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ABSTRACT OF THE DISSERTATION

Spectral Zeta Functions of Laplacians on Self-Similar Fractals

by

Nishu Lal

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2012

Professor Michel L. Lapidus, Chairperson

This thesis investigates the spectral zeta function of fractal differential operators such

as the Laplacian on the unbounded (i.e., infinite) Sierpinski gasket and a self-similar

Sturm–Liouville operator associated with a fractal self-similar measure on the half-line.

In the latter case, C. Sabot discovered the relation between the spectrum of this operator

and the iteration of a rational map of several complex variables, called the renormaliza-

tion map. We obtain a factorization of the spectral zeta function of such an operator,

expressed in terms of the Dirac delta hyperfunction, a geometric zeta function, and the

zeta function associated with the dynamics of the corresponding renormalization map,

viewed either as a polynomial function on C (in the first case) or (in the second case)

as a polynomial on the complex projective plane, P2(C). Our first main result extends

to the case of the fractal Laplacian on the unbounded Sierpinski gasket a factorization

formula obtained by M. Lapidus for the spectral zeta function of a fractal string and

later extended by A. Teplyaev to the bounded (i.e., finite) Sierpinski gasket and some

other decimable fractals. Furthermore, our second main result generalizes these factor-

ization formulas to the renormalization maps of several complex variables associated

with fractal Sturm–Liouville operators. Moreover, as a corollary, in the very special

vii



case when the underlying self-similar measure is Lebesgue measure on [0, 1], we obtain

a representation of the Riemann zeta function in terms of the dynamics of a certain

polynomial in P2(C), thereby extending to several variables an analogous result by A.

Teplyaev.
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Chapter 1

Introduction

In functional analysis, the second order differential equations describe many

physical phenomena such as heat flow of a region over time with the assumption that

the underlying space is smooth. As we come to learn, there are many objects in the

world that are not so regular. How should one continue to carry out such analysis if

the smoothness condition is removed? Considering the geometry of irregular objects, B.

Mandelbrot introduced a mathematical framework for such objects, now known as the

theory of analysis on fractals.

The spectral analysis on fractals was first studied by R. Rammal and G.

Toulouse in physics literature. We begin with the question of how to define the Lapla-

cian on objects that are not smooth. The Sierpinski gasket is a commonly used fractal

to study the construction of Laplacian on fractals. The first mathematical approach by

S. Goldstein and S. Kusuoka [12, 20] introduced the Laplacian on the Sierpinski gasket

as the generator of the diffusion process. Later on, J. Kigami [18] proposed a direct

analytic approach using the theory of Dirichlet forms which was extended to a class of

fractals called post-critically finite self-similar sets.
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The physicists R. Rammal [32] and R. Rammal and G. Toulouse [33] studied

the spectrum of the Laplacian of the Sierpinski gasket, in particular, the eigenvalue

equation −∆µu = λu, and discovered the decimation method which establishes the

relations between the spectrum of the Laplacian and the dynamics of the iteration of

some polynomial on C. Later on, T. Shima [40] and M. Fukushima and T. Shima [11]

gave a precise mathematical statement of their results.

The development of the study of spectral zeta functions on fractals is inspired

by M. Lapidus [22, 27] in light of the theory of fractal strings. A spectral zeta function

is a zeta function that comes from the eigenvalue spectrum of a suitable differential

operator. A fractal string L is a countable collection of disjoint intervals of lengths. He

discovered a factorization of the spectral zeta function of the Dirichlet Laplacian L on

a fractal string L of the following form

ζL(s) = π−sζ(s)ζL(s), (1.1)

where ζL(s) =
∑∞

j=1 `
s
j is the geometric zeta function on L and ζ(s) =

∑∞
n=1 n

−s

is the Riemann zeta function. Later, A. Teplyaev [44, 45] studied the spectral zeta

function of the Laplacian on a class of symmetric finitely ramified fractals extending

the factorization for the fractal strings. He expressed the spectral zeta function of the

Laplacian on the bounded Sierpinski gasket in terms of a new zeta function associated

with the iterates of a polynomial in C.

In this thesis, we extend the notion of factorization of the spectral zeta function

to the Laplacian of the unbounded (i.e., infinite) Sierpinski gasket and to several complex

variables in the case of the fractal Sturm–Liouville operators, a class of generalized

second order differential operators of the form d
dm

d
dx . First, we show that the spectral
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zeta function of the Laplacian of the unbounded Sierpinski gasket can be written as the

product of the Dirac delta hyperfunction and the spectral zeta function associated with

the bounded Sierpinski gasket, which is further expressed by A. Teplyaev [45] as the

product of the zeta function of a quadratic polynomial in one complex variable and a

suitable geometric zeta function. In joint work with M. Lapidus [21], we introduce a zeta

function ζρ associated with a map ρ : P2C → P2C of several complex variables which

generates the spectrum of the generalized fractal differential operators. It is defined by

ζρ(s) =

∞∑
p=0

∑
{λ∈C: ρp(φ(γ−(p+1)λ))∈D}

(γpλ)−
s
2 , (1.2)

where D is a suitable subset of the Fatou set of ρ, and it contributes to the spectral zeta

function ζsp of the Sturm–Liouville operator, via a product formula of the form

ζsp(s) = ζρ(s)ζL(s). (1.3)

Here, ζL is the geometric zeta function of some underlying fractal string L = {`j}∞j=1,

viewed as a sequence of scales naturally associated with the Sturm–Liouville problem.

More specifically, we consider a sequence of second order differential operators

of the form H<n> = d
dm<n>

d
dx , with a self-similar measure m<n> on a sequence of

intervals obtained by blowing up the unit interval with certain scaling ratios. It has

been shown by C. Sabot [35, 36] that the limit operator, denoted by H<∞> on [0,∞),

gives rise to a spectrum which tends to 0 for one part and to ∞ for the other. Due to

this peculiar behavior of the spectrum, the factorization of the spectral zeta function

involves the Dirac delta hyperfunction δT on the unit circle:

ζH<∞> = ζS · δT,
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where ζS is the geometric zeta function associated with the infinite set S which generates

the spectrum.

Furthermore, we obtain a representation of the Riemann zeta function in terms

of ζρ, defined in Equation (1.2), when the underlying self-similar measure m is Lebesgue

measure on [0, 1]. This very special case extends the result of A. Teplyaev for the

one-dimensional case.
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Chapter 2

Background

2.1 Self-Similar Sets

Mandelbrot described a set to be a self-similar set if it a union of scaled copies of

the initial set. Later, Hutchinson [15] gave a more precise definition of a self-similar set.

He described it as a compact set which is the fixed point of the iterated function system.

We recall the contraction mapping theorem in Rn as a motivation to Hutchinson’s theory

involving Hausdorff metric on the space of compacta. If (X, d) is a metric space, then

f : X → X is a contraction mapping if d(f(x), f(y)) ≤ cd(x, y) for all x, y ∈ X, where

0 < c < 1. We can think of the space X as a Euclidean space Rn.

Theorem 1. (Contraction Mapping Theorem) If (X, d) is a complete metric space and

f : X → X is a contraction mapping, then there exists a unique y ∈ X such that

f(y) = y. Moreover, limn→∞ f
n(x) = y for all x ∈ X.

2.1.1 Hausdorff Metric

We denote the set of all compact subsets of X by K(X). We define the Haus-

droff metric on K(X) as a distance function between two compact sets A,B ∈ K(X),
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dH(A,B) = inf{ε > 0 : B ⊆ Aε and A ⊆ Bε}

where Aε = {x ∈ X : d(x,A) ≤ ε}. The completeness property is preserved from the

space (X, d) to (K(X), dH), i.e, if (X, d) is complete, then so is (K(X), dH). The same

is true of the compactness property. Hence, if (X, d) is a compact metric space, then

so is (K(X), dH), in particular, (K(X), dH) is a complete and compact metric space in

this case.

2.1.2 Iterated Function System (IFS)

Given N ≥ 2, consider the contraction mappings {Φ1,Φ2, ...ΦN} on (X, d).

We define a new function Φ : K(X) → K(X) by Φ(A) =
⋃N
j=1 Φj(A). The map Φ is

contractive on K(X) with respect to the Haursdorff metric dH .

Definition 2. A compact set F ∈ K(X) is a self-similar set with respect to the con-

traction mappings {Φ1,Φ2, ...,ΦN} on (X, d) if it is a fixed point of Φ, namely,

F = Φ(F ) =

N⋃
j=1

Φj(F ).

The existence of this unique set is proved by Hutchinson and it follows from

the Contraction Mapping Principle applied to the complete metric space, K(X) of non-

empty compact subsets of X.

Theorem 3. (Hutchinson) Let (K(X), dH) be complete and let Φ1,Φ2, ...ΦN be con-

traction mappings on X. Then there exists a unique self-similar set F with respect to

Φ1,Φ2, ...,ΦN . In addition, if {Fn} is a sequence of compact sets in K(X) such that

Fn+1 =
⋃N
j=1 Φj(Fn), then Fn converges to the self-similar set F as n → ∞ in the

Hausdroff metric dH .
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Figure 2.1: Approximations to the Cantor set

Figure 2.2: Approximations to the Sierpinski gasket

2.1.3 Examples

Example 4. (The middle-third Cantor set) The classic Cantor set is a self-similar set

on R which can be described by two contraction mappings Φ1, Φ2 : R → R defined by

Φ1(x) = 1
3x and Φ2(x) = 1

3x+ 2
3 .

Example 5. (The Sierpinski gasket, SG) The Sierpinski gasket is generated by the

iterated function system consisting of three contraction mappings Φj : R2 → R2 defined

by

Φj(x) =
1

2
(x− qj) + qj (2.1)

for j = 0, 1, 2, where q0, q1, q2 are the vertices of an equilateral triangle. Note that each

Φj has a unique fixed point, namely, qj. The Sierpinski gasket is the unique compact set

of R2 such that SG = Φ1(SG) ∪ Φ2(SG) ∪ Φ3(SG).
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Figure 2.3: The Sierpinski gasket

2.2 Laplacians on P.C.F. Fractals

We describe a class of postcritically finite (p.c.f.) self-smilar fractals which was

orginally introduced by Kigami. The self-similarity and finite ramification are the two

strong characteristics of this class of fractals. Roughly speaking, a fractal is finitely ram-

ified if a removal of finite number of points makes the fractal disconnected. Kigami [18]

developed the theory of Laplacian operators on p.c.f. fractals by constructing Dirichlet

forms on graphs approximating the fractal.

We begin by assuming the fractal F is a self-similar set for a finite iterated

function system of contraction mappings {Φ0,Φ1, ...,ΦN}. We construct fractals by the

approach of using discrete approximations of graphs Γ0,Γ1, .... Let Γ0 be the complete

graph on V0.

Definition 6. The vertices of Γm are defined recursively

Vm :=

N⋃
j=1

Φj(Vm−1).
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Define V∗ =
⋃
m≥0 Vm and Φω := Φω1 ◦Φω2 ◦ ...◦Φωn for a word ω = (ω1ω2...ωn)

of length n with each ωj ∈ {1, 2, ..., n}. A typical cell of level m has the form Φω(F )

with |ω| = m. We define the edge relation x∼
m
y if there is a word of length m such that

x, y ∈ ΦωV0. The set of vertices form an increasing chain V0 ⊆ V1 ⊆ V2 ⊆ .... Note that

V∗ is dense in F under the usual Euclidean metric; so it is enough to use the sequence

of finite sets Vm to approximate F .

Now we will give a precise definition of the p.c.f. fractals.

Definition 7. F is a postcritically finite (p.c.f.) if F is connected and if there exists a

finite set V0 ⊆ F , called the boundary set, such that ΦωF
⋂

Φω′F ⊆ ΦωV0
⋂

Φω′V0 for

ω 6= ω′ with |ω| = |ω′|.

2.2.1 Self-Similar Measures

To define the Laplacian on p.c.f. fractals, we use a self-similar measure. We

start with a regular probability measure µ on the p.c.f. self-similar fractal F .

Definition 8. µ is a regular probability measure on F if it satisfies the following con-

ditions:

• (positivity) µ(C) > 0 for every cell C = Φω(F )

• (additivity) If C =
⋃n
j=1Cj with the cells {Cj} intersecting only at the boundary

points, then µ(C) =
∑n

j=1 µ(Cj).

• (continuity) µ(C)→ 0 as the size of C approaches 0.

• (probability) µ(F ) = 1.

For the construction of a self-similar measure, we choose a set of probability

weights {µj}Nj=1 on {1, 2, ..., N}, each corresponding to the contraction mappings Φj ,
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j = 1, ..., N such that µj > 0 and
∑n

j=1 µj = 1.

Definition 9. µ is a self-similar measure if

µ(ΦωF ) = µω := µω1µω2 ...µωm,

where ω = (ω1ω2...ωm) is a word of length m. Moreover, it satisfies the self-similar

identity for measures, which is

µ(A) =

N∑
j

µjµ(Φ−1
j A), (2.2)

for all A ⊆ F .

Integration of continuous functions with respect to a self-similar measure can

easily be computed by mimicking the theory of Riemann integration. We can subdivide

the fractal F into all cells of level m as F =
⋃
|ω|=m ΦωF ; then the integral of any

continuous function f on F can be expressed by

∫
F
fdµ = lim

m→∞

∑
|ω|=m

f(xω)µ(ΦωF ).

Since any continuous function on a compact space F is uniformly continuous, the choice

of xω ∈ ΦωF does not make a difference. The self-similar identity for the measure µ can

be transformed into an identity involving integrals of functions through a characteristic

function f = χA. The self-similar identity of µ becomes

∫
F
fdµ =

n∑
j=1

µj

∫
F
f ◦ Φjdµ,

where f is an arbitrary continuous (and, more generally, Borel measurable) function on

F . (Note that in our earlier notation, we have f ◦ Φj = χΦ−1
j A.)

10



2.2.2 Dirichlet Forms and Laplacians

Dirichlet forms play a fundamental role in constructing Laplacians on p.c.f.

fractals. We define discrete Laplacians on an increasing sequence of finite sets and

take the limit to construct a Laplacian on the self-similar set. This construction was

discovered by Kigami [18]. There are two ways to formulate the Laplacian, the point-

wise formulation and the weak formulation which involves the Dirichlet form. We will

first discuss the pointwise formulation of the Laplacian ∆, then we will show that the

pointwise formulation and the weak formuation are equivalent.

2.2.2.1 Weak Formulation

We start with an iterated function system of contraction mappings to define

a self-similar set, which is often a fractal. So far, we have fractals approximated by a

sequence of graphs {Γm} and the corresponding sequence of vertices {Vm} are finite sets.

The discrete Laplacians are defined on this sequence of finite sets to produce the fractal

Laplacian in the limit. The discrete Dirichlet forms are also known as energy forms.

Definition 10. The discrete Dirichlet (energy) form on Vm is

Em(u, u) = r−m
∑
x∼
m
y

(u(x)− u(y))2

where u is any function on Vm and 0 < r < 1 is chosen so that the restriction of Em to

Vm−1 is equal to Em−1. The Dirichlet (energy) form on F is

E(u, u) = lim
m→∞

Em(u, u)

with the domain Dom(E) = {u : E(u, u) <∞} and where the limit is non-decreasing.
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For any u defined on Vm, the harmonic extension ũ to Vm+1 is the extension

of u that minimizes the energy Em(ũ, ũ). A function is called harmonic h on F if it

minimizes the energy E for the given set of boundary values. Any function h0 on V0 has

a unique continuation to a harmonic function h with the property E(h, h) = Em(h, h) for

all m. It is also clear that for any g ∈ Dom(E), E0(g, g) ≤ E(g, g). In addition, we have

the associated bilinear form on Vm, Em(u, v) = r−m
∑

x∼
m
y(u(x)− u(y))(v(x)− v(y)). In

general, the Harmonic Extension Lemma states that for any u, v defined on Vm such

that ũ is the harmonic extension of u and v′ is any extension of v to Vm+1, we have

Em+1(ũ, v′) = Em(u, v).

Let µ be the self-similar probability measure on F satisfying Equation (2.2).

We define the Laplacian ∆µ via a weak formulation as follows: Let u ∈ Dom(E) and

f ∈ C(F ), where C(F ) is the space of all continuous functions on F . Then ∆µu = f

with u ∈ Dom(∆µ) means that

E(u, v) = −
∫
F
fvdµ,

for all v ∈ Dom0(E) (v ∈ Dom0(E) means that v ∈ Dom(E) and v|V0 = 0). A motivation

for the weak formulation of the Laplacian is integration by parts involving the Laplacian

on the unit interval. We will discuss the example of the unit interval, viewed as a self-

similar set, later on.

2.2.2.2 The Pointwise Formulation

The pointwise definition of the Laplacian ∆m on Vm is defined as

∆mu(x) =
∑
x∼
m
y

cm
(
u(x)− u(y)

)
,

12



for all functions u : Vm → R.

In order to show that the pointwise and the weak formulations are equivalent,

we define a piecewise harmonic function. For x ∈ Vm\V0, let Ψ
(m)
x (y) denote the piece-

wise harmonic defined by Ψ
(m)
x (y) = δxy on Vm. The pointwise formula can be derived

from the weak formulation. It is easy to observe that E(u,Ψm
x ) = r−m∆mu(x). Using

the equation for the weak formulation,

r−m∆m = −
∫
fΨm

x dµ.

By taking into account the fact that f is continuous and the support of Ψm
x is close to

x, we have r−m∆m ≈ f(x)
∫

Ψm
x dµ. In conclusion, it leads us to

lim
m→∞

r−m

(∫
F

Ψm
x dµ

)−1

∆mu(x) = f(x) = ∆µu(x),

where the limit holds uniformly in x ∈ F .

We will next return to the example of the Sierpinski gasket. It is one of the first

fractals for which the Laplacian operator is rigorously defined and it plays a fundamental

role in constructing a Laplacian for the more general class of p.c.f. fractals. (See the

exposition in [41].)

2.2.3 Examples

Example 11. (The Sierpinski gasket, SG) The Sierpinski gasket is generated by the

IFS defined in Equation (2.1). Denote by Γm the mth level graph and let Γ0 be the

complete graph on V0 := {q1, q2, q3}. The vertices of Γm are defined recursively as

follows: Vm :=
⋃n
j=1 Φj(Vm−1). Let `2(Vm) be the space of real-valued functions on Vm
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with the standard inner product (u, v) =
∑

x∈Vm u(x)v(x). The discrete Laplacian on

`2(Vm) is defined by

∆mf(x) =
1

4

∑
x∼
m
y

f(x)− f(y).

We define the Laplacian on the SG as a limit

∆f(x) = lim
m→∞

5m∆mf(x).

The factor 5 is the product of the scaling factor 3 for the Haursdorff measure and the

renormalized factor 5
3 for the energy. The graph energy on Vm is defined by Em(u, u) =(

3
5

)−m∑
x∼
m
y(u(x) − u(y))2 which does not change under the harmonic extension, and

the graph energy on SG is defined by E(u, u) = limm→∞ Em(u, u).

Suppose u is a function defined on V0 = {a, b, c} and we want to extend u to

V1 to minimize the energy.

Let ũ be the extension of u to V1. Since ũ minimizes E1(ũ), we can take the derivatives

with respect to x, y, z and set them equal to zero to obtain

4x= b+c+y+z

4y= a+c+x+z

4z= a+b+x+y.

These equations express the mean value property which states that the function value at

14



each of the junction point is the average of the function values of the four neighboring

points in the graph. We can use the matrix representation of these equations


4 −1 −1

−1 4 −1

−1 −1 4




x

y

z

 =


b+ c

a+ c

a+ b


to get the following solutions:

x = 1
5a+ 2

5b+ 2
5c

y = 2
5a+ 1

5b+ 2
5c

z = 2
5a+ 2

5b+ 1
5c.

The harmonic extension ũ satisfies the 1
5 −

2
5 rule. In general, this rule holds for the

harmonic extension on each m-cell.

Definition 12. A harmonic function on SG is a continuous function whose restriction

to any Γm or Vm is the harmonic extension.

2.3 The Decimation Method

We have seen in the above section that often fractals are described as a limit

of a sequence of graphs. The Laplacian operators on fractals are defined similarly via a

suitable approximation. The decimation method is a process through which we find the

spectrum of the Laplacian on the fractals (self-similar sets) via iterations of a rational

function.

To study the spectrum of the Laplacian, we consider the equation −∆u = λu,

where u is a continuous function. The spectrum was first studied by the physicists R.

Rammal and G. Toulouse [32, 33]. Later, M. Fukushima and T. Shima [11, 40] gave
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a mathematical description of the eigenvalues and the eigenfunctions. In the case of

the Sierpinski gasket, Rammal and Toulouse discovered interesting relations between

the spectrum of the discrete Laplace operator and the dynamics of the iteration of

a polynomial. More precisely, if λ is an eigenvalue of −∆m+1 on Γm+1 then λ(5 −

4λ) is an eigenvalue of −∆m on Γm. Thus, the relationship between the eigenvalues

of the Laplacians on one graph to another can be described by a quadratic equation

λm = λm+1(5− 4λm+1) (e.g., R(z)=z(5-4z)). The restriction to Vm of any eigenfunction

belonging to λm+1 is an eigenfunction belonging to λm. The relationship between the

eigenvalues λm and λm+1 of −∆m and −∆m+1, respectively, can be found by comparing

the corresponding eigenvalue problem for a point common to both Vm and Vm+1.

Theorem 13 (Fukushima–Shima, [11], [40]).

(i) If u is an eigenfunction of −∆m+1 with eigenvalue λ, that is, −∆m+1u = λu,

and if λ /∈ B, then −∆m(u|Vm) = R(λ)u|Vm, where B = {1
2 ,

5
4 ,

3
2} is the set of

‘forbidden’ eigenvalues.

(ii) If −∆mu = R(λ)u and λ /∈ B, then there exists a unique extension ũ of u such

that −∆m+1ũ = λũ.

At any given level m, there are two kind of eigenvalues of −∆m called the

initial and continued. The continued eigenvalues arise from the spectrum of −∆m−1 via

the decimation method and the remaining eigenvalues are called the initial eigenvalues.

The forbidden eigenvalues {1
2 ,

5
4 ,

3
2} in Proposition 13 have no predecessor, i.e., they are

the initial eigenvalues. Furthermore, the exclusion of the eigenvalue 1
2 can be explained

by showing that 1
2 is an eigenvalue of −∆m only for m = 1 (see Figure 2.4).

Given the eigenvalues of −∆0 to be {0, 3
2}, we consider the inverse images of

R(z): R−(z) = 5−
√

25−16z
8 and R+(z) = 5+

√
25−16z
8 to obtain the eigenvalues of −∆1.
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The continuation of this process generates the entire set of eigenvalues for each level.

The diagram on the next page illustrates the eigenvalues associated with each graph

Laplacian in terms of inverse iterates of the polynomial R.

The spectrum of the Sierpinski gasket is the renormalized limit of the spectra

of −∆m. Each eigenvalue satisfying the equation −∆µu = λu can be written as

λ = lim
m→∞

5mλm

for a sequence {λm}∞m=m0
such that λm = λm+1(5 − 4λm+1) for m ≥ m0. Note that

λm does not equal any of the forbidden eigenvalues {1
2 ,

5
4 ,

3
4} while λm0 belongs to the

set {1
2 ,

5
4 ,

3
4}. Furthermore, the values λm are determined by the solutions of λm =

λm+1(5 − 4λm+1): λm+1 = 5+εm
√

25−16λm
8 , where εm = ±1 provided that the limit

exists. The limit only exists if εm = −1 for all but a finite number of m′s.

We will see the generalization of the decimation method when presenting the

case of fractal Sturm–Liouville operators in Chapter 4. The decimation method is not

valid for fractals in general, however, but a somewhat larger class of self-similar set with

a symmetry condition has been explored by Teplyaev.
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2.4 Dirichlet Spaces

In this section, we define the Dirichlet space in a more general setting and de-

scribe its connection with operator theory. The following diagram explains the direction

we are interested in for this topic. Let H be a Hilbert space and E be a Dirichlet form.

{(E , Dom(E) : (E , Dom(E) is a closed form on H}~w�
{H : H is a non-negative self-adjoint operator on H}~w�

{{Tt}t≥0 : {Tt}t≥0 is a strongly continuous semigroup on H}

Note that −H is a generator of {Tt}t≥0. We will review some of the definitions before

investigating the connections shown in the diagram.

2.4.1 Self-Adjoint Operators and Quadratic Forms

Let H be a real separable Hilbert space with inner product (·, ·). The operator

H : Dom(H) → H is a linear operator on H if the domain of H, Dom(H) is a dense

subspace of H.

A linear operator on H is symmetric if and only if (Hf, g) = (f,Hg) for any

f, g ∈ Dom(H). H is a self-adjoint operator if and if H is symmetric and Dom(H) =

{g ∈ H : ∃h ∈ H such that (Hf, g) = (f, h) ∀f ∈ Dom(H)}. A symmetric operator H

is non-negative if (Hf, f) ≥ 0 for all f in Dom(H).

Definition 14. Q(·, ·) : Dom(Q) × Dom(Q) → R is called a non-negative quadratic

form on H if

• Dom(Q) is a dense subspace of H.
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• Q is bilinear and symmetric: Q(af + bg, h) = aQ(f, h) + bQ(g, h) = aQ(h, f) +

bQ(h, g), ∀f, g, h ∈ DomQ.

• Q(f, f) ≥ 0, f ∈ Dom(Q).

We callQ a closed form if it satisfies the following condition: Dom(Q), equipped

with the inner product Q?(f, g) := Q(f, g) + (f, g) for any f, g ∈ Dom(Q), is a Hilbert

space.

Theorem 15. (Friedrichs) If H is a non-negative symmetric operator H and Q :

Dom(H) × Dom(H) → R is a symmetric bilinear form defined by Q(f, g) = (Hf, g)

for f and g ∈ Dom(H), then Q is closable.

In order to relate the operator with the Dirichlet forms, we need more defini-

tions. We will consider H to be the space `(V ) where V is a finite set and H to be the

Laplacian operator. Let `(V ) = {f : f : V → R}, equipped with the standard inner

product (u, v) =
∑

p∈V u(p)v(p), u, v ∈ `(v).

Definition 16. A symmetric bilinear form E on `(V ) is called a Dirichlet form on V

if it satisfies the following

• E(u, u) ≥ 0, u ∈ `(V ).

• E(u, u) = 0 if and only if u is constant on V .

• Markov property: for any u ∈ `(V ), E(u, u) ≥ E(ū, ū) where ū(p) = 1 if u(p) ≥ 1,

ū(p) = u(p) if 0 < u(p) < 0, and ū(p) = 0 if u(p) ≤ 0.

Definition 17. A symmetric linear operator H : `(V )→ `(V ) is a Laplacian on V if

• H is non-positive definite.
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• Hu = 0 if and only if u = c ∈ V .

• if Hpq ≥ 0 ∀p 6= q ∈ V , then (Hf)(p) =
∑

q∈V Hpqf(q) where Hpq = (Hχq)(p).

There is a natural correspondence between the space of symmetric forms and

the space of Laplacians. Given H : `(V ) → `(V ), define a symmetric quadratic form

EH(·, ·) on `(V ) by EH(u, v) = −(u,Hv) for u and v ∈ `(V ). Consider X is a locally

compact metric space and ν is a σ-finite Borel measure on X that satisfies ν(A) < ∞

for any compact set A with ν(A) > 0. A closed form E on L2(X, ν) is a Dirichlet form

on L2(X, ν) if and only if it has the Markov property.

Definition 18. A family of bounded symmetric operator {Tt}t>0, Tt : H → H is a

semigroup on H if

• Tt+s = TtTs, t, s > 0.

• (Ttu, Tsu) ≥ (u, u), u ∈ H, t > 0.

If {Tt}t>0 satisfies limt→0(Ttu−u, Ttu−u) = 0 then {Tt}t>0 is called a strongly

continuous semigroup.

The semigroup is the diffusion process Xt which (in the discrete case) means

that if a particle is located at point p at time t, it will move to one of its neighbors with

a certain probability at time t+ 1. We consider the generator of a strongly continuous

semigroup.

Definition 19. The generator A : Dom(A) → H of {Tt}t>0 is a non-negative and

self-adjoint operator defined by

Au = limt→0(Ttu−ut )

for any u ∈ Dom(A) = {u ∈ H : ∃f ∈ H such that limt→0‖f − Ttu−u
t ‖ = 0}.
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The corresponding Laplacian is the infinitesimal generator of the semigroup which is

associated with the diffusion process.

2.5 Introduction To Hyperfunctions

The notion of hyperfunctions was introduced by a Japanese mathematican

Mikio Sato. Roughly speaking, the hyperfunctions are the distributional generalization

of analytic functions.

2.5.1 Motivation

We are familiar with functions known as the Dirac delta function and the

Heaviside function. The Dirac delta function δ : R→ R is defined by

δ(x) =


0, x 6= 0

∞, x = 0

with the property ∫ ∞
−∞

δ(x)dx = 1.

According to the classical theory of integration, δ would have an integral which is zero.

On the other hand, the Heaviside function H on the real line is defined by

H(x) =


0, x < 0

1, x ≥ 0

whose derivative is the Dirac delta function: H ′(x) = δ(x). To justify the derivative

statement of the Heaviside function, Laurent Schwartz introduced the theory of distri-
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butions which generalizes the classical notions of functions and the derivative. Basically,

he defined a distribution as a continuous linear functional (an element of the dual space)

on the space of test functions which are smooth functions with bounded support. The

inner product is defined by

< Y, φ >:=

∫ ∞
−∞

Y (x)φ(x)dx

where φ is a test function. Hence, we have < H,φ >:=
∫∞

0 φ(x)dx and < δ, φ >=∫∞
−∞ δ(x)φ(x)dx = φ(0).

Moreover, now it can be shown rigorously that the derivative of the Heaviside

function is the delta function through the method of integration by parts:

< H ′, φ >: =

∫ ∞
−∞

H ′(x)φ(x)dx

= −
∫ ∞
−∞

H(x)φ′(x)dx

= −
∫ ∞

0
φ′(x)dx = φ(0) =< δ, φ > .

Sato [38, 39] used the basic complex function theory to describe the notion of

generalized functions. One of the advantages of the theory of hyperfunctions is that any

hyperfunction can be differentiated arbitrary many times as well as integrated on any

finite interval.

2.5.2 Definitions and Examples

Let Ω be a subset of R. A complex neighborhood of Ω is an open subset U ⊂ C

such that Ω is a closed subset of U . We denote by C(U) and C(U \Ω) the vector spaces

of holomorphic functions on U and U \ Ω, respectively. The functions of C(U \ Ω) can
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be written as

F (z) =


F+(z), z ∈ U+

F−(z), z ∈ U−

where U+ := U ∩ C+ and U− := U ∩ C− are called the upper and the lower half-

neighborhoods of Ω, respectively. The quotient space C(U \ Ω)/C(U) is equipped with

the equivalence relation according to which any holomorphic function in C(U \ Ω) that

extends holomorphically to all of U is identified with the zero function. Now, we define

an equivalence relation on the set C(U \ Ω)/C(U). Two functions F (z) and G(z) from

C(U \ Ω)/C(U) are equivalent if F (z) = G(z) + h(z) with h(z) ∈ C(U). By definition,

each equivalence class represents a hyperfunction.

Alternatively, a hyperfunction on the real line, f(x) = [F (z)] = [F+, F−],

consists of two functions, F+(z) and F−(z), which are analytic in the upper and the

lower half-planes, respectively, and such that the following limit exists:

lim
ε→0+

(
F+(x+ iε)− F−(x− iε)

)
. (2.3)

Every hyperfunction [F+, F−] forms an equivalence class of the form [h + F+, h + F−],

where h is a holomorphic function on U .

Any holomorphic function g on the real line represents the zero hyperfunction.

This is easily seen by Equation (2.3). The addition of hyperfunctions and the muliti-

plication by complex numbers are well defined: for given any two hyperfunctions [F (z)]

and [G(z)],

• λ[F (z)] = [λF (z)] for λ ∈ C

• [F (z)] + [G(z)] = [F (z) +G(z)].
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Moreover, the hyperfunctions are closed under multiplication by holomorphic functions.

Suppose we have a hyperfunction [F (z)] and a holomorphic function h on the real line.

Then the product h[F (z)] = [hF (z)] is a well defined hyperfunction. In particular,

h[F (z)] = h[F+(z), F−(z)] = [hF+(z), hF−(z)].

Now we will present some examples of hyperfunctions.

Example 20. A hyperfunction f(x) is a function on the real line described as a differ-

ence of two holomorphic functions defined on the upper and lower half-planes. Consider

the following functions:

I1(z) =


1, Im(z) > 0

0, Im(z) < 0,

I2(z) =


0, Im(z) > 0

−1, Im(z) < 0,

I3(z) =


1
2 , Im(z) > 0

−1
2 , Im(z) < 0.

These three functions define the same hyperfunction f(x) = 1, which is the ordinary

constant function. (See [13].)

Example 21. (The Dirac delta hyperfunction)

The Dirac delta function on the real line R is defined by

δR(z) := [− 1

2πiz
,− 1

2πiz
]
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We will show that this is just a different representation of the function

δ(x) =


0, x 6= 0

∞, x = 0.

By definition, for x 6= 0,

δ(x) = lim
ε→0+

(
F+(x+ iε)− F−(x− iε)

)
= lim

ε→0+

(
−1

2πi(x+ iε)
− −1

2πi(x− iε)

)
= lim

ε→0+

ε

π(x2 + ε2)
= 0.

For x = 0, however, the above limit does not exist, and this is the point at which the

delta ‘function’ has an isolated singularity.

As a motivation for Sato’s theory of hyperfunctions, the Cauchy integral for-

mula can be used to produce the delta function. By the Cauchy integral formula, for

any holomorphic function φ and for any closed region γ about the origin, we have

φ(0) = − 1

2πi

∫
γ

φ(z)

z
dz

= − 1

2πi

(∫
γ+

φ(z)

z
dz −

∫
γ−

φ(z)

z
dz

)
= − 1

2πi

(∫ b+i0

a+i0

φ(z)

z
dz −

∫ b−i0

a−i0

φ(z)

z
dz

)
= − 1

2πi

∫ b

a

(
1

x+ i0
− 1

x− i0

)
φ(x)dx,

where γ+ and γ− are the connected paths from the endpoints of the interval [a, b].

Hence, it becomes clear that δ(x) = − 1
2πi

(
1

x+i0 −
1

x−i0

)
, which is the difference F+(x+
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iε) − F−(x − iε) of the boundary values of holomorphic functions in the definition of a

hyperfunction. As a result, a hyperfunction on the real line is a difference of holomorphic

functions on the boundary (see [16]).

Example 22. (The Heaviside function)

The Heaviside function can be interpreted as

H(x) := [− 1

2πi
log(−z)].

With the branch cut of the complex plane along the negative real x-axis, log(−z) takes

the value log(|z|) − πi on the upper side of the positive x-axis and log(|z|) + πi on the

lower side of the positive x-axis. Note that it is holomorphic on the negative real x-axis.

Then it is easy to see that

H(x) = lim
ε→0+

(
F+(x+ iε)− F−(x− iε)

)
=


0, x < 0

1, x > 0.

Since the limit does not exist at x = 0, the hyperfunction has a singular point at x = 0.

2.6 Complex Dynamics of Functions of Several Complex

Variables

In this section, we briefly present the theory of complex dynamics in higher

dimensions. In particular, we give definitions of the Fatou set and the Julia set.

Consider the quotient space on Ck+1 with the equivalence relation:

(z0, z1, ...zk) ∼ (z′0, z
′
1, ...z

′
k)

27



if there exists λ ∈ C such that λ(z0, z1, ...zk) = (z′0, z
′
1, ...z

′
k). The quotient space Ck+1\ ∼

represents the complex projective space of dimension k denoted by Pk. The map π :

Ck+1 \{0} → Pk is the canonical projection map given by π((z0, z1, ...zk)) = [z0, z1, ...zk]

for all (z0, z1, ...zk) ∈ Ck+1\{0}. π defines a holomorphic C∗-bundle over Pk. For p ∈ Pk,

π−1(p) = L \ {0} is a complex line in Ck+1 through the origin.

Let f : Pk → Pk be a holomorphic map. For such a map, there always exists

a homogeneous map R : Ck+1 → Ck+1 with R(0) = 0 such that the following diagram

commutes

Ck+1 \ {0} R //

π
��

Ck+1 \ {0}

π
��

Pk
f

// Pk

e.g., R ◦ π = π ◦ f . A holomorphic map R : Ck+1 → Ck+1 is a homogenous map of

degree d if R is defined by R = (R0, R1, ...Rk) of homogenous polynomials of degree d.

The map f is not defined on the set of points of the form π(p) where R(p) = 0.

A point p ∈ Pk is called an indeterminacy point for f if R(π−1(p)) = 0. Denote by I

the set of indeterminacy points of f . Thus, f is a holomorphic map on Pk \ I.

From now on, we will work with meromorphic maps on P2 and define the

corresponding Fatou sets and Julia sets.

Definition 23 ([8]). Let f : P2 → P2 be a meromorphic map. We say that a point

p ∈ P2 belongs to the Fatou set if for every ε > 0 there exists some neighborhood U(p)

such that diam(fn(U \ In)) < ε for all n. (Here, diam(A) denotes the diameter of A.)

The Julia set is the complement of the Fatou set. Note that
⋃∞
n=1 In is a part of the

Julia set, where each In denotes the indeterminacy set of Rn.
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In general, the Fatou set of a holomorphic map f : Pk → Pk is defined by

{
p ∈ Pk : {f j |V } is a normal family on a neighborhood V of p

}
.

A complex curve V is called a f -constant curve if f(V ) is a single point. Every f -

constant curve contains a point of indeterminacy. A f -constant curve V is a degree

lowering curve if fn(V ) is an indeterminacy point.

As an example, consider the map f([z0, z1.z2]) = [z0z1 : z2
0 + z1z2 : z2

2 ]. It is

easy to see that f has a point of indeterminacy at [0 : 1 : 0]. There is no f -constant

curve.

Later in Chapter 4, we will investigate these various notions of the complex

dynamics of a map on P2 when studying the spectrum of a fractal differential Sturm–

Liouville operator on the unit interval.
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Chapter 3

The Spectral Zeta Function of the

Laplacian on Fractals

In this chapter, we prove our first main result regarding the factorization of

the spectral zeta function of the Laplacian on the infinite (or unbounded) Sierpinski

gasket. First, we discuss some of the known theorems on the spectral zeta functions of

Laplacians on self-similar fractals, including the finite (or bounded) Sierpinski gasket,

which we will extend to more generalized second order differential operators on fractals

such as the Sturm–Liouville operators in Chapter 4.

We begin with the concept of zeta function associated with an elliptic differen-

tial operator on a fractal. Roughly speaking, the spectrum of a second order differential

operator with corresponding boundary conditions may not be computable explicitly. In

general, when the spectrum of a differential operator A need not be expressed explicitly

and under some trace-class conditions, the corresponding zeta function is given by

ζA(s) = Tr e−s lnA
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in some suitable domain of the complex plane s. When the spectrum is discrete and

the eigenvalues λj are repeated according to multiplicity, the zeta function is therefore

defined (for Re(s) sufficiently large) by the following infinite sum:

ζA(s) =
∞∑
j=1

λ−sj .

The use of the Mellin transform is required to note that the zeta function ζA(s) is a

meromorphic function on the complex plane, s ∈ C.

As we all know, the Riemann zeta function is a classical and well known zeta

function in the study of number theory. It is a complex function ζ : C→ C defined as

ζ(s) =

∞∑
j=1

j−s

for Re(s) > 1. ζ(s) has a meromorphic extension to the complex plane C with a simple

pole at the point s = 1. As a special case, we obtain the Riemann zeta function when

the eigenvalues of an elliptic differential operator with boundary conditions are of the

form aj with a = 1 for j = 1, 2, ...

The rest of this chapter will be devoted to analyzing the spectral zeta function

in regards with a factorization formula induced by the decimation method.

3.1 Examples of Factorization of the Spectral Zeta Func-

tion

We begin by a basic example of the Laplacian on the unit interval to study the

corresponding spectral zeta function. First, we will give a precise definition of a spectral

zeta function as follows:
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Definition 24. The spectral zeta function of a positive self-adjoint operator L with

compact resolvent (and hence, with discrete spectrum) is given (for Re(s) sufficiently

large) by

ζL(s) =
∞∑
j=1

(κj)
−s/2, (3.1)

where the positive real numbers κj are the eigenvalues of the operator written in nonin-

creasing order and counted according to their multiplicities.

Consider the differential operator ∆ = − d2

dx2
on the unit interval [0, 1] with

Dirichlet boundary conditions u(0) = 0 and u(1) = 0. The eigenvalues of ∆ are of the

form λ = π2j2 for j = 1, 2, ... The spectral zeta function of ∆ can be expressed as

ζ∆(s) =
∞∑
j=1

(π2j2)−s/2 = π−s
∞∑
j=1

j−s = π−sζ(s) (3.2)

where ζ(s) is the Riemann zeta function.

3.1.1 The Spectral Zeta Function Associated with a Fractal String

Now we will present an another example from the theory of fractal strings. A

fractal string is a bounded open subset Ω of the real line of finite length. We denote

by L = {`j}∞j=1 the associated nonincreasing sequence of lengths {`j} of Ij such that

Ω =
⋃∞
j=1 Ij .

Definition 25. The geometric zeta function of a fractal string Ω with lengths L is

ζL(s) =
∞∑
j=1

`sj

where s ∈ C.
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We define the abscissa of convergence of ζL by

DL = inf{σ ∈ R :
∞∑
j=1

`σj <∞}.

One should point out that the Minkowski dimension of a fractal string is equal to

DL. Hence, the geometric zeta function ζL converges for Re(s) > DL. The complex

dimensions of a fractal string Ω are given by

C = {ω ∈W : ζL has a pole at ω}

where W ⊂ C is a certain region in the complex plane.

Now we focus our attention on the spectral zeta function of the fractal strings.

We begin by considering the Dirichlet Laplacian ∆ = − d2

d2x
on Ω = (a, b). We analyze

the following partial differential equation

∆u− λu = 0 with u(a) = 0, u(b) = 0.

The associated eigenvalues are given by n2π2

`2
for n ∈ N where ` = b − a. In particular,

in the case of a fractal string L = {`j}∞j=1, the eigenvalues of the Dirichlet Laplacian ∆

on each IJ with |IJ | = `j are n2π2

`j
. Hence, the spectrum of L is σ(∆) =

⋃∞
k=1 σ(∆; Ij) =

{π2n2

`2j
: n ≥ 1, j ≥ 1}.

The spectral zeta function of ∆ on L is

ζ∆(s) =
∑

k,n≥1(π
2n2

`2k
)−s/2 = π−s

∑∞
k=1 `

s
k

∑∞
n=1 n

−s.

The spectral zeta function of the Dirichlet Laplacian ∆ on a fractal string with length
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L has a factorization in terms of the Riemann zeta function and the geometric zeta

function as shown in the following theorem.

Theorem 26 (Lapidus). The spectral zeta function of ∆ on L is ζA(s) = π−sζL(s)ζ(s),

where ζ(s) is the Riemann zeta function.

3.1.2 Cantor Fractal String

We consider yet another interesting example of the Cantor self-similar fractal

string, which is the complement of the middle third Cantor set in [0, 1]. Basically,

CS = (
1

2
,
2

3
) ∪ (

1

9
,
2

9
) ∪ (

7

9
,
8

9
) ∪ (

1

27
,

9

27
) ∪ (

7

27
,

8

27
) ∪ ....

The corresponding lengths are `1 = 1
3 , `2 = `3 = 1

9 , `4 = `5 = `6 = `7 = 1
27 , .... Then

the geometric zeta function is given by

ζL(s) =
∞∑
j=1

(`j)
−s =

∞∑
j=1

(2j−1(3−j)s =
1

3s − 2

(see [28]) and so the factorization formula for the associated spectral zeta function is

ζL(s) = π−sζ(s)
1

3s − 2
.

We will see that this product formula is analogous to the one obtained for the spectral

zeta function on SG.
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3.2 The Spectral Zeta Function of the Laplacian on the

Bounded Sierpinski Gasket

A. Teplyaev studied the spectral zeta function of the Laplacian on SG and

explored interesting connections between the spectral zeta function and the iteration of

the polynomial induced by the decimation method. Before we further discuss the spectral

zeta function of the Laplacian of the Sierpinski gasket, we present the definition of the

zeta function of a polynomial.

Definition 27. Let R be a polynomial of degree N satisfying R(0) = 0, c := R′(0) > 1,

and with Julia set J ⊂ [0,∞). Then the zeta function of R is defined by

ζR,z0(s) = lim
n→∞

∑
z∈R−n{z0}

(cnz)−
s
2 ,

for Re(s) > dR := 2 logN
log c . Here, R−n denotes the nth inverse iterate of R.

In addition, in the case of the Laplacian on the compact Sierpinski gasket,

he discovered the product structure of the spectral zeta function that involves the zeta

function of a polynomial. We recall the Laplacian of the Sierpinski gasket and its

spectrum from Chapter 2. The set of eigenvalues of the Laplacian can easily be read

from the eigenvalue diagram, Figure 2.4, which is

{3

2

}⋃( ∞⋃
j=0

R−j{3

4
}
))⋃( ∞⋃

j=0

R−j{5

4
}
)
.

Then the factorization formula for the associated spectral zeta function is described in

the next theorem. For notational simplicity, we write ∆ instead of −∆.
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Theorem 28 (Teplyaev, [45]). The spectral zeta function of the Laplacian on SG is

ζ∆µ(s) = ζR, 3
4
(s)

5−
s
2

2

(
1

1− 3 · 5−
s
2

+
3

1− 5−
s
2

)
+ ζR, 5

4
(s)

5−s

2

(
3

1− 3 · 5−
s
2

− 1

1− 5−
s
2

)
,

(3.3)

where R(z) = z(5 − 4z). Furthermore, there exists ε > 0 such that ζ∆µ(s) has a mero-

morphic continuation for Re(s) > −ε, with poles contained in

{
2inπ
log 5 ,

log 9+2inπ
log 5 : n ∈ Z

}
.

Derfel, Grabner, and Vogel have also worked independently on the same zeta

function associated with a polynomial and proved that it has a meromorphic continua-

tion on the whole complex plane. They expressed the spectral zeta function in terms of

this zeta function and a zeta function related to the generating set associated with the

multiplicities of the eigenvalues of the operator which is defined as

Bw(x) =
∞∑
m=0

βm(w)xm

where βm(w) is the recurrent sequence of multiplicities of the eigenvalue w at each level

m. Then, in [6], the spectral zeta function is defined by

∑
w∈W

Bw(c−s)ζR,w(s)

for a suitable set W depending on R.

Now we will use this equation to derive Equation (3.3) in Theorem 28. In the

case of two-dimensional Sierpinski gasket, W = {3
4 ,

5
4} and c = 5. The multiplicities of

the eigenvalues 3
4 and 5

4 at each level m can be determined by the eigenvalue diagram

to be βm(3
4) = 3m−1+3

2 for m ≥ 1 and βm(5
4) = 3m−1−1

2 for m ≥ 2 (see [3]). Hence, we

36



have the following calculations:

ζ∆(s) = ζR, 3
4
(s)

∞∑
m=1

βm(
3

4
)(5−

s
2 )m + ζR, 5

4
(s)

∞∑
m=2

βm(
5

4
)(5−

s
2 )m

= ζR, 3
4
(s)

∞∑
m=1

3m−1 + 3

2
(5−

s
2 )m + ζR, 5

4
(s)

∞∑
m=2

3m−1 − 1

2
(5−

s
2 )m

= ζR, 3
4
(s)

[ ∞∑
m=1

1

2
3m−15−

sm
2 +

∞∑
m=1

3

2
(5−

s
2 )m

]

+ ζR, 5
4
(s)

[ ∞∑
m=2

1

2
3m−15−

sm
2 −

∞∑
m=2

1

2
5−

sm
2

]

= ζR, 3
4
(s)

[ ∞∑
m=0

1

2
3m5−

s(m+1)
2 +

∞∑
m=0

3

2
5−

s
2

(m+1)

]

+ ζR, 5
4
(s)

[ ∞∑
m=0

1

2
3m+15

−(m+2)s
2 +

∞∑
m=0

1

2
5
−(m+2)s

2

]

= ζR, 3
4
(s)

[ ∞∑
m=0

1

2
(

3

5
s
2

)m5−
s
2 +

∞∑
m=0

3

2
(

1

5
s
2

)m5−
s
2

]

+ ζR, 5
4
(s)

[ ∞∑
m=0

3

2
(

3

5
s
2

)m5−s +
∞∑
m=0

1

2
(5−

s
2 )m5−s

]

= ζR, 3
4
(s)

5−
s
2

2

[
1

1− 3 · 5−
s
2

+
3

1− 5−
s
2

]
+ ζR, 5

4
(s)

5−s

2

[
3

1− 3 · 5−
s
2

− 1

1− 5−
s
2

]

for | 3

5
s
2
| < 1.

3.3 Results for the Infinite (Unbounded) Sierpinski Gas-

ket

We have already discussed the Laplacian and its spectral properties of the finite

Sierpinski gasket SG. In this section, we analyze the construction of an infinite Sierpinski

gasket and its spectral zeta function of the Laplacian. Since the infinite Sierpinski gasket

can be viewed as a blow up of the finite Sierpinski gasket, we extend the result from

the previous section to the infinite Sierpinski gasket to study the factorization formula

of the spectral zeta function of the Laplacian.
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Figure 3.1: An infinite Sierpinski gasket

Let k = {kn}n≥1 be a fixed sequence with kn ∈ {1, 2, 3} for n ≥ 1. We

construct a sequence SG(n) = Ψ−1
k,n(SG) where Ψk,n = Ψkn,...k1 = Ψkn ◦ ... ◦ Ψk1 . The

infinite Sierpinski gasket is defined by

SG(∞) =

∞⋃
n=0

SG(n),

viewed as a blow-up of SG. The mth pre-gasket approximating SG(n) and SG(∞) are

V
(n)
m = Ψ−1

k,n(Vn+m) and V
(∞)
m = ∪∞n=0Ψ−1

k,n(Vn+m), respectively. Note that Vm = V
(0)
m

and SG = SG(0).

We define the Laplacian ∆(n) on SG(n) as follows: ∆(n)u = f ∈ L2(SG(n), µ)

if and only if ESG(n)(u, v) =
∫
SG(n) ∆(n)uvdµ, where ESG(n) is a scaled copy of En+m on

Vn+m for the finite Sierpinski pre-gasket. The pointwise Laplacian ∆(∞) can then be

defined by the following pointwise limit 5n∆(n)u → ∆(∞)u as n → ∞ (see [11], [18]).

Here, it should be noted that the Laplacian on the finite Sierpinski gasket coincides with

the restriction of ∆(∞) to the interior of the finite (or bounded) SG.
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3.3.1 Main Lemma Regarding the Dirac Delta Hyperfunction

Now, we present a lemma which will be used to prove some of the main results

later in this thesis.

We consider the bi-infinite series
∑∞

p=−∞(γp)−
s
2 with γ > 1 and s ∈ C. The

most peculiar behavior of this series is that it seems to be equal to zero, even though

it does not make sense to sum up a complex series with one part converging and the

other part diverging. However, this series can be represented by a suitable version of the

Dirac hyperfunction, as we shall soon see. For now, we carry out the naive computation

as follows:

∞∑
p=−∞

(γp)−
s
2 =

−1∑
p=−∞

(γp)−
s
2 +

∞∑
p=0

(γp)−
s
2

=
γ
s
2

1− γ
s
2

+
1

1− γ−
s
2

=
1

1− γ−
s
2

− 1

1− γ−
s
2

= 0.

Note that this computation is meaningless, unless it is properly interpreted.

Indeed, we have added two infinite series, one of which is convergent only for Re(s) > 0,

whereas the other series is convergent only for Re(s) < 0. In fact, fortunately, the geo-

metric part
∑∞

p=−∞(γp)−
s
2 can be interpreted in terms of the Dirac delta hyperfunction

on the unit circle, δT(w) = [δ+
T (w), δ−T (w)], by means of a suitable change of variable;

namely, w = γ−
s
2 . The Dirac delta hyperfunction on the unit circle T is defined as

δT = [δ+
T , δ

−
T ] = [ 1

1−z ,
1
z−1 ]. It consists of two analytic functions, δ+

T : E → C and

δ−T : C\Ē → C, where E = {z ∈ C : |z| < 1+ 1
N } for a large natural number N . In other

words, a hyperfunction on T can be viewed as a suitable pair of holomorphic functions,

one on the unit disk |z| < 1, and one on its exterior, |z| > 1. (See, for example, [13],

§1.3 and [29], §3.3.2 for a discussion of various changes of variables in a hyperfunction.
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Moreover, see [42] for a detailed discussion of δT and, more generally, of hyperfunctions

on the unit circle T.)

Lemma 29. Let γ > 1. Then

∞∑
p=−∞

(γp)−
s
2 = δT(γ−

s
2 ), (3.4)

where δT is the Dirac delta hyperfunction on the unit circle T.

Proof. We introduce the formal expression ψ(w) =
∑∞

p=−∞w
p. Note that

ψ(w) =


∑∞

p=0w
p, if |w| < 1

∑−1
p=−∞w

p, if |w| > 1

or equivalently,

ψ(w) =


1

1−w , if |w| < 1

1
w−1 , if |w| > 1.

Now, essentially by definition, ψ(w) is in fact equal to the Dirac delta hyperfunction

δT(w) = [δ+
T (w), δ−T (w)] on the unit circle T. We refer the interested reader to [42] for a

precise mathematical discussion of the delta hyperfunction δT.

We conclude the proof of Equation (3.4) by making the change of variable

w = γ−
s
2 and noting that |w| < 1 and |w| > 1 correspond to the upper and lower

half-planes Re(s) > 0 and Re(s) < 0, respectively. Indeed, log γ > 0 since γ ≥ 4.

It follows from the construction that the spectrum of the Laplacian ∆(∞) on

the infinite Sierpinski gasket can be generated by the spectrum of the Laplacian on the

finite SG.
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Theorem 30 (see, e.g., [43]). Let R(z) = z(5− 4z), as in Theorem. 28. Then the spec-

trum of the self-adjoint operator ∆(∞) acting on L2(SG(∞), µ) is pure point and the set

of compactly supported eigenfunctions is complete. Furthermore, the set of eigenvalues

is given by
∞⋃

n=−∞
5nR{Σ},

where Σ = {3
2}∪(∪∞j=0R

−j{3
4})∪(∪∞j=0R

−j{5
4}) is the set of eigenvalues of the Laplacian

∆µ on the finite SG, R(z) := limm→∞ 5mR−m− (z) and R−m− is the branch of the mth

inverse iterate of R that passes through the origin.

In particular, the spectrum of ∆(∞) has the following form

∞⋃
n=−∞

∞⋃
j=0

5nR(R−j(z0)) (3.5)

where z0 = 3
4 ,

5
4 . Every eigenvalue λ of ∆(∞) can be expressed as

λ = 5n lim
m→∞

5mR−m− (zm)

for some n ∈ Z, with zm in the spectrum σ(∆m) of the finite mth Sierpinski pre-gasket.

We now state our result regarding the unbounded Sierpinski gasket.

Theorem 31. The spectral zeta function ζ∆(∞) of the Laplacian ∆(∞) on the infinite

Sierpinski gasket SG(∞) is given by

ζ∆(∞)(s) = δT(5−
s
2 )ζ∆µ(s), (3.6)

where δT is the Dirac hyperfunction and ζ∆µ is the spectral zeta function of the Laplacian

on the finite SG as given and factorized explicitly in Equation (3.3) of Theorem 28.
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Proof. In light of Equation (3.5) and Theorem 28, this result follows from Lemma 29.

Indeed, note that λ is an eigenvalue of ∆µ iff 5nλ is an eigenvalue of ∆(n). Furthermore,

if λ is an eigenvalue of ∆(∞), then 5nλ is also an eigenvalue of ∆(∞) for n ∈ Z (see [11]).

Combining these two facts, we obtain

ζ∆(∞)(s) =

( ∞∑
n=−∞

(5−
s
2 )n
)
ζ∆µ(s).

By Lemma 29 and using the substitution γ = 5, we now deduce the desired result.

3.4 A Representation of the Riemann Zeta Function

Revisiting the example of fractal strings, A. Teplyaev [45] proved that the

Riemann zeta function can be described in terms of the zeta function of a quadratic

polynomial of one complex variable. In the case of the unit interval, the normalized

Laplacian is defined as a limit of the graph Laplacians:

∆u(x) = 2 lim
n→∞

4n∆nu(x)

where ∆nu( k
2n ) = u( k

2n ) − 1
2(u(k−1

2n ) + u(k+1
2n )) is defined on Vn = {0, ..., k2n ,

k+1
2n , ..., 1}.

One could find the set of eigenvalues of each ∆n by analyzing the corresponding Lapla-

cian matrix. It turns out that the spectrum of the Laplacian on the unit interval can

be described by the polynomial R(z) = 2z(2− z) (see [3]).

Moreover, the spectral zeta function of the Dirichlet Laplacian on the unit

interval can be expressed in terms of the zeta function ζR,0 as

ζ∆(s) = 2
s
2
−1ζR,0(s) (3.7)
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since the set R−n−1(0) contains the spectrum of ∆n. Combining Equations (3.2) and

(3.7), the Riemann zeta function ζ(s) can be represented by

ζ(s) =
1

2
CsζR,0(s), (3.8)

where C =
√

2π and ζR,0(s) is the zeta function of the polynomial R(z) = 2z(2 − z).

One of the theorems to be presented in Chapter 4 will generalize this results to several

complex variables.
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Chapter 4

Factorization of the Spectral Zeta

Function of the Generalized

Differential Operators

In this chapter, we present our main results obtained regarding the factorization

of the spectral zeta function of Laplacian-like operators on fractals with blow-ups, which

also appears in [21].

We start by presenting the generalized second order differential operators of

the form d
dµ

d
dν , where µ and ν are finite Borel measures with compact support on the real

line. Later on, our main focus will be on the Sturm–Liouville operator of the form d
dµ

d
dx ,

where µ is a self-similar measure and dx is the Lebesgue measure. The differentiation

with respect to these measures requires to define suitable L2-spaces. Assume that ν

and µ are finite Borel measures on the interval [a, b], with compact support K1 and

K2 respectively. Define L2(K1, ν) to be the separable Hilbert space with inner product
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< f, g >=
∫ a
b fgdν. Furthermore, we define

D1 := {f : K1 → R : ∃f ′ ∈ L2(K1, ν), f(x) = f(a) +

∫ x

a
f ′(y)dν(y), x ∈ K1}. (4.1)

Every function f ∈ D1 is continuous on K1 and we denote the derivative of f with respect

to the measure ν by d
dν := f ′. The Dirichlet form on D1 is defined by a(f, g) =< f ′, g′ >

as usual in the Lebesgue theory.

By repeating the construction with respect to the other measure, we define a

subspace D2 of L2(K1, ν) as

D2 := {f ∈ D1 : ∃f ′′ ∈ L2(K2, µ), f ′(x) = f ′(a) +

∫ x

a
f ′′(y)dµ(y), x ∈ K2}. (4.2)

The product rule and the integration by parts formula are valid here, just as in the

Lebesgue measure theory. By combining Equations (4.1) and (4.2), we obtain the fol-

lowing definition.

Definition 32. The Laplacian ∆ : D2 → L2(K1, µ) is defined by ∆f = d
dµ

d
dν f = g if

f(x) = f(a) + f ′(a)ν([a, x)) +

∫ x

a

∫ y

x
g(z)dµ(z)dν(y).

In this chapter, we will study the special case where ν is the Lebesgue measure

and µ is a self-similar measure, which is known as the Sturm–Liouville operator.

4.1 The Fractal Sturm–Liouville Operator

We investigate a class of self-similar sets and measures in terms of the spectrum

and the spectral zeta function of the associated fractal differential operators. C. Sabot, in
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a series of papers ([34]–[36]), extended the decimation method to Laplacians defined on

a class of finitely-ramified self-similar sets with blow-ups, involving dynamics in several

complex variables. We discuss the prototypical example he studied, fractal Laplacians

on the blow-up I<∞> = [0,∞) of the unit interval I = I<0> = [0, 1]. From now on, we

will assume that

0 < α < 1, b = 1− α, δ =
α

1− α
, and γ =

1

α(1− α)
. (4.3)

Consider the contraction mappings from I = [0, 1] to itself given by

Ψ1(x) = αx, Ψ2(x) = 1− (1− α)(1− x),

and the unique self-similar measure m on [0, 1] such that for all f ∈ C([0, 1]),

∫ 1

0
fdm = b

∫ 1

0
f ◦Ψ1dm+ (1− b)

∫ 1

0
f ◦Ψ2dm. (4.4)

Define H<0> = − d
dm

d
dx , the free Hamiltonian with Dirichlet boundary condi-

tions on [0, 1], by H<0>f = g on the domain

{
f ∈ L2(I,m) : ∃g ∈ L2(I,m), f(x) = cx+ d+

∫ x

0

∫ y

0
g(z)dm(z)dy, f(0) = f(1) = 0

}
.

The operator H<0> is the infinitesimal generator associated with the Dirichlet form

(a,D) given by

a(f, g) =

∫ 1

0
f ′g′dx, for f, g ∈ D,

where

D = {f ∈ L2(I,m) : f ′ ∈ L2(I, dx)}.
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As can be easily checked, the Dirichlet form a satisfies the similarity equation

a(f) = α−1a(f ◦Ψ1) + (1− α)−1a(f ◦Ψ2), (4.5)

where we denote the quadratic form a(f, f) by a(f). (See, e.g., [9] for an exposition.)

The idea is that having the unit interval I as a self-similar set, we construct

an increasing sequence I<n> of intervals by blowing up the initial unit interval with

a certain scaling ratio α−n. Hence, extend I to I<n> = Ψ−n1 (I) = [0, α−n], which

can be expressed as a self-similar set as follows: I<n> =
⋃
i1,...,in

Ψi1...in(I<n>), where

(i1, ..., in) ∈ {1, 2}n. Here, we have set Ψi1...in = Ψin ◦ ...◦Ψi1 . We define the self-similar

measure m<n> by

∫
I<n>

fdm<n> = (1− α)−n
∫
I
f ◦Ψ−n1 dm,

for all f ∈ C(I<n>). Similarly, the corresponding differential operator, H<n> = − d
dm<n>

d
dx

on I<n> = [0, α−n], can be defined as the infinitesimal generator of the Dirichlet form

(a<n>,D<n>) given by

a<n>(f, f) =

∫ α−n

0
(f ′)2dx = αna(f ◦Ψ−n1 ), for f ∈ D<n>,

where

D<n> = {f ∈ L2(I<n>,m<n>) : f ′ exists and f ′ ∈ L2(I<n>, dx)}.

We define H<∞> as the operator − d
dm<∞>

d
dx with Dirichlet boundary condi-

tions on I<∞> = [0,∞). It is clear that the (projective system of) measures m<n>

give rise to a measure m<∞> on I<∞> since for any f ∈ D<n> with supp(f) ⊂ [0, 1],
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a<n>(f, f) = a(f, f) and
∫
I<n>

fdm<n> =
∫
I fdm. Furthermore, we define the corre-

sponding Dirichlet form (a<∞>,D<∞>) by

a<∞>(f, f) = lim
n→∞

a<n>(f |I<n> , f |I<n>), for f ∈ D<∞>,

where

D<∞> = {f ∈ L2(I<∞>,m<∞>) : sup
n
a<n>(f |I<n> , f |I<n>) <∞}.

Clearly, a<∞> satisfies a self-similar identity analogous to Equation (4.5) and its in-

finitesimal generator is H<∞>.

4.2 The Eigenvalue Problem

The study of the eigenvalue problem

H<n>f = − d

dm<n>

d

dx
f = λf (4.6)

for the Sturm–Liouville operator with Dirichlet boundary condition on I<n> revolves

around a map ρ, called the renormalization map, which is initially defined on a space of

quadratic forms associated with the fractal and then, via analytic continuation, on C3

as well as (by homogeneity) on P2(C). The propagator of the above differential equation

(4.6) is very useful in producing this rational map, initially on C3, and later on, as the

polynomial map

ρ([x, y, z]) = [x(x+ δ−1y)− δ−1z2, δy(x+ δ−1y)− δz2, z2], (4.7)
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defined on the complex projective plane P2(C). Here, [x, y, z] denote the homogeneous

coordinates of a point in P2(C), where (x, y, z) ∈ C3 is identified with (βx, βy, βz) for

any β ∈ C, β 6= 0. Note that in the present case, ρ is a homogeneous polynomial of

total degree two. As we shall see later on, the spectrum of the fractal Sturm–Liouville

operator is intimately related to the iteration of ρ. In the sequel, we shall assume that

δ ≤ 1 in order for the spectrum of H<0>, H<n> (n = 1, 2, ...) and H<∞> to be purely

discrete.

4.3 The Renormalization Map and the Spectrum of the

Operator

The renormalization map f is a function from 2-dimensional projective space to

itself which is induced by the homogeneous polynomial map on C3 to itself. The nature

of the spectrum of the operator defined above is heavily dependent on the iteration of the

renormalization map. It can be derived from studying the propagator on the eigenvalue

problem associated with the operator.

We define the propagator Γλ(s, t) for the eigenvalue problem − d
dm<∞>

d
dxf = λf

associated with the operator H<∞> on I<∞> = [0,∞) as a time evolution function which

for each 0 ≤ s ≤ t is a 2× 2 matrix with nonzero determinant such that the solution of

the equation satisfies

 f(t)

f ′(t)

 = Γλ(s, t)

 f(s)

f ′(s)

 .
Using the self-similarity relations (4.4) and (4.5) satisfied by the measure m and the

Dirichlet form a, respectively, and recalling that γ is given by Equation (4.3), we obtain
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Γ<n>,λ = Dαn ◦ Γγnλ ◦Dα−n for the eigenvalue problem − d
dm<n>

d
dxf = λf , where

Dαn =

1 0

0 αn

 .

We will consider the case when n = 1 to derive the renormalization map. So

we have Γ<1>,λ = Dα ◦ Γγλ ◦Dα−1 . Let

Γλ =

a(λ) b(λ)

c(λ) d(λ).


We will go through the following calculations:

Γ<1>,λ =

1 0

0 α


a(γλ) b(γλ)

c(γλ) d(γλ)


1 0

0 α−1

 =

 a(γλ) α−1b(γλ)

αc(γλ) d(γλ)

 .

On the other hand, we also have

Γ<1>,λ = Γλ(1, α−1) ◦ Γλ(0, 1) = Dδ ◦ Γλ ◦Dδ1 ◦ Γλ

=

1 0

0 δ


a(λ) b(λ)

c(λ) d(λ)


1 0

0 δ−1


a(λ) b(λ)

c(λ) d(λ)



=

 a(λ)2 + δ−1b(λ)c(λ) a(λ)b(λ) + δ−1d(λ)b(λ)

δa(λ)c(λ) + c(λ)d(λ) δb(λ)c(λ) + d(λ)d(λ)

 .

Using the fact that Γλ ∈ Sl2(C) and a(λ)d(λ)− b(λ)c(λ) = 1, two of the diagonal terms

can be rewritten as

a(λ)2 + δ−1b(λ)c(λ) = a(λ)

[
a(λ) + δ−1

(d(λ)a(λ)− 1

a(λ)

)]
= a(λ)(a(λ) + δ−1d(λ))− δ−1,
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δb(λ)c(λ) + d(λ)d(λ) = δd(λ)

[
a(λ)d(λ)− 1

d(λ)
+ δ−1d(λ)

]
= δd(λ)(a(λ) + δ−1d(λ))− δ.

We define the renormalization map ρ : C2 → C2 in terms of the above diagonal entries

as

ρ(x, y) = (x(x+ δ−1y)− δ−1, δy(x+ δ−1y)− δ).

and the map φ : C→ C2 as

φ(λ) =

a(λ)

d(λ)


Note that ρ ◦ φ(λ)) = φ(γλ) for all λ ∈ C.

Going back to the 2-dimensional projective space P2, any point [x, y, z] ∈ P2 is

equivalent to [xz ,
y
z , 1] for z 6= 0. We can represent P2 by

P2 = {(q1, q2, 1) : (q1, q2) ∈ C2} ∪ {[x, y, 0]}.

We can naturally extends the map ρ to P2 as follows:

ρ([x, y, z]) = [x(x+ δ−1y)− δ−1z2, δy(x+ δ−1y)− δz2, z2].

The invariant curve φ can be viewed as a map φ : C → C3 defined by φ(λ) =

(a(λ), b(λ), 1) which satisfies the functional equation

ρ ◦ φ(λ) = φ(γλ). (4.8)

Now we study the spectrum of the eigenvalue equation (4.6). In the sequel,

we shall assume that δ < 1 in order for the spectrum of H<0>, H<n> (n = 1, 2, ...)

and H<∞> to be purely discrete. An attractive fixed point x0 of ρ is a point such that
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ρx0 = x0 and for any other point x in some neighborhood of x0, the sequence {ρnx}∞n=0

converges to x0. The basin of attraction of a fixed point is contained in the Fatou set of

ρ. For δ > 1, x0 = [0, 1, 0] is an attractive fixed point of ρ. The set

D = {[x, y, z] : x+ δ−1y = 0} (4.9)

is part of the Fatou set of ρ since it is contained in the basin of attraction of x0. (For

various notions of higher-dimensional complex dynamics, see, e.g., [7] and [8].) The

set D and the invariant curve φ of ρ together determine the spectrum of H<n> and of

H<∞>. Moreover, the set of eigenvalues can be described by the set

S = {λ ∈ C : φ(γ−1λ) ∈ D}, (4.10)

the ‘time intersections’ of the curve φ(γ−1λ) with D. It turns out that S is countably

infinite and contained in R+. We write S = {λk}∞k=1, with λ1 ≤ λ2 ≤ ... ≤ λk ≤ ...

repeated accordingly to multiplicity. Furthermore, we call S the generating set for the

spectrum of H<n>, with n = 0, 1, ...,∞.

Let Sp = γpS, for each p ∈ Z. As was noted earlier, the spectrum of H<∞>

with Dirichlet boundary conditions is pure point for α < 1
2 (hence, for δ < 1 and γ ≥ 4),

an hypothesis we will make from now on, and can be deduced from the spectrum of

H<0>:

Theorem 33 (Sabot, [36]). The spectrum of H<0> on I = I<0> is
⋃∞
p=0 Sp and the

spectrum of H<∞> on R+ is
⋃∞
p=−∞ Sp. Moreover, for any n ≥ 0, the spectrum of

H<n> is equal to
⋃∞
p=−n Sp. For n = 0, 1, ...,∞, each eigenvalues of H<n> is simple.

The diagram of the set of eigenvalues of the operator H<∞> is as follows:
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...
...

...
...

γ−2λ1 γ−2λ2 γ−2λ3 γ−2λ4 · · ·

γ−1λ1 γ−1λ2 γ−1λ3 γ−1λ4 · · ·

λ1 λ2 λ3 λ4 · · ·

γλ1 γλ2 γλ3 γλ4 · · ·

γ2λ1 γ2λ2 γ2λ3 γ2λ4 · · ·

...
...

...
...

Sabot’s work ([34]–[37]) has sparked an interest in generalizing the decimation

method to a broader class of fractals and therefore, to the iteration of rational functions

of several complex variables. For each k ≥ 1, we denote by fk the solution of the

equation H<∞>f = λkf for λk ∈ S. In other words, fk is an eigenfunction of H<∞>

associated with the eigenvalue λk ∈ S. (Note that fk is uniquely determined, up to a

nonzero multiplicative constant which can be fixed by a suitable normalization.)

Theorem 34 (Sabot, [36]).

(i) Given any k ≥ 1, if fk is the normalized solution of the equation H<∞>f = λkf

for λk ∈ S, then fk,p := fk ◦Ψ−p1 is the solution of the equation H<∞>f = λk,pf ,

where λk,p := γpλk and p ∈ Z is arbitrary.

(ii) Moreover, if fk,p = fk ◦Ψ−p1 is the solution of the equation H<∞>f = λk,pf , then

fk,p,<n> := fk,p|I<n>, the restriction of fk,p to I<n>, is then the solution of the

equation H<n>f = λk,pf .

Finally, for each fixed n ≥ 0, {fk,p,<n> : k ≥ 1, p ≥ −n} is a complete set of

eigenfunctions of H<n> in the complex Hilbert space L2(R+,m<∞>).
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4.4 The Zeta Function Associated with the Renormaliza-

tion Map

We now introduce a multivariable analog of the polynomial zeta function of

Definition 27.

Definition 35 ([21]). We define the zeta function of the renormalization map ρ to be

ζρ(s) =
∞∑
p=0

∑
{λ∈C: ρp(φ(γ−(p+1)λ))∈D}

(γpλ)−
s
2 , (4.11)

for Re(s) sufficiently large.

Recall Definition 24 of the spectral zeta function ζL(s) of a positive self-adjoint

operator L with discrete spectrum. We can now state our results regarding the fractal

Sturm–Liouville operator:

Theorem 36 ([21]). The zeta function ζρ(s) of the renormalization map ρ is equal to the

spectral zeta function ζH<0>(s) =
∑

λ∈S
∑∞

p=0(γpλ)−
s
2 of H<0>(s): ζρ(s) = ζH<0>(s).

(An expression for ζH<0>(s) is given by the n = 0 case of Proposition 37 below.)

Proof. We have successively:

ζρ(s) =

∞∑
p=0

∑
{λ∈C: ρp(φ(γ−(p+1)λ))∈D}

(γpλ)−
s
2

=

∞∑
p=0

∞∑
λ∈S

(γpλ)−
s
2

= ζH<0>(s).

In order to justify the first equality, we show that the set {λ ∈ C : ρp(φ(γ−(p+1)λ)) ∈ D}

is exactly equal to S = {λ ∈ C : φ(γ−1λ) ∈ D}. Recall from the Equation (4.8),
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the relation ρ(φ(λ)) = φ(γλ), for all λ ∈ C. After p iterations, this equation becomes

ρp(φ(λ)) = φ(γpλ). Therefore, we get ρp(φ(γ−(p+1)λ)) = φ(γpγ−p−1λ) = φ(γ−1λ), for

p = 0, 1, 2...

We have a sequence of operators H<n> = − d
dm<n>

d
dx , starting with H<0> on

[0, 1], which converges to the Sturm–Liouville operator H<∞> on [0,∞). We will now

consider the associated spectral zeta functions and their product formulas. Recall that

given an integer n ≥ 0, the spectral zeta ζH<n>(s) of H<n> on [0, α−n] is ζH<n>(s) =∑
λ∈S

∑∞
p=−n(γpλ)−

s
2 . Then, a simple computation yields the following result.

Proposition 37 ([21]). For n ≥ 0 and Re(s) sufficiently large and positive, we have

ζH<n>(s) =
(γn)

s
2

1− γ−
s
2

ζS(s), (4.12)

where ζS(s) is the geometric zeta function of the generating set S. Namely, ζS(s) :=∑∞
j=1(λj)

− s
2 (for Re(s) large enough) or is given by its meromorphic continuation

thereof.

Proof. Recall that given an integer n ≥ 0, the spectral zeta ζH<n>(s) of H<n> on [0, α−n]

is

ζH<n>(s) =
∑
λ∈S

∞∑
p=−n

(γpλ)−
s
2 .

By separating the positive and negative powers of γ and using the geometric series with
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the substitution τ = γ−
s
2 we obtain:

ζH<n>(s) =

[
(γn)

s
2 + ....γs + γ

s
2 +

∞∑
p=0

(γp)−
s
2

] ∞∑
j=1

(λj)
− s

2

=

[ −1∑
p=−n

(γ−
s
2 )p +

∞∑
p=0

(γ−
s
2 )p
] ∞∑
j=1

(λj)
− s

2

=

[ n−1∑
p=0

(τ)−p−1 +
∞∑
p=0

(τ)p
] ∞∑
j=1

(λj)
− s

2

=

[
τ−1(1− τ−n)

1− τ−1
+

1

1− τ

] ∞∑
j=1

(λj)
− s

2

=
1

τn(1− τ)

∞∑
j=1

(λj)
− s

2 =
(γn)

s
2

1− γ−
s
2

∞∑
j=1

(λj)
− s

2

for |γ−
s
2 | < 1.

4.5 The Sturm–Liouville Operator on the Half-Line and

the Dirac Hyperfunction

In the case of the operator H<∞> we discovered that the geometric part of the

product formula of the spectral zeta function ζH<∞> is the Dirac delta hyperfunction.

Theorem 38 ([21]). The spectral zeta function ζH<∞> is factorized as follows:

ζH<∞>(s) = δT(γ−
s
2 ) · ζS(s). (4.13)

Proof. Observe that

ζH<∞>(s) =

∞∑
p=−∞

(γp)−
s
2

∞∑
j=1

(λj)
− s

2 .
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Let w = γ−
s
2 . Then we have successively:

ζH<∞>(s) =

( ∞∑
p=−∞

wp
)
ζS(s) = δT(w) · ζS(s),

where the last equality follows from Lemma 29.

Next, we revisit and extend some of the earlier results obtained in [45]. More

precisely, we show that the zeta function associated with the renormalization map co-

incides with the Riemann zeta function for a special value of α.

4.6 The case α = 1
2: Connection with the Riemann zeta

function

When α = 1
2 , the self-similar measure m coincides with Lebesgue measure on

[0, 1] and hence, H = H<0> coincides with the usual Dirichlet Laplacian on the unit

interval [0, 1].

Theorem 39 ([21]). When α = 1
2 , the Riemann zeta function ζ is equal (up to a trivial

factor) to the zeta function ζρ associated with the renormalization map ρ on P2(C).

More specifically, we have

ζ(s) = πsζρ(s) =
πs

1− 2−s
ζS(s), (4.14)

where ζρ is given by Definition 35 and the polynomial map ρ : P2(C) → P2(C) is given

by Equation (4.7) with α = 1
2 (and hence, in light of (4.3), with δ = 1 and γ = 4):

ρ([x, y, z]) = [x(x+ y)− z2, y(x+ y)− z2, z2]. (4.15)
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Proof. First, we consider the case when n = 0 in Theorem 36 and Proposition 37. Then,

since γ = 4 in the present situation, we have

ζH<0>(s) = ζρ(s) =
1

1− γ−
s
2

ζS(s) =
1

1− 2−s
ζS(s). (4.16)

Next, we recall that the eigenvalues of the Dirichlet Laplacian L = − d2

dx2
on

[0, 1] are κj = π2j2, for j = 1, 2, .... Therefore, in light of Definition 24, the associated

spectral zeta function is

ζL(s) =

∞∑
j=1

(π2j2)−
s
2 = π−sζ(s),

where ζ is the Riemann zeta function. We recall that in the present case, the Sturm–

Liouville operator H<0> and the Dirichlet Laplacian L on [0, 1] coincide; hence, the

corresponding spectral zeta functions are equal: ζH<0>(s) = ζL(s). In light of Theorem

36, ζH<0>(s) = ζρ(s) and we therefore obtain the relation

ζ(s) = πsζρ(s),

with ζρ given by Equation (4.11) and ρ defined by Equation (4.15), as desired.

This is an extension to several complex variables of A. Teplyaev’s result [45]

discussed in Equation (3.8) in chapter 3. Still assuming that α = 1
2 and since Equation

(4.14) implies that ζρ(s) = π−sζ(s), we deduce that the factorization formula (1.1) for

the spectral zeta function ζL(s) = ζsp(s) of a fractal string L can be rewritten as follows:

ζL(s) = ζρ(s) · ζL(s), (4.17)
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in agreement with Equation (1.3). (Compare with [23], [24] and [28], Theorem 1.19.)

Here, ρ is the homogeneous quadratic polynomial on C3 (or rather, on P2(C)) given by

Equation (4.15).

4.7 Concluding Comments

The research done in this thesis and in joint work with M. Lapidus [21] has ini-

tiated the study of factorization of the spectral zeta function of differential operators on

fractals with blow-ups, via zeta functions associated with multivariable complex rational

maps. It is immediate that the obtained results would apply to the modified Koch curve

for which the decimation method is well established with a rational map of one complex

variable and we expect to recover a similar hyperfunction in the factorization formula

of the spectral zeta function of the Laplacian. Another goal would be to analyze a large

class of finitely-ramified self-similar sets with (possibly random) blow-ups; a special case

of that is the infinite Sierpinski gasket, which corresponds to the blow-up of the classic

Sierpinski gasket and was studied in the deterministic case in §3.2. A study of random

infinite gaskets and other self-similar fractals, as in [37] but along the lines of §3.3 and

§4.4, remains to be carried out.

Using Sabot’s multivariable extension of the decimation method, one should be

able to obtain an analogous factorization formula for such fractals. Such a generalization

would also enable us to better understand the nature of the spectrum of the Laplacian

and to formulate and possibly solve suitable direct and inverse spectral problems in this

context. In a more familiar language, and appropriately interpreted, this would enable

us in certain situations to “hear the shape of a fractal drum”. (See, e.g., [19]–[28].)

Thus far, we have only considered differential operators with discrete spectrum.
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It would be interesting, both mathematically and physically, to obtain related results

in the situation where the Laplacian under investigation has a continuous spectrum or,

more generally, a combination of continuous and discrete spectra. We would then have

to work with a suitably defined notion of density of states, both at the geometric and

spectral levels. (Compare, e.g., [28], §6.3.1 and [19], [35].)

Moreover, as we have seen, Sabot discovered in [34]–[37] some striking rela-

tionships between the spectral properties of certain differential operators on fractals

and the iteration of rational maps of several complex variables. The further study of

the connections between these rational maps and the spectral zeta functions of fractal

Laplacians is one of the main goals of future research on this topic and should lead

to a deeper exploration of complex dynamics in higher dimensions, in relation to the

spectral theory of fractal drums. (See [19], [22]–[27], [28], §12.5, and the relevant refer-

ences therein.) It may also have applications to condensed matter physics ([1], [5], [14],

[30]–[33]), particularly, the study of random and fractal media.

60



Bibliography

[1] Alexander, S., Orbach, R., Density of states on fractals: fractons, J. Physique
Lettres 43 (1982).

[2] Bajorin, N., Chen, T., Dagan, A., Emmons, C., Hussein, M., Khalil, M., Mody, P.,
Steinhurst, B., Teplyaev, A., Vibration modes of 3n-gaskets and other fractals, J.
Phys. A: Math. Theor. 41 (2008) 015101 (21pp).

[3] Bajorin, N., Chen, T., Dagan, A., Emmons, C., Hussein, M., Khalil, M., Mody,
P., Steinhurst, B., Teplyaev, A., Vibration spectra of finitely ramified, symmetric
fractals, Fractals 16 (2008), 243-258.

[4] Barlow, M. T., Random walks and diffusion on fractals, in: Proc. Intern. Congress
Math. (Kyoto, 1990), vol. II, Springer-Verlag, Berlin and New York, 1991, pp.
1025–1035.

[5] Berry, M. V., Distribution of modes in fractal resonators, in: Structural Stability in
Physics, W. Güttinger and H. Eikemeier (eds.), Springer-Verlag, Berlin, 1979, pp.
51–53.

[6] Derfel, G., Grabner, P. and Vogl, F., The zeta function of the Laplacian on certain
fractals, Trans. Amer. Math. Soc. 360 (2008), 881–897.

[7] Fornaess, J. E., Dynamics in Several Complex Variables, CBMS Conf. Series in
Math., vol. 87, Amer. Math. Soc., Providence, RI, 1996.

[8] Fornaess, J. E. and Sibony, N., Complex dynamics in higher dimension I & II,
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