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SUMMARY

Repeated low-dose (RLD) challenge designs are important in HIV vaccine research. Current methods for
RLD designs rely heavily on an assumption of homogeneous risk of infection among animals, which, upon
violation, can lead to invalid inferences and underpowered study designs. We propose to fit a discrete-time
survival model with random effects that allows for heterogeneity in the risk of infection among animals
and allows for predetermined challenge dose changes over time. Based on this model, we derive likeli-
hood ratio tests and estimators for vaccine efficacy. A two-stage approach is proposed for optimizing the
RLD design under cost constraints. Simulation studies demonstrate good finite sample properties of the
proposed method and its superior performance compared to existing methods. We illustrate the applica-
tion of the heterogeneous infection risk model on data from a real simian immunodeficiency virus vaccine
study using Rhesus Macaques. The results of our study provide useful guidance for future RLD experi-
mental design.

Keywords: Discrete-time survival model with random effects; Heterogeneous infection risk; HIV vaccine/prevention
research; Repeated low-dose challenge experiment; Sample size calculation.

1. INTRODUCTION

Recently, a repeated low-dose (RLD) challenge design has become a standard approach to using non-
human primate (NHP) models in HIV vaccine research. Instead of exposing animals to a single high dose
of virus to induce infection as in traditional challenge experiments, in RLD experiments animals are repeat-
edly challenged with a relatively low dose of virus. For example, Qureshi and others (2012) adapted RLD
experiments to determine whether the combination of host range mutant adenovirus type-5 and simian
immunodeficiency virus (SIV; Ad5 SIVmac239 Gag/Pol/Nef) vaccine has a significant effect on SIV
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infection. In this study, animals were randomized to five treatment groups; all animals were repeatedly
challenged with the same three escalating doses of SIV viruses regardless of treatment group. RLD exper-
iments have advantages compared with the single high-dose design: they reflect the low probability of HIV
transmission in humans more realistically and can provide more statistical power to detect the effects of
HIV vaccine (Ellenberger and others, 2006; Garcı́a-Lerma and others, 2008; Hudgens and Gilbert, 2009;
Hudgens and others, 2009; Reynolds and others, 2010).

In HIV vaccine research using RLD experiments, it is of major interest to test the effects of the vac-
cine in preventing HIV infection and to evaluate the magnitude of the vaccine efficacy. Vaccine efficacy
is characterized by the vaccine-induced percent reduction in the risk of infection either at each chal-
lenge or up to a certain time point during the experiment. Vaccine efficacy has been commonly evalu-
ated using the nonparametric log-rank test and Kaplan–Meier estimator (Garcı́a-Lerma and others, 2008;
Reynolds and others, 2010; Qureshi and others, 2012) or a discrete-time survival model. In an RLD exper-
iment, animals are examined for infection status after each challenge; this produces repeated binary infec-
tion outcomes each time. The probability of infection after each challenge can be expressed as a product
of Bernoulli trials in the discrete-time survival model.

Current discrete-time survival models to estimate the effects of vaccine in RLD experiments rely heavily
on an assumption of homogeneous risk of infection among animals (e.g. Garcı́a-Lerma and others, 2008;
Qureshi and others, 2012), which, upon violation, can lead to invalid inferences and underpowered study
designs. Ignoring heterogeneity among animals can result in underestimated standard errors of the vac-
cine efficacy estimates and result in confidence intervals with poor coverage (Hudgens and Gilbert, 2009;
Moerbeek, 2012). To relax the homogeneity assumption, Hudgens and Gilbert (2009) modeled the trans-
mission probability with a β-distribution assuming independent transmission probabilities across chal-
lenges within animals. In this study, we propose to use a discrete-time survival model with random effects
to model data from the RLD design, assuming an animal’s risks of infection across challenges are inde-
pendent of each other conditional on random effects. The conditional independence assumption is realistic
considering the potential heterogeneity among animals due to biological variation and unobserved covari-
ates. By incorporating random effects, our model flexibly accommodates heterogeneity among animals as
well as within-animal dependence with respect to the risk of infection after each challenge.

This article has two goals. The primary goal is to develop a flexible statistical model that can take into
account between-animal heterogeneity in RLD experiments while allowing for adjustment of covariates
such as the time-dependent challenge doses, as in Qureshi and others (2012). In the present study, we
propose to fit a discrete-time survival model with a γ-distributed random effect and a complementary
log–log (clog–log) link function, which allows for closed forms for the marginal likelihood function and
the vaccine efficacy. We estimate model parameters by maximizing the marginal likelihood function and
derive asymptotic variance formulae for inferences about vaccine efficacy.

The second goal of this article is to provide guidance on how to design future RLD experiments in terms
of the choices for sample size and maximum number of challenges per animal under limited resources.
While there is an intensive literature on the design of clinical trials using a single high-dose challenge,
design components in RLD experiments have been seldom studied. Because of the complexity of the
design, there is no simple analytic formula for calculating sample size and/or maximum number of chal-
lenges given desired operational criteria. Previously, Hudgens and Gilbert (2009) used simulation stud-
ies to investigate the effects of sample size and maximum number of challenges on statistical power in
RLD experiments under the assumption of homogenous risk of infection. In the present study, we pro-
pose a two-stage procedure to determine the optimal RLD design under financial constraints allowing for
between-animal heterogeneity in the risk of infection.

The remainder of this article is organized as follows. In Section 2, we introduce a heterogeneous infec-
tion risk model and an inference about vaccine efficacy. The optimization of the study design for RLD
experiments is discussed in Section 3. We investigate performance of the proposed methods through two
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intensive simulation studies in Section 4. In Section 5, an application of the proposed risk modeling method
to the NHP study described in Qureshi and others (2012) is presented. Finally, we conclude the article with
a discussion of our findings and future research topics.

2. A HETEROGENEOUS INFECTION RISK MODEL

2.1 Notation and assumptions

Here we consider an RLD experiment in which each animal is randomly assigned to a treatment (vaccine)
or a placebo group, and all animals are repeatedly challenged with the same series of SIVs. Let i be the
subject index, Yi and Ci be time to infection and time to censoring, respectively, and Ti = Yi ∧ Ci be
the time to event outcome variable whichever comes first between Yi and Ci . An infection indicator is
denoted by δi = 1{Yi � Ci }, where 1{A} = 1 if A is satisfied, 0 otherwise. Suppose the animals’ infection
statuses are collected after each challenge. Ti is thus discrete and can be represented as the total number of
challenges an animal receives until infected or censored. Let Xi be a p × 1 vector of time-invariant baseline
covariates such as the indicator of vaccination status. Let Zi (t) be a vector of time-variant covariates
associated with the challenge dose that animal i receives at time t . For example, when d different levels of
challenge doses are applied to each animal, in this article we model Zi (t) = {Zi1(t), Zi2(t), . . . , Zid(t)},
where Zi1(t) = 1 for all dose levels (reference level), Zik(t) = 1 for the kth dose level, and Zik(t) = 0
otherwise for k = 2, . . . , d. Alternatively, Zi (t) can include polynomial terms of challenge doses at time t
if one is interested in continuous dose effects. Let Z H

i (t) = {Zi (u) : 1 � u � t} denote the history of Zi up
to time t . We observe n independent identically distributed (i.i.d.) samples, [Oi = {Ti , Xi , Z H

i (Ti ), δi }]n
i=1.

We consider a study design where dose levels are predetermined by protocol for the whole study period
and do not vary with individual subjects. That is, Zi (t) = Z(t) is determined in advance for all individuals
under study for t within the planned study period and is conceptually an external time-dependent covariate
as described in Kalbfleisch and Prentice (2011).

Let Ri denote the subject-specific random effect. We make the following three assumptions. First, the
infection risks across challenges within an animal are assumed to be independent of each other condi-
tional on the random effect and covariates included in the risk model. Second, non-informative censor-
ing is assumed, conditional on the random effect and covariates, which is a reasonable assumption for
a well-controlled RLD experiment. Finally, we assume that there is no “memory” of challenge history
as commonly assumed in RLD literature (Garcı́a-Lerma and others, 2008; Hudgens and Gilbert, 2009;
Hudgens and others, 2009; Regoes, 2012). That is, for an animal not yet infected before a challenge, the
probability of infection at this particular challenge depends only on the current challenge but not on pre-
vious challenges.

2.2 A discrete-time survival model with random effects and a marginal likelihood approach

Let β and α represent vectors of regression parameters for X and Z , for example, the effects of vaccination
and challenge doses (α = (α1, . . . , αd)

T), respectively. To take into account between-animal heterogeneity
under the aforementioned assumptions, we model the risk of infection as follows:

λi {t |Z H
i (t), Xi , Ri } = P{Ti = t |Ti � t, Z H

i (t), Xi , Ri } = g−1{Zi (t)α + Xiβ + Ri }, (2.1)

where the random effect Ri follows a specific distribution and g is a link function. Model (2.1) could be
extended to include interactions between dose-levels and treatment: λi (t |Z H

i (t), Xi , Ri ) = g−1{Zi (t)α +
Xiβ + Z̃i (t)Xiγ + Ri }, where Z̃i (t) = {Zi2(t), . . . , Zid(t)}, and γ quantifies how the treatment effect
changes with dose level. In this study, we use a clog–log link for g and assume that Wi = exp(Ri ) is
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independent of other covariates and follows a γ-distribution with mean 1 and variance ν. A γ-distribution
with various shapes covers many commonly used exponential-family distributions. Modeling the risk of
infection (2.1) with a γ-distributed random effect and a clog–log link function leads to a closed-form
expression for the marginal likelihood and the vaccine efficacy, which is computationally efficient. We
refer to Conaway (1990), Scheike and Jensen (1997), and Coull and others (2006) for further discussion
on the advantages of this combination of the random effects model and link function.

In a discrete-time survival model, given that Zi is an external covariate, the conditional survival function
at time t is Si (t |Z H

i (t), Xi , Ri ) ≡ P(Ti > t |Z H
i (t), Xi , Ri ) = P(Ti �= t |Ti � t, Z H

i (t), Xi , Ri ) × P(Ti �=
t − 1|Ti � t − 1, Z H

i (t − 1), Xi , Ri ) × · · · × P(Ti �= 1|Ti � 1, Z H
i (1), Xi , Ri ) = ∏t

j=1{1 − λi ( j |Z H
i ( j),

Xi , Ri )}, and the conditional probability of infection at time t is fi (t |Z H
i (t), Xi , Ri ) = P(Ti = t |Z H

i (t),
Xi , Ri ) = P(Ti = t |Ti � t , Z H

i (t), Xi , Ri ) × P(Ti �= t − 1|Ti � t − 1, Z H
i (t − 1), Xi , Ri ) × · · · × P(Ti

�= 1|Ti � 1, Z H
i (1), Xi , Ri ) = λi (t |Z H

i (t), Xi , Ri )Si (t − 1|Z H
i (t − 1), Xi , Ri ). The marginal likelihood

function for n subjects indexed by θ = (α, β, ν) is given by

L(θ; O) =
n∏

i=1

{∫
Si (Ti |Z H

i (Ti ), Xi , Ri ; θ) dG(R)

}1−δi
{∫

fi (Ti |Z H
i (Ti ), Xi , Ri ; θ) dG(R)

}δi

,

(2.2)
where G is the cumulative distribution function (CDF) of R. Let ηi ( j) = Zi ( j)α + Xiβ denote the linear
predictor at the time of challenge j . As shown in supplementary material available at Biostatistics online,
Section S1,

∫
Si (Ti |Z H

i (Ti ), Xi , Ri ; θ) dG(R) = {ν Ai (Ti ) + 1}−1/ν,

∫
fi (Ti |Z H

i (Ti ), Xi , Ri ; θ) dG(R) = {ν Ai (Ti − 1) + 1}−1/ν − {ν Ai (Ti ) + 1}−1/ν,

where Ai (t) = ∑t
j=1 exp{Zi ( j)α + Xiβ} assuming Ai (0) = 0. Therefore, we have a closed-form formula

for the marginal log-likelihood function:


(θ; O) = nPn[(1 − δ) log(ν A(T ) + 1)−1/ν + δ log{(ν A(T − 1) + 1)−1/ν − (ν A(T ) + 1)−1/ν}],

where Pn is the standard empirical measure for O = {Oi }n
i=1.

2.3 Estimation and inference

We estimate parameters in (2.1) and variance ν by maximizing the log likelihood (2.2), for example,
through Fisher scoring using iteratively reweighted least squares. The variability of the random effects can
be expressed more intuitively by an intracluster correlation, ρ, between underlying continuous responses.
In particular, let Bi (t) be a binary outcome indicating infection status for animal i after the t th chal-
lenge assuming no event occurs before t . Let Ci (t) be the underlying continuous latent outcome such that
Bi (t) = 1 if Ci (t) > 0 and Bi (t) = 0 otherwise. Suppose Ci (t) = ηi (t) + Ri + εi (t), where −εi (t), the indi-
vidual error term, has a reverse extreme value distribution with the CDF H{εi (t)} = exp[− exp{−εi (t)}]
and variance π2/6. Under the model with a γ-distributed random effect and a clog–log link, the intrasubject
correlation coefficient for the underlying continuous outcome equals ρ = ν/(ν + π2/6). Equivalently, we
have ν = π2ρ/{6(1 − ρ)}. For more details, we refer to Coull and others (2006) and Rodrıguez and Elo
(2003).
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The null hypothesis of no between-animal heterogeneity, ν = 0, is equivalent to the null hypothesis of
no random effects, R = 0, for all animals. Under the null hypothesis,

L(θ |O, R = 0) =
n∏

i=1

[exp{−Ai (Ti )}]1−δi [exp{−Ai (Ti − 1)} − exp{−Ai (Ti )}]δi , (2.3)

which is a likelihood function assuming independent risk of infection across challenges. As shown in
supplementary material available at Biostatistics online, Section S1, (2.2) converges to (2.3) as ν → 0.
Let �ν = {θ = (α, β, ν) : α ∈ R

q , β ∈ R, ν ∈ (0,∞)} and �ν
0 = {(α, β, ν) : α ∈ R

q , β ∈ R, ν = 0} denote
parameter spaces under the alternative and null hypotheses of zero between-animal heterogeneity, respec-
tively. We conduct the likelihood ratio test (LRT) to reject the null hypothesis for a large value of the LR
statistic: �ν = sup L{ν|·, θ ∈ �ν

0}/sup L{ν|·, θ ∈ �ν}. Under the null hypothesis of ν = 0, the value of ν

lies on the boundary of the parameter space, ν ∈ [0,∞), such that �ν converges to a mixture of χ2 dis-
tributions 0.5χ2

1−α(0) + 0.5χ2
1−α(1) = 0.5χ2

1−α(1), where χ2
1−α(r) is the 100(1 − α)th percentile of a χ2

distribution with r degrees of freedom (d.f.), as presented in Self and Liang (1987), Goldman and Whelan
(2000), and Hudgens and Gilbert (2009). We reject H0 : ν = 0 if −2 ln �̂ν > 0.5χ2

1−α(1).
The test for the effect of vaccine is equivalent to the test of the null hypothesis H0 : β = 0. Let �β =

{(α, β, ν) : α ∈ R
q , β ∈ R, ν ∈ [0,∞)} and �

β
0 = {(α, β, ν) : β = 0, α ∈ R

q , ν ∈ [0,∞)} denote parameter
spaces under the alternative and null hypotheses of a zero vaccine effect, respectively. We reject the null
hypothesis if −2 ln �̂β > χ2

1−α(r), where �β = sup L{β|·, θ ∈ �
β
0 }/sup L{β|·, θ ∈ �β}, and r is the dif-

ference in the number of parameters between the two-nested models.

2.4 Estimation of vaccine efficacy

Hudgens and Gilbert (2009) defined two types of vaccine efficacy. The first is vaccine efficacy for pre-
venting infection before or at the time of challenge t :

VE(t) = 1 − probability of infection before or at time t for the vaccine group

probability of infection before or at time t for the placebo group
,

which is the relative reduction in the risk of infection before or at time t for the vaccine group com-
pared to the placebo group. VE(t) > 0 indicates that the vaccine is effective in reducing the risk of
infection before or at time t , whereas VE(t) � 0 indicates that the vaccine is not effective or has a
negative effect. Under the heterogeneous infection risk model described in Section 2.2, VE(t) = 1 −(

1 −
[
ν

∑t
j=1 exp{Zi ( j)α + β} + 1

]−1/ν
)

/

(
1 −

[
ν

∑t
j=1 exp{Zi ( j)α} + 1

]−1/ν
)

. The second type

of vaccine efficacy is the perchallenge vaccine efficacy, defined as the relative reduction in the risk
of infection caused by vaccination at a particular challenge, conditional on non-infection before the
challenge. Perchallenge VE at dose-level k under the heterogeneous infection risk model equals VEk =
1 − (1 − {ν exp(Zkα + β) + 1}−1/ν)/(1 − {ν exp(Zkα) + 1}−1/ν), where Zk is a vector of variables of
length d for the kth dose level with the 
th element being 1{
 = k}, 
 = 2, . . . , d and Z1 = 1 (reference
level). VEk allows characterization of the vaccine’s effect at a specific level of exposure, whereas VE(t)
represents a vaccine effect integrated over multiple levels of exposures. Let V̂E(t) and V̂Ek be MLE of
VE(t) and VEk . The covariance matrices of V̂E(t) and V̂Ek can be calculated using the Delta method as
given in supplementary material available at Biostatistics online, Section S1.
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3. OPTIMIZATION OF THE DESIGN OF RLD EXPERIMENTS UNDER COST CONSTRAINTS

In practice, we have limited resources for conducting RLD experiments. It is of interest to optimize the
study design such that a desired operational criterion, for example, precision of VE estimators or power
of the study, can be maximized. As pointed out by Moerbeek (2012) and Zhang and Ahn (2011) for the
cluster randomized design with discrete survival outcomes, no analytical formula is available yet for cal-
culating sample size and power; Monte-Carlo simulation studies are commonly used to determine design
components. The results of the simulation study in Hudgens and Gilbert (2009) demonstrated that the sta-
tistical power for the test of vaccine efficacy increases with larger sample size, larger maximum number of
challenges per animal, and higher risk of infection per exposure in the control group. Optimizing an RLD
design typically requires excessive simulations under various combinations of sample size and number of
challenges.

Motivated by the study in Zhang and Ahn (2011), we propose a computationally efficient two-stage
approach to identify the optimal pair of sample size and maximum number of challenges, denoted by
(n∗, m∗), in order to maximize the operational criteria of interest under financial constraints. We illustrate
how the proposed approach can be used to guide the design of an RLD experiment to optimize the effi-
ciency of estimating perchallenge vaccine efficacy, VEk . The same strategy applies to other criteria such
as VE(t) and study power.

Suppose the financial costs of adding an animal and adding a challenge per animal are C1 and C2,
respectively, and the maximum budget C for the experiment is fixed. Suppose d unique levels of escalat-
ing challenge doses will be applied to each animal as in Qureshi and others (2012), and each dose level
is applied to an animal for m times (m � 2). Let q j denote the probability of an animal receiving the j th
challenge for j = 1, . . . , d × m. The average cost to challenge n animals for up to m times at each dose
level equals nC1 + n

∑d×m
j=1 q j C2 � C . Define n(m) as the largest n for a given m satisfying this constraint:

n(m)≡ 
C/(C1 +∑d×m
j=1 q j C2)�, where 
x� denotes the largest integer not greater than x . Since n and m are

not independent conditional on C , seeking the best pair (n∗, m∗) that minimizes the variance for estimators
of VEk is not straightforward in practice, particularly for a complex study design like an RLD experiment.

Let S(n,m) = [{n(m), m} : form ∈ M = {1, . . . , mmax}] for a prespecified mmax. We propose to use a two-
stage approach to find (n∗, m∗). In the first stage, we conduct a simulation study with a large sample
size (N ) to estimate Var(V̂Ek) for each m ∈ M , denoted by V̂ar(V̂Ek){N ,m}. In the second stage, we find
the {n(m), m} ∈ S(n,m) that minimizes the variance estimate of ˆVEk . In particular, let V̂ar(V̂Ek){n(m),m}
denote the variance estimate based on data with {n(m), m}. We approximate V̂ar(V̂Ek){n(m),m} with
V̂ar(V̂Ek){N ,m} × N/n(m). Using m = 2 as the reference design, we evaluate the efficiency at {n(m), m}
relative to {n(2), 2} by

RE{n(m), m} = V̂ar( ˆV Ek){n(2),2}
V̂ar( ˆV Ek){n(m),m}

. (3.1)

We compute (n∗, m∗) ≡ arg max{n(m),m}∈S(n,m)
RE{n(m), m}. The resultant (n∗, m∗) would achieve the best

efficiency for estimating VEk under a fixed total cost. Compared with the typical Monte-Carlo simulation
studies that evaluate variances of V̂Ek estimators for every n, m combinations, the computational burden
reduces from O(n) × O(m) to O(m) using the proposed two-stage approach.

4. SIMULATION STUDIES

We illustrate the proposed heterogeneous infection risk model and the two-stage approach to optimizing
RLD design with two intensive simulation studies. In the first simulation study, we compare the discrete-
time survival model with random effects (hereafter “heterogeneous model”) with a discrete-time survival
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model assuming independence in the risk of infection across challenges within animals (“homogeneous
model”), with respect to statistical power, Type I error rate and the precision of parameter estimates.
In the second simulation study, we explore the best pair of sample size and maximum number of chal-
lenges per animal for various levels of vaccine efficacy and between-animal heterogeneity under a fixed
total cost.

For both simulation studies, we considered RLD studies in which animals are 1 : 1 randomized
to a vaccine group and a placebo group and challenged with the same three increasing levels of
challenge doses (d = 3) to mimic the setting in Qureshi and others (2012). Each animal was allowed
up to d × m challenges. Let Xi be the indicator of assignment to the vaccine group and Zi ( j) =
{Zi1( j), Zi2( j), Zi3( j)} as defined in Section 2.1. Let Ri = log(Ui ) be a random effect with Ui gener-
ated from a γ-distribution with mean 1 and variance ν. The conditional probability of infection at each
challenge was modeled as in (2.1) with the clog–log link function. We observed the binary outcome
Y ∗

i ( j) ∼ Bernoulli(λi ( j |Z H
i ( j), Xi , Ri )), j = 1, . . . , d × m, the survival time Ti ≡ min{ j ∈ [1, d × m] :

Y ∗
i ( j) = 1}, and the infection indicator δi = 1{Ti � d × m}. We maximized the likelihood functions in

(2.2) and (2.3) using the optim function in the R package (R Core Team, 2012).

4.1 Simulation Study 1

4.1.1 Set-up. In the first simulation study, each animal was allowed up to 5 challenges at each dose
level, with 15 the maximum number of challenges for each animal. Data were generated with different
ν values for zero (ν = ρ = 0), weak (ν = 0.89 or ρ = 0.35), moderate (ν = 2.01 or ρ = 0.55), or strong
(ν = 4.93 or ρ = 0.75) within-animal dependence. We set β = −1 and α = (α1, α2, α3)

T corresponding to
perchallenge infection probabilities among placebo recipients of 0.02, 0.16, and 0.39 at dose levels 1, 2,
and 3, respectively. Sample sizes n = 40, 200, or 1000 were explored. For each simulation scenario, 1000
Monte-Carlo data were generated.

4.1.2 Results. Without within-animal dependence (ν = 0), average estimates for model parameters and
for perchallenge VEs using the heterogeneous model were comparable with those estimated using the
homogeneous model, with slightly larger variances. In the presence of weak within-animal dependence
(ν = 0.89), the homogeneous model produced highly biased estimates while the heterogeneous model
produced unbiased estimates even when sample size was small (Table 1). In addition, perchallenge VE
tended to be underestimated by fitting the homogeneous model with much worse coverage rates, while the
heterogeneous model produced unbiased estimates with coverage rates close to the target nominal level
(Table 2). Results for the settings with moderate or strong within-animal dependence, presented in sup-
plementary material available at Biostatistics online, Tables S1 and S2, showed the apparent superiority of
the heterogeneous model. Supplementary material available at Biostatistics online, Figure S1, shows the
estimate of VE(t) versus t . The homogeneous model underestimated VE(t), particularly at the early stages
of the study, while the estimated VE(t) curve using the heterogeneous model was very close to the true
VE(t) curve.

For settings with ν > 0, LRT testing for vaccine effects using the homogenous model had elevated
Type I error rates, while LRT using the heterogeneous model and the log-rank test by contrast had Type I
error rates close to the target nominal level (Table 3). LRT using the heterogeneous model produced the
highest power; the gain in power by accounting for within-animal dependence increased as ν increased.
In general, power for testing vaccine effects decreases as ν increases. Consequently, a much larger sample
size will be required to detect a weak vaccine effect in the presence of moderate or strong within-animal
dependence. Supplementary material available at Biostatistics online, Table S3, shows the results of LRT
for testing heterogeneity (H0 : ν = 0) based on the heterogeneous model. LRT had well-controlled Type I
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Table 1. Results of simulation study 1 to compare the homogeneous infection risk model (Homogeneous) and heterogeneous infection risk
model (Heterogeneous) at the sample sizes n = 40, 200, or 1000 under the following two cases: data were generated under the independent
risk of infection (ν = 0), and data were generated under the weak strength of dependence in the risk of infection (ν = 0.89) across challenges
within each animal. Monte-Carlo mean (mean) and standard deviation (MCSD) of estimates and 95% confidence interval coverage rates (%)

based on the normal approximation of estimates (95% CR) using 1000 simulations are reported

Data without within-animal Data with within-animal
dependence (ν = 0) dependence (ν = 0.89 (ρ = 0.35))

Fitting model Homogeneous Heterogeneous Homogeneous Heterogeneous

Sample size True value 40 200 1000 40 200 1000 True value 40 200 1000 40 200 1000

α1 Mean −3.90 −5.33 −3.95 −3.90 −5.27 −3.93 −3.89 −3.89 −5.20 −4.07 −4.03 −5.02 −3.94 −3.90
MCSD 4.53 0.30 0.12 4.42 0.30 0.12 4.05 0.31 0.13 3.89 0.33 0.14
95% CR 88.7 95.3 96.0 88.4 95.8 96.0 92.1 94.4 84.7 92.2 95.2 95.8

α2 Mean 2.16 3.57 2.20 2.16 3.59 2.23 2.17 2.22 3.09 2.01 1.96 3.34 2.28 2.22
MCSD 4.54 0.31 0.13 4.42 0.32 0.13 4.05 0.34 0.14 3.87 0.36 0.15
95% CR 89.6 95.5 96.8 89.7 96.2 96.8 86.8 84.2 48.2 91.4 94.5 95.0

α3 Mean 3.20 4.69 3.25 3.20 4.83 3.36 3.25 3.42 3.78 2.64 2.59 4.62 3.46 3.41
MCSD 4.54 0.31 0.13 4.42 0.36 0.14 4.07 0.33 0.14 3.96 0.51 0.22
95% CR 89.5 95.9 95.5 91.3 97.1 98.1 70.5 30.1 0.0 93.3 95.8 95.0

β Mean −1.00 −1.05 −1.00 −1.00 −1.14 −1.06 −1.03 −1.00 −0.69 −0.70 −0.68 −1.03 −1.03 −1.00
MCSD 0.39 0.17 0.07 0.44 0.19 0.08 0.42 0.18 0.08 0.66 0.28 0.12
95% CR 93.8 94.0 94.5 97.9 98.1 97.3 84.1 56.5 1.3 94.8 95.2 95.8

ν Mean 0.00 0.13 0.08 0.04 0.89 0.94 0.86 0.87
MCSD 0.21 0.12 0.05 0.96 0.44 0.19

Mean = ¯̂
θ = ∑M

m=1 θ̂m/M , MCSD =
√∑M

m=1(θ̂m − ¯̂
θ)2/(M − 1), where θ̂m denotes estimates from the mth simulation for M = 1000.
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Table 2. Results of simulation Study 1 to compare the homogeneous infection risk model (Homogeneous) and heterogeneous infection risk model
(Heterogeneous) at the sample sizes n = 40, 200, or 1000 under the following two cases: data were generated under the independent risk of
infection (ν = 0), and data were generated under the weak strength of dependence in the risk of infection (ν = 0.89) across challenges within
each animal. Monte-Carlo mean (mean) and standard deviation (MCSD) of perchallenge VE estimates at each dose level (VE1, VE2, and VE3)

and 95% confidence interval coverage rates (%) based on the normal approximation of perchallenge VE (95% CR) and normal approximation
of the logit-transformed perchallenge VE (95% CR (L)) using 1000 simulations are reported

Data without within-animal Data with within-animal
dependence (ν = 0) dependence (ν = 0.89 (ρ = 0.35))

Fitting model Homogeneous Heterogeneous Homogeneous Heterogeneous

Sample size True value 40 200 1000 40 200 1000 True value 40 200 1000 40 200 1000

VE1 Mean 0.63 0.62 0.63 0.63 0.65 0.64 0.64 0.63 0.45 0.49 0.49 0.56 0.62 0.62
MCSD 0.15 0.06 0.03 0.15 0.06 0.03 0.23 0.09 0.04 0.30 0.10 0.04
95% CR 90.3 94.3 94.6 92.5 95.0 96.3 97.2 73.1 2.6 92.4 93.8 95.7
95% CR (L) 94.5 95.0 94.9 98.6 97.1 96.8 99.1 72.7 2.6 97.8 96.5 96.4

VE2 Mean 0.61 0.61 0.61 0.61 0.63 0.62 0.62 0.59 0.44 0.48 0.47 0.53 0.59 0.59
MCSD 0.15 0.06 0.03 0.15 0.06 0.03 0.22 0.09 0.04 0.27 0.10 0.04
95% CR 90.6 94.3 94.9 92.3 94.8 96.4 96.7 81.5 9.6 92.4 94.5 95.8
95% CR (L) 94.7 95.0 95.1 98.3 96.4 96.7 98.4 83.6 9.1 96.7 96.2 96.1

VE3 Mean 0.57 0.56 0.57 0.57 0.57 0.58 0.58 0.52 0.43 0.47 0.46 0.45 0.51 0.52
MCSD 0.14 0.06 0.03 0.14 0.06 0.03 0.22 0.09 0.04 0.23 0.09 0.04
95% CR 91.3 93.8 94.7 90.7 94.4 95.4 95.2 93.7 66.9 93.1 94.5 95.4
95% CR (L) 94.4 95.2 94.5 94.7 95.1 95.8 96.6 98.4 67.6 96.2 95.8 95.5

Mean = ¯̂
θ = ∑M

m=1 θ̂m/M , MCSD =
√∑M

m=1(θ̂m − ¯̂
θ)2/(M − 1), where θ̂m denotes estimates from the mth simulation for M = 1000.
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Table 3. Results of simulation Study 1 to compare the Type I error rate and power of the tests for the vaccine effects at different strength of within-
animal dependence (ν = 0, 0.89, 2.01, or 4.93) and sample sizes (n = 40, 200, or 1000). Three tests are compared: The likelihood ratio test (LRT)

using the homogeneous infection risk model (LRT-Homo); LRT using the heterogeneous infection risk model (LRT-Hetero); and the log-rank test
(Log-rank). Rejection rates (%) over 1000 replications using χ2

0.95 (d.f . = 1) distribution under the null (β = 0) and the alternative (β = −1)

hypotheses are reported for the Type I error rate and power, respectively

ν = 0 ν = 0.89 ν = 2.01 ν = 4.93

LRT LRT LRT LRT

Sample size Homo Hetero Log-rank Homo Hetero Log-rank Homo Hetero Log-rank Homo Hetero Log-rank

Type I error rate 40 7.2 6.8 7.2 6.7 6.1 5.1 6.8 7.4 5.4 6.4 7.5 5.0
200 5.9 5.4 5.9 5.8 5.3 4.5 6.9 5.7 5.3 7.1 4.8 5.5

1000 5.6 5.2 5.2 5.9 4.9 5.1 5.7 5.6 4.5 6.6 5.3 5.4

Power 40 82.6 81.2 81.3 44.0 45.3 41.4 24.6 29.0 22.3 14.9 18.7 12.5
200 100.0 100.0 100.0 98.3 98.8 98.3 79.9 87.3 79.2 39.2 57.5 37.9

1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.6 99.8 95.6
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error rates, and the power of the test increased with the sample size and the magnitude of the within-animal
dependence.

More results of the simulation study investigating the performance of the heterogeneous model are pre-
sented in supplementary material available at Biostatistics online, Tables S4–S9 in Sections S2 and S3. A
similar pattern comparing heterogeneous and homogenous models was observed in the extended model that
includes interactions between the dose levels and vaccine assignment (supplementary material available at
Biostatistics online, Tables S7–S9). We also investigated the robustness of the proposed model under risk
model misspecification. Results are presented in supplementary material available at Biostatistics online,
Tables S10–S11 in Section S4. In general, the proposed heterogeneous model has a compatible or slightly
better performance compared with the homogeneous model or the log-rank test under a moderate degree
of working model misspecification.

4.2 Simulation Study 2

4.2.1 Set-up. We considered ν = 0.89, 2.01, or 4.93 corresponding to ρ = 0.35, 0.55, or 0.75, respec-
tively. Values for α = (α1, α2, α3)

T were chosen such that the perchallenge probabilities of infection in the
placebo group for ν = 0.89, 2.01, and 4.93, equal 0.1, 0.09, and 0.08, respectively, at dose level 1, 0.18,
0.17, and 0.14 at dose level 2, and 0.27, 0.24, and 0.19 at dose level 3. Various values for β corresponding
to VE1 = 0.2, 0.5, or 0.7 were considered, where VE1 is perchallenge vaccine efficacy at the lowest level
dose. We assumed that the cost for adding an animal is 50 times the cost for an extra challenge per animal
and set the maximum budget to be C = 300 × C1. A range of the maximum number of challenges per dose
level, M = {m : m = 2, 3, . . . , 15}, were considered to allow for at least two challenges at each dose level.

4.2.2 Results. Our goal was to identify the optimal pair of sample size and maximum number of chal-
lenges per animal to achieve the best efficiency in estimating VE1 given budget constraints. In the first
stage, we estimated the variance of V̂E1 for each {n(m), m} ∈ S(n,m) using 10 simulated datasets, each
containing N = 5000 samples. In the second stage, we calculated RE{n(m), m}, the efficiency of V̂E1 for
{n(m), m} relative to {n(2), 2} by (3.1) and averaged RE{n(m), m} over the 10 simulated datasets to obtain
a smooth estimate. We then identified the best pair of {n(m), m} that achieved the greatest average relative
efficiency compared with {n(2), 2}. Figure 1 displays RE{n(m), m} for all {n(m), m} ∈ S{n(m),m} and for
the selected (n∗, m∗) by the proposed approach. The efficiency gain of the selected pair compared with the
reference pair {n(2), 2} ranges from 2 to 78% for varying ρ and VE1. Under fixed within-animal depen-
dence, with the increase in vaccine efficacy, the maximum efficiency was achieved at a larger number of
challenges and thus a smaller sample size. Under fixed vaccine efficacy, with an increase in within-animal
dependence, the maximum efficiency was achieved at a larger sample size and thus a smaller number of
challenges. Comparisons of the estimated RE{n(m), m} based on the two-stage method and those obtained
from the standard Monte-Carlo simulations for VE1 = 0.5 and ρ = 0.35 or 0.55 are given in supplementary
material available at Biostatistics online, Figure S2. The pattern of estimated RE{n(m), m} versus m was
similar between the two.

5. DATA ANALYSIS

In the NHP study described by Qureshi and others (2012), 43 adult male Rhesus Macaca mulatta (RM)
were randomized to five treatment groups: Ad5 Vx-SIV (n = 9), Ad5 Vx-empty (8), Vx-SIV (9), Vx-
empty (9), and naive control (8). All macaques were challenged by a series of escalating penile exposures
including three levels of SIVmac 251 viruses: 103TCID50 of virus 10 times weekly (the lowest level dose),
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Fig. 1. The relative efficiency (RE) of the VE1 estimator for each pair of {n(m), m} compared with
{n(2), 2}. RE{n(m), n} is defined by RE{n(m), m} = ˆvar(V̂E1){n(2),2}/ ˆvar(V̂E1){n(m),m}. Intracluster correlation ρ =
(0.35, 0.55) and perchallenge vaccine efficacy at the first dose (VE1) = (0.2, 0.5, 0.7) are explored. The selected pair
of {n(m), m} by the proposed approach is indicated on the X -axis, and RE{n(m), m} is shown. Black line and gray
lines represent the average RE{n(m), m} and RE{n(m), m} over 10 replications. The sample size of the data for the
first-stage simulation N = 5000.

followed by 104TCID50 of virus 10 times weekly (the middle level dose), and finally 105TCID50 of virus
twice a day (the highest level dose). Animals were evaluated for infection status after each challenge. Time
to infection was defined as the first week in which log10vRNA copies are >2 and stay >2 for subsequent
measurements within 4 weeks. The process of immunization can be found in detail in Qureshi and others
(2012).

Previously, Qureshi and others (2012) fit the discrete-time survival model to the data assuming homo-
geneous and constant risk of infection. In this section, we reanalyze the data allowing for possible het-
erogeneity in the risk of infection across animals and allowing for adjustment of changing dose lev-
els over time. Results for the average risk of infection across different time periods, as presented in
Qureshi and others (2012), suggest possible differences in vaccine efficacy across challenge dose levels,
particularly between the highest and the other two dose levels. To allow for some flexibility in modeling
VE as a function of the challenging dose, we include the interaction term between the highest dose level
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and treatment assignment in the model of infection risk, in addition to main effects for each dose level and
treatment: λi (t |Z H

i (t), Xi , Ri ) = g−1(Zi (t)α + Xiβ + 1{t ∈ the highest dose level}Xiγ + Ri ). A similar
interaction model was considered in analyzing an HIV vaccine trial in Robb and others (2012). We fit both
the homogeneous and the heterogeneous infection risk models. A goodness-of-fit test (Pan and Lin, 2005)
for the proposed heterogeneous model did not show any significant deviation from the model assumptions
(supplementary material available at Biostatistics online, Figure S3 in Section S6).

Using the heterogeneous model, the LRT did not find any significant within-animal dependence. How-
ever, the power to detect small heterogeneity in this study with 43 animals is very limited. Regoes (2012)
studied heterogeneous susceptibility in eight datasets for HIV using an RLD design and failed to find a
statistically significant heterogeneous susceptibility except for the data from Letvin 11 stm which had the
largest sample size (43 animals for each of two vaccine groups). The results in Regoes (2012) and those
in our analysis suggest that larger sample size is important for detecting heterogeneity in the risk of infec-
tion. Given the limited power of the test in practice, fitting a heterogeneous model to the data allowing
for potential heterogeneity across animals can be useful to complement and/or confirm the results of the
simpler homogeneous model, even in the presence of nonsignificant testing results.

There were no statistically significant differences identified in the risk of infection among the five vac-
cine groups based on the LRT (p-value = 0.202 and 0.202 for the homogeneous and the heterogeneous
models, respectively). Based on both the homogenous and heterogeneous models, estimated perchallenge
VE comparing composite groups of particular interest as defined in Qureshi and others (2012) are reported
along with 95% confidence intervals (Table 4). The negative perchallenge vaccine efficacy estimate for
Ad5-Vx-SIV vaccine against Ad5-Vx-empty or other SIV-negative vaccines in the lowest and the middle
dose levels suggests a possibly greater risk of infection in the Ad5 seropositive animals immunized with
the Ad5 SIV. This result is consistent with Qureshi and others (2012). More investigation through larger
studies, however, is required to confirm this observation. Estimated perchallenge probabilities of infec-
tion are given in supplementary material available at Biostatistics online, Tables S12–S14 in Section S6.
Estimation of perchallenge infection risk and vaccine efficacy for each specific dose level was not achiev-
able in earlier analyses that assumed constant infection probability and VE across challenges and animals.
These measures provide valuable information to biologists for planning future RLD experiments.

6. DISCUSSION

In this article, we propose to fit a discrete-time survival model with random effects to take into account
the potential heterogeneity among animals and the resulting within-animal dependence arising in RLD
experiments. Simulation studies demonstrate that in the presence of heterogeneity, the homogeneous model
ignoring within-animal dependence can have an inflated Type I error rate, loss of power for testing the vac-
cine’s effect, biased estimates of vaccine efficacy, and low coverage rates. These problems were resolved
by fitting a heterogeneous infection risk model. In the absence of between-animal heterogeneity, the het-
erogeneous infection risk model produces results comparable with the homogeneous infection risk model.
We also propose a two-stage approach to determine the optimal balance between the number of animals
and the number of challenges, in order to maximize the efficiency of VE estimates under limited resources.
The usefulness of the method in designing an RLD experiment is demonstrated through simulation studies.

The heterogeneous infection risk model is more plausible from a biological point of view compared to
a homogeneous model. In practice, however, most NHP studies on HIV vaccines have a small sample size
with weak vaccine efficacy, which can lead to insufficient power to detect heterogeneity, as discussed in
Regoes (2012). Nevertheless, heterogeneity among animals is commonly believed to exist. Our methods
address the need to assess and accommodate the existence of heterogeneity in risk modeling, even when
the study may not be powerful enough to lead to significant test results.
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Table 4. Perchallenge VE (V Ek) estimates (Estimate) along with standard error estimates (SE) and 95% confidence intervals (95% CI) obtained
by the homogeneous and heterogeneous infection risk models including the interaction between the highest dose level and vaccine group in the

NHP data (Qureshi and others, 2012) are reported. Confidence interval is built using normal approximation of V Ek

The lowest level virus The middle level virus The highest level virus
(103TCID50) (104TCID50) (105TCID50)

Model Comparison group Estimate SE 95% CI Estimate SE 95% CI Estimate SE 95% CI

Homogeneous Ad5 Vx-SIV versus Ad5
Vx-empty

−3.58 5.12 (−13.61, 6.45) −3.49 4.96 (−13.21, 6.24) 0.65 0.33 (0.00, 1.30)

Ad5 Vx-SIV + Vx-SIV
versus All others

−0.46 0.67 (−1.78, 0.85) −0.45 0.65 (−1.72, 0.82) 0.29 0.39 (−0.48, 1.05)

Ad5 Vx-SIV versus All
others

−0.15 0.65 (−1.43, 1.12) −0.15 0.63 (−1.38, 1.08) 0.58 0.39 (−0.19, 1.34)

Heterogeneous Ad5 Vx-SIV versus Ad5
Vx-empty

−3.60 5.44 (−14.26, 7.06) −3.50 5.22 (−13.73, 6.73) 0.65 0.41 (−0.15, 1.44)

Ad5 Vx-SIV + Vx-SIV
versus All others

−0.47 0.77 (−1.98, 1.05) −0.45 0.74 (−1.89, 0.99) 0.28 0.46 (−0.61, 1.18)

Ad5 Vx-SIV versus All
others

−0.16 0.76 (−1.64,1.33) −0.15 0.73 (−1.59, 1.28) 0.58 0.41 (−0.23, 1.38)

Akaike information criterion with a correction for finite sample sizes (AICC) of the homogeneous and the heterogeneous infection risk models including the main effects for the
five vaccine groups and dose levels and their interactions for the highest dose levels are 212.12 and 216.03, respectively. AICC = 2k − 2
̂ + 2k(k + 1)/(n − k − 1), where k is the
number of parameters, n is the number of animals, and 
̂ is the estimated log likelihood. Smaller value is more preferred.
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The heterogeneous infection risk model developed in this article is computationally advantageous. It
leads to a simple closed form for the marginal likelihood function. This allows us to avoid numerical
integrations that are oftentimes required for other types of random effects models. Moreover, we are able
to derive vaccine efficacy as a simple function of regression parameters.

Further research in the statistical methods is warranted to accommodate more complex but realistic sce-
narios arising in RLD experiments. One of the worthwhile avenues of research is to relax the assumption
of no “memory” of challenge history (Regoes and others, 2005; Regoes, 2012). As challenges proceed,
the differences in vaccine efficacy between vaccinated and unvaccinated groups will be diminished if pre-
vious challenges can cause immunization. Time-varying markers reflecting the potential immunization
status of each animal might help investigating this issue. Identifying and modeling unintended immuniza-
tion resulting from past challenges is a difficult task that requires future development in both scientific
understanding and statistical techniques.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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