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Abstract

The radionuclides 225Ac3+ and 213Bi3+ possess favorable physical properties for targeted alpha 

therapy (TAT), a therapeutic approach that leverages α radiation to treat cancers. A chelator that 

effectively binds and retains these radionuclides is required for this application. The development 

of ligands that can be used for this purpose, however, is challenging because the large ionic radii 

and charge-diffuse nature of these metal ions give rise to weaker metal-ligand interactions. In this 

study, we evaluated two 18-membered macrocyclic chelators, macrodipa and py-macrodipa, for 

their ability to complex 225Ac3+ and 213Bi3+. Their coordination chemistry with Ac3+ was probed 

computationally and with Bi3+ experimentally via NMR spectroscopy and X-ray crystallography. 

Furthermore, radiolabeling studies were conducted, revealing the efficient incorporation of both 
225Ac3+ and 213Bi3+ by py-macrodipa that matches or surpasses the well-known chelators 

macropa and DOTA. Incubation in human serum at 37 °C showed that ~90% of the 225Ac3+–py-

macrodipa complex dissociates after 1 d. The Bi3+–py-macrodipa complex possesses remarkable 

kinetic inertness in an EDTA transchelation challenge study, surpassing that of Bi3+–macropa. 

This work establishes py-macrodipa as a valuable candidate for 213Bi3+ TAT, providing further 

motivation for its implementation within new radiopharmaceutical agents.
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Graphical Abstract

Targeted alpha therapy (TAT) is a promising therapeutic strategy that leverages α-particle-

emitting radionuclides to annihilate tumor cells. Compared to conventional internal 

radiotherapy using β-particle emitters, the implementation of significantly more massive α 
particles, which deposit their energy over much shorter distances, provides key advantages. 

The short range of α radiation can yield enhanced selectivity for targeted cancer cells, while 

minimizing damage to surrounding healthy cells. Moreover, the very large linear energy 

transfer (LET) of α particles is significantly more effective in causing lethal DNA double 

strand breaks that kill cancer cells in a more efficacious manner compared to the lower-LET 

β particles.1-6

To date, over eight radionuclides have been identified as potential candidates for use in 

TAT based on their decay properties and production routes.7 Among these nuclides, 225Ac3+ 

and 213Bi3+ have received considerable attention that has manifested in clinical studies.8-10 

225Ac (t1/2 = 9.9 d) emits four α particles through its decay chain, a property that confers 

it with high cytotoxic potency. Its 9.9-day half-life is also well matched with the in vivo 

circulation timescales of macromolecular targeting vectors like antibodies.11,12 213Bi (t1/2 = 

45.6 min), a daughter of 225Ac3+, emits one α particle through its decay chain and can be 

conveniently obtained from 225Ac/213Bi generators.13 Its shorter half-life can be optimally 

matched to small-molecule targeting vectors, rendering it useful for different systems than 

those used for 225Ac3+.14,15

To convert these promising radionuclides into useful radiotherapeutic agents, a chelator that 

efficiently binds and stably retains them is required.16,17 The development of chelators for 

large metal ions like Ac3+ and Bi3+, however, is challenging, partly because their low charge 

density weakens electrostatic interactions with ligand donor atoms.

We recently reported a new ligand called macrodipa18 and its second-generation analogue 

py-macrodipa19 (Chart 1). These “macrodipa-type” chelators feature a unique “dual size 

selectivity”, characterized by their good affinities for both the large and small rare-earth 

metal ions (Ln3+). This unusual selectivity profile arises from a significant conformational 

toggle that occurs when they form complexes with Ln3+ ions of different sizes. Large 
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Ln3+ form 10-coordinate, nearly C2-symmetric complexes (Conformation A), whereas an 

8-coordinate, asymmetric complex arises for small Ln3+ (Conformation B).18,19 We have 

further demonstrated that this property makes py-macrodipa a valuable candidate for nuclear 

medicine applications with both 135La3+ and 44Sc3+, Ln3+ radiometal ions with the largest 

and smallest ionic radii within this series.19

Based on this successful application of macrodipa and py-macrodipa for the Ln3+ ions, we 

sought to evaluate these ligands with biomedically relevant ions beyond the Ln3+ series, 

namely Ac3+ and Bi3+. The potentials of both chelators for TAT applications using their 

radioisotopes 225Ac3+ and 213Bi3+ were determined and benchmarked to those of the well-

known chelators macropa and DOTA (Chart 1), which have established precedence for 

nuclear medicine applications with these radiometals.20-23

We assessed the coordination chemistry of these ligands with stable Bi3+. The 1H and 
13C{1H} NMR spectra of their Bi3+ complexes (Bi3+–macrodipa and Bi3+–py-macrodipa) 

were acquired in D2O (Figures 1 and S1-S4). These spectra reveal the presence of a single, 

well-resolved species that lacks symmetry for both complexes. Thus, Bi3+–macrodipa 

and Bi3+–py-macrodipa most likely attain the asymmetric Conformation B, which is the 

preferred binding mode of these ligands for small Ln3+ (Figure S5-S6).

As further validation, we characterized Bi3+–macrodipa and Bi3+–py-macrodipa by X-ray 

crystallography (Figure 2). The crystal structures of these complexes confirm that they 

attain the asymmetric Conformation B, consistent with our observations from NMR 

spectroscopy. Like their NMR spectra, these Bi3+ structures are comparable to those of 

the small Ln3+ analogues, Lu3+–macrodipa and Sc3+–py-macrodipa, with respect to the 

orientation of the picolinate donors and the lack of full engagement of all six macrocycle 

donor atoms.18,19 A key difference between these Ln3+ and Bi3+ structures, however, is 

the absence of a coordinated water molecule in the latter. This void is most likely a 

consequence of the stereochemical activity24,25 of the Bi3+ 6s2 lone pair. These observations 

that Bi3+–macrodipa and Bi3+–py-macrodipa attain the asymmetric Conformation B rather 

than the symmetric Conformation A is somewhat surprising based on the similar ionic 

radii of Bi3+ and La3+,26,27 a representative large Ln3+. This result suggests that the 

stereochemical activity of the 6s2 lone pair plays a pronounced role in mediating the 

preferred conformations of these Bi3+ complexes.

Experimental characterization of Ac3+ complexes is challenging due to the high 

radioactivity and extremely limited availability of its longest-lived isotope 227Ac (t1/2 = 21.8 

y).28 Thus instead, we probed the structures of Ac3+–macrodipa and Ac3+–py-macrodipa 

computationally using density functional theory (DFT) with Gaussian 16.29 The hybrid 

TPSSh functional,30 which has been validated for studying Ac3+ chemistry,31,32 was 

adopted. A large-core relativistic effective core potential (LCRECP) and the associated basis 

set was assigned to the Ac3+ center,33-35 whereas the 6-31G(d,p) basis set36,37 was applied 

to all other lighter atoms. Aqueous solvation effects were accounted for with the SMD 

solvation model.38
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Because the ionic radii and coordination chemistry of Ac3+ and La3+ are similar,28 we 

optimized Ac3+–macrodipa and Ac3+–py-macrodipa starting from the geometries of the 

corresponding La3+ complexes, which attain the symmetric Conformation A.18,19 Within 

these structures (Figure 3), the Ac–O interatomic distances are 2.45–2.48 Å for negatively 

charged O and 2.70–2.79 Å for neutral O, whereas the Ac–N interactions range from 

2.76–2.92 Å. These calculated distances are in expectation with experimentally measured 

Ac–O and Ac–N interatomic distances.39-43 Additionally, we optimized both complexes 

in Conformation B. Consistent with our expectations, Conformation B is energetically 

unfavored for both complexes (Table S2).

Having established the coordination chemistry of these ligands, we next carried out 

radiolabeling studies to evaluate their potential value for 225Ac3+ and 213Bi3+ TAT in 

comparison to the state-of-the-art chelators macropa and DOTA. These radionuclides were 

produced and purified according to previously-described protocols.44-46

Different concentrations of macrodipa, py-macrodipa, macropa, and DOTA were combined 

with pH 5.5–6 buffered solutions containing either 20–40 or 30–300 kBq of 225Ac3+ and 
213Bi3+ at ambient or elevated temperature, and the radiochemical yields (RCYs) were 

determined by radio-TLC. The concentration-dependent RCYs for these four chelators 

are summarized in Figure 4. For both radionuclides, py-macrodipa is able to achieve 

significantly higher RCYs than its analogue macrodipa and the conventional chelator DOTA, 

which also required high temperatures for radiolabeling. RCYs of approximately 75% and 

65% are obtained when using low py-macrodipa concentrations of 10−6 M and 10−8 M 

for 225Ac3+ and 213Bi3+, respectively. With respect to 225Ac3+ chelation, py-macrodipa 

was slightly less effective than macropa, but was better at radiolabeling 213Bi3+. We also 

performed 225Ac3+ radiolabeling with macrodipa and py-macrodipa at pH 7 (Table S3). 

Under this condition, both chelators were able to access greater RCYs, but still failed to 

surpass macropa. Overall, these studies show that py-macrodipa effectively radiolabels both 
225Ac3+ and 213Bi3+ under mild conditions.

We next assessed the kinetic inertness of 225Ac3+–py-macrodipa by incubating it in human 

serum at 37 °C (Table S5). These studies show that 225Ac3+–py-macrodipa is fairly labile, 

as ~90% of the complex dissociated after 1 d. By contrast, 225Ac3+–macropa remained 98% 

intact in human serum after 5 d. This excellent kinetic inertness is consistent to a previously 

reported serum challenge on 225Ac3+–macropa.20 Hence, despite the efficient radiolabeling 

properties of py-macrodipa, it is not an optimal candidate for TAT applications with 225Ac3+.

Because 213Bi3+ decays quickly (t1/2 = 45.6 min), probing the 213Bi3+ complex 

kinetic inertness by this serum challenge assay is impractical. Instead, we performed a 

transchelation challenge assay19-21,47-49 on the macrodipa, py-macrodipa, and macropa 

complexes with stable Bi3+. The transchelation reactions of these Bi3+ complexes were 

monitored by UV–Vis spectroscopy in the presence of a 10-fold excess EDTA, a ligand 

with high affinity for Bi3+,50,51 at pH 5.0 and 25 °C. Under this condition, the Bi3+ ion is 

transchelated by EDTA, following pseudo-first-order kinetics. The resulting half-lives (t1/2) 

for this transchelation process, a comparative measure of complex kinetic inertness, are 

shown in Table 1. Bi3+–macrodipa is kinetically labile to this transchelation challenge. The 
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kinetic inertness of Bi3+–py-macrodipa is remarkably enhanced, as reflected by a t1/2 of 13 

d. Moreover, its inertness is greater than that of Bi3+–macropa, indicating that py-macrodipa 

is a promising candidate for TAT applications with 213Bi3+.

In summary, we evaluated the viability of macrodipa and py-macrodipa as chelators for 
225Ac3+ and 213Bi3+. Their coordination chemistry with Ac3+ and Bi3+ were characterized 

computationally and experimentally, respectively. Our radiolabeling studies revealed that 

py-macrodipa is highly effective at radiolabeling both radiometals, outperfoming both 

macrodipa and DOTA. Although the lability of Ac3+–py-macrodipa precludes its use 

with 225Ac3+ in nuclear medicine, the efficient formation and high stability of Bi3+–py-

macrodipa, which surpasses Bi3+–macropa, suggests that this ligand is a valuable candidate 

for 213Bi3+ chelation. These results highlight that py-macrodipa joins other promising 

candidates for 213Bi3+ chelation that have arisen in recent years.21,52-60 Ongoing work is 

directed towards the synthesis of a bifunctional analogue of py-macrodipa to apply this 

chelator in TAT, as well as the development of “macrodipa-type” chelators with enhanced 

Ac3+ complex stabilities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SYNOPSIS.

The α-emitting radionuclides 225Ac3+ and 213Bi3+ are promising candidates for targeted 

alpha therapy (TAT), a form of nuclear medicine that harnesses α radiation to kill cancer 

cells. Here, we investigate the chelation of these radiometals with the ligands macrodipa 

and py-macrodipa to assess their suitability for TAT. In particular, py-macrodipa is 

demonstrated to be a promising candidate for 213Bi3+ chelation, surpassing the current 

state-of-the art chelators macropa and DOTA.
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Figure 1. 
1H NMR spectra of Bi3+–macrodipa and Bi3+–py-macrodipa (500 MHz, D2O, pD 5, 25 °C).
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Figure 2. 
Crystal structures of (a) [Bi(macrodipa)]+ and (b) [Bi(py-macrodipa)]+. Thermal ellipsoids 

are drawn at the 50% probability level. Solvent and counterions are omitted for clarity.
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Figure 3. 
DFT-optimized structures of (a) [Ac(macrodipa)]+ and (b) [Ac(py-macrodipa)]+. Hydrogen 

atoms are omitted for clarity. Green: Ac, grey: C, blue: N, red: O.
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Figure 4. 
Radiochemical yields at different ligand concentrations. (a) RCYs of 225Ac3+ radiolabeling 

(25 °C for py-macrodipa, macropa, 40 °C for macrodipa, and 80 °C for DOTA; pH 5.5–6; 

60 min reaction time). (b) RCYs of 213Bi3+ labeling (25 °C for macrodipa, py-macrodipa, 

macropa and 95 °C for DOTA; pH 5.5–6; 6–8 min reaction time). Error bars represent the 

standard deviations. The 213Bi3+ data with macropa and DOTA was taken from Ref 21.
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Chart 1. 
Structures of Chelators Discussed in This Work.
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Table 1.

Half-lives of Bi3+ Complexes when Challenged with 10 Equivalents of EDTA.
a

t 1/2

Bi3+–macrodipa 9.2 ± 0.1 min

Bi3+–py-macrodipa 13.2 ± 1.2 d

Bi3+–macropa 2.2 ± 0.2 d

a
[BiL] = 100 μM, pH 5.0, 25 °C.
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