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HIGHLIGHTS

A visible-light crosslinkable

hydrogel for treatment of

periodontal diseases

High adhesion to soft/hard tissues

and implant surfaces

High antimicrobial properties

against periodontal pathogenic

bacteria

A versatile platform for

autologous bone growth in vivo
Dental implants are the current solution for replacement of missing teeth.

However, the majority of patients with implants suffer from implant diseases

caused by microbial infection and bone loss. There is an unmet need for the

treatment of dental diseases. We developed a safe, cheap, and fast applicable

glue with antimicrobial properties, designed for the treatment of periodontal

diseases. This material can be delivered in liquid form around the implant and

solidified by using a dental light to prevent infection and promote bone healing.
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Article
An Antimicrobial Dental Light
Curable Bioadhesive Hydrogel
for Treatment of Peri-Implant Diseases
Ehsan Shirzaei Sani,1 Roberto Portillo Lara,2 Zahra Aldawood,3 Seyed Hossein Bassir,3,4

Daniel Nguyen,5 Alpdogan Kantarci,5 Giuseppe Intini,6,7,8 and Nasim Annabi1,9,10,11,*
Progress and Potential

Clinical management of peri-

implant diseases (PIDs)

constitutes significant challenges.

Here, we report a multi-functional

adhesive hydrogel with

antimicrobial properties for

treatment of PIDs. The hydrogel

precursor can be crosslinked in

seconds using commercially

available dental curing systems

and forms a hydrogel that can

adhere to both soft tissues

(gingiva) and hard tissues (dental

implants/bone). The hydrogel was
SUMMARY

Dental implants remain the standard of care to replace missing teeth, which has

led to an increase in the number of patients affected by peri-implant diseases

(PIDs). Here, we report the development of an antimicrobial bioadhesive, Ge-

lAMP, for the treatment of PIDs. The hydrogel is based on a visible-light-acti-

vated naturally derived polymer (gelatin) and an antimicrobial peptide (AMP).

The optimized formulation of GelAMP could be rapidly crosslinked using com-

mercial dental curing systems. When compared with commercial adhesives,

GelAMP exhibited significantly higher adhesion to physiological tissues and

titanium surfaces. Moreover, the bioadhesive showed high cytocompatibility

and could efficiently promote cell proliferation and migration in vitro. GelAMP

also showed remarkable antimicrobial activity against Porphyromonas gingiva-

lis. Furthermore, it could support the growth of autologous bone after sealing

calvarial bone defects in mice. Overall, GelAMP could be used as a platform

for the development of more effective therapies against PIDs.
extensively characterized in vitro,

ex vivo, and in vivo. The

engineered adhesive has high

adhesion, mechanical stability,

cytocompatibility, antimicrobial

properties, biodegradability, and

bone-regenerative capacity.

Overall, this antimicrobial

hydrogel adhesive could be used

as a minimally invasive platform

for the development of more

effective therapeutic strategies

against PIDs.
INTRODUCTION

As dental implants have become the standard of care for the replacement of missing

teeth, the number of patients affected by peri-implant diseases (PIDs) is increasing.1

According to their clinical manifestations, PIDs can be mainly categorized in peri-

implant mucositis (PIM) and peri-implantitis (PI).2 PIM refers to a reversible inflamma-

tory process that affects the soft tissues surrounding an implant, resulting in

bleeding on gentle probing and, in some cases, suppuration, erythema, and

swelling.2 The etiology of PIM is the bacterial accumulation and biofilm formation

around the dental implant.3 On the other hand, PI presents not only with inflamma-

tion of the soft tissues but is also accompanied by a progressive bone loss that could

lead to implant failure.4 Clinical data have shown that progression from PIM to PI is

strongly associated with lack of preventive maintenance; thus, opportune treatment

of PIM could prevent the progression to PI.5

Currently, PIM can be treated with nonsurgical procedures, which include mechan-

ical debridement, alone or in combination with local delivery of antibiotics such as

Arestin (minocycline HCl), Elyzol (metronidazole 25%), and Atridox (doxycycline hy-

clate 10%), which can be injected directly into the sulcus or peri-implant pockets.6,7

However, because of their inability to efficiently antagonize the infection,8 the ther-

apeutic efficacy of these approaches is limited.9 In addition, local and systemic

administration of antibiotics may result in hypersensitivity reactions in allergic pa-

tients, as well as the development of antibiotic-resistant strains of pathogenic
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bacteria.10,11 Moreover, as the number of dental implants being placed has

continued to increase worldwide; it is predicted that PIDs will become one of the

most prominent dental diseases of the future.3 Therefore, there is a need for more

effective therapeutic strategies that could be used to prevent bacterial growth

and promote healing around dental implants for the treatment of PIDs.

Current treatments against PIM are mainly aimed at eradicating subgingival dysbiosis

and restoring homeostasis to microbial communities in the oral cavity.12 However, clin-

ical data have shown that nonsurgical mechanical approaches, aimed at disinfection of

the affected area, often fail due to recolonization of the periodontal or peri-implant

pockets by pathogenic bacteria that perpetuate the disease.12,13 Moreover, bacterial

infection and the subsequent epithelial cell death lead to the release of inflammatory cy-

tokines and chemotactic bacterial peptides, which attract migratory neutrophils. This

can worsen implant prognosis, mainly because neutrophil degranulation due to bacte-

rial overload releases tissue-degrading enzymes into the gingival crevice that lead to

further tissue trauma.14,15 As inflammation extends from the marginal gingiva into the

supporting periodontal tissues, PIM could eventually progress to PI and lead to bone

loss and implant failure. Therefore, therapeutic strategies that efficiently isolate the

affected area to prevent the infiltration of bacteria and other unwanted cells, while

also enabling the growth of bone-competent cells (i.e., compartmentalized tissue heal-

ing), could improve the clinical outcome of patients with PIDs.16,17

Periodontal regeneration requires the hierarchical and coordinated response of a

variety of soft and hard tissues (i.e., periodontal ligament, gingiva, cementum,

and bone) during the wound-healing process.18 In recent years, clinical evidence

has shown that treatment options based on resorbable and non-resorbable mem-

branes could be used for guided tissue regeneration of the periodontal tissues

affected by PIDs.19 Current third-generation membranes are developed not only

to act as passive barriers but also as delivery vehicles for the release of specific an-

tibiotics and growth factors.20,21 Moreover, local delivery yields higher local concen-

trations of the therapeutic agents, which increases the effectiveness at the site and

decreases the risk of systemic side effects. However, several limitations remain per-

taining to the unpredictability of the efficacy of these treatments and the need for

the delivery of multiple biological mediators to promote tissue regeneration.22,23

Hydrogel-based bioadhesives hold remarkable potential for soft- and hard-tissue

engineering applications due to their tunable composition and physical properties.

The precise control over the microarchitecture, mechanical properties, and degra-

dation rate of hydrogels make them useful alternatives for the controlled delivery

of a variety of therapeutic agents in vivo. For instance, our group has previously re-

ported the development of antimicrobial hydrogel adhesives for the treatment of

chronic nonhealing wounds24 and orthopedic applications,25 which were based on

extracellular matrix (ECM)-derived biopolymers. In the field of regenerative

dentistry, previous studies have reported the engineering of hydrogels based on

the combination of alginate with the soluble and insoluble fractions of the dentin ma-

trix.26 More recently, other groups have developed cell-laden gelatin-based hydro-

gels that could be photopolymerized using dental curing lights.27 However, to the

best of our knowledge, the development of antimicrobial hydrogels that can

strongly adhere to hard and soft oral surfaces for the treatment of PIDs has not

been reported.

Here, we describe the development of a visible-light crosslinkable antimicrobial hy-

drogel adhesive for the treatment of PIDs. This bioadhesive was engineered through
Matter 1, 926–944, October 2, 2019 927
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the incorporation of a cationic antimicrobial peptide (AMP) (Tet213) into a photo-

crosslinkable gelatin methacryloyl hydrogels to form gelatin methacryloyl-antimicro-

bial peptide (GelAMP) bioadhesives. We characterized the physical and adhesive

properties of the bioadhesives in vitro. We also evaluated the antimicrobial proper-

ties of the bioadhesives against Porphyromonas gingivalis, a Gram-negative bacte-

rium that is involved in the pathogenesis of PIDs. The cytocompatibility of GelAMP

was also evaluated in vitro via two-dimensional (2D) surface seeding and three-

dimensional (3D) encapsulation of W-20-17 murine fibroblasts. Lastly, we evaluated

the ability of the bioadhesives to support bone regeneration in vivo using a calvarial

defect model in mice. The engineered antimicrobial bioadhesives could constitute

an effective approach to prevent bacterial growth while also supporting tissue

regeneration for the treatment of PIDs.
RESULTS AND DISCUSSION

Synthesis and Physical Characterization of the Bioadhesive Hydrogels

The GelAMP bioadhesives were synthesized based on the combination of biocom-

patible photoinitiators (triethanolamine [TEA]/N-vinyl caprolactam [VC]/Eosin Y), a

naturally derived gelatin-based biopolymer (gelatin methacryloyl), and an AMP

(Tet213). Type I or cleavage-type initiators are widely used in tissue engineering

and are designed to be activated within the range of UV wavelength (i.e.,

360–400 nm). However, exposure to UV light could lead to cell damage,28 impair

cellular function,29 and even lead to neoplasia and cancer.30 Moreover, only a few

type I photoinitiators such as 2-hydroxy-40-(2-hydroxyethoxy)-2-methylpropiophe-

none (Irgacure-2959) and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP)

have been shown to be cytocompatible at low concentrations.30–32 Irgacure-2959

has low water solubility and cannot be activated with visible light since its molar ab-

sorptivity is limited in the visible-light range (wavelengths >400 nm). Although LAP

has high water solubility and cytocompatibility, its highest molar absorbance is in

UV-range wavelengths (365–385 nm, ez 150–230 M�1 cm�1), which limits its activa-

tion in the visible-light range (ez 30 M�1 cm�1 at 405 nm).33 Considering the effec-

tive wavelength of Food and Drug Administration (FDA)-approved dental curing

light systems (420–480 nm), cleavage-type photoinitiators have limited potential

to be used with these platforms in the clinical setting. To address these limitations,

we used a visible-light-activated photoinitiator, Eosin Y, which is known as type II or

noncleavage-type photoinitiator. This photoinitiator not only can minimize the

safety concerns associated with UV light, but also can be rapidly activated with wave-

lengths (420–480 nm, e > 50,000 M�1 cm�1) produced by commercial dental curing

systems.33,34 TEA and VC were used as a co-initiator and a co-monomer respec-

tively, to assist free radical photoinitiation.34

Hydrogels were synthesized using the highly cytocompatible and visible-light-acti-

vated polymer gelatin methacryloyl, a chemically modified form of hydrolyzed

collagen that possesses a high number of cell-binding motifs and matrix-metallopro-

teinase (MMP) degradation sites.31 These characteristics are critical to ensure proper

cell attachment and colonization of the scaffold. Lastly, we incorporated AMP Tet213

into the bioadhesive precursor to impart antimicrobial properties to the hydrogels.

AMPs do not readily lead to the selection of resistant mutants and are effective at

very low concentrations, which makes them ideal candidates to prevent bacterial

growth in biomedical implants via local delivery.35 To form the antimicrobial GelAMP

bioadhesives, we dissolved the gelatin methacryloyl prepolymer at various concen-

trations (7% and 15%) in a photoinitiator solution containing Tet213 (0.2% [w/v], or

1.34 mM) and photocrosslinked using a dental curing light (420–480 nm) (Figure 1A).
928 Matter 1, 926–944, October 2, 2019



Figure 1. Physical Characterization of the Bioadhesive Hydrogels

(A) Synthesis and photocrosslinking process of the bioadhesive hydrogels.

(B–D) Elastic and compressive modulus (B), extensibility (C), and ultimate stress (D) of the adhesive hydrogels produced by using 7% and 15% (w/v) total

polymer concentration with and without AMP.

(E and F) In vitro degradation properties in 20 mg/mL collagenase type II solution in Dulbecco’s phosphate-buffered saline (DPBS) (E) and swelling ratios

in DPBS for 7% and 15% (w/v) adhesive hydrogels with and without AMP (F).

Data are presented as mean G SD (**p < 0.01, ***p < 0.001, ****p < 0.0001; n R 5).
Control hydrogels (Gel) were formed using a similar technique, but without incorpo-

ration of AMP.

To evaluate the physical properties of the bioadhesives, we synthesized hydrogel

formulations based on two different concentrations of bioadhesive (7% and 15%

[w/v]) with and without incorporation of AMP. Our results showed that 15% (w/v)
Matter 1, 926–944, October 2, 2019 929



bioadhesive hydrogels exhibited a 4.3-fold and 3.2-fold increase in the compressive

and elastic moduli, respectively, when compared with 7% (w/v) hydrogels (Fig-

ure 1B). In addition, the extensibility of the bioadhesives did not change by changing

the concentration of bioadhesive from 7% to 15% (w/v) or by the addition of AMP

(Figure 1C). However, the ultimate tensile strength of hydrogels increased from

5.2 G 1.3 kPa to 19.8 G 3.5 kPa as the bioadhesive concentration was increased

from 7% to 15% (w/v) (Figure 1D). The results also showed that the addition of

AMP did not alter the mechanical properties of the bioadhesives, which could be

due to the low concentration and the small size of the AMP.24

Next, we examined the in vitro stability of the bioadhesives by incubating them in

collagenase type II solution in Dulbecco’s phosphate-buffered saline (DPBS)

(20 mg/mL) for 5 days. Bioadhesives with 7% (w/v) concentration resulted in signifi-

cantly accelerated degradation as compared with bioadhesives with 15% (w/v) con-

centration. In particular, the 7% (w/v) bioadhesive showed 100.0% degradation at

day 5 post incubation, while only 29.4% G 2.2% of the hydrogel with 15% (w/v) con-

centration was degraded during the same time (Figure 1E). In addition, there was no

significant difference in the degradation of bioadhesive hydrogels with or without

AMP (Figure 1E).

The in vivo biodegradation of GelAMP bioadhesive was also confirmed in a rat

subcutaneous implantation model. Accordingly, hematoxylin and eosin (H&E) anal-

ysis of the explanted samples revealed a significant deformation and biodegrada-

tion of hydrogels after 56 days of implantation when compared with day 7 (Fig-

ure S4). This can be mainly due to the enzymatic hydrolysis of the gelatin

backbone.25

We then determined the water uptake capacity of the hydrogels by calculating the

swelling ratios of the bioadhesives at different concentrations and time points. For

this, the swelled weights of the samples after incubation at 37�C in DPBS were

divided by their corresponding dry weights. As shown in Figure 1F, the swelling

ratios of the hydrogels decreased by increasing bioadhesive concentrations. How-

ever, the swelling ratios barely changed after 10 h of incubation, indicating that the

equilibrium states were achieved at this time point. In addition, the incorporation

of AMP did not alter the degradation rate and the swellability of the bioadhesives

(Figures 1E and 1F). Overall, bioadhesives with 15% (w/v) concentration

showed higher mechanical stiffness and slower degradation rates compared with

7% (w/v) hydrogels. Previous studies have also investigated the effects of physical

properties and microstructural features of hydrogel scaffolds on the regeneration

and repair of target tissues.24,36 An ideal bioadhesive used in the setting of the

oral cavity should be elastic and flexible, as well as sufficiently strong to withstand

breakage due to the intrinsic dynamism of the oral tissues.37 For this purpose, the

water uptake capacity of the bioadhesives should be finely tuned to prevent exces-

sive swelling, which could lead to patient discomfort and detachment from the wet

and highly motile oral tissues. Furthermore, fast degradation of the adhesive could

compromise adequate retention and greatly limit their clinical efficacy.24 Our re-

sults showed that, in addition to the higher modulus (Figure 1B) and ultimate

strength (Figure 1D) of the 15% (w/v) bioadhesives, they also showed compara-

tively higher structural stability in vitro. This was demonstrated by their slower

degradation rates (Figure 1E) and similar swelling equilibrium states upon incuba-

tion in DPBS (Figure 1F) when compared with 7% (w/v) bioadhesives. Next, we

evaluated the adhesive properties of the hydrogels to soft physiological tissues

and hard implant surfaces.
930 Matter 1, 926–944, October 2, 2019



Figure 2. In Vitro and Ex Vivo Adhesion Properties of the Bioadhesive Hydrogels

(A and B) Representative images of (A) wound closure test using pig gingiva tissue based on ASTM

standard test (F2458-05) and (B) adhesion strength of the bioadhesive hydrogels and a

commercially available adhesive (CoSEAL) to porcine gingiva.

(C) Schematic of the in vitro lap shear test based on a modified ASTM standard (F2255-05), using

titanium as a substrate.

(D) The in vitro lap shear strength of the bioadhesive hydrogels at 7% and 15% polymer

concentration and a commercially available adhesive (CoSEAL).

Data are presented as mean G SD (ns, not significant; ***p < 0.001, ****p < 0.0001; n R 5).
In Vitro and Ex Vivo Characterization of the Adhesive Properties

The strong retention and adhesion of biomaterials to both the native tissue and the

implant surface is a critical factor in promoting periodontal tissue repair and regen-

eration.38 Moreover, the designed bioadhesive must withstand the shear and the

pressure exerted by the underlying tissues and the high motility of the oral tissues.

To evaluate these parameters, we performed standard in vitro adhesion tests

including wound closure (ASTM F2458-05), lap shear (ASTM F2255-05), and burst

pressure (ASTM F2392-04) to assess the adhesiveness of the hydrogels to physio-

logical tissues and titanium surfaces. Similar tests were also performed using a

commercially available sealant, CoSEAL, as control. Wound closure tests were per-

formed to measure the adhesive strength of the bioadhesives to soft tissues

including porcine gingiva (Figures 2A and 2B) and porcine skin (Figure S1). The

results of the wound closure tests revealed that the adhesive strength of the hydro-

gel to gingiva increased from 23.5 G 5.4 kPa to 55.3 G 6.7 kPa, by increasing the

hydrogel concentration from 7% to 15% (w/v) (Figure 2B). Similarly, the adhesive

strength of the bioadhesives to porcine skin was increased 2.1-fold by increasing

the total polymer concentration from 7% to 15% (w/v) (Figure S1). Moreover, the

presence of AMP did not alter the adhesion strength of the hydrogels for both

porcine gingiva and skin tissues (Figures 2B and S1). Lastly, the adhesive strength

of the 15% (w/v) bioadhesive was significantly higher than that of CoSEAL, with a

3.3-fold difference for gingiva tissue and a 1.7-fold difference for skin tissue (Fig-

ures 2B and S1).

Similar to the wound closure tests, 15% (w/v) bioadhesives, with and without AMP,

showed significantly higher lap shear strength to titanium surface as compared
Matter 1, 926–944, October 2, 2019 931



with CoSEAL (i.e., 3.7- and 4.6-fold difference, respectively) (Figure 2D). However,

the lap shear strength did not significantly change for 15% (w/v) bioadhesives with

and without AMP (Figure 2D). In contrast, the burst pressure of the bioadhesives

was increased from 17.0 G 2.9 kPa at 7% (w/v) to 34.6 G 4.0 kPa at 15% (w/v) final

polymer concentration. Furthermore, the highest burst pressure was observed for

15% (w/v) hydrogels (37.7 G 6.5 kPa), which was significantly higher than that of

CoSEAL (1.7 G 0.1 kPa) (Figure S2).

Different hydrogel adhesives have been used for sealing, reconnecting tissues, or as

implant coatings.38,39 However, their poor mechanical properties and adhesion to

wet tissues have limited their implementation in the clinic. Moreover, the majority

of the commercially available dental adhesives are based on polymethyl methacry-

late- or acrylic-based resins, which are mainly used as fillers for dentin cavities.

Although these types of adhesives have shown strong adhesion and binding to

the oral surfaces and tissues (i.e., gingiva and pulpal walls), their potential as a plat-

form for the treatment of PIDs is limited.40,41 This is mainly due to the lack of cell-

binding sites and poor tissue biointegration, which ultimately limit the regenerative

capacity of these resins.41 In contrast, our results revealed that our visible-light

curable bioadhesives are able to bind strongly to both hard (titanium) and soft

(gingiva tissue) surfaces and withstand high shear stress and pressure. In addition,

we have previously shown that gelatin-based bioadhesives can strongly adhere to

wet and dynamic tissues such as the lung.31 Therefore, these bioadhesives could

be used to effectively adhere to periodontal tissues, as well as under palatal pressure

and during mastication. Moreover, due to the high regenerative capacity of ECM-

derived biopolymers, gelatin-based bioadhesives could constitute a suitable alter-

native for the treatment of PIDs.24

In Vitro Evaluation of the Antimicrobial Properties of the Bioadhesives

AMPs are composed of short sequences of cationic amino acids, which have been

shown to possess broad-spectrum bactericidal activity against both normal and anti-

biotic-resistant bacteria.24,35 AMPs bind to the negatively charged outer leaflet of

bacterial cell membranes, which leads to changes in bacterial surface electrostatics,

increased membrane permeabilization, and cell lysis.24

Here, we synthesized GelAMP, a dental light curable bioadhesive with antimicro-

bial properties through the incorporation of AMP into bioadhesive hydrogels. Pre-

viously, we have shown that AMP Tet213 at very low concentrations is effective

against both Gel (+/�) bacteria.24 Here, we used an optimized concentration of

AMP in this work (0.2% [w/v]) based on our previous study.24 First, we evaluated

the antimicrobial activity of the resulting bioadhesive against P. gingivalis using

a standard colony-forming units (CFU) assay and direct visualization of the bacte-

ria-laden hydrogels via scanning electron microscopy (SEM) (Figure 3). The CFU

assay showed that the number of P. gingivalis colonies in the 3-logarithmic dilution

decreased from 37.7 G 3.5 at 0.0% (w/v) AMP to 10.6 G 1.9 at 0.2% (w/v) AMP

(Figures 3A and 3B). A similar response was also observed for the 4-logarithmic

dilution, which further confirmed the bactericidal properties of the engineered

antimicrobial GelAMP bioadhesives when compared with pristine hydrogels as

control (Figure 3B). SEM micrographs also showed that the hydrogels without

AMP exhibited significant bacterial infiltration and colonization throughout the

polymer network (Figure 3C). In contrast, GelAMP containing 0.2% (w/v) AMP

showed high antimicrobial activity as demonstrated by the complete absence of

bacterial clusters on both surface and cross-sections of the bioadhesives

(Figure 3D).
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Figure 3. In Vitro Antibacterial Properties of the Bioadhesive Hydrogels against P. gingivalis

(A) Representative images of P. gingivalis colonies grown on blood agar plates for bioadhesives

with and without AMP (Dilution 1, 3 and 4 represent 1-, 3-, and 4-logarithmic dilutions, respectively).

(B–D) Quantification of colony-forming units (CFU) for bioadhesive hydrogels with and without AMP

(0.2% [w/v] or 1.34 mM), seeded with P. gingivalis bacteria (day 4) (B). Representative SEM images of

P. gingivalis colonization on bioadhesive hydrogels containing (C) 0% and (D) 0.2% (w/v) AMP.

Clusters of bacteria are indicated by yellow arrows (scale bars: 1 and 2 mm).

***p < 0.001, ****p < 0.0001.
A variety of AMPs such as defensins and cathelicidins are normally found in the oral

cavity, particularly in the gingival crevicular fluid and in salivary secretions, and

constitute the first line of defense against bacterial infection.42 Moreover, AMPs

do not trigger resistance mechanisms, and play a key role in the regulation of micro-

bial homeostasis and the progression of gingival and periodontal diseases.43

Because of this, previous groups have explored the use of AMPs as active coatings

for dental implants and other therapeutic strategies aimed at the prevention of bac-

terial infection.44,45 However, AMPs are highly susceptible to proteolytic degrada-

tion by proteases secreted by bacteria and host cells and, thus, efficient in vivo de-

livery of AMPs to the site of infection remains challenging. Thus, the engineered

bioadhesives in this work could be used to protect AMPs from environmental degra-

dation and to deliver physiologically relevant concentrations of AMPs for controlled

periods of time.
Cell Studies

An ideal bioadhesive not onlymust be cytocompatible but should also allow the attach-

ment and proliferation of cells within the 3D microstructure to support biointegration

and healing. Here, we assessed the ability of the engineered bioadhesives to support

the attachment and proliferation of migratory cells from the bone stroma via 3D encap-

sulation of bone marrow stromal cells (Figure 4). In addition, we evaluated the ability of

the bioadhesives to support the growth and proliferation of migratory stromal cells via

3D encapsulation of freshly isolated calvarial bone sutures.

In Vitro Cytocompatibility and Proliferation of 3D Encapsulated Cells within the
Bioadhesive Hydrogels

First, we evaluated the viability, metabolic activity, and spreading of bone

marrow mouse stromal cells (W-20-1746) encapsulated within the adhesives using
Matter 1, 926–944, October 2, 2019 933
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Figure 4. In Vitro 3D Encapsulation of W-20-17 Cells and Mouse Calvarial Bone Sutures inside the Bioadhesive Hydrogels

(A) Representative live/dead images of W-20-17 cells encapsulated within bioadhesive hydrogels with and without AMP after 1 and 5 days (scale bar:

200 mm).

(B) Quantification of viability of W-20-17 cells incorporated within hydrogels without (control) and with AMP (GelAMP) using live/dead assays on days 1,

3, and 5 post encapsulation.

(C) Representative phalloidin (green)/DAPI (blue)-stained images of cell-laden bioadhesives with and without AMP after 1 and 5 days (scale bar: 200 mm).

(D) Quantification of metabolic activity of W-20-17 cells encapsulated in hydrogels after 1, 3, and 5 days.

(E) Schematic diagram of the extraction and encapsulation of mouse calvarial bone sutures in 3D hydrogel network.

(F) Representative images of calvarial bone sutures encapsulated within 7% and 15% (w/v) bioadhesives to visualize growth and diffusion of cells on days

10, 20, and 30 post-encapsulation.

(G) Quantification of metabolic activity of migratory stromal cells from encapsulated bone sutures. Bioadhesive hydrogels were formed at 120 s visible

light exposure time.

ns, not significant;*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
live/dead and PrestoBlue assays, and F-actin/DAPI staining, respectively. Our results

showed that cells encapsulated within the bioadhesives with and without AMP ex-

hibited >90% viability after 5 days of culture (Figures 4A and 4B). In addition, the

incorporation of AMP did not affect the viability of the encapsulated cells (Figures

4A and 4B). Moreover, F-actin/DAPI staining revealed that W-20-17 cells could atta-

ch and proliferate throughout the 3D network for both Gel and GelAMP adhesives

up to 5 days of culture (Figure 4C). Furthermore, the metabolic activity of cells in

GelAMP hydrogels increased consistently from 2,273 G 66 relative fluorescence

units (RFU) at day 1 to 10,041 G 938 RFU at day 5 of culture (Figure 4D). In addition,

there were no statistically significant differences between the metabolic activity of

cells seeded on GelAMP and Gel adhesives (Figure 4D).

3D Encapsulation of Calvarial Bone Suture Explants within the Bioadhesives

We encapsulated the freshly isolated calvarial bone sutures in both 7% and 15% (w/v)

hydrogels to evaluate the ability of the bioadhesives to support the proliferation and

migration of stromal cells (Figure 4E). During the first week of encapsulation, no

significant cell migration was observed. A week after encapsulation, cell (most likely

suture-derived skeletal stem cells47,48) deployment out of the suture was observed,

followed by proliferation and migration within the bioadhesive hydrogel (Figure 4F).

The migratory and proliferative behavior of these cells was assessed for up to

30 days post-encapsulation (Figure 4F). The results showed that the metabolic

activity of the encapsulated cells increased consistently for both 7% and 15% (w/v)

bioadhesives (Figure 4G). For instance, the metabolic activity of the cells in 15%

GelAMP (w/v) bioadhesives increased from 3,016 G 678 RFU at day 10 to

22,869 G 3,421 RFU at day 30 post encapsulation (Figure 4G). However, we did

not observe any statistical difference between metabolic activity of the cells seeded

within the 7% and 15% (w/v) bioadhesive hydrogels (Figure 4G).

Our results also indicated that the GelAMP bioadhesives did not elicit any cytotoxic

response and could effectively support the growth of both W-20-17 and suture-

derived skeletal stem cells in vitro. Previous studies have reported the development

of different types of antimicrobial hydrogels based on the incorporation of metal or

metal oxide nanoparticles.24,49 However, the negative effect of metal oxide nano-

particles on cell viability greatly limits their application for the clinical management

of PIDs.49 In contrast, our results demonstrated that the cells could infiltrate and

spread throughout GelAMP bioadhesives while also remaining proliferative and

metabolically active.

Taken together, these results demonstrated that our bioadhesives could be used to

form an adhesive and antimicrobial barrier that prevents bacterial growth and sup-

ports the proliferation of bone-competent cells in vitro. The ability of GelAMP
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bioadhesives to eradicate or prevent infection at the implant site could not only be

relevant to disinfect the affected area, but also to reduce inflammatory responses

triggered by sustained microbial colonization. Moreover, the establishment of a

cell-supportive microenvironment could promote the regeneration of the affected

bone by endogenous progenitor cells that migrate into the wound site. Therefore,

we next aimed to evaluate the ability of the bioadhesives to support bone regener-

ation in vivo using a calvarial defect model in mice.

In Vivo Application and Evaluation of the Bioadhesive Hydrogels

We investigated the ability of the bioadhesives to be delivered and formed in situ

and to remain firmly attached to the wound area without the risk of displacement

during the healing process. For this, we first created critically sized defects in

mice calvaria using dental drills. The bioadhesive precursor solutions (7% and 15%

[w/v]) were directly injected into the bone defects and photopolymerized using a

commercial dental light curing unit (Figure 5A). Our results showed that the bio-

adhesives could remain at the site of application without any sign of displacement

after 7 and 14 days of implantation (Figure 5B). In addition, histological assessment

(using H&E) showed the complete sealing of the defect and a strong coherence be-

tween the bioadhesive and the native bone following application (Figure 5C).

Moreover, the H&E images also revealed that bioadhesives with both formulations

(7% and 15% [w/v]) could remain attached to the wound site up to 42 days after

application (Figures 5D and 5E). At earlier time points (14 days post application),

the formation of new autologous bone could be observed near the margin of the

original defect (Figure S3). Calvarial defects in untreated control animals showed

limited new bone formation at day 42 post application (Figure 5F). In contrast, his-

tological staining revealed the formation of new bone for both 7% and 15% (w/v) bio-

adhesives (Figures 5D and 5E). Furthermore, the area covered by the newly formed

bone was significantly larger for defects treated with 15% (w/v) hydrogels compared

with 7% (w/v) hydrogels (Figure S3). This observation could be explained in part due

to the increased structural integrity of bioadhesives with higher polymer concentra-

tion, which provided a more structurally stable scaffold to support bone regenera-

tion and the ingrowth of the adjacent connective tissues (Figure 5E). These observa-

tions provided qualitative evidence that was indicative of the formation of new bone

and the subsequent repair of the defect.

To perform a quantitative evaluation of new bone formation, we performed micro-

computed tomography (mCT) on untreated defects as well as defects treated with

bioadhesives synthesized using 7% and 15% (w/v) polymer concentrations at days

0, 28, and 42 post procedure (Figure 6). Our results showed that the untreated de-

fects exhibited limited evidence of bone formation up to 28 and 42 days post pro-

cedure, with little decrease in the extension of the critical size (Figure 6A). At day

28, the defects treated with the 15% (w/v) hydrogels showed significantly higher

bone formation than 7% (w/v) hydrogels and the untreated groups. At day 42, a sig-

nificant amount of new bone was observed for defects treated with 15% (w/v) hydro-

gels (Figure 6A). In addition, on days 28 and 42, the bone surface area (BS) and the

bone volume (BV) for 15% (w/v) hydrogels were shown to be significantly higher than

that of untreated and 7% (w/v) groups (Figures 6B and 6C). For instance, at day 42,

the BS for 15% (w/v) hydrogels corresponded to 2.96 G 0.46 mm2, which was

significantly higher than those of the untreated controls (i.e., 1.03 G 0.63 mm2)

and 7% (w/v) hydrogels (i.e., 1.40 G 0.53 mm2) (Figure 6B). Moreover, the highest

BV was observed for 15% (w/v) bioadhesives (i.e., 7.16 G 1.65 mm3), which was

significantly higher than those of untreated (i.e., 2.76G 1.03 mm3) and 7% (w/v) bio-

adhesives (i.e., 4.45G 0.72 mm3) (Figure 6C). Statistical analysis indicated that both
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Figure 5. In Vivo Evaluation of the Bioadhesive Hydrogels Using a Mouse Calvarial Defect Model

(A) Schematic diagram of in situ application of bioadhesive hydrogels in a mouse calvarial defect

model.

(B) Bioadhesive hydrogels (7% and 15%) were delivered to artificially created bone defects in mouse

calvaria (yellow arrowheads), and photopolymerized for 1 min using a commercially available

dental curing light. Seven and 14 days after implantation, samples remained in place, without any

sign of detachment.

(C–F) Histological evaluation (H&E staining) of the 15% (w/v) bioadhesives at day 0 post

implantation (C). Representative H&E images for (D) 7% (w/v) and (E) 15% (w/v) bioadhesive

treatments, and (F) untreated sample after 42 days of implantation (scale bars: 1 mm and 50 mm).
the concentration of the biopolymer and the treatment time had a significant effect

on BV and BS. For instance, the BS and BV increased 1.27- and 1.66-fold, respec-

tively, at 28 and 42 days post procedure, which was indicative of sustained bone

regeneration throughout the experiment (Figures 6B and 6C).

The higher degree of bone regeneration observed for 15% (w/v) bioadhesive could be

due in part to the direct contribution of the enhanced mechanical properties of hydro-

gels with higher polymer concentrations.36 For instance, Huebsch et al. demonstrated

that the contributionofmatrix elasticity to newbone formation in vivo is highly correlated

with mechanically induced osteogenesis.36 They reported that the BV and mineral den-

sity obtained for hydrogels with elasticities in the range of 60 kPa was significantly higher

than those with 5-kPa or 120-kPa moduli.36 In our study, 15% (w/v) bioadhesives, which

exhibited elastic and compressive modulus corresponding to 53.0 G 10.3 kPa and

52.2G 4.7 kPa (Figure 1B), respectively, could potentially enable mechanically induced
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Figure 6. Quantitative Evaluation of New Bone Formation Using mCT Analysis

(A) Representative mCT images for untreated defect, and defects treated with 7% and 15%

bioadhesives on days 28 and 42 post implantation.

(B and C) Quantitative analysis of bone surface area (B) and bone volume (C). Data are presented as

mean G SD (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n = 5).
osteogenesis and thus promote the formation of new bone in vivo. However, the clinical

efficacy of antimicrobial bioadhesives for the treatment of patients with advanced PI

could be limited due to the lack of a bona fide osteoinductive strategy. Although previ-

ous groups have reported the development of regenerative bioadhesives, they often

rely on the use of growth factors,50,51 stem cells,36,52 and other bioactive molecules.53,54

These methods often suffer from clinical limitations and drawbacks.55,56 Due to these

limitations, in our future work we will introduce a cell-/growth factor-free strategy by

the incorporation of alternative osteoinductive strategies such as nanosilicates57 into

antimicrobial bioadhesives, which could constitute an attractive platform for the devel-

opment of osteoinductive and antimicrobial bioadhesives for the treatment of PIDs.

Conclusion

The clinical management of PIDs still constitutes significant challenges for clinicians

and researchers in the dentistry field. In this study, we engineered antimicrobial hy-

drogel bioadhesives for the treatment of PIDs. The hydrogel precursors could be

readily delivered and photocrosslinked in situ using commercial dental curing sys-

tems. These bioadhesives exhibited tunable mechanical stiffness and elasticity,

and comparatively higher adhesive strength to implant and oral surfaces than com-

mercial adhesives. In addition, the bioadhesives showed high antimicrobial activity

in vitro against P. gingivalis, a pathogenic bacterium associated with the onset and

progression of PIDs. In vitro and ex vivo studies demonstrated that the bioadhesives

were highly cytocompatible and could provide a suitable microenvironment for

migratory stromal cells deployed from encapsulated bone sutures. Furthermore,

in vivo studies showed that the bioadhesives could promote bone regeneration
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by supporting the growth of migratory progenitor cells. Taken together, our results

demonstrated the remarkable potential of our bioadhesive hydrogels to be used as

adhesive, antimicrobial, and cell-supportive barriers that can support tissue healing

and bone regeneration in vivo for the treatment of PIDs.
EXPERIMENTAL PROCEDURES

Synthesis of Photocrosslinkable Bioadhesive Prepolymers

Gelatin methacryloyl was synthesized as previously described.58–60 In brief, 10 g of

gelatin from cold water fish skin (Sigma-Aldrich) was dissolved in 100 mL of DPBS at

60�C for 30 min. Next, 8% (v/v) methacrylic anhydride (Sigma-Aldrich) was added to

the solution dropwise under vigorous stirring at 60�C for another 3 h. The solution

was then diluted with 300 mL of DPBS to stop the reaction and dialyzed (Spectrum

Laboratories, molecular weight cutoff = 12–14 kDa) in a deionized water bath at

50�C for 5 days to remove the unreacted methacrylic anhydride. The resulting solu-

tion was filtered and lyophilized for 4 days.
Fabrication of Bioadhesive Hydrogels

Adhesive hydrogels (Gel) were formed by first dissolving different concentrations of

gelatin methacryloyl (7% and 15% [w/v]) in the photoinitiator solution containing

TEA (1.88% [w/v]) and VC (1.25% [w/v]) in distilled water at room temperature. A

separate solution of Eosin Y disodium salt (0.5 mM) was also prepared in distilled

water. The biopolymer/TEA/VC solutions were then mixed with Eosin Y prior to

crosslinking to form the final precursor solution. To form the hydrogels, we

pipetted 70 mL of the precursor solution into polydimethylsiloxane (PDMS) cylindri-

cal molds (diameter: 6 mm; height: 2.5 mm) for compressive tests, or rectangular

molds (12 3 5 3 1 mm) for tensile tests. Lastly, the solutions were photocrosslinked

upon exposure to visible light (420–480 nm) for 120 s, using a VALO dental light

curing unit (Ultradent Products). GelAMP hydrogels were formed by dissolving

0.2% (w/v) AMP Tet213 (CSC Scientific) in TEA/VC/Eosin Y photoinitiator solution.

The lyophilized biopolymers were then dissolved in the resulting solution and photo-

crosslinked as described above.
Mechanical Properties

The tensile and compressive properties of the hydrogel adhesives were evaluated

using an Instron 5542 mechanical tester, as described previously25 (Supplemental

Experimental Procedures).
In Vitro Swellability and Degradation

The in vitro swellability (24 h) and degradation (14 days) of bioadhesives were per-

formed in DPBS as described previously25 (Supplemental Experimental Procedures).
In Vitro Adhesion

In Vitro Wound Closure

Wound closure test was performed on both porcine gingiva and skin tissues using a

modified ASTM F2458-05 test, as described previously.25 In brief, the porcine

gingiva was isolated from fresh porcine mandible. Tissues were then cut into 1 3

2-cm pieces and kept moist prior to the test. The tissues were glued onto two precut

glass slides (20 3 30 mm), then 50 mL of precursor solution was pipetted and cross-

linked using a dental light curing system to form the adhesives. The samples were

then placed between the Instron tensile grips and the ultimate adhesive strength

was calculated at break (nR 5). Similarly, 50 mL of the commercial adhesive material

was tested as a control.
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In Vitro Lap Shear

The lap shear strength of the bioadhesives and a commercial adhesive, CoSEAL

(Baxter, Deerfield, IL, USA), was determined according to a modified ASTM test

(F2255-05). Both titanium and glass slides were used as the substrates. Glass slides

(103 30mm) were coated with gelatin solution and dried at 37�C. For adhesive tests

on titanium, a piece of titanium (103 10 mm) was attached to a glass slide and 10 mL

of the precursor solution was photocrosslinked between the titanium and the

gelatin-coated glass slide. The lap shear strength of the adhesives was then

measured under tensile stress at a rate of 1 mm/min using an Instron mechanical

tester. The ultimate stress was reported as shear strength of the bioadhesives

(nR 5). Similarly, 10 mL of the commercial adhesive material was tested as a control.

In Vitro Burst Pressure

The burst pressures of the bioadhesives and CoSEAL were determined using amodi-

fied ASTM (F2392-04) test as described previously.24 A piece of porcine intestine

was fixed between the stainless-steel annuli of a custom-designed burst pressure

setup. A 2-mm defect was then created on the center of the tissue. Next, 30 mL pre-

cursor solution was applied to the defect site and crosslinked using a dental light

curing system. Air pressure was then applied to the sealed tissue and the maximum

resistance pressure was recorded as burst pressure (n R 5). Similarly, 30 mL of the

commercial adhesive material was tested as a control.

In Vitro Antimicrobial Properties of Adhesive Hydrogels

P. gingivalis (clinical isolate A743661) was used to evaluate the antimicrobial

properties of GelAMP bioadhesives. P. gingivalis was grown on 5% sheep’s

blood agar plates supplemented with hemin and vitamin K (H & K) in an anaer-

obic system (5% H2, 15% CO2, 80% N2) at 37�C for 7 days. The bacteria colonies

were then transferred to Wilkins-Chalgren Anaerobe Broth (Oxoid) medium to

prepare a 108 CFU/mL bacterial solution. For antimicrobial tests, 1 mL of a 108

CFU/mL bacteria solution was seeded on cylindrical hydrogels with and without

AMP (0% and 0.2% [w/v] or 1.34 mM) in 24-well plates. After 72 h of anaerobic

incubation, the samples were removed from the medium and washed gently

three times with DPBS. Next, each sample was placed in 1 mL of DPBS and vor-

texed for 15 min to release bacteria from within the scaffold. The solutions were

then logarithmically diluted to 10�1, 10�3, and 10�4 dilutions. A 30-mL volume of

each dilution was then seeded on sheep’s blood agar plates with H & K and incu-

bated for 5 days. The number of colonies was counted and reported for each

sample (n = 4). For SEM imaging, hydrogels were removed from the medium

and washed three times with DPBS. The samples were then fixed in a solution

of 2.5% (v/v) glutaraldehyde (Sigma-Aldrich) and 4% (v/v) paraformaldehyde

(Sigma-Aldrich) in DPBS for 30 min. After fixation, the samples were gently

washed three times with DPBS and dehydrated using a serially diluted ethanol

solution in water (30%, 50%, 70%, 90%, and 100% [v/v]). The samples were

then dried using a critical point dryer. Lastly, the samples were mounted on

aluminum SEM stubs, sputter coated with 6 nm of gold/palladium, and imaged

by a Hitachi S-4800 scanning electron microscope (n = 3).

In Vitro Cell Studies

Cell Lines

Bone marrow mouse stromal cells (W-20-17) were cultured at 37�C and 5% CO2 in

Minimum Essential Medium (MEM) Alpha medium without ascorbic acid (Gibco),

containing 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin/streptomycin

(Gibco).
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2D Cell Seeding on Adhesive Hydrogels

Hydrogels were formed by pipetting 10 mL of precursor solution between a 3-(trime-

thoxysilyl) propyl methacrylate (TMSPMA; Sigma-Aldrich)-coated glass slide

(103 10 mm) and a glass coverslip separated with a 100-mm spacer. Bioadhesive hy-

drogels were photocrosslinked using visible light for 60 s. The hydrogels were

seeded with W-20-17 cells (53 106 cells/mL) and kept at 37�C, 5% CO2 for 5 days.60

3D Cell Encapsulation within the Engineered Hydrogels

For 3D cell encapsulation, a suspension of W-20-17 cells (5 3 106 cells/mL) was pre-

pared by trypsinization and resuspension in MEM alpha medium. The cell suspension

was centrifuged to form a cell pellet and themediumwas discarded. A hydrogel precur-

sor containing 7% bioadhesive was prepared in culture medium containing TEA/VC/

Eosin Y and mixed with the cell pellet. Hydrogels were formed by pipetting 10 mL of

the precursor solution between a TMSPMA-coated glass slide and a glass coverslip

separated with a 100-mm spacer, and photocrosslinking upon exposure to visible light

for 60 s. Lastly, the glass slides with the encapsulated W-20-17 cells were placed in

24-well plates and incubated in MEM alpha at 37�C and 5% CO2.

Cell Viability, Proliferation, and Spreading

A calcein AM/ethidium homodimer-1 live/dead kit (Invitrogen) was used to evaluate

cell viability as described previously.62 Cell proliferation and metabolic activity was

determined using a commercial PrestoBlue assay (Fisher) on days 0, 1, 3, and 5 as

described previously.25 Cell spreading in 2D and 3D cultures was evaluated via fluo-

rescent staining of F-actin microfilaments and cell nuclei25,63 (Supplemental Exper-

imental Procedures) (n R 3).
Animal Studies

Calvarial Bone Suture Tissue Extraction and Encapsulation into the Gels

All animal experiments were performed according to the Guide for the Care and Use

of Laboratory Animals (IACUC approval IS00000535) at Harvard School of Dental

Medicine. For all experiments, 7- to 8-week-old wild-type house mice (Mus muscu-

lus) were used. To obtain the calvarial bone sutures, we first euthanized the mice by

CO2 inhalation, before carrying out cervical dislocation. After decapitation, the head

was cleaned using 70% ethanol. A cut was then created through the skin at the base

of the skull using a surgical blade. Next, an incision was made starting at the nose

bridge and ending at the base of the skull followed by removal of the skin from

the top of the head. The calvaria was then cut and transferred to a Petri dish with

DPBS. After washing with DPBS, the soft tissues were removed using tweezers and

the sutures were isolated using scissors. The isolated tissues were chopped into

small fragments of 1–2 mm2 and quickly transferred to ice-cold cell culture medium

prior to use. For encapsulation, the suture fragments were placed on a flat Petri dish,

in between two spacers (500 mm). Next, 70 mL of the bioadhesive precursor was pi-

petted on the tissue samples and covered by a glass coverslip. The samples were

then photocrosslinked for 2 min using a dental curing light. Samples were removed

from Petri dishes and placed in 12-well tissue culture plates. Next, 2 mL of MEM

Alpha medium, containing 10% (v/v) FBS and 1% (v/v) penicillin/streptomycin, was

added to each well and the samples were incubated at 37�C for up to 30 days.

The samples were imaged using a Zeiss Primo Vert inverted microscope, and the

cell metabolic activity was evaluated as described previously (n R 3).

Mouse Calvarial Bone Defect Model

Male and female mice were assigned randomly to all experimental groups. After

general anesthesia, 2-mm round defects were made with a surgical bur on right
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and left parietal bone of mice. Next, 10 mL of the precursor solution was injected in

the defect sites (7% and 15% [w/v]) and photopolymerized using a dental light curing

unit for 1 min. After anatomical wound closure, the animals recovered from anes-

thesia. At each time point, the animals were euthanized by CO2 inhalation, followed

by cervical dislocation. After euthanasia, calvarial tissues were collected for mCT and

histological analysis (Supplemental Experimental Procedures) (n R 3).

Statistical Analysis

All data are presented as mean G standard deviation (*p < 0.05, **p < 0.01,

***p < 0.001, and ****p < 0.0001). T test, one-way ANOVA, or two-way ANOVA fol-

lowed by Tukey’s test were performed using the GraphPad Prism 6.0 Software.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.matt.

2019.07.019.
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