0.4. We repeat the above procedure to replicate 85 data

sets for each of the three specifications of η.

For our second experiment we generate a data set with q = 3 cancers. We extend the above setup to include one more
disease. We generate yij’s from (4) with the value of x3j fixed after being generated from N(0, I3), β3 = (5, 3, 6)>

and σ2
3 = 0.4. Let [i, j, k] denote the model p(wi)× p(wj |wi)× p(wk |wj ,wi). For three diseases the six resulting

models are denoted asM1 = [1, 2, 3],M2 = [1, 3, 2],M3 = [2, 1, 3],M4 = [2, 3, 1],M5 = [3, 1, 2] andM6 = [3, 2, 1].

Each of the six models imply a corresponding joint distribution w ∼ N(0,Qw) which is used to generate the wij’s.
Let the parenthesized suffix (i) denote the disease in the ith order. For example, in M2 = [1, 3, 2], we write w in the
form of (5) as

w1 ∼ ε(1); w3 = A(21)w1 + ε(2); w2 = A(31)w1 +A(32)w3 + ε(3) ,

where ε(i) ∼ N(0, τ(i)Q(ρ(i))) withQ(ρ(i)) = D(ρ(i))
−1 as in the first experiment, andA(ii′) = η0(ii′)I+η1(ii′)M

is the coefficient matrix associating random effects for diseases in the ith and i′th order. We set τ(1) = τ(2) = τ(3) =
0.25, ρ(1) = 0.2, ρ(2) = 0.8, ρ(3) = 0.5, η0(21) = 0.5, η1(21) = 0.3, η0(31) = 1, η1(31) = 0.6, η0(32) = 1.5,
and η1(32) = 0.9 to completely specify Qw for each of the 6 models. For each Mi, we generate 50 datasets by first
generating w ∼ N(0,Qw) and then generating yij’s from (4) using the specifications described above.
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3.2 Comparisons between MDAGAR and GMCAR

In our first experiment we analyzed the 85 replicated datasets using (7) with

p(ρ)× p(η) ∝
q=2∏
i=1

{Unif(ρi | 0, 1)} ×N(η21 |0, 0.01I2) , (16)

where η21 = (η021, η121)> and Unif is the Uniform density. Prior specifications are completed by setting aτ = 2,
bτ = 8, aσ = 2, bσ = 0.4, µβ = 0, Vβ = 1000I in (7). Note that the same set of priors were used for both MDAGAR
and GMCAR as they have the same number of parameters with similar interpretations.

We compare models using the Widely Applicable Information Criterion (WAIC) (Watanabe, 2010; Gelman et al.,
2014) and a model comparison score D based on a balanced loss function for replicated data (Gelfand and Ghosh,
1998). Both WAIC and D reward goodness of fit and penalize model complexity. Details on how these metrics
are computed are provided in S.7. In addition, we also computed the average mean squared error (AMSE) of the
spatial random effects estimated from each of the 85 data sets. We found the mean (standard deviation) of the AMSEs
to be 1.69 (0.034) from the 85 low-correlation datasets, 1.47 (0.030) from the 85 medium-correlation datasets, and
2.35 (0.059) from the 85 high-correlation datasets. The corresponding numbers for GMCAR were 1.83 (0.033), 1.59
(0.031), and 2.14 (0.050), respectively. The MDAGAR tends to have smaller AMSE for low and medium correlations,
while GMCAR has lower AMSE when the correlations are high, although the differences are not significant. We
also compute the WAICs and D scores for each simulated data set. Figure 1 plots the values of WAICs ((a)–(c))
and D scores ((d)–(f)) for the 85 data sets corresponding to each of the three correlation settings. Here, MDAGAR
outperforms GMCAR in all three correlation settings with respect to both WAICs and D scores.
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Figure 1: Density plots for WAICs and D scores over 85 datasets. Density plots of WAIC for MDAGAR (blue) and
GMCAR (red) models with low, medium and high correlation are shown in (a), (b) and (c) respectively, while (d)–(f)
are the corresponding density plots for D scores. The dotted vertical line shows the mean for WAIC and D in each
plot.

Figure 2 presents scatter plots for the true values (x axis) of spatial random effects against their posterior estimates
(y axis). To be precise, each panel plots 85 × 48 × 2 = 8160 true values of the elements of the 96 × 1 vector w for
85 datasets against their corresponding posterior estimates. We see strong agreements between the true values and
their estimates for both MDAGAR and GMCAR. The agreement is more pronounced for the datasets corresponding to
medium and high correlations. For the low-correlation datasets, the agreement is clearly weaker although MDAGAR
does slightly better than GMCAR.
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Figure 2: Scatter plots for estimates of spatial random effects (y axis) against the true values (x axis) with 45◦ lines
over 85 datasets: (a)–(c) are estimates from MDAGAR model with low, medium and high correlation, while (d)–(f)
are the corresponding estimates from GMCAR.

We compute DKL(N(0,Qtrue)||N(0,Qw)) =
1

2

[
log

(
det(Qtrue)

det(Qw)

)
+ tr(QwQ

−1
true)− qk

]
, which is the

Kullback-Leibler Divergence between the model for w with the true generative precision matrix (Qtrue) and those
with MDAGAR and GMCAR precisions (Qw). Using the posterior samples in the precision matrix, we evaluate
the posterior probability thatDKL(N(0,Qtrue)||N(0,QMDAGAR)) is smaller thanDKL(N(0,Qtrue)||N(0,Qw)).
Figure S.5 depicts a density plot of these probabilities over the 85 data sets. When correlations are low and medium,
the MDAGAR has a mean probability of around 69% to be closer to the true model than the GMCAR, while for high
correlations GMCAR excels with an average probability of 72% to be closer to the true model. These findings are
consistent with the results of AMSE, where the GMCAR tended to perform better when the correlations are high.
Additional comparative diagnostics from MDAGAR and GMCAR such as coverage probabilities for parameters and
correlation between random effects for two diseases in the same state are presented in S.7.2.

3.3 Model selection for different disease orders

We now evaluate the effectiveness of the method in Section 2.5 at selecting the model with the correct ordering of
diseases. We used the bridgesampling package in R to compute p(Mi |y(n)) = maxt=1,...,6 p(Mt |y(n)) for each
of n = 50 × 6 data sets generated as described in Section 3.1. Table 1 presents the probability of each model being
selected for different true model scenarios. The probability of selecting the true model is shown in bold along the
diagonal. Our experiment reveals that bridge sampling is extremely effective at choosing the correct order. It was able
to identify the correct order between 80% to 90%, which is substantially larger than any of the probability of choosing
any of the misspecified models.

Table 1: Proportion of times (π(Mi)) bridge sampling chose the model with the correct order out of the 50 data sets
with that order.

True model π(M1) π(M2) π(M3) π(M4) π(M5) π(M6)
M1 0.90 0.00 0.10 0.00 0.00 0.00
M2 0.00 0.86 0.00 0.00 0.14 0.00
M3 0.14 0.00 0.86 0.00 0.00 0.00
M4 0.00 0.00 0.00 0.90 0.00 0.10
M5 0.00 0.22 0.00 0.00 0.78 0.00
M6 0.00 0.00 0.00 0.16 0.00 0.84
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4 Multiple Cancer Analysis from SEER

We now turn to an areal dataset with 4 different cancers using the MDAGAR model. The data set is extracted from the
SEER∗Stat database using the SEER∗Stat statistical software (National Cancer Institute, 2019). The dataset consists of
four cancers: lung, esophagus, larynx and colorectal, where the outcome is the 5-year average age-adjusted incidence
rates (age-adjusted to the 2000 U.S. Standard Population) per 100,000 population in the years from 2012 to 2016 across
58 counties in California, USA, as mapped in Figure S.6a. The maps exhibit preliminary evidence of correlation across
space and among cancers. Cutoffs for the different levels of incidence rates are quantiles for each cancer. For all four
cancers, incidence rates are relatively higher in counties concentrated in the middle northern areas including Shasta,
Tehama, Glenn, Butte and Yuba than those other areas. In general, northern areas have higher incidence rates than in
the southern part. This is especially pronounced for lung cancer and esphogus cancer. For larynx cancer, in spite of
the highest incidence rate concentrated in the north, the incidence rates in the south are mostly at the same high level.
For colorectal cancer, the edge areas at the bottom also exhibit high incidence rates.

Overall, counties with similar levels of incidence rates tend to depict some spatial clustering. We analyze this data set
using (7) with the following prior specification

p(η,ρ, τ ,σ,w) =

q∏
i=1

Unif(ρi | 0, 1)×
q∏
i=2

i−1∏
j=1

N(ηij | 0, 0.01I2)×
q∏
i=1

N(βi | 0, 0.001I)

×
q∏
i=1

IG(1/τi | 2, 0.1)×
q∏
i=1

IG(σ2
i | 2, 1)×N(w |0,Qw) . (17)

We also discuss a case excluding the risk factor (see Section S.8).

For covariates, we include county attributes that possibly affect the incidence rates, including percentages of residents
younger than 18 years old (youngij), older than 65 years old (oldij), with education level below high school (eduij),
percentages of unemployed residents (unempij), black residents (blackij), male residents (maleij), uninsured residents
(uninsureij), and percentages of families below the poverty threshold (povertyij). All covariates are common for
different cancers and extracted from the SEER∗Stat database (National Cancer Institute, 2019) for the same period,
2012 - 2016. Since cigarette smoking is a common risk factor for cancers, adult smoking rates (smokeij) for 2014–
2016 were obtained from the California Tobacco Facts and Figures 2018 database (California Department of Public
Health, 2018). Spatial patterns in the map of adult cigarette smoking rates, shown in Figure S.6b, are similar to the
incidence of cancers, especially lung and esophageal cancers, the highest smoking rates are concentrated in the north.
While some central California counties (e.g., Stanislaus, Tuolumne, Merced, Mariposa, Fresno and Tulare) also exhibit
high rates, although there is clearly less spatial clustering of the high rates than in the north.

Since the order of cancers in the DAG specify the model, we fit all 4! = 24 models using (7) and compute the marginal
likelihoods using bridge sampling (Section 2.5). By setting the prior model probabilities as p(M = Mt) = 1

24 for
t = 1, 2, . . . , 24, we compute the posterior model probabilities using (9). These are presented in Table S.5. We obtain
Bayesian model averaged (BMA) estimates using (14) with the weights in Table S.5. Among all models, model M10

is selected as the best model with the largest posterior probability 0.577 and the corresponding conditional structure is
[esophageal]× [larynx | esophageal]× [colorectal | esophageal, larynx]× [lung | esophageal, larynx, colorectal].

Table 2 is a summary of the parameter estimates including regression coefficients, spatial autocorrelation (ρi), spatial
precision (τi) and noise variance (σ2

i ) for each cancer. From M10 and BMA, we find the regression slopes for the
percentage of smokers and uninsured residents are significantly positive and negative, respectively, for esophageal
cancer. The negative association between percentage of uninsured and esophageal cancer may seem surprising, but
is likely a consequence of spatial confounding with counties exhibiting low incidence rates for esophageal cancer
having a relatively large number of uninsured residents (see top right in S.6a and the right most figure in S.6b).
Since esophageal cancer has low incidence rates, this association could well be spurious due to spatial confounding.
Percentage of smokers is, unsurprisingly, found to be a significant risk factor for lung cancer, while the percentage
of blacks seems to be significantly associated with elevated incidence of larynx cancer. In addition, we tend to see
that percentage of population below the poverty level has a pronounced association with higher rates of lung and
esophageal cancer.

Recall from Section 2.4 that ρ1 is the residual spatial autocorrelation for esophageal cancer after accounting for the
explanatory variables, while ρi for i = 2, 3, 4 are residual spatial autocorrelations after accounting for the explanatory
variables and the preceding cancers in the model M10. From Table 2 we see that esophageal cancer exihibits relatively
weaker spatial autocorrelation, while the residual spatial autocorrelations for larynx and colorectal cancers after ac-
counting for preceding cancers are both at moderate levels of around 0.5. Similarly for the spatial precision τi, larynx
appears to have the smallest conditional variability while that for colorectal and lung are slightly larger.
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Table 2: Posterior means (95% credible intervals) for parameters estimated from M10 and BMA estimates for regres-
sion coefficients only for the SEER four cancer dataset.

Parameters Model Esophageal Larynx Colorectal Lung
Intercept M10 16.76 (4.06, 29.56) 6.37 (-1.16, 13.89) 19.16 (-11.94, 49.72) 28.68 (-18.3, 74.93)

BMA 15.87 (2.92, 28.63) 6.85 (-0.71, 14.38) 18.21 (-14.03, 49.07) 28.25 (-18.12, 74.52)
Smokers (%) M10 0.25 (0.12, 0.37) 0.04 (-0.03, 0.12) 0.23 (-0.12, 0.57) 0.81 (0.08, 1.62)

BMA 0.23 (0.10, 0.36) 0.05 (-0.03, 0.12) 0.22 (-0.13, 0.58) 0.80 (0.08, 1.59)
Young (%) M10 -0.12 (-0.31, 0.07) -0.07 (-0.18, 0.04) 0.27 (-0.2, 0.76) -0.08 (-0.90, 0.74)

BMA -0.11 (-0.3, 0.08) -0.08 (-0.19, 0.03) 0.29 (-0.18, 0.78) -0.01 (-0.86, 0.82)
Old (%) M10 -0.11 (-0.25, 0.04) -0.05 (-0.14, 0.03) 0.10 (-0.28, 0.48) -0.09 (-0.81, 0.67)

BMA -0.10 (-0.25, 0.05) -0.05 (-0.14, 0.03) 0.10 (-0.29, 0.49) -0.08 (-0.79, 0.66)
Edu (%) M10 0.02 (-0.08, 0.12) -0.02 (-0.08, 0.04) 0.16 (-0.12, 0.43) -0.20 (-0.75, 0.31)

BMA 0.02 (-0.09, 0.12) -0.02 (-0.07, 0.04) 0.15 (-0.14, 0.42) -0.24 (-0.79, 0.27)
Unemp (%) M10 -0.13 (-0.29, 0.03) 0.01 (-0.08, 0.10) -0.09 (-0.54, 0.37) 0.60 (-0.47, 1.55)

BMA -0.12 (-0.28, 0.05) 0.01 (-0.08, 0.1) -0.08 (-0.54, 0.38) 0.61 (-0.43, 1.56)
Black (%) M10 0.14 (-0.06, 0.34) 0.14 (0.03, 0.26) -0.16 (-0.73, 0.39) 0.15 (-1.06, 1.29)

BMA 0.13 (-0.07, 0.33) 0.15 (0.03, 0.27) -0.18 (-0.75, 0.39) 0.14 (-1.02, 1.25)
Male (%) M10 -0.04 (-0.17, 0.09) 0.00 (-0.07, 0.08) 0.24 (-0.12, 0.60) 0.14 (-0.57, 0.79)

BMA -0.04 (-0.17, 0.09) 0 (-0.07, 0.08) 0.24 (-0.12, 0.62) 0.14 (-0.55, 0.82)
Uninsured (%) M10 -0.24 (-0.44, -0.04) -0.08 (-0.20, 0.04) 0.07 (-0.44, 0.58) 0.01 (-0.82, 0.86)

BMA -0.23 (-0.42, -0.02) -0.08 (-0.2, 0.04) 0.09 (-0.42, 0.61) 0 (-0.81, 0.82)
Poverty (%) M10 0.30 (-0.24, 0.84) 0.20 (-0.12, 0.51) -0.06 (-1.51, 1.45) 0.85 (-2.15, 3.85)

BMA 0.32 (-0.23, 0.87) 0.2 (-0.12, 0.51) -0.08 (-1.54, 1.42) 0.8 (-2.14, 3.75)
ρi M10 0.25 (0.01, 1.00) 0.33 (0.01, 0.96) 0.50 (0.03, 0.97) 0.52 (0.03, 0.99)
τi M10 25.27 (5.08, 61.57) 27.60 (8.05, 60.42) 19.97 (3.06, 55.61) 20.31 (1.77, 55.92)
σ2
i M10 1.67 (1.11, 2.47) 0.49 (0.28, 0.75) 8.22 (1.09, 14.23) 1.19 (0.18, 5.21)

For the posterior mean incidence rates and spatial random effects wij , we present estimates from model M10 and
BMA. Figure 3a and 3b are maps of posterior mean spatial random effects and model fitted incidence rates for four
cancers obtained from BMA, while Figure 3c and 3d show maps of those from model M10. The posterior mean
incidence rates from BMA and M10 are in accord with each other, and both present DAGAR-smoothed versions of
the original patterns in Figure S.6a. For posterior means of spatial random effects, in general, the estimates from
M10 are similar to model averaged estimates, especially for lung and colorectal cancers, exhibiting relatively large
positive values in the northern counties, where the incidence rates are high. However, for esophageal and larynx
cancers we see slight discrepancies between M10 and BMA in the north. The BMA estimates produce larger positive
random effects, ranging between 0.1 − 0.5, in most counties, while M10 produces estimates between 0 − 0.1 for
esophageal cancer. More counties with random effects larger than 0.1 are estimated from M10 for larynx cancer.
We believe this is attributable, at least in part, to another competitive model, M15 = [larynx]× [esophagus | larynx]×
[lung | larynx, esophagus]×[colorectal | larynx, esophagus, lung] (posterior probability 0.342), which contributes to the
BMA. On the other hand, the effects of some important county-level covariates play an essential role in the discrepancy
between the estimates of random effects and model fitted incidence rates for each cancer.

Recall from Section 2 that η0ii′ and η1ii′ reflect the associations among cancers that can be attributed to spatial
structure. Specifically, larger values of η0ii′ will indicate inherent associations unrelated to spatial structure, while
the magnitude of η1ii′ reflects associations due to spatial structure. Figure S.7 presents posterior distributions of η
for all pairs of cancers. We see from the distribution of η043 that there is a pronounced non-spatial component in the
association between lung and colorectal cancers. Similar, albeit somewhat less pronounced, non-spatial associations
are seen between larynx and esophageal cancers and between lung and larynx cancers. Analogously, the posterior
distributions for η143 and η132 tend to have substantial positive support suggesting substantial spatial cross-correlations
between lung and colorectal cancers and between colorectal and larynx cancers. Interestingly, we find negative support
in the posterior distributions for η121 and η142. The negative mass implies that the covariance among cancers within
a region is suppressed by strong dependence with neighboring regions. This seems to be the case for associations
between lung and esophageal cancers and between lung and larynx cancers.

We also present supplementary analysis that excludes adult smoking rates from the covariates, which we refer to
as “Case 2”. Figure S.8 shows estimated correlations between pairwise cancers in each of the 58 counties. The
top row presents the correlations including smoking rates (“Case 1”) as has been analyzed here. The bottom row
presents the corresponding maps for “Case 2”. Interestingly, accounting for smoking rates substantially diminishes
the associations among esophageal, colorectal and lung cancers. These are significantly associated in “Case 2” but
only lung and colorectal retain their significance after accounting for smoking rates.
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Figure 3: Maps of posterior results using BMA and the highest probabilty model M10 for lung, esophagus, larynx and
colorectal cancer in California including posterior mean spatial random effects and posterior mean incidence rates as
shown in (a) (b) for BMA and (c) (d) for M10;
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5 Discussion

We have developed a conditional multivariate “MDAGAR” model to estimate spatial correlations for multiple cor-
related diseases based on a currently proposed class of DAGAR models for univariate disease mapping, as well as
providing better interpretation of the association among diseases. We demonstrate that MDAGAR tends to outperform
GMCAR when association between spatial random effects for different diseases is weak or moderate. Inference is
competitive when associations are strong. MDAGAR retains the interpretability of spatial autocorrelations, as in uni-
variate DAGAR, separating the spatial correlation for each disease from any inherent or endemic association among
diseases. While MDAGAR, like all DAG based models, is specified according to a fixed order of the diseases, we
show that a bridge sampling algorithm can effectively choose among the different orders and also provide Bayesian
model averaged inference in a computationally efficient manner.

Our data analysis reveals that correlations between incidence rates for different cancers are impacted by covariates.
For example, eliminating adult cigarette smoking rates produces similar spatial patterns for the incidence rates of
esophageal, lung and colorectal cancer. In addition, the significant correlation between lung and esophageal cancer,
even after accounting for smoking rates, implies other inherent or endemic association such as latent risk factors
and metabolic mechanisms. We also see that the MDAGAR based posterior estimates of the latent spatial effects in
Figure 3a and 3c resemble those from an MDAGAR without covariates (Figure S.9), while the maps for the estimated
incidence rates in Figure 3b and 3d account for the spatial variability of the covariates.

Future challenges will include scalability with very large number of diseases because, as we have seen, the number
of models to be fitted grows exponentially with the number of diseases. One way to obviate this issue is to adopt
a joint modeling approach analogous to order-free MCAR models (Jin et al., 2007) that build rich spatial structures
from linear transformations of simpler latent variables. For instance, we can develop alternate MDAGAR models
by specifying w = Λf , where Λ is a suitably specified matrix and f is a latent vector whose components follow
independent univariate DAGAR distributions. This will avoid the order dependence, but the issue of identifying and
specifying Λ will need to be considered as will the interpretation of disease specific spatial autocorrelations.
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S.6 Algorithm for Model Implementation

We outline model implementation for (7) using Markov Chain Monte Carlo (MCMC). We update
{w,β,σ, τ ,η2, . . . ,ηq} using Gibbs steps, while the elements of ρ are updated from their full conditional distribu-
tions using Metropolis random walk steps (Robert and Casella, 2004). A particularly appealing feature of our proposed
MDAGAR model is that the spatial weight parameters η = {η2, . . . ,ηq} render Gaussian full conditional distributions
in addition to the customary Gaussian full conditional distributions for β andw. As a matter of notational convenience
for the derivations that follow, we use N(µ,V ) to denote the normal distribution with variance-covariance matrix V .
This difference from our notation in the main manuscript where we use the precision matrix in the argument of normal
distribution.

S.6.1 Full Conditional Distributions

The full conditional distribution for each βi is

βi|yi,wi, σ2
i ∼ N(Mimi,Mi) (S.18)

where Mi =
(

1
σ2
i
X>i Xi + 1

σ2
β
Ipi

)−1
and mi = 1

σ2
i
X>i (yi −wi). Similarly, the full conditional distribution of

each σ2
i follows an inverse gamma distribution,

σ2
i |yi,βi,wi ∼ IG

(
aσ +

k

2
, bσ +

1

2
(yi −Xiβi −wi)> (yi −Xiβi −wi)

)
. (S.19)

The full conditional distribution for wi for each i = 2, . . . , q − 1 is

p
(
wi |w1, . . . ,wi−1,wi+1,wi+1, . . . ,wq,yi,βi, σ

2
i ,ηi, . . . ,ηq, ρi, . . . , ρq, τi, . . . , τq

)
∝

q∏
n=i

exp

−τn2
(
wn −

n−1∑
i′=1

Ani′wi′

)>
Q (ρn)

(
wn −

n−1∑
i′=1

Ani′wi′

)
× exp

{
− 1

2σ2
i

(yi −Xiβi −wi)> (yi −Xiβi −wi)
}

(S.20)

which is equal to N(wi |Gigi,Gi), where

Gi =

[
τiQ(ρi) +

q∑
n=i+1

τnA
>
niQ(ρn)Ani +

1

σ2
i

Ik

]−1

and gi = τiQ(ρi)

i−1∑
n=1

Ainwn +

q∑
n=i+1

τnA
>
niQ(ρn)

wn − n−1∑
i′=1,i′ 6=i

Ani′wi′

+
1

σ2
i

(yi−Xiβi). For i = 1 and q,

we have

w1|w2, . . . ,wq,y1,β1, σ
2
1 ,η,ρ, τ ∼ N(G1g1,G1)

wq|w1, . . . ,wq−1,yq,βq, σ
2
1 ,ηq, ρq, τq ∼ N(Gqgq,Gq)
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, where

G1 =

(
τ1Q(ρ1) +

q∑
n=2

τnA
>
n1Q(ρn)An1 +

1

σ2
1

Ik

)−1
,

g1 = τ2A
>
21Q(ρ2)w2 +

q∑
n=3

τnA
>
n1Q(ρn)

(
wn −

n−1∑
i′=2

Ani′wi′

)
+

1

σ2
1

(y1 −X1β1),

Gq =

(
τqQ(ρq) +

1

σ2
q

Ik

)−1
gq = τqQ(ρq)

q−1∑
n=1

Aqnwn +
1

σ2
q

(yq −Xqβq).

The full conditional distribution of each τi is

τ1|w1, ρ1 ∼ G
(
aτ1 +

k

2
, bτ1 +

1

2
wT

1Q(ρ1)w1

)
,

τi|w1, . . . ,wi,ηi, ρi ∼ G

aτi +
k

2
, bτi +

1

2

(
wi −

i−1∑
i′=1

Ai,i′wi′

)>
Q(ρi)

(
wi −

i−1∑
i′=1

Ai,i′wi′

) ,

i = 2, 3, . . . , q

We now derive the full conditional distributions for the ηis. From (5) with i = 2, each element in w2 can be written
as w2j = η021w1j + η121

∑
j′∼j w1j′ + ε2j , where ε2j is the jth element in ε2. To extract η21 = (η021, η121)> from

the matrix A21, A21w1 is rewritten as Z1η21 where Z1 = (w1, ζ1) and ζ1 =
(∑

j′∼1 w1j′ , . . . ,
∑
j′∼k w1j′

)>
. In

general, Aii′wi′ = Zi′ηii′ with Zi′ = (wi′ , ζi′), where ζi′ =
(∑

j′∼1 wi′j′ , . . . ,
∑
j′∼k wi′j′

)>
. Consequently,

(5) can be written as wi = δiηi + εi, where block matrix δi = (Z1, . . . ,Zi−1). If ηi ∼ N(µi,Vi), then the full
conditional distribution of ηi is

p(ηi |w1, . . . ,wi, ρi) ∝ exp
{
−τi

2
(wi − δiηi)>Q(ρi)(wi − δiηi)

}
× exp

{
−1

2
(ηi − µi)>V −1i (ηi − µi)

}
. (S.21)

The above is equal to N(ηi |Hihi,Hi), whereHi =
(
τiδ
>
i Q(ρi)δi + V −1i

)−1
and hi = τiδ

>
i Q(ρi)wi + V −1i µi.

For our analysis we set µi = 0 and Vi = 1000I .

S.6.2 Metropolis within Gibbs

Let γi = log( ρi
1−ρi ), γi ∈ R and γ = (γ1, . . . , γq)

>. The full conditional distribution of γ is

p(γ|w,η2, . . . ,ηq, τ ) ∝ p(w|τ ,η2, . . . ,ηq,ρ)× p(ρ)|J |, (S.22)

where p(w|τ ,η2, . . . ,ηq,ρ) = N(w |Gg,G),G =
(
Qw + Σ−1

)−1
, g = Σ−1 (y −Xβ), Σ = diag(σ)⊗ Ik and

J =
∏q
i=1 ρi(1−ρi). Using the formula of transformation, p(ρ)|J | is the prior for γ and in the right-hand side, ρ can

be substituted by γ given ρi = eγi

1+eγi .

In our analysis, for each model we ran two MCMC chains for 30,000 iterations each. Posterior inference was based
upon 15,000 samples retained after adequate convergence was diagnosed. The MDAGAR model in the simulation
examples was programmed in the S language as implemented in the R statistical computing environment. All other
models were implemented using the rjags package available from CRAN https://cran.r-project.org/web/
packages/rjags/.
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S.7 Supplementary Details in Simulation

S.7.1 WAIC, AMSE and D score

For the simulation studies in Section 3.2, let θ = {β,σ,w}. The likelihood of each data point p(yij | θ) =
p
(
yij | x>ijβi + wij , 1/σ

2
i

)
is needed for calculating WAIC which is defined as

WAIC = −2
(
l̂pd− p̂WAIC

)
,

where l̂pd is computed using posterior samples as the sum of log average predictive density i.e.∑q
i=1

∑k
j=1 log

(
1
L

∑L
`=1 p

(
yij | θ(`)

))
, θ(`) for ` = 1, . . . , L being L posterior samples of θ, and p̂WAIC is the

estimated effective number of parameters computed as

q∑
i=1

k∑
j=1

V L`=1

(
log p

(
yij | θ(`)

))

with V L`=1

(
log p

(
yij | θ(`)

))
= 1

L−1
∑L
`=1

[
log p

(
yij | θ(`)

)
− 1

L

∑L
`=1 log p

(
yij | θ(`)

)]2
.

Turning to the D score, we draw replicates yij , y
(`)
rep,ij ∼ N(x>ijβ

(`)
i + w

(`)
ij , 1/σ

2(`)
i ) and compute D = G + P .

Here G =
∑q
i=1 ||yi − ȳrep,i||2 is a goodness-of-fit measure, where ȳrep,i is the mean veactor with elements ȳrep,ij =

1
L

∑L
`=1 y

(`)
rep,ij and P =

∑q
i=1

∑k
j=1 σ

2
rep,ij is a summary of variance, where σ2

rep,ij is the variance of y(`)rep,ij for
` = 1, . . . , L.

For AMSE, we use wij as the true value of each random effect and ŵ(n)
ij is the posterior mean of wij for the data set

n. The estimated AMSE is calculated as ÂMSE = 1
Nqk

∑N
n=1

∑q
i=1

∑k
j=1

(
ŵ

(n)
ij − wij

)2
with associated Monte

Carlo standard error estimate

ŜE(ÂMSE) =

√√√√ 1

(Nqk)(Nqk − 1)

N∑
n=1

q∑
i=1

k∑
j=1

[(
ŵ

(n)
ij − wij

)2
− ÂMSE

]2
.

S.7.2 Coverage Probability

For the simulation studies in Section 3.2, Table S.3 shows the coverage probabilities (CP) defined as the mean coverage
for a parameter by the 95% credible intervals over 85 datasets. The MDAGAR offers satisfactory coverages for all
parameters when correlations are low and medium, outperforming GMCAR, while GMCAR presents competitive
performance with MDAGAR for high correlations. Figure S.4 plots coverage probabilities of correlation between
two diseases in the same region, given by corr(w1j , w2j) = cov(w1j , w2j)/(

√
var(w1j)

√
var(w2j)), for MDAGAR

and GMCAR. Let Q(ρi)
−1 = {dijj′}, we obtain cov(w1j , w2j) = τ−11 (η021d1jj + η121

∑
j′∼j d1jj′), var(w1j) =

τ−11 d1jj and

var(w2j) = τ−11 [η021(η021d1jj + η121
∑
j′∼j

d1jj′) + η121
∑
j′∼j

(η021d1jj′ + η121
∑
j′′∼j

d1j′′j′)] + τ−12 d2jj .

The MDAGAR performs better in estimating disease correlations in the same region for all scenarios, especially for
low and medium correlations with CPs at around 95% in all states.
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Figure S.4: Coverage probability (%) of corr(w1j , w2j), i.e. correlation between two diseases in each state, for
MDAGAR (blue) and GMCAR (red).

Table S.3: Coverage probability (%) of parameters estimated from MDAGAR and GMCAR

Coverage probability (%)
Correlation Model η021 η121 ρ1 ρ2 τ1 τ2 σ2

1 σ2
2

Low MDAGAR 92.9 95.3 92.9 97.6 100 98.8 100 100
GMCAR 92.9 80.0 84.7 95.3 95.3 100 83.5 100

Medium MDAGAR 94.1 97.6 98.8 96.5 98.8 98.8 100 100
GMCAR 85.9 77.6 69.4 98.8 61.2 98.8 84.7 98.8

High MDAGAR 92.9 94.1 95.3 54.1 96.5 98.8 78.8 100
GMCAR 96.5 88.2 70.6 100 1.20 100 97.6 100

S.8 Multiple Cancer Analysis from SEER for Case 2: Exclude smoking rates in covariates

Excluding the risk factor adult cigarette smoking rates, we only include county attributes described in 4 as covari-
ates. Among 24 models, model M16 exhibits dominated best performance with a posteior probability of 0.999
and the corresponding conditional structure is [larynx] × [esophagus | larynx] × [colorectal | larynx, esophagus] ×
[lung | larynx, esophagus, colorectal].

Table S.4 is a summary of the parameter estimates for each cancer. From M16, we find that the regression slope for
the percentage of blacks and unemployed residents are significantly positive for larynx and lung cancer respectively.
The larynx cancer exhibits weaker spatial autocorrelation while the residual spatial autocorrelation for the other three
cancers after accounting for preceding cancers are at moderate levels. For spatial precision τi, larynx random effects
still have the smallest variability while the conditional variability for colorectal and lung cancers are slightly larger.

Table S.4: Posterior means (95% credible intervals)for parameter estimated from M16 for Case 2 (excluding somking
rates in covariates).
Parameters Larynx Esophageal Colorectal Lung
Intercept 6.75 (-0.58, 14.00) 11.14 (-1.70, 24.05) 18.89 (-10.37, 48.12) 24.18 (-22.71, 68.75)

Young(%) -0.09 (-0.20, 0.02) -0.09 (-0.29, 0.11) 0.27 (-0.19, 0.74) 0.04 (-0.75, 0.86)
Old(%) -0.04 (-0.12, 0.04) 0.00 (-0.15, 0.16) 0.13 (-0.23, 0.49) 0.15 (-0.49, 0.91)
Edu(%) -0.02 (-0.08, 0.04) -0.02 (-0.13, 0.09) 0.12 (-0.13, 0.38) -0.34 (-0.82, 0.15)

Unemp(%) 0.04 (-0.03, 0.12) 0.06 (-0.08, 0.20) 0.10 (-0.26, 0.45) 1.21 (0.55, 1.89)
Black(%) 0.15 (0.03, 0.27) 0.10 (-0.12, 0.32) -0.20 (-0.75, 0.33) 0.06 (-1.03, 1.13)
Male(%) -0.01 (-0.08, 0.07) -0.07 (-0.21, 0.06) 0.18 (-0.16, 0.52) 0.01 (-0.59, 0.60)

Uninsured(%) -0.07 (-0.19, 0.04) -0.13 (-0.33, 0.07) 0.10 (-0.37, 0.58) 0.11 (-0.70, 0.95)
Poverty(%) 0.21 (-0.11, 0.53) 0.40 (-0.20, 1.02) 0.03 (-1.38, 1.45) 0.84 (-2.14, 3.52)

ρi 0.25 (0.01, 0.91) 0.49 (0.02, 0.97) 0.43 (0.02, 0.94) 0.50 (0.03, 0.98)
τi 44.04 (15.89, 90.23) 24.55 (5.06, 61.33) 18.25 (1.39, 51.15) 19.68 (2.00, 55.07)
σ2
i 0.56 (0.37, 0.84) 1.52 (0.88, 2.36) 9.85 (6.48, 14.63) 0.93 (0.18, 3.63)
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S.9 Supplementary Figures and Tables

Supplementary figures and tables referenced in Section 3.2, 4 and 5 are shown below.
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Figure S.5: Density plots for probability that the KL-divergence between the MDAGAR and the true model is smaller
than that between GMCAR and the true model with three levels of correlation for two diseases: low (purple), medium
(green) and high (red)

18



A PREPRINT - FEBRUARY 4, 2021

Lung cancer

22−41
41−45
45−51
51−80

Esophagus cancer

0−3.5
3.5−3.9
3.9−4.5
4.5−12

Larynx cancer

0−1.8
1.8−2.1
2.1−2.6
2.6−5

Colorectum cancer

24−34
34−36
36−38
38−50

(a) 5-year average age-adjusted incidence rates per 100,000 population for lung, esophagus, larynx and colorectal cancer, 2012 -
2016

Smoke (%)
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16.28 − 25.50
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(b) adult cigarette smoking rates (left), percentage of black residents (middle) and uninsured residents (right)

Figure S.6: Maps of county-level raw data in California including (a) incidence rates for lung, esophagus, larynx
and colorectal cancer and (b) important county-level covariates with significant effects: adult cigarette smoking rates,
percentage of blacks and uninsured residents.
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Figure S.7: Posterior distributions of η for all pairs of cancers.
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(a) case 1: esophageal cancer and colorectal cancer (b) case 1: esophageal cancer and lung cancer (c) case 1: colorectal cancer and lung cancer
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(d) case 2: esophageal cancer and colorectal cancer
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(e) case 2: esophageal cancer and lung cancer
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(f) case 2: colorectal cancer and lung cancer
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Figure S.8: Estimated correlation between the incidence of pairwise cancers in each of 58 counties of California for
Case 1 vs. Case 2: (a) case 1: esophageal and colorectal cancer, (b) case 1: esophageal and lung cancer, (c) case 1:
colorectal and lung cancer, (d) case 2: esophageal and colorectal cancer, (e) case 2: esophageal and lung cancer, (f)
case 2: colorectal and lung cancer. Maps (a)-(c) exihibit estimated correlations for Case 1, and (d) - (f) are for Case
2. Yelllow points indicate significant correlations. Note: Maps for larynx cancer are not shown due to non-significant
correlation with any of the other three cancers
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Figure S.9: Maps of posterior mean spatial random effects (with no covariates) using the same order as M10

Table S.5: The prosterior model probabilities for 24 models
p(M1 |y) p(M2 |y) p(M3 |y) p(M4 |y) p(M5 |y) p(M6 |y) p(M7 |y) p(M8 |y)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

p(M9 |y) p(M10 |y) p(M11 |y) p(M12 |y) p(M13 |y) p(M14 |y) p(M15 |y) p(M16 |y)
0.000 0.577 0.000 0.000 0.000 0.000 0.342 0.079

p(M17 |y) p(M18 |y) p(M19 |y) p(M20 |y) p(M21 |y) p(M22 |y) p(M23 |y) p(M24 |y)
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002

22


	Introduction
	Methods
	Overview of Univariate DAGAR Modeling
	Motivating multivariate disease mapping
	Multivariate DAGAR Model
	A conditional multivariate DAGAR (MDAGAR) model
	Model Implementation

	Model Selection via Bridge Sampling

	Simulation
	Data generation
	Comparisons between MDAGAR and GMCAR
	Model selection for different disease orders

	Multiple Cancer Analysis from SEER
	Discussion
	Algorithm for Model Implementation
	Full Conditional Distributions
	Metropolis within Gibbs

	Supplementary Details in Simulation
	WAIC, AMSE and D score
	Coverage Probability

	Multiple Cancer Analysis from SEER for Case 2: Exclude smoking rates in covariates
	Supplementary Figures and Tables



