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Abstract

We introduce a novel method leveraging conditional generative adversarial networks
(cGANs) to generate diverse, high-resolution microscopy images for neuron tracing model
training. This approach addresses the challenge of limited annotated data availability,
a significant obstacle in automating neuron dendrite tracing. Our technique utilizes a
multi-scale cascade process to generate synthetic images from single neuron tractograms,
accurately replicating the complex characteristics of real microscopy images, encompassing
imaging artifacts and background structures. In experiments, our method generates diverse
images that mimic the characteristics of two distinct neuron microscopy datasets, which
were successfully used as training data in the segmentation task of real neuron images.

Keywords: multi-scale cGAN, microscopy imaging, neuron tracing

1. Introduction

The automated segmentation and tracing of neuronal structures from microscopy images is
a crucial step toward understanding brain structure and function. Despite its importance,
it remains a challenging task that requires high levels of morphological precision, often
necessitating time-consuming manual efforts. Recent advancements in deep learning have
led to substantial improvements in automatic neuron segmentation and tracing (Chen et al.,
2021). However, the effectiveness of these models is constrained by the scarcity of annotated
training data and the diversity of imaging methods and neuronal morphologies.

One approach to circumvent the limitations associated with the scarcity of annotated
data is the generation of artificial images. This involves rasterizing a tree structure into
an image and adding noise to simulate real-world imperfections. Such synthetic images are
often utilized to expand existing training datasets or even to directly train models, thereby
rendering the time-consuming acquisition and labeling of real images obsolete (Chen et al.,
2021). This technique is not limited to neuron segmentation but also benefits the analysis
of other tree-like structures, such as vessels (Tetteh et al., 2020; Prabhakar et al., 2024) and
airways (Nardelli et al., 2020). To create images that mimic realistic morphology, these are
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often generated from publicly available digital reconstructions (e.g., neuron tractograms,
vascular trees) (Radojević and Meijering, 2019; Chen et al., 2021), or artificially generated
trees (Hamarneh and Jassi, 2010). Synthetic images can be generated in substantial vol-
umes, effectively addressing the scarcity of real-world data and the imprecision of manual
annotations. However, they often fail to accurately replicate the surrounding anatomi-
cal structures or imaging artifacts unique to specific organs and imaging modalities, thus
limiting the transferability of the model to real-world images.

In recent years, generative adversarial networks (GAN), particularly conditional GANs
(cGANs) (Isola et al., 2017), have demonstrated remarkable capabilities in generating realis-
tic synthetic images. These models generate images conditioned on provided ground truth,
creating paired images that bypass the need for further annotation. cGANs have been
successfully employed across several imaging modalities, including CT (Jin et al., 2018),
MR (Lau et al., 2018; Mok and Chung, 2019), ultrasound (Tom and Sheet, 2018), and
retinal images (Costa et al., 2017). However, their application to microscopy imaging of
neurons, to the best of our knowledge, remains unexplored. The unique challenges posed by
neuron imaging include the high resolution of microscopy images, which imposes substan-
tial computational demand and necessitates a large amount of annotated data for training.
Moreover, the one-to-one image mapping inherited from cGANs constrains the diversity of
the generated images to that of the input ground truth images. Consequently, achieving a
broad range of image outputs requires a large and varied dataset of neuron tractograms.

To address these challenges, we propose a novel method utilizing cGANs. Our ap-
proach leverages a multi-scale cGAN cascade to iteratively refine image resolution, em-
ploying a patch-based strategy that facilitates the generation of high-resolution microscopy
images with minimal memory demands. An important part of our approach is the em-
ployment of a mode seeking loss function (Mao et al., 2019) that enhances the diver-
sity of the generated data, setting our method apart from previous methods (Uzunova
et al., 2019) that generate unique pairs of real and generated images. We have devel-
oped a new training strategy that ensures coherence of the image content across differ-
ent scales during refinement. This allows for the stochastic generation of a broader va-
riety of images without compromising quality. We have successfully applied our method
to two datasets of neuron microscopy images, producing synthetic images that faithfully
replicate the characteristics of their real counterparts. The code is available at https:

//github.com/BrainImageAnalysis/Multi-scale-cGAN.

2. Methods

2.1. Data

In this study, we use two datasets of Drosophila single-neuron microscopy images with di-
verse anatomical structures, and real-world imaging artifacts. Dataset 1 contains 417 wide-
field fluorescent microscopy images of Drosophila class I da neurons. Dataset 2 (Thompson-
Peer et al., 2016; Nguyen and Thompson-Peer, 2021) contains 221 confocal microscopy im-
ages of Drosophila class IV da neurons; see Appendix A for further details. The Z-stack
images were converted to 2D by maximum intensity projection, and the images of both
datasets have been rescaled from 1920× 1440 and 1024× 1024 pixels to 1024× 1024 pixels.
Both datasets were manually traced. Neurite radii and the cell bodies were automatically
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extracted. All images were post-processed using histogram equalization. We downloaded
all the available tracings for Drosophila class I and IV da neurons from the NeuroMorpho
database (Ascoli et al., 2007), and rasterized them into a 1024× 1024 segmentation mask,
forming the evaluation datasets Neuromorpho 1 (373 segmentations) and Neuromorpho 2
(501 segmentations).

2.2. Image generation

2.2.1. Multi-scale cascade structure

Models such as Laplacian GAN (Denton et al., 2015) or HDpix2pix (Wang et al., 2018)
employ a multi-scale iterative refinement to generate high-resolution images. However,
these methods impose high memory demands by requiring entire images as inputs to the
network. To circumvent this limitation, we utilize a cascade of conditional GANs with a
fixed input and output size. As proposed in (Uzunova et al., 2019), rather than enlarging
the size of the image processed through the model, we keep the patch size constant while
iteratively decreasing the receptive field, thereby increasing the pixel resolution (Figure 1).

Conditional GANs are generative models that learn to map a condition image x to a
target image y, G : x → y. In this work, x is the neuron segmentation and y is the paired
microscopy image. A discriminator D is simultaneously trained to distinguish fake from
real images, driving the generator to create realistic images while following the constraints
of the input image x.

Figure 1: Multi-scale generation pipeline. u (respectively d) refers to an upsampling (respectively
downsampling) operation, and ỹp0

(respectively xp0
) designates the patches extracted from the whole

image ỹ0 (respectively x0).

At the first scale, a conditional GAN (G0, D0) learns the mapping between a low-
resolution (64× 64) neuron segmentation image x0 and a low-resolution microscopy image
y0, G0 : x0 → ỹ0. The generated image G0(x0) is upsampled to the original resolution
(1024 × 1024) and divided into patches ỹp0 . In the next step, another conditional GAN
(G1, D1) learns to generate next resolution patch ỹp1 conditioned on both the segmentation
xp0 and the previous patch ỹp0 , G1 : (xp1 , ỹp0) → ỹp1 . The generated patches are combined
and upsampled to the original resolution to form the refined images ỹ1. This refinement
step is repeated until we reach the target resolution. At every scale, the receptive field of
the patches is divided by two; the resolution of the refined images is consequently doubled.
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The objective of the base generative cGAN (G0, D0) and the refinement cGANs (Gi, Di)
with i ∈ [1, n] differs. We detail the architecture of each model in the next sections.

2.2.2. Base generation cGAN

The objective of the base generative model is to create a coarse image background, laying
the foundational layer for subsequent refinement at higher scales. This base model is crucial,
as it determines both the realism and the diversity of the generated images.

cGANs usually suffer from the lack of diversity of the generated samples for a given input,
primarily because the model tends to overlook the random noise vectors. This oversight
leads to a predominant one-to-one mapping between the input condition and the target
image. The widely used cGAN-based pix2pix model (Isola et al., 2017) relies on a L1 loss
between the generated image G0(x0) and the target image y0 to improve the realism of the
generated images, restricting even more the variability of the generated samples. In this
type of model, the only source of variability is the input image x. To increase the diversity of
the generated images, Mao et al. (Mao et al., 2019) proposed a new regularization term to
drive the generator to generate dissimilar images, called mode seeking loss. We propose to
use this loss in our base generation model to increase the diversity of the generated images.

GENERATOR
DISCRIMINATOR

fake pairs

real / fakereal pairs
random 

vectors

Figure 2: Mode seeking conditional GAN model.

Our base generation cGAN is composed of a generator G0 and a discriminator D0.
The generator is a U-Net (Ronneberger et al., 2015), and the discriminator a PatchGAN
(Isola et al., 2017). The generator G0 takes as input the downsampled neuron segmentation
image x0 and a random vector z drawn from a uniform distribution. The discriminator D0

is trained to distinguish fake pairs (x0, G(z, x0)) from real pairs (x0, y0). As shown in Figure
2, we use two losses during the training. The mode seeking loss Lms (Equation 1) maximizes
the dissimilarity between two images generated from different z random vectors, increasing
the diversity of the generated images and avoiding mode collapse. The adversarial loss
LGAN (Equation 2) pushes the generator to create realistic images. These losses are:

Lms = max
G0

(MAE(G0(za,x0),G0(zb,x0))
MAE(za,zb)

), (1)

where za and zb are two random vectors of size nz, and MAE is the mean absolute error,
and

LGAN (G0, D0) = min
G0

max
D0

Ex0,y0 [logD0(x0, y0)] + Ez,x0 [1− logD0(x0, G0(z, x0))]. (2)
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The total loss L is the sum of both losses L = Lms + LGAN . Figure 3 shows the effect of
the mode seeking loss on the diversity of the generated images compared to the original
pix2pix model.

(a) (b)

Figure 3: Repeated generation for the same input tractogram, using pix2pix (a), and mode seeking
(b). As pix2pix repeatedly generated the same image, we show only one of them.

2.2.3. Refinement cGAN

GENERATOR

DISCRIMINATOR

fake pairs

real pairs
real / fake

: patches of the generated image at the 

  previous resolution

Figure 4: Refinement conditional GAN model.

The low-resolution images produced by the base generation cGAN are progressively
enhanced in quality through a cascade of refinement cGANmodels at subsequent scales. The
structure of our refinement cGAN is illustrated in Figure 4. We keep the same architecture
as the base generation cGAN for the generator Gi and the discriminator Di.

The stochasticity of our base generation cGAN drove us to develop a new training
strategy for refinement compared to existing methods. Unlike the multi-scale GAN of
(Uzunova et al., 2019), the images produced by the base cGAN do not correspond to real
images. Therefore, they cannot be used as matched pairs for training the discriminator.
To prevent the generator from ignoring the image generated at the previous scale (a role
normally undertaken by the discriminator in cGANs), we use an MAE loss between the
generated images at scales i− 1 and i;

LMAE(ỹpi−1 , ỹpi) = MAE(ỹpi−1 ,d(ỹpi)), (3)

where d is the operation of downsampling to the resolution of the previous scale, and
ỹpi are the patches generated at scale i. The adversarial loss can be written as follows:

LGAN (Gi, Di) = min
Gi

max
Di

2Expi ,ypi
[logDi(xpi , ypi)] + Expi ,ypi−1

[1− logDi(xpi , ỹpi)] (4)
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The total loss L is a combination of the adversarial loss and the L1 losses, balanced by
a parameter λ; L = LGAN (Gi, Di) + λLMAE(ỹpi−1 , ỹpi).

2.2.4. Training details

Data augmentation (90 degree clockwise / counterclockwise rotations, horizontal and ver-
tical flip) is applied to the images only during the base generation of scale 0. The model
is trained with a batch size of 32, a learning rate of 0.002 using an Adam optimizer for all
scales. Following heuristic exploration, the length of the random z vectors is set to nz = 12,
and the λ parameter to 10. During the application of our method to the microscopy Datasets
1 and 2, we observed that keeping a model input patch size of 64×64 in the high resolutions
of the cascade led to the creation of artifacts in the background of the image. We believe
that it is caused by the lack of context of the patches in the high resolutions. Increasing
the size of the patches to input in the model in the high-resolutions solved this problem
while keeping the memory demand reasonable. The best trade-off parameters, as well as
the number of iterations for each scale, can be found in Table 3. For training and inference,
we divide the images into regularly organized patches with a 50% overlap. The overlapping
parts of the generated patches are merged using cosine weights, to avoid border effects in
the generated images.

3. Results

3.1. Image generation

We present visual examples of images generated with our model. Figure 5 illustrates the
ability of the refinement cGAN to enhance the details of the rather coarse image generated
at scale 0. As shown in Figure 6, our method can reproduce characteristics of the real
microscopy images, such as background structures, including other surrounding neurons
in Dataset 2, and imaging artifacts. Moreover, as illustrated in Figure 5, our generative
model can produce a diverse set of images from a single input neuron tractogram, while
maintaining the morphology of the input neuron (more examples in Appendix D).

scale 0 scale 1 scale 2 scale 3 scale 4

Figure 5: Images generated at the different scales, from coarse to fine resolution.

3.2. Ablation study

In this section, we emphasize the contribution of the different components of our model
through an ablation study. To this aim, we evaluated five models of increasing complexity;
(1) pix2pix model (Isola et al., 2017), refined according to the method of (Uzunova et al.,
2019), where the images generated at the previous scale are shown to the discriminator, (2)
a hybrid model where the cGAN with mode seeking loss proposed in this work is used at
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1 1

2

generated images segmentation original image

Figure 6: Different images generated by our method from a single input segmentation. The row 1
is an example from Dataset 1, the row 2 an example from Dataset 2.

scale 0, but the generated images are refined using the strategy of (Uzunova et al., 2019),
(3) the proposed model without the LMAE loss, and (4) the proposed model. We keep the
same hyperparameters and network architecture for all models. The realism of the generated
images is measured by the Frechet inception distance at the first scale FID0, and at the final
scale FIDn. The scale corr metric measures the coherence of the generation process across
scales, repeat corr reflects the diversity of the generated images, and label corr shows the
compliance with the input neuron morphology. The evaluation metrics are further described
in Appendix C. Table 1 shows the results of this ablation study. We show examples of
generated images in Figure 8 of Appendix D.

model FID0 ↓ FIDn ↓ scale corr ↑ repeat corr ↓ label corr ↑
(1) pix2pix + (Uzunova et al., 2019) 0.00 0.66 0.98± 0.01 1.00± 0.00 0.66± 0.05

(2) cGAN with Lms + (Uzunova et al., 2019) 0.29 10.04 0.04± 0.03 0.45± 0.06 0.78± 0.02
(3) ours without LMAE 0.27 0.71 0.66± 0.06 0.31± 0.08 0.66± 0.02

(4) ours 0.26 0.38 0.97± 0.01 0.19± 0.08 0.70± 0.03

Table 1: Ablation study: our method enhances the diversity of the generated images while keeping
a high fidelity to real images.

The multi-scale pix2pix model (1) generates realistic images, but the model is deter-
ministic (repeat corr = 1). As shown by the label corr values, the generated images do
not strictly follow the input neuron as non-annotated branches (e.g. axons) are generated
in the background. The high FIDn score of the model (2) supports our assumption that
the refinement strategy of (Uzunova et al., 2019) relies on the one-to-one mapping to the
real images and is not compatible with the generation of diverse images. The mode seeking
loss enhances the diversity of the generated images and improves the compliance to the
input neuron morphology. Finally, the LMAE loss of the proposed model helps to maintain
the coherency of the generation across scales, increasing the final image diversity without
compromising realism.

3.3. Neuron segmentation

In this section, we evaluate the applicability of our generation method for neuron segmen-
tation, which is often a prerequisite to tracing algorithms (Zhou et al., 2018). To this aim,
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we prepared four datasets; real images, images generated by our method from the training
neurons of Dataset 1, images generated from the unseen neurons of NeuroMorpho 1, images
generated by adding noise according to the method of (Radojević and Meijering, 2019). We
train a U-Net model to segment the neurons on a given dataset and infer on another dataset
(training details in Appendix B). We compute the Dice score of the predicted segmentation
to measure the tranferability between generated and real images. The results can be found
in Table 2.

test
train

real generated Dataset 1 generated NeuroMorpho 1 Dataset 1 + noise

real 0.71± 0.09 0.59± 0.11 0.59± 0.11 0.30± 0.11
generated Dataset 1 0.79± 0.03 0.90± 0.01 0.88± 0.02 0.40± 0.17

generated NeuroMorpho 1 0.76± 0.08 0.87± 0.06 0.89± 0.07 0.42± 0.16
Dataset 1 + noise 0.16± 0.15 0.02± 0.03 0.03± 0.02 0.76± 0.09

Table 2: Transferability study: neuron segmentation Dice scores obtained by transfer between real
and generated datasets.

The images generated by our method show a high transferability to real images com-
pared to the noise-based synthetic images. The gap in Dice score compared to the training
on real images is caused by some false positives in the background, missing cell bodies,
and segmentation of the axons absent in the ground-truth (Figure 9 of Appendix D for
visualizations). We can expect that tracing models trained on images generated using the
proposed method generalize better to real data than the current models trained exclusively
on noise-based synthetic data (Chen et al., 2021; Prabhakar et al., 2024). Furthermore,
our model maintains a good generation quality and diversity even when trained on small
datasets (Table 5 of Appendix D), limiting the need for annotated data. Besides, as demon-
strated in this study, and supported by Figure 7 and Table 4 of Appendix A, it is able to
generalize to input neuron morphologies that differ from the the training set. Therefore,
it can find a potential application in cases where manual tracing can hardly be performed
(e.g. intricated neurons with complex branching patterns). Indeed, our model only requires
segmentations to generate images, which are less burdensome to produce than tracings. The
paired ground-truth tracing and microscopy images could then be created by using other
available tracing data.

4. Conclusion and discussion

We have developed a novel method utilizing a multi-scale cascade of conditional GANs
to generate a diverse set of realistic, high-resolution microscopy images from neuron trac-
tograms. Given its ability to provide accurate and rich ground-truth information, including
the underlying topology and orientation of the neuronal trees, our method holds promise
for facilitating more complex analyses such as tracing. Looking forward, we aim to extend
our methodology to other tree-like structures, such as vessels and airways, and to explore
its applicability across different imaging modalities. A limitation of our current approach is
the reliance on histogram equalization of images, a pre-processing step that, while beneficial
for the data used in this study, may not be suitable for all applications. In future work,
we intend to explore the generation of images with intensity distributions that more closely
mirror those found in real datasets. Additionally, we aim to enhance the interpretability of
our generative model, striving for finer control over the generated images’ characteristics.
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Appendix A. Dataset details

The images from Dataset 2 were collected from animals at various stages throughout larval
development. About half of the images are of uninjured neurons, and half of the images are
of neurons recovering from injury to their dendrites. Injury had been delivered by a 2-photon
laser either 24 hours prior to imaging, or 72 hours prior to imaging. It has been previously
demonstrated that injury causes alterations to dendrite morphology (Thompson-Peer et al.,
2016).

Appendix B. Training details for the segmentation model

Each dataset is divided into train/validation/test folds containing respectively 70%, 15%,
and 15% of the data. The number of images in each fold for the different datasets is
291/64/62 for the real images, the noise-based synthetic images, and the generated Dataset
1 images, and 259/57/57 for the generated NeuroMorpho 1 images. The architecture of our
segmentation model is a U-Net. We train on patches of size 256× 256, with a 50% overlap.
The training loss is a combination of BCE loss and Dice loss. We use the Adam optimizer
with a learning rate of 0.01 and a batch size of 64. The training is automatically stopped
based on the validation loss, and the best model is retained. At inference, the overlapping
patches are merged with cosine weights, and the probability map is thresholded at 0.5 to
compute the Dice score.

Appendix C. Evaluation metrics

The details of the implementation of the metrics used in Section 3.2 are given hereafter.

• FID0 : Frechet inception distance (FID) between the low resolution (64x64) images
generated by the base generation cGAN at scale 0, and the real images, downsampled
to the same resolution (64x64).

• FIDn : Frechet inception distance (FID) between the full-resolution images generated
at the last scale n, and the real images. FID0 and FIDn were computed using the
python package torchmetrics.

• scale corr : Mean cross-correlation between the images generated at different scales.
The mean cross correlation value is averaged over 10 different input segmentations.
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• repeat corr : Mean cross-correlation between images generated for 10 repetition of
the same input. The mean cross-correlation is averaged over 10 different input seg-
mentations.

• label corr : Mean correlation between the input segmentations and the generated
images. To be independent of the background intensity, the correlation is computed
on local patches (10x10) along the neurites, and averaged.

Appendix D. Additional figures

1

2

generated images real images

Dataset morphologiesNeuroMorpho morphologies

Figure 7: Examples from different datasets; images generated by our method with neuron mor-
phologies from the NeuroMorpho dataset (NeuroMorpho 1 and 2), images generated by our method
with neuron morphologies from the train dataset (Datasets 1 and 2), and real images (after his-
togram equalization).
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Figure 8: Images generated by the models tested in our ablation study. For each model, two
samples generated from the same neuron segmentation input are displayed in order to visualize the
diversity of the synthetic images.
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Figure 9: Neuron segmentation predicted from real microscopy images by models trained on dif-
ferent synthetic datasets.
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scale 0 1 2 3 4
receptive field size / patch size 1024 / 64 512 / 64 256 / 64 256 / 128 256 / 256

resolution factor 1/16 1/8 1/4 1/2 1
iterations 3000 3000 6000 6000 6000

Table 3: Parameters used for training at each scale of the generation process. The receptive field
size (i.e. the amount of the original image contained in the patch) and the patch size are expressed
in number of pixels. The resolution factor refers to the ratio between the resolution of the original
image at the resolution of the image generated at a given scale. A resolution factor of 1 indicates
an image at full resolution. The number of epochs is expressed relatively to the total number of
iterations (dataset size × batch size), to make it independent from the size of the input dataset.

training inference FIDn ↓ repeat corr ↓ label corr ↑
Dataset 1 Dataset 1 0.38 0.19± 0.08 0.70± 0.03
Dataset 1 NeuroMorpho 1 1.10 0.16± 0.04 0.75± 0.02
Dataset 2 Dataset 2 1.20 0.37± 0.13 0.76± 0.05
Dataset 2 NeuroMorpho 2 1.08 0.43± 0.16 0.82± 0.04

Table 4: Performance of the generation model for inference on NeuroMorpho neuron morphologies
unseen during training. The images generated from NeuroMorpho neurons show similar levels of
diversity, compliance with the input neuron morphology, and fidelity to the real images as the images
generated from the training neuron morphologies. The bigger gap in FID observed in Dataset 1
can be explained by the important differences between the neuron morphologies of Dataset 1 and
NeuroMorpho.

training set size 10 20 50 100 291
FIDn 1.17 0.57 0.46 0.30 0.38

repeat corr 0.50± 0.19 0.40± 0.10 0.26± 0.12 0.29± 0.07 0.19± 0.08

Table 5: Impact of the size of the training set on the model performance. The decrease in the
realism and diversity of the generated images observed when we reduce the number of training pairs
remains within an acceptable range even with few data (20-50).
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