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SMOOTHED ESTIMATING EQUATIONS
FOR INSTRUMENTAL VARIABLES QUANTILE REGRESSION

DAVID M. KAPLAN AND YIXIAO SUN

Abstract. The moment conditions or estimating equations for instrumental vari-

ables quantile regression involves the discontinuous indicator function. We instead

use smoothed estimating equations, with bandwidth h. This is known to allow higher-

order expansions that justify bootstrap refinements for inference. Computation of the

estimator also becomes simpler and more reliable, especially with (more) endogenous

regressors. We show that the mean squared error of the vector of estimating equa-

tions is minimized for some h > 0, which also reduces the mean squared error of the

parameter estimators. The same h also minimizes higher-order type I error for a χ2

test, leading to improved size-adjusted power. Our plug-in bandwidth consistently

reproduces all of these properties in simulations.

Keywords: Edgeworth expansion, Instrumental variable, Optimal smoothing pa-

rameter choice, Quantile regression, Smoothed estimating equation.

JEL Classification Number: C13, C21.

1. Introduction

Many econometric models are specified by moment conditions or estimating equa-

tions. An advantage of this approach is that the full distribution of the data does

not have to be parameterized. In this paper, we consider estimating equations that

are not smooth in the parameter of interest. We focus on the instrumental variables

quantile regression (IV-QR), which includes the usual quantile regression as a special

case. Instead of using the estimating equations that involve the nonsmooth indica-

tor function, we propose to smooth the indicator function, leading to our smoothed

estimating equations (SEE) and SEE estimator.

Our SEE estimator has several advantages. First, from a computational point of

view, the SEE estimator can be computed using any standard iterative algorithm that
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2 DAVID M. KAPLAN AND YIXIAO SUN

requires smoothness. This is especially attractive in IV-QR where simplex methods for

the usual QR are not applicable. Second, from a technical point of view, smoothing

the estimating equations enables us to establish high-order properties of the estima-

tor. This motivated, for instance, Horowitz (1998) to examine a smoothed objective

function for median regression, to show high-order bootstrap refinement. Instead of

smoothing the objective function, we show that there is an advantage of smoothing

the estimating equations. For QR estimation and inference via empirical likelihood,

Otsu (2008) and Whang (2006) also examined smoothed estimators. To the best of our

knowledge, nobody has examined smoothing the estimating equations for the usual QR

estimator. Third, from a statistical point of view, the SEE estimator is a flexible class

of estimators that includes the IV/OLS mean regression estimators and median and

quantile regression estimators as special cases. Depending on the smoothing parame-

ter, the SEE estimator can have different degrees of robustness in the sense of Huber

(1964). By selecting the smoothing parameter appropriately, we can harness the ad-

vantages of both the mean regression estimator and the median/quantile regression

estimator. Fourth and most importantly, from an econometric point of view, smooth-

ing can reduce the mean squared error (MSE) of the SEE, which in turn leads to a

smaller asymptotic MSE of the parameter estimator and to tests with steeper power

curves. This advantage has not been discussed in the literature.

In addition to investigating the asymptotic properties of the SEE estimator, we

provide a smoothing parameter choice that minimizes different criteria: the MSE of

the SEE, the type I error of a chi-square test subject to exact asymptotic size, and

the approximate MSE of the parameter estimator. We show that the first two criteria

produce the same optimal smoothing parameter, which is also optimal under a variant

of the third criterion. With the data-driven smoothing parameter choice, we show that

the statistical and econometric advantages of the SEE estimator are reflected clearly

in our simulation results.

The rest of the paper is organized as follows. Section 2 describes our setup and

discusses some illuminating connections with other estimators. Sections 3, 4, and 5

calculate the MSE of the SEE, the type I error of a χ2 test, and the approximate

MSE of the parameter estimator, respectively; optimal bandwidth is discussed for each

case. Section 6 presents simulation results before we conclude. Longer proofs and

calculations are gathered in the appendix.
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2. Smoothed Estimating Equations

2.1. Setup. We are interested in estimating the instrumental variables quantile re-

gression (IV-QR) model

Yj = X ′jβ0 + Uj

where P (Uj < 0|Zj) = q almost surely for instrument vector Zj ∈ Rd. Instruments are

taken as given; this does not preclude first determining the efficient set of instruments

as in Newey (2004) or Newey and Powell (1990), for example. We restrict attention

to the “just identified” case Xj ∈ Rd and iid data for simpler exposition; for the

overidentified case, see (1) below.

A special case of this model is exogenous QR with Zj = Xj, which is typically

estimated by minimizing a criterion function:

β̂Q ≡ arg min
β

1

n

n∑
j=1

ρq(Yj −X ′jβ),

where ρq(u) ≡ [q − 1(u < 0)]u is the check function. Since the objective function

is not smooth, it is not easy to obtain a high-order approximation to the sampling

distribution of β̂Q. To avoid this technical difficulty, Horowitz (1998) proposes to

smooth the objective function to obtain

β̂H = arg min
β

1

n

n∑
j=1

ρHq (Yj −X ′jβ), ρHq (u) ≡ [q −G(−u/h)]u,

where G(·) is a smooth function and h is the smoothing parameter or bandwidth.

Instead of smoothing the objective function, we smooth the underlying moment con-

dition1 and define β̂ to be the solution of the vector of smoothed estimating equations

(SEE) mn(β̂) = 0, where2

mn(β) ≡ 1√
n

n∑
j=1

Wj(β) and Wj(β) ≡ Zj

[
G

(
X ′jβ − Yj

h

)
− q
]
.

The SEE is analogous to that employed by Whang (2006) with Zj = Xj.

1This is only one of an infinite number of unconditional moment conditions implied by the conditional
moment condition, albeit the most popular one. Other transformations of the instrument vector
Zi could be used, which may improve efficiency. Alternatively, Otsu (2008) argues for using the
conditional version of the moment condition to improve efficiency of a smoothed conditional empirical
likelihood estimator.
2It suffices to have mn(β̂) = op(1), which allows for a small error when β̂ is not the exact solution to

mn(β̂) = 0.
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Our approach is related to kernel-based nonparametric conditional quantile esti-

mators. The moment condition there is E[1{X = x}(1{Y < β} − q)] = 0. Usu-

ally the 1{X = x} indicator function is “smoothed” with a kernel, while the latter

term is not. This yields the nonparametric conditional quantile estimator β̂q(x) =

arg minb
∑n

i=1 ρq(Yi − b)K[(x − Xi)/h] for the conditional q-quantile at X = x, esti-

mated with kernel K(·) and bandwidth h. Our approach is different in that we smooth

the indicator 1{Y < β} rather than 1{X = x}. Smoothing both terms may help but

is beyond the scope of this paper.

Estimating β̂ from the SEE is computationally easy: d equations for d parameters,

and a known, analytic Jacobian. Even when the model is overidentified with dim(Zj) >

dim(Xj), we can transform the original moment conditions E{Zj[q−1{Yj < X ′jβ}]} = 0

into

E
(
Z̃j
[
q − 1{Yj < X ′jβ}

])
= 0, Z̃j = XjZ

′
j(ZjZ

′
j)
−1Zj ∈ Rdim(Xj). (1)

Then we have an exactly identified model with transformed instrument vector Z̃j, and

our asymptotic analysis can be applied to (1). Computationally, solving our problem

is faster and more reliable than the IV-QR method in Chernozhukov and Hansen

(2006), which requires specification of a grid of endogenous coefficient values to search

over, computing a conventional QR estimator for each grid point. This advantage is

important particularly when there are more endogenous variables.

2.2. Comparison with other estimators.

Smoothed criterion function. For the special case Zj = Xj, we compare the SEE with

that derived from smoothing the criterion function as in Horowitz (1998). The first

order condition of the smoothed criterion function, evaluated at the true β0, is

0 =
∂

∂β

∣∣∣∣
β=β0

n−1
n∑
i=1

[
q −G

(
X ′iβ − Yi

h

)]
(Yi −X ′iβ)

= n−1
n∑
i=1

[
− qXi −G′(−Ui/h)(Xi/h)Yi +G′(−Ui/h)(Xi/h)X ′iβ0 +G(−Ui/h)Xi

]
= n−1

n∑
i=1

Xi[G(−Ui/h)− q] + n−1
n∑
i=1

G′(−Ui/h)[(Xi/h)X ′iβ0 − (Xi/h)Yi]

= n−1
n∑
i=1

Xi[G(−Ui/h)− q] + n−1
n∑
i=1

(1/h)G′(−Ui/h)[−XiUi].
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Technically, it should be easier to establish high-order results for our SEE estimator

since it has fewer terms than this. Later we show that the absolute bias of our SEE

estimator is smaller, too.

IV mean regression. When h→∞, G(·) only takes arguments near zero and thus can

be approximated well linearly. For example, with the G(·) from Whang (2006) and

Horowitz (1998), G(v) = 0.5 + (105/64)v + O(v3) as v → 0. Ignoring the O(v3), the

corresponding estimator is defined as

0 =
n∑
i=1

Zi

[
G

(
X ′ib− Yi

h

)
− q
]

.
=

n∑
i=1

Zi

[(
0.5 + (105/64)

X ′ib− Yi
h

)
− q
]

= (105b/64h)
∑

ZiX
′
i − (105/64h)

∑
ZiYi + (0.5− q)

∑
Zi,

Z ′Xb = Z ′Y + (64h/105)(q − 0.5)Z ′1n,1,

β̂ = (Z ′X)−1Z ′Y + (Z ′X)−1Z ′(Xe1)(64h/105)(q − 0.5)

= β̂IV + ((64h/105)(q − 0.5), 0, . . . , 0)′,

where e1 = (1, 0, . . . , 0)′ is d × 1, 1n,1 = (1, 1, . . . , 1)′ is n × 1, X and Z are n × d

with respective rows X ′i and Z ′i, and using the fact that the first column of X is 1n,1

so that Xe1 = 1n,1. As h grows large, the smoothed QR estimator approaches the IV

estimator plus an adjustment to the intercept term that depends on q, the bandwidth,

and the slope of G(·) at zero. In the special case Zj = Xj, the IV estimator is the OLS

estimator.3

The intercept is often not of interest, and when q = 0.5, the adjustment is zero

anyway. The class of SEE estimators is a continuum (indexed by h) with two well-

known special cases at the extremes: unsmoothed IV-QR and mean IV. For q =

0.5 and Zj = Xj, this is median regression and mean regression (OLS). Well known

are the relative efficiency advantages of unsmoothed QR and OLS for different error

distributions. Our estimator with a data-driven bandwidth can harness the advantages

of both, without requiring the practitioner to guess assumptions about the unknown

error distribution.

3This is different from Zhou et al. (2011), who add the d OLS moment conditions to the d median
regression moment conditions before estimation; our connection to IV/OLS emerges naturally from
smoothing the (IV)QR estimating equations.
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Robust estimation. With Zj = Xj, the result that our SEE can yield OLS when

h → ∞ or median regression when h = 0 calls to mind robust estimators like the

trimmed or Winsorized mean (and corresponding regression estimators). Setting the

trimming/Winsorization parameter to zero generates the mean while the other ex-

treme generates the median. However, our SEE mechanism is different and more gen-

eral/flexible; trimming/Winsorization is not directly applicable to q 6= 0.5; our method

to select the smoothing parameter is novel; and the motivations for QR extend beyond

(though include) robustness.

With Xi = 1 and q = 0.5 (population median estimation), our SEE becomes

0 = n−1
n∑
i=1

[2G((β − Yi)/h)− 1].

Note that H(u) ≡ 2G(u)−1 takes value 1 for u ≥ 1 and −1 for u ≤ −1. Our estimator

is then an M-estimator with ψ(Yi) = H[(β−Yi)/h], defined by
∑n

i=1 ψ(Yi) = 0. If H(u)

is piecewise linear with H(u) = u for u ∈ [−1, 1], then we have a Winsorized mean

estimator of the type in Huber (1964, example (iii) on page 79).4 In our framework,

this is choosing G′(·) to be the uniform kernel (r = 2).

Further theoretical comparison of our SEE-QR with trimmed/Winsorized mean re-

gression (and the IV versions) would be interesting but is beyond the scope of this

paper. For more on robust location and regression estimators, see for example Huber

(1964), Koenker and Bassett (1978), and Ruppert and Carroll (1980).

3. MSE of the SEE

Since statistical inference can be made based on the estimating equations (EEs), we

examine the mean squared error (MSE) of the SEE. The MSE of the SEE is related

to the estimator MSE and inference properties both intuitively and (as we will show)

theoretically. Such a result may provide helpful guidance in contexts where the SEE

MSE is easier to compute than the estimator MSE, and it provides insight into how

smoothing works in the QR model as well as results that will be used in subsequent

sections.

We maintain different subsets of the following assumptions for different results. They

are stated together and in this order to parallel Assumptions 1–6 in both Horowitz

(1998) and Whang (2006). We write fU |Z(·|z) as the conditional PDF of U given

Z = z, and similarly FU |Z(·|z) for the conditional CDF.

4For a strict mapping, multiply by h to get ψ(Yi) = hH[(β − Yi)/h]. The solution is equivalent since∑
hψ(Yi) = 0 is the same as

∑
ψ(Yi) = 0 for any nonzero constant h.
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Assumption 1. (X ′j, Z
′
j, Yj) is iid across j = 1, 2, . . . , n, where Yj = X ′jβ0 + Uj, Xj

is an observed d × 1 vector of stochastic regressors that can include a constant, β0 is

an unknown d × 1 constant vector, Uj is an unobserved random scalar, and Zj is an

observed d× 1 vector of instruments (see assumptions below).

Assumption 2. β = β0 uniquely solves E
(
Zj
[
q − 1{Yj < X ′jβ}

])
= 0 over β ∈ B.

Assumption 3. Zj has bounded support and EZjZ
′
j is nonsingular.

Assumption 4. (i) P (Uj < 0|Zj = z) = q for almost all z ∈ Z, the support of Z. (ii)

For all u in a neighborhood of zero and almost all z ∈ Z, fU |Z(u|z) exists, is bounded

away from zero, and is r times continuously differentiable with r ≥ 2. (iii) There exists

a function C(z) such that
∣∣∣f (s)
U |Z(u|z)

∣∣∣ ≤ C(z) for s = 0, 2, . . . , r, almost all z ∈ Z and

u in a neighborhood of zero, and E
[
C(Z)‖Z‖2

]
<∞.

Assumption 5. (i) G(v) is a bounded function satisfying G(v) = 0 for v ≤ −1 and

G(v) = 1 for v ≥ 1. (ii) G′(·) is a symmetric and bounded rth order kernel with r ≥ 2

so that
∫ 1

−1G
′(v)dv = 1,

∫ 1

−1 v
kG′(v)dv = 0 for k = 1, 2, . . . , r − 1,

∫ 1

−1|v
rG′(v)|dv <

∞, and
∫ 1

−1 v
rG′(v)dv 6= 0. (iii) Let G̃(u) =

(
G(u), [G(u)]2, . . . , [G(u)]L+1

)′
for some

L ≥ 1. For any θ ∈ RL+1 satisfying ‖θ‖ = 1, there is a partition of [−1, 1] given by

−1 = a0 < a1 < · · · < aL+1 = 1 such that θ′G̃(u) is either strictly positive or strictly

negative on the intervals (ai−1, ai) for i = 1, 2, . . . , L+ 1.

Assumption 6. h ∝ n−κ for 1/(2r) < κ < 1 where r ≥ 2.

Assumption 1 describes the sampling process. Assumption 2 ensures that β0 is

identified. See Theorem 2 of Chernozhukov and Hansen (2006) for more primitive

conditions. Assumption 3 is analogous to Assumption 3 in both Horowitz (1998) and

Whang (2006). As discussed in these two papers, the boundedness assumption for Zj is

made only for convenience and can be dropped at the cost of more complicated proofs.

Assumption 4(ii) is critical. If we are not willing to make such an assumption, then

smoothing will be of no benefit. Inversely, with some small degree of smoothness of the

conditional error density, smoothing can leverage this into the advantages described

here. Also note that Horowitz (1998) assumes r ≥ 4, which is sufficient for the estimator

MSE result in §5.

Assumptions 5 and 6 are needed for the Edgeworth expansion. As Horowitz (1998)

and Whang (2006) discuss, Assumption 5(iii) is a technical assumption that (along

with Assumption 6) leads to a form of Cramér’s condition, which is needed to justify

the Edgeworth expansion used in §4.
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Define

Wj ≡ Wj(β0) = Zj[G(−Uj/h)− q]

and abbreviate mn ≡ mn(β0) = n−1/2
∑n

j=1Wj. The theorem below gives the first two

moments of Wj and the first-order asymptotic distribution of mn.

Theorem 1. Let Assumptions 3, 4, and 5(i–ii) hold. Then

E(Wj) =
(−h)r

r!

(∫ 1

−1
G′(v)vrdv

)
E
[
f
(r−1)
U |Z (0|Zj)Zj

]
+ o(hr), (2)

E(W ′
jWj) = q(1− q)E{Z ′jZj} − h

[
1−

∫ 1

−1
G2(u)du

]
E{fU |Z(0|Zj)Z ′jZj}+O(h2),

(3)

E(WjW
′
j) = q(1− q)E{ZjZ ′j} − h

[
1−

∫ 1

−1
G2(u)du

]
E{fU |Z(0|Zj)ZjZ ′j}+O(h2).

If additionally Assumptions 1 and 6 hold, then

mn
d→ N(0, V ), V ≡ lim

n→∞
E{(Wj − EWj)(Wj − EWj)

′} = q(1− q)E(ZjZ
′
j).

Theorem 1 shows that E(Wj) = O(hr). This bias is smaller than that of the SEE

derived from smoothing the criterion function as in Horowitz (1998). The bias of the

EE derived from the smoothed criterion function is

E{[G(−Uj/h)− q]Zj} −
1

h
E{UjG′(−Uj/h)Zj}

= (−h)r
(

1

r!
+

1

(r − 1)!

)(∫
G′(v)vrdv

)
E
{
f
(r−1)
U |Z (0|Zj)Zj

}
+ o(hr),

as calculated in the appendix. The dominating term of the bias of our SEE is smaller

in absolute value than that of the EE derived from a smoothed criterion function. A

larger bias can lead to less accurate confidence regions if the same variance estimator

is used.

The first-order asymptotic variance V is exactly the same as the asymptotic variance

of n−1/2
∑n

j=1 Zj[1(Uj < 0)− q], the scaled EE of the unsmoothed IV-QR. The effect

of smoothing on the variance is captured by the term of order h (up to a smaller-order

remainder). To determine the sign of this term, we need to sign

1−
∫ 1

−1
G2(u)du = 2

∫ 1

−1
uG(u)G′(u)du

= 2

∫ 1

0

uG(u)G′(u)du+ 2

∫ 0

−1
uG(u)G′(u)du
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Figure 1. Graph of G(u) = 0.5 + 105
64

(
u− 5

3
u3 + 7

5
u5 − 3

7
u7
)

(solid line)
and its derivative (broken).

= 2

∫ 1

0

uG(u)G′(u)du− 2

∫ 1

0

vG(−v)G′(−v)dv

= 2

∫ 1

0

uG′(u)[G(u)−G(−u)]du,

using the evenness of G′(u).

When r = 2, we can use G(u) such that G′(u) > 0 and G(u) > G(−u). That is, we

can take G′(u) to be any symmetric PDF on [−1, 1]. In this case, 1−
∫ 1

−1G
2(u)du > 0,

so smoothing reduces the variance by order O(h). This is not surprising. Replacing the

discontinuous indicator function 1{U < 0} by a smooth function G(−U/h) pushes the

dichotomous values of zero and one into some values in between, leading to a smaller

variance. The idea is similar to Breiman’s (1994) bagging (bootstrap aggregating),

among others.

When r > 2, G′(u) < 0 for some u, and G(u) is not monotonic. It is not easy to

sign 1 −
∫ 1

−1G
2(u)du generally, but it is simple to calculate for any chosen G(·). For

example, consider r = 4 and the G(·) function in Horowitz (1998) and Whang (2006)

shown in Figure 1,

G(u) = 0.5 +
105

64

(
u− 5

3
u3 +

7

5
u5 − 3

7
u7
)

for u ∈ [−1, 1].
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The range of the function falls outside [0, 1]. Some calculations show that 1−
∫ 1

−1G
2(u)du >

0. Like the case of r = 2, smoothing reduces the variance while introducing some bias

into the EE. We will assume that 1−
∫ 1

−1G
2(u)du > 0 throughout the rest of the paper.

Define the MSE of the SEE to be E{m′nV −1mn}. Building off of (2) and (3), and

using Wi ⊥⊥ Wj for i 6= j, we have:

E{m′nV −1mn}

=
1

n

n∑
j=1

E{W ′
jV
−1Wj}+

1

n

n∑
j=1

∑
i 6=j

E
(
W ′
iV
−1Wj

)
=

1

n

n∑
j=1

E{W ′
jV
−1Wj}+

1

n
n(n− 1)(EW ′

j)V
−1(EWj)

= q(1− q)E{Z ′jV −1Zj}+ nh2r(EB)′(EB)− htr{E(AA′)}+ o(h+ nh2r), (4)

where

A ≡
(

1−
∫ 1

−1
G2(u)du

)1/2[
fU |Z(0|Zj)

]1/2
V −1/2Zj,

B ≡
(

1

r!

∫ 1

−1
G′(v)vrdv

)
f
(r−1)
U |Z (0|Zj)V −1/2Zj.

Ignoring the o(·) term, we obtain the asymptotic MSE of the SEE. We select the

smoothing parameter to minimize the asymptotic MSE, leading to

h∗SEE ≡ arg min
h

nh2r(EB)′(EB)− htr{E(AA′)}. (5)

The proposition below gives the optimal smoothing parameter h∗SEE.

Proposition 2. Let Assumptions 1, 3, 4, and 5(i–ii) hold. The bandwidth that mini-

mizes the asymptotic MSE of the SEE is

h∗SEE =

(
tr{E(AA′)}
(EB)′(EB)

1

2nr

) 1
2r−1

.

Under the stronger assumption U ⊥⊥ Z, we have

h∗SEE =

 (r!)2
[
1−

∫ 1

−1G
2(u)du

]
fU(0)

2r
(∫ 1

−1G
′(v)vrdv

)2[
f
(r−1)
U (0)

]2 dn


1
2r−1

.

When r = 2, the MSE optimal h∗SEE � n−1/(2r−1) = n−1/3. This is smaller than n−1/5,

the rate that minimizes the MSE of estimated standard errors of the usual regression
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quantiles. Since nonparametric estimators of f
(r−1)
U (0) converge slowly, we propose a

parametric plug-in described in §6.

4. Type I Error of a Chi-square Test

In this section, we explore the effect of smoothing on a χ2 test. Other alternatives

for inference exist, such as the Bernoulli-based MCMC-computed method from Cher-

nozhukov et al. (2009), empirical likelihood as in Whang (2006), and bootstrap as in

Horowitz (1998), where the latter two also use smoothing. Intuitively, when we mini-

mize the MSE, we may expect steeper power curves: it is easier to distinguish the null

hypothesis from some given alternative. We would also expect lower type I error: the

χ2 critical value is from the unsmoothed distribution, and smoothing to minimize MSE

makes large values (that cause the test to reject) less likely. This combination leads

to improved size-adjusted power. As seen in our simulations, this is true especially for

the IV case. Here, we derive the bandwidth that minimizes the type I error from the

first two high-order terms while maintaining exact asymptotic size.

Using the results in §3 and under Assumption 6, we have

m′nV
−1mn

d→ χ2
d,

where we continue the notation mn ≡ mn(β0). From this asymptotic result, we can

construct a hypothesis test that rejects the null hypothesis H0 : β = β0 when

m′nV̂
−1mn > cα,

where

V̂ = q(1− q) 1

n

n∑
j=1

ZjZ
′
j

is a consistent estimator of V and cα ≡ χ2
d,1−α is the 1 − α quantile of the chi-square

distribution with d degrees of freedom. As desired, the asymptotic size is

lim
n→∞

P
(
m′nV̂

−1mn > cα

)
= α.

To more precisely measure the type I error P
(
m′nV̂

−1mn > cα

)
, we develop a high-

order expansion of the statistic Sn ≡ m′nV̂
−1mn. Let Vn ≡ Var(mn). Following the

same calculation as in (4), we have

Vn = V − h
[
1−

∫ 1

−1
G2(u)du

]
E[fU |Z(0|Zj)ZjZ ′j] +O(h2)

= V 1/2
[
Id − hE(AA′) +O(h2)

](
V 1/2

)′
,
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where V 1/2 is the matrix square root of V such that V 1/2
(
V 1/2

)′
= V . We can choose

V 1/2 to be symmetric but do not have to.

Details of the following are in the appendix; here we outline our strategy and high-

light key results. Letting

Λn = V 1/2
[
Id − hE(AA′) +O(h2)

]1/2
(6)

such that ΛnΛ′n = Vn, and defining

W̄ ∗
n ≡

1

n

n∑
j=1

W ∗
j and W ∗

j = Λ−1n Zj[G(−Uj/h)− q], (7)

we can approximate the test statistic (as shown in the appendix) as

Sn = SLn + en

where

SLn =
(√

nW̄ ∗
n

)′(√
nW̄ ∗

n

)
− h
(√

nW̄ ∗
n

)′
E(AA′)

(√
nW̄ ∗

n

)
,

and en is the remainder term satisfying P (|en| > O(h2)) = O(h2).

The stochastic expansion above allows us to approximate the characteristic function

of Sn with that of SLn , which we calculate in the appendix. Taking the Fourier-Stieltjes

inverse of the characteristic function yields an approximation of the distribution func-

tion, from which we can calculate the type I error by plugging in the critical value

cα.

Theorem 3. Under Assumptions 1–6, we have

P (SLn < x) = Gd(x)− 1

d
G ′d(x)x

{∥∥√nEW ∗
j

∥∥2 − htr{E(AA′)}
}

+Rn,

P (Sn > cα) = α +
1

d
G ′d(cα)cα

{∥∥√nEW ∗
j

∥∥2 − htr{E(AA′)}
}

+Rn,

where Rn = O(h2 + nh2r+1) and Gd(x) is the CDF of the χ2
d distribution.

It follows from Theorem 1 that∥∥√nEW ∗
j

∥∥2 = nh2r(EB)′(EB)(1 + o(1)).

So according to Theorem 3, an approximate measure of the type I error of the chi-square

test is

α +
1

d
G ′d(cα)cα

[
nh2r(EB)′(EB)− htr{E(AA′)}

]
,
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and an approximate measure of the coverage probability error (CPE) is5

CPE =
1

d
G ′d(cα)cα

[
nh2r(EB)′(EB)− htr{E(AA′)}

]
,

which is also the error in rejection probability under the null.

Up to smaller-order terms, the term nh2r(EB)′(EB) characterizes the bias effect

from smoothing. The (squared) bias inflation increases the type I error and reduces

coverage probability. The term htr{E(AA′)} characterizes the variance effect from

smoothing. The variance reduction decreases the type I error and increases the coverage

probability. When h→ 0, the type I error is α up to order O(h+ nh2r). For h = 0 as

well as some h > 0 that makes bias and variance effects cancel, the type I error is α

up to smaller-order terms in Rn.

Note that nh2r(EB)′(EB)−htr{E(AA′)} is exactly the same as the high-order term

in the asymptotic MSE of the SEE as given in (4). The h∗CPE that minimizes the type

I error (maximizes coverage probability) is the same as h∗SEE.

Proposition 4. Let Assumptions 1–6 hold. The bandwidth that minimizes the approx-

imate type I error of the chi-square test based on the test statistic Sn is

h∗CPE = h∗SEE =

(
tr{E(AA′)}
(EB)′(EB)

1

2nr

) 1
2r−1

.

The result that h∗CPE = h∗SEE is intuitive. Since h∗SEE minimizes E[m′nV
−1mn], for a

test with cα and V̂ both invariant to h, the null rejection probability P (m′nV̂
−1mn > cα)

should be smaller when the SEE’s MSE is smaller.

It is important to point out the optimal smoothing parameter h∗CPE or h∗SEE is in-

variant to rotation and translation of the (non-constant) regressors. This may not be

obvious but can be proved easily.

5. MSE of the Parameter Estimator

In this section, we examine the approximate MSE of the parameter estimator. The

approximate MSE, being a Nagar-type approximation (Nagar, 1959), can be motivated

from the theory of optimal estimating equations, as presented in Heyde (1997), for

example.

5The CPE is defined to be nominal coverage probability minus the true coverage probability, which
may be different from the usual definition. Under this definition, smaller CPE corresponds to higher
coverage probability (and smaller type I error).
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The SEE estimator β̂ satisfies mn(β̂) = 0. In Lemma 7 in the appendix, we show

that
√
n
(
β̂ − β0

)
= −

{
E

∂

∂β′
1√
n
mn(β0)

}−1
mn +Op

(
1√
nh

)
, (8)

and

E
∂

∂β′
1√
n
mn(β0) = E

[
ZjX

′
jfU |Z,X(0|Zj, Xj)

]
+O(hr). (9)

Consequently, the approximate MSE (AMSE) of
√
n
(
β̂ − β0

)
is6

AMSEβ =

{
E

∂

∂β′
1√
n
mn(β0)

}−1
(Emnm

′
n)

{
E

∂

∂β′
1√
n
mn(β0)

}−1′
= Σ−1ZXV Σ−1XZ + Σ−1ZXV

1/2
[
nh2r(EB)(EB)′ − hE(AA′)

](
V 1/2

)′
Σ−1XZ

+O(hr) + o(h+ nh2r),

where

ΣZX = E
[
ZjX

′
jfU |Z,X(0|Zj, Xj)

]
and ΣXZ = Σ′ZX .

The first term of AMSEβ is the asymptotic variance of the unsmoothed QR estimator.

The second term captures the higher-order effect of smoothing on the AMSE of
√
n(β̂−

β0). When nhr →∞ and n3h4r+1 →∞, we have hr = o(nh2r) and 1/
√
nh = o(nh2r),

so the terms of order Op(1/
√
nh) in (8) and of order O(hr) in (9) are of smaller order

than the O(nh2r) and O(h) terms in the AMSE. If h � n−1/(2r−1) as before, these rate

conditions are satisfied when r > 2.

Theorem 5. Let Assumptions 1–5(i-ii) and 6 hold. Assume that (i) fU |Z,X(u|z, x) is

r times continuously differentiable in u in a neighborhood of zero and for almost all

x ∈ X and Z ∈ Z for r > 2, (ii) ΣZX is nonsingular. If nhr →∞ and n3h4r+1 →∞,

then the AMSE of
√
n(β̂ − β0) is

Σ−1ZXV
1/2
[
Id + nh2r(EB)(EB)′ − hE(AA′)

](
V 1/2

)′
(Σ′ZX)

−1
+O(hr) + o(h+ nh2r).

The optimal h∗ that minimizes the high-order AMSE satisfies

Σ−1ZX
[
n(h∗)2r(EB)(EB)′ − h∗E(AA′)

]
(Σ′ZX)

−1

≤ Σ−1ZX
[
nh2r(EB)(EB)′ − hE(AA′)

]
(Σ′ZX)

−1

6Here we follow a common practice in the estimation of nonparametric and nonlinear models and

define the AMSE to be the MSE of
√
n
(
β̂ − β0

)
after dropping some smaller order terms. So the

asymptotic MSE we define here is a Nagar-type approximate MSE. See Nagar (1959).
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in the sense that the difference between the two sides is nonpositive definite for all h.

This is equivalent to

n(h∗)2r(EB)(EB)′ − h∗E(AA′) ≤ nh2r(EB)(EB)′ − hE(AA′).

This choice of h can also be motivated from the theory of optimal estimating equa-

tions. Given the estimating equations mn = 0, we follow Heyde (1997) and define the

standardized version of mn by

ms
n(β0, h) = −E ∂

∂β′
mn(β0)[E(mnm

′
n)]
−1
mn.

We include h as an argument of ms
n to emphasize the dependence of ms

n on h. The

standardization can be motived from the following considerations. On one hand, the

estimating equations need to be close to zero when evaluated at the true parameter

value. Thus we want E(mnm
′
n) to be as small as possible. On the other hand, we want

mn(β + δβ) to differ as much as possible from mn(β) when β is the true value. That

is, we want E ∂
∂β′
mn(β0) to be as large as possible. To meet these requirements, we

choose h to maximize

E{ms
n(β0, h)[ms

n(β0, h)]′} =

[
E

∂

∂β′
mn(β0)

]
[E(mnm

′
n)]
−1
[
E

∂

∂β′
mn(β0)

]′
.

More specifically, h∗ is optimal if

E{ms
n(β0, h

∗)[ms
n(β0, h

∗)]′} − E{ms
n(β0, h)[ms

n(β0, h)]′}

is nonnegative definite for all h ∈ R+. But E{ms
n(ms

n)′} = (AMSEβ)−1, so maximizing

E{ms
n(ms

n)′} is equivalent to minimizing AMSEβ.

The question is whether such an optimal h exists. If it does, then the optimal h∗

satisfies

h∗ = arg min
h

u′
[
nh2r(EB)(EB)′ − hE(AA′)

]
u (10)

for all u ∈ Rd, by the definition of nonpositive definite plus the fact that the above yields

a unique minimizer for any u. Using unit vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),

etc., for u, and noting that tr{A} = e′1Ae1 + · · ·+e′dAed for d×d matrix A, this implies

that

h∗ = arg min
h

tr
{
nh2r(EB)(EB)′ − hE(AA′)

}
= arg min

h

[
nh2r(EB)′(EB)− htr{E(AA′)}

]
.
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In view of (5), h∗SEE = h∗ if h∗ exists. Unfortunately, it is easy to show that no single

h can minimize the objective function in (10) for all u ∈ Rd. Thus, we have to redefine

the optimality with respect to the direction of u. The direction depends on which

linear combination of β is the focus of interest, as u′
[
nh2r(EB)(EB)′ − hE(AA′)

]
u is

the high-order AMSE of c′
√
n(β̂ − β0) for c = ΣXZ

(
V −1/2

)′
u.

Suppose we are interested in only one linear combination. Let h∗c be the optimal h

that minimizes the high-order AMSE of c′
√
n(β̂ − β0). Then

h∗c =

(
u′E(AA′)u

u′(EB)(EB)′u

1

2nr

) 1
2r−1

for u =
(
V 1/2

)′
Σ−1XZc. Some algebra shows that

h∗c ≥
(

1

(EB)′(EAA′)−1EB

1

2nr

) 1
2r−1

> 0.

So although h∗c depends on c via u, it is nevertheless greater than zero.

Now suppose without loss of generality we are interested in d directions (c1, . . . , cd)

jointly where ci ∈ Rd. In this case, it is reasonable to choose h∗c1,...,cd to minimize the

sum of direction-wise AMSEs, i.e.

h∗c1,...,cd = arg min
h

d∑
i=1

u′i
[
nh2r(EB)(EB)′ − hE(AA′)

]
ui,

where ui =
(
V 1/2

)′
Σ−1XZci. It is easy to show that

h∗c1,...,cd =

( ∑d
i=1 u

′
iE(AA′)ui∑d

i=1 u
′
i(EB)(EB)′ui

1

2nr

) 1
2r−1

.

As an example, consider ui = ei = (0, . . . , 1, . . . , 0), the ith unit vector in Rd.

Correspondingly

(c̃1, . . . , c̃d) = ΣXZ

(
V −1/2

)′
(e1, . . . , ed).

It is clear that

h∗c̃1,...,c̃d = h∗SEE = h∗CPE,

so all three selections coincide with each other. A special case of interest is when

Z = X, non-constant regressors are pairwise independent and normalized to mean

zero and variance one, and U ⊥⊥ X. Then ui = ci = ei and the d linear combinations

reduce to the individual elements of β.

The above example illustrates the relationship between h∗c1,...,cd and h∗SEE. While

h∗c1,...,cd is tailored toward the flexible linear combinations (c1, . . . , cd) of the parameter
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vector, h∗SEE is tailored toward the fixed (c̃1, . . . , c̃d). While h∗c1,...,cd and h∗SEE are of the

same order of magnitude, in general there is no analytic relationship between h∗c1,...,cd
and h∗SEE.

To shed further light on the relationship between h∗c1,...,cd and h∗SEE, let {λk, k = 1, . . . , d}
be the eigenvalues of nh2r(EB)(EB)′ − hE(AA′) with the corresponding orthonor-

mal eigenvectors {`k, k = 1, . . . , d}. Then we have nh2r(EB)(EB)′ − hE(AA′) =∑d
k=1 λk`k`

′
k and ui =

∑d
j=1 uij`j for uij = u′i`j. Using these representations, the

objective function underlying h∗c1,...,cd becomes

d∑
i=1

u′i
[
nh2r(EB)(EB)′ − hE(AA′)

]
ui

=
d∑
i=1

(
d∑
j=1

uij`
′
j

)(
d∑

k=1

λk`k`
′
k

) d∑
j̃=1

uij̃`j̃


=

d∑
j=1

(
d∑
i=1

u2ij

)
λj.

That is, h∗c1,...,cd minimizes a weighted sum of the eigenvalues of nh2r(EB)(EB)′ −
hE(AA′) with weights depending on c1, . . . , cd. By definition, h∗SEE minimizes the

simple unweighted sum of the eigenvalues, viz.
∑d

j=1 λj. While h∗SEE may not be ideal

if we know the linear combination(s) of interest, it is a reasonable choice otherwise.

In empirical applications, we can estimate h∗c1,...,cd using a parametric plug-in ap-

proach similar to our plug-in implementation of h∗SEE. If we want to be agnostic about

the directional vectors c1, . . . , cd, we can simply use h∗SEE.

6. Simulations

For our simulation study,7 we use

G(u) = 0.5 +
105

64

(
u− 5

3
u3 +

7

5
u5 − 3

7
u7
)

as in Horowitz (1998), so r = 4. Using (the integral of) an Epanečnikov kernel with

r = 2 also worked well in the cases where we tried it, though never better than r = 4.

Note that our error distributions always have at least four derivatives, so r = 4 working

somewhat better is expected. Selection of optimal r and G(·), and the quantitative

impact thereof, remain open questions.

7MATLAB functions for public use are available on the first author’s website. MATLAB code for the
simulations is available upon request.
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We implement a plug-in version of the infeasible h∗ := h∗SEE. We make the plug-in

assumption U ⊥⊥ Z and parameterize the distribution of U . Our current method, which

has proven quite accurate and stable, fits the residuals from an initial h = (2nr)−1/(2r−1)

IV-QR to Gaussian, t, gamma, and generalized extreme value distributions via maxi-

mum likelihood. With the distribution parameter estimates, fU(0) and f
(r−1)
U (0) can be

computed and plugged in to calculate ĥ. Since the biggest risk is taking an h that is too

large, we separately calculate ĥ for each of the four distributions and take the smallest.

Note that this particular plug-in approach works well even under heteroskedasticity

and/or misspecification of the error distribution: settings 3.1-3.6 have error distribu-

tions other than these four, and settings 1.3, 2.2, 3.3-3.6 are heteroskedastic. For the

infeasible h∗, if the PDF derivative in the denominator is zero, it is replaced by 0.01

to avoid h∗ =∞.

Motivated by the connection with mean IV regression in §2.2, we tried restricting (af-

ter computation) our estimators to be within a five-fold expansion of the d-dimensional

rectangle with the unsmoothed IV-QR estimator at one corner and the IV (mean) esti-

mator at the other, when our instruments Z are not simply X. This had a marginally

(less than one percent) beneficial impact on MSE in some cases, but a detrimental

impact in other cases, so we do not recommend this option or show it in our results.

For the unsmoothed IV-QR estimator, we use code based on Chernozhukov and

Hansen (2006) from the latter author’s website, for reasons given in their §3.3. We use

the option to let their code determine the grid of possible endogenous coefficient values

from the data. This code in turn uses the interior point method in rq.m (developed

by Roger Koenker, Daniel Morillo, and Paul Eilers) to solve exogenous QR linear

programs, as do we.

We tried data generating processes (DGPs) with homoskedasticity and heteroskedas-

ticity, and with a variety of error distributions like Gaussian, Cauchy, exponential, and

beta (of various shapes). Using ĥ appears to consistently reduce the MSE of all esti-

mator components compared with h = 0 and with IV (h = ∞). Almost always, the

exception is cases where MSE is monotonically decreasing with h (IV is more efficient),

in which ĥ is much better than h = 0 but not quite large enough to match h = ∞.

The range of ĥ values over the simulation replications is usually less than a factor of

10, and the range from 0.05 to 0.95 empirical quantiles is around a factor of two. This

is a very small impact—note the log transformation in the x-axis in the graphs.

For “size-adjusted” power of a test with nominal size α, the critical value is picked

as the (1 − α)-quantile of the empirical test statistic distribution. This is for demon-

stration, not practice. The size adjustment fixes the left endpoint of the size-adjusted
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power curve to the null rejection probability α. The resulting size-adjusted power

curve is one way to try to visualize a combination of type I and type II errors, in the

absence of an explicit loss function. One shortcoming is that it does not reflect the

variability/uniformity of size and power over the space of parameter values and DGPs.

Regarding notation in the figures, the y-axis in the size-adjusted power figures shows

the simulated rejection probability. The x-axis shows the magnitude of deviation from

the null hypothesis, where a randomized alternative is generated in each simulation

iteration as that magnitude times a random point on the unit sphere in Rk, where

β ∈ Rk. As the legend shows, the dashed line corresponds to the unsmoothed estimator

(h = 0), the dotted line to the infeasible h∗SEE, and the solid line to the plug-in ĥ.

For the MSE graphs, the flat horizontal solid and dashed lines are the MSE of the

intercept and slope estimators (respectively) using feasible plug-in ĥ (recomputed each

replication). The other solid and dashed lines (that vary with h) are the MSE when

using the value of h from the x-axis. The left y-axis shows the MSE values for the

intercept parameter; the right y-axis shows the MSE for slope parameter(s); and the

x-axis shows a log transformation of the bandwidth, log10(1 + h).

Figure 2. MSE for DGPs 1.1 (left) and 1.3 (right).

To save space, we report the following representative DGPs with 10,000 simulation

replications each. Others produced very similar results. DGPs 1.* are the three from

Horowitz (1998); 2.* are similar but with Cauchy errors and q 6= 0.5; 3.* include

more error distributions; and 4.* are IV-QR. A qualitative description of the results is

provided for each, and corresponding figures are noted when reproduced here. “SAP”

below is “size-adjusted power.” “Better” means ĥ is better than h = 0; “worse” means

ĥ is worse than h = 0. “Percentage point(s)” is abbreviated “pp”.
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Figure 3. Size-adjusted power for DGPs 1.1 (left) and 1.3 (right).

1.1 DGP: (homoskedastic, thicker-tailed, Z = X) q = 0.5, n = 50, β0 = (1, 1)′, er-

rors from t3 scaled to have variance two, non-constant regressor is Uniform(1, 5).

From Horowitz (1998). MSE: better than h = 0 and OLS for both intercept

and slope; Figure 2. SAP: almost identical; Figure 3.

1.2 DGP: (homoskedastic, EV1, Z = X) q = 0.5, n = 50, β0 = (1, 1)′, errors from

Type I Extreme Value scaled/centered to have median zero and variance two,

non-constant regressor is Uniform(1, 5). From Horowitz (1998). MSE: better

than h = 0 and OLS for both intercept and slope. SAP: a few pp better.

1.3 DGP: (heteroskedastic, thin-tailed, Z = X) q = 0.5, n = 50, β0 = (1, 1)′,

errors U = 0.25(1 + x)V where V ∼ N(0, 1) and x ∼ Uniform(1, 5) is the

non-constant regressor. From Horowitz (1998). MSE: better than h = 0 for

both intercept and slope; better than OLS for intercept, same for slope; Figure

2. SAP: a few pp better; Figure 3.

2.1 DGP: (homoskedastic, thick-tailed, Z = X) q = 0.3, n = 50, β0 = (1, 1)′,

Cauchy errors, non-constant regressor is Uniform(0, 1). MSE: better than h =

0 and OLS; Figure 4. SAP: almost identical; Figure 5.

2.2 DGP: (heteroskedastic, thick-tailed, Z = X) q = 0.35, n = 50, β0 = (1, 1)′,

error U = (1+x)V where V is a Cauchy (shifted to have 0.35-quantile equal to

zero) and x ∼ Uniform(0, 1) is the non-constant regressor. MSE: better than

h = 0 and OLS; Figure 4. SAP: a few pp better; Figure 5.

3.1 DGP: (homoskedastic, uniform, Z = X, d = 3) q = 0.5, n = 50, β0 = (1, 1, 1)′,

uniform errors, X = (1, x1, x2)
′ where x1 ∼ Unif(−5, 5), x2 ∼ Unif(5, 15).

MSE: better than h = 0, worse than OLS. SAP: up to ten pp better.
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Figure 4. MSE for DGPs 2.1 (left) and 2.2 (right).

Figure 5. Size-adjusted power for DGPs 2.1 (left) and 2.2 (right).

3.2 DGP: Same as 3.1 but lognormal errors. MSE: ĥ better than h = 0 and OLS.

SAP: a few pp better over small range.

3.3 DGP: (heteroskedastic, uniform, Z = X) q = 0.25, n = 50, β0 = (1, 1)′,

U = (1+x)V where V is uniform and x ∼ Unif(0, 1) is non-constant regressor.

MSE: better than h = 0 and OLS; Figure 6. SAP: a few pp better.

3.4 DGP: (heteroskedastic, beta, Z = X) q = 0.35, n = 50, β0 = (1, 1)′, U =

(1 + x)V where V is a (shifted) β(2, 2) and x ∼ Uniform(0, 1) is the non-

constant regressor. MSE: better than h = 0; better than OLS for intercept,

same for slope. SAP: around 5pp better.

3.5 DGP: same as 3.4 but β(1/2, 1/2) (U-shaped PDF), n = 25. MSE: better than

h = 0; better than OLS for intercept, worse for slope. SAP: a few pp better.
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3.6 DGP: same as 3.5 but β(2, 5) (skewed right). MSE: better than h = 0 and

OLS; Figure 6. SAP: a few pp better.

Figure 6. MSE for DGPs 3.3 (left) and 3.6 (right).

4.1 DGP: (normal, IV) q = 0.5, n = 20, β0 = (0, 1)′. Simulated using reduced

form equations in Cattaneo et al. (2012, equation 2) with γ1 = γ2 = 1, xi = 1,

zi ∼ N(0, 1), and π = 0.5. Similar to their simulations, we set ρ = 0.5, (ṽ1i, ṽ2i)

iid N(0, 1), and (v1i, v2i)
′ = (ṽ1i,

√
1− ρ2ṽ2i + ρṽ1i)

′. MSE: regular MSE (not

shown) is around 10 for ĥ and around 100 for h = 0 and IV, due to “outlier”

draws in a few percent of the simulation replications where both h = 0 and

IV yield estimates far from β0. In those draws, ĥ is very large (but not to the

point of equivalence with IV), in a range where there is significant bias but

small enough variance to keep the estimates relatively close to β0. With the

“robust MSE” described in the figure caption, ĥ performs better than h = 0

and worse than IV; Figure 7. SAP: up to 10pp better; Figure 9.

4.2 DGP: (Cauchy, IV) Similar to 4.1 but with n = 250, (ṽ1i, ṽ2i)
′ iid Cauchy,

β
(2)
0 = [ρ −

√
1− ρ2]−1 so that the structural error ui = v1i − v2iβ is Cauchy

with standard deviation 2[1−ρ/(ρ−
√

1− ρ2)]. MSE: regular MSE (not shown)

is in the hundred thousands for ĥ, similar for IV, and around 1011 for h = 0,

due to “outlier” draws similar to discussed for DGP 4.1. With the “robust

MSE” described in the figure caption, ĥ is better than h = 0 and IV; Figure

7. SAP: a few pp worse.

4.3 DGP: (normal, IV) Same as 4.1 but q = 0.35 (and consequent re-centering of

error term), n = 30. MSE: better than h = 0 for slope, same for intercept;
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better than IV for intercept, worse for slope; Figure 8. SAP: over 5pp better;

Figure 9.

Figure 7. For DGPs 4.1 (left) and 4.2 (right), “robust MSE”: squared
median-bias plus the square of the interquartile range divided by 1.349,
Bias2median + (IQR/1.349)2.

Figure 8. MSE for DGP 4.3.

With the infeasible h∗, there is usually some gain in size-adjusted power because the

estimator is more precise. With a feasible h∗, this gain is in the 1–10 percentage point

range for exogenous models (Z = X), though can be larger for IV setups. Depending

on one’s loss function of type I and type II error, this test may be preferred or not.
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Figure 9. Size-adjusted power for DGPs 4.1 (left) and 4.3 (right).

7. Conclusion

We have presented a new estimator for quantile regression with or without instrumen-

tal variables. Smoothing the estimating equations (moment conditions) has multiple

advantages beyond the known advantage of allowing higher-order expansions. It can

reduce the MSE of both the estimating equations and the estimator, minimize type

I error and improve size-adjusted power of a χ2 test, and allow more reliable compu-

tation of the instrumental variables quantile regression estimator especially when the

number of endogenous regressors is larger. We have given the theoretical bandwidth

that optimizes these properties, and simulations show our plug-in bandwidth to repro-

duce all these advantages over the unsmoothed estimator. Links to mean instrumental

variables regression and robust estimation are insightful and of practical use.

The strategy of smoothing the estimating equations can be applied to any model with

nonsmooth estimating equations; there is nothing peculiar to the quantile regression

model that we have exploited. For example, this strategy could be applied to censored

quantile regression, or to select the optimal smoothing parameter in Horowitz’s (2002)

smoothed maximum score estimator. The present paper has focused on parametric

and linear IV quantile regression; extensions to nonlinear IV quantile regression and

nonparametric IV quantile regression along the lines of Chen and Pouzo (2009) would

be interesting future topics.
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Appendix A. Appendix of Proofs

Proof of Theorem 1.

First moment of Wj. Let [UL(z), UH(z)] be the support of the conditional PDF of U

given Z = z. Since P (Uj < 0|Zj) = q for almost all Zj and h → 0, we can assume

without loss of generality that UL(Zj) ≤ −h and UH(Zj) ≥ h for almost all Zj. For

some h̃ ∈ [0, h], we have

E(Wj) = E{Zj[G(−Uj/h)− q]} = E

{(∫ UH(Zj)

UL(Zj)

[G(−u/h)− q]dFU |Z(u|Zj)

)
Zj

}

= E

{(
[G(−u/h)− q]FU |Z(u|Zj)

∣∣UH(Zj)

UL(Zj)
+

1

h

∫ UH(Zj)

UL(Zj)

FU |Z(u|Zj)G′(−u/h)du

)
Zj

}

= E

{(
−q +

∫ 1

−1
FU |Z(−hv|Zj)G′(v)dv

)
Zj

}
(since G′(v) = 0 for v /∈ [−1, 1])

= E

{[
−q + FU |Z(0|Zj) +

∫ 1

−1

(
r∑

k=1

f
(k−1)
U |Z (0|Zj)

(−h)kvk

k!

)
G′(v)dv

]
Zj

}

+ E

{[∫ 1

−1
f
(r)
U |Z(−h̃v|Zj)vrG′(v)dv

]
Zj

}
(−h)r+1

(r + 1)!

=
(−h)r

r!

(∫ 1

−1
G′(v)vrdv

)
E
[
f
(r−1)
U |Z (0|Zj)Zj

]
+ E

{[∫ 1

−1
f
(r)
U |Z(−h̃v|Zj)vrG′(v)dv

]
Zj

}
O
(
hr+1

)
.
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Under Assumption 4, for some bounded C(·) we have∥∥∥∥E{[∫ 1

−1
f
(r)
U |Z(−h̃v|Z)vrG′(v)dv

]
Z

}∥∥∥∥
≤ E

{∫ 1

−1
C(Z)‖Z‖|vrG′(v)|dv

}
= O(1).

Hence

E(Wj) =
(−h)r

r!

(∫ 1

−1
G′(v)vrdv

)
E
[
f
(r−1)
U |Z (0|Zj)Zj

]
+ o(hr).

Second moment of Wj. For the second moment,

EW ′
jWj = E

{
[G(−Uj/h)− q]2Z ′jZj

}
= E

{(∫ UH(Zj)

UL(Zj)

[G(−u/h)− q]2dFU |Z(u|Zj)

)
Z ′jZj

}
.

Integrating by parts and using Assumption 4(i) in the last line yields:∫ UH(Zj)

UL(Zj)

[G(−u/h)− q]2dFU |Z(u|Zj)

= [G(−u/h)− q]2FU |Z(u|Zj)
∣∣UH(Zj)

UL(Zj)
+

2

h

∫ UH(Zj)

UL(Zj)

FU |Z(u|Zj)[G(−u/h)− q]G′(−u/h)du

= q2 + 2

∫ 1

−1
FU |Z(hv|Zj)[G(−v)− q]G′(−v)dv (since G′(v) = 0 for v /∈ [−1, 1])

= q2 + 2q

{∫ 1

−1
[G(−v)− q]G′(−v)dv

}
+ 2hfU |Z(0|Zj)

{∫ 1

−1
v[G(−v)− q]G′(−v)dv

}
+

{∫ 1

−1
v2f ′U |Z(h̃v|Zj)[G(−v)− q]G′(−v)dv

}
h2.

But

q2 + 2q

∫ 1

−1
[G(−v)− q]G′(−v)dv

= q2 + q

∫ 1

−1
2[G(u)− q]G′(u)du

= q2 + q
[
G2(u)− 2qG(u)

]∣∣1
−1 = q2 + q(1− 2q) = q(1− q),

2

∫ 1

−1
v[G(−v)− q]G′(−v)dv

= −2

∫ 1

−1
u[G(u)− q]G′(u)du = −2

∫ 1

−1
uG(u)G′(u)du (by Assumption 5(ii))
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and∣∣∣∣∫ 1

−1
v2f ′U |Z(h̃v|Zj)[G(−v)− q]G′(−v)dv

∣∣∣∣ ≤ ∫ 1

−1
C(Zj)

∣∣v2G′(v)
∣∣dv

for some function C(·). So

E(W ′
jWj)

= E

({
q2 + q(1− 2q)− hfU |Z(0|Zj)

[
1−

∫ 1

−1
G2(u)du

]}
Z ′jZj

)
+O(h2)

= q(1− q)E
[
Z ′jZj

]
− h
[
1−

∫ 1

−1
G2(u)du

]
E
[
fU |Z(0|Zj)Z ′jZj

]
+O(h2).

Similarly, we can show that

E(WjW
′
j)

= q(1− q)E(ZjZ
′
j)− h

[
1−

∫ 1

−1
G2(u)du

]
E
[
fU |Z(0|Zj)ZjZ ′j

]
+O(h2).

First-order asymptotic distribution of mn. We can write mn as

mn =
1√
n

n∑
j=1

Wj =
1√
n

n∑
j=1

(Wj − EWj) +
√
nEWj. (11)

In view of the mean of Wj, we have
√
nEWj = O(hr

√
n) = o(1) by Assumption 6. So

the bias is asymptotically (first-order) negligible. Consequently, the variance of Wj is

E(WjW
′
j) + o(1), so the first-order term from the second moment calculation above

can be used for the asymptotic variance.

Next, we apply the Lindeberg-Feller central limit theorem to the first term in (11),

which is a scaled sum of a triangular array since the bandwidth in Wj depends on n.

We consider the case when Wj is a scalar as vector cases can be handled using the

Cramér-Wold device. Note that

σ2
W ≡ Var

[
1√
n

n∑
j=1

(Wj − EWj)

]
= n

1

n
Var(Wj − E(Wj)) (by iid Assumption 1)

= EW 2
j − (EWj)

2 = q(1− q)E
[
Z2
j

]
(1 + o(1)).

For any ε > 0,

lim
n→∞

n∑
j=1

E

(
Wj − EWj√

nσW

)2{ |Wj − EWj|√
nσW

≥ ε

}
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= lim
n→∞

1

n

n∑
j=1

E
(Wj − EWj)

2

σ2
W

{
|Wj − EWj|

σW
≥
√
nε

}

= lim
n→∞

E
(Wj − EWj)

2

σ2
W

{
|Wj − EWj|

σW
≥
√
nε

}
= 0,

where the last equality follows from the dominated convergence theorem, as

(Wj − EWj)
2

σ2
W

{
|Wj − EWj|

σW
≥
√
nε

}
≤ C

Z2
j + EZ2

j

σ2
W

for some constant C and EZ2
j < ∞. So the Lindeberg condition holds and mn

d→
N(0, V ).

Bias of estimating equations derived from smoothed criterion function. With

the EE derived from smoothing the criterion function,

E

[
G

(
−Uj
h

)
− q
]
Zj −

1

h
EUjG

′
(
−Uj
h

)
Zj

=
(−h)r

r!

(∫
G′(v)vrdv

)
Ef

(r−1)
U |Z (0|Zj)Zj + o(hr)− h

∫
vG′(v)fUi|Zi

(−hv)dvZj

=
(−h)r

r!

(∫
G′(v)vrdv

)
Ef

(r−1)
U |Z (0|Zj)Zj + o(hr)

− h(−h)r−1

(r − 1)!

(∫
G′(v)vrdv

)
Ef

(r−1)
U |Z (0|Zj)Zj + o(hr)

= (−h)r
(

1

r!
+

1

(r − 1)!

)(∫
G′(v)vrdv

)
Ef

(r−1)
U |Z (0|Zj)Zj + o(hr).

Proof of Proposition 2. The first expression comes directly from the FOC. The

simplified h∗SEE is calculated using the following lemma.

Lemma 6. If Z ∈ Rd is a random vector with first element equal to one and V ≡
E(ZZ ′) is nonsingular, then

E(Z ′V −1Z)/[(EZ ′)V −1(EZ)] = d.

Proof. For the numerator, rearrange using the trace:

E(Z ′V −1Z) = E
[
tr
{
Z ′V −1Z

}]
= E

[
tr
{
V −1ZZ ′

}]
= tr

{
V −1E(ZZ ′)

}
= tr{Id} = d.

For the denominator, let E(Z ′) = (1, t′) for some t ∈ Rd−1. Since the first element

of Z is one, the first row and first column of V are E(Z ′) and E(Z). Writing the other
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(d− 1)× (d− 1) part of the matrix as Ω,

V = E(ZZ ′) =

(
1 t′

t Ω

)
.

We can read off V −1E(Z) = (1, 0, . . . , 0)′ from the first column of the identity matrix

since

V −1

(
1 v′

v Ω

)
= V −1V = Id =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

.
Thus,

(EZ ′)V −1(EZ) = (1, t′)(1, 0, . . . , 0)′ = 1. �

Proof of Theorem 3. Adding to the variables already defined in the main text, let

Z∗j ≡
(
EZjZ

′
j

)−1/2
Zj and Dn ≡ n−1

n∑
j=1

(
Z∗jZ

∗′
j − EZ∗jZ∗′j

)
=

1

n

n∑
j=1

Z∗jZ
∗′
j − Id.

Then using the definition of Λn in (6), we have

Λ−1n V̂
(
Λ−1n

)′
= n−1

n∑
j=1

Λ−1n Zj
(
Λ−1n Zj

)′
q(1− q)

=
(
Id − E(AA′)h+O(h2)

)−1/2[ 1

n

n∑
j=1

Z∗jZ
∗′
j

](
Id − E(AA′)h+O(h2)

)−1/2
=
(
Id − E(AA′)h+O(h2)

)−1/2
[Id +Dn]

(
Id − E(AA′)h+O(h2)

)−1/2
=
[
Id + (1/2)E(AA′)h+O(h2)

]
[Id +Dn]

[
Id + (1/2)E(AA′)h+O(h2)

]
.

Let ξn = (Id +Dn)−1 − (Id −Dn) = (Id +Dn)−1D2
n, then[

Λ−1n V̂
(
Λ−1n

)′]−1
=

[
Id −

1

2
E(AA′)h+O(h2)

]
[Id −Dn + ξn]

[
Id −

1

2
E(AA′)h+O(h2)

]
= Id − E(AA′)h+ ηn, (12)

where ηn = −Dn + DnO(h) + ξn + O(h2) + ξnO(h) collects the remainder terms. To

evaluate the order of ηn, we start by noting that E
(
‖Dn‖2

)
= O(1/n). Let λmin(·)

and λmax(·) be the smallest and largest eigenvalues of a matrix, then for any constant
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C > 2
√
d > 0 :

P
{∥∥(Id +Dn)−1

∥∥ ≥ C
}
≤ P

{
λmax((Id +Dn)−1) ≥ C/

√
d
}

= P
{
λmin(Id +Dn) ≤

√
d/C

}
= P

{
1 + λmin(Dn) ≤

√
d/C

}
= P (λmin(Dn) ≤ −1/2) ≤ P

(
λ2min(Dn) > 1/4

)
≤ P

(
‖Dn‖2 > 1/4

)
= O

(
1

n

)
by the Markov inequality. Using this probability bound and the Chernoff bound, we

have for any ε > 0,

P

{
n

log n
‖ξn‖ > ε

}
≤ P

{
n

log n

∥∥(Id +Dn)−1
∥∥× ‖Dn‖2 > ε

}
= P

{
n‖Dn‖2 >

ε log n

C

}
+ P

{∥∥(Id +Dn)−1
∥∥ > C

}
= O

(
1

n

)
.

It then follows that

P

{
‖ηn‖ ≥ C max

(
h2,

√
log n

n
, h

√
log n

n
,
log n

n
,
h log n

n

)}
= O

(
1

n
+ h2

)
.

Under Assumption 6, we can rewrite the above as

P
{
‖ηn‖ ≥ Ch2/ log n

}
= O

(
h2
)

(13)

for any constant C > 0.

Using (12) and defining W ∗
j ≡ Λ−1n Zj[G(−Uj/h)− q], we have

Sn =
(
Λ−1n mn

)′
Λ′nV̂

−1Λn

(
Λ−1n mn

)
=
(
Λ−1n mn

)′[
Λ−1n V̂

(
Λ−1n

)′]−1(
Λ−1n mn

)
= SLn + en

where

SLn =
(√

nW̄ ∗
n

)′(√
nW̄ ∗

n

)
− h
(√

nW̄ ∗
n

)′
E(AA′)

(√
nW̄ ∗

n

)
,

en =
(√

nW̄ ∗
n

)′
ηn
(√

nW̄ ∗
n

)
,

and W̄ ∗
n = n−1

∑n
j=1W

∗
j as defined in (7). Using the Chernoff bound on

√
nW̄ ∗

n and

the result in (13), we can show that P (|en| > Ch2) = O(h2). This ensures that we can

ignore en to the order of O(h2) in approximating the distribution of Sn.

The characteristic function of SLn is

E
{

exp(itSLn )
}

= C0(t)− hC1(t) +O
(
h2
)

where
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C0(t) ≡ E
{

exp
[
it
(√

nW̄ ∗
n

)′(√
nW̄ ∗

n

)]}
,

C1(t) ≡ E
{
it
(√

nW̄ ∗
n

)′
(EAA′)

(√
nW̄ ∗

n

)
exp
[
it
(√

nW̄ ∗
n

)′(√
nW̄ ∗

n

)]}
.

Following Phillips (1982) and using arguments similar to those in Horowitz (1998)

and Whang (2006), we can establish an asymptotic expansion of the density of n−1/2
∑n

j=1

(
W ∗
j − EW ∗

j

)
of the form

pdf(x) = (2π)−d/2 exp(−x′x/2)[1 + n−1/2p(x)] +O(n−1),

where p(x) is an odd polynomial in the elements of x of degree 3. When d = 1, we

know from Hall (1992, §2.8) that

p(x) = −κ3
6

1

φ(x)

d

dx
φ(x)(x2 − 1) for κ3 =

E
(
W ∗
j − EW ∗

j

)3
V

3/2
n

= O(1).

We use this expansion to compute the dominating terms in Cj(t) for j = 0, 1.

First,

C0(t) = E
{

exp
[
it
(√

nW̄ ∗
n

)′(√
nW̄ ∗

n

)]}
= (2π)−d/2

∫
exp
{
it
[
x+
√
nEW ∗

j

]′[
x+
√
nEW ∗

j

]}
exp

(
−1

2
x′x

)
dx+O(n−1)

+
1√
n

(2π)−d/2
∫

exp
{
it
[
x+
√
nEW ∗

j

]′[
x+
√
nEW ∗

j

]}
p(x) exp

(
−1

2
x′x

)
dx

= (1− 2it)−d/2 exp

(
i
∥∥√nEW ∗

j

∥∥2t
1− 2it

)
+O(n−1)

+
1√
n

(2π)−d/2
∫
p(x) exp

{
−1

2
x′x

}(
1 + it2x′

√
nEW ∗

j +O(n||EW ∗
j ||2)

)
dx

= (1− 2it)−d/2 exp

(
i
∥∥√nEW ∗

j

∥∥2t
1− 2it

)
+O

(∥∥EW ∗
j

∥∥+
√
nh2r + n−1

)
= (1− 2it)−d/2 exp

(
i
∥∥√nEW ∗

j

∥∥2t
1− 2it

)
+O(hr),

where the third equality follows from the characteristic function of a noncentral chi-

square distribution.

Second, for C1(t) we can put any o(1) term into the remainder since hC1(t) will then

have remainder o(h). Noting that x is an odd function (of x) and so integrates to zero
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against any symmetric PDF,

C1(t) = E
{
it
(√

nW̄ ∗
n

)′
E(AA′)

(√
nW̄ ∗

n

)
exp
[
it
(√

nW̄ ∗
n

)′(√
nW̄ ∗

n

)]}
= (2π)−d/2

∫
it
(
x+
√
nEW ∗

j

)′
E(AA′)

(
x+
√
nEW ∗

j

)
× exp it

[
x+
√
nEW ∗

j

]′[
x+
√
nEW ∗

j

]
exp

(
−1

2
x′x

)
dx

×
(

1 +O

(
1√
n

))
= (2π)−d/2

∫
itx′E(AA′)x exp

[
−1

2
x′x(1− 2it)

]
dx+O

((√
nEW ∗

j

)2)
+O

(
EW ∗

j

)
= (1− 2it)−d/2it(trE(AA′)EXX′) +O

(∥∥√nEW ∗
j

∥∥2)+O
(∥∥EW ∗

j

∥∥)
= (1− 2it)−d/2−1it(trE(AA′)) +O

(∥∥√nEW ∗
j

∥∥2)+O
(∥∥EW ∗

j

∥∥),
where X ∼ N(0, diag(1− 2it)−1).

Combining the above steps, we have, for r ≥ 2,

E
{

exp(itSLn )
}

=

C0(t)︷ ︸︸ ︷
(1− 2it)−d/2 exp

(
i
∥∥√nEW ∗

j

∥∥2t
1− 2it

)
−h

O(1) term in C1(t)︷ ︸︸ ︷
(1− 2it)−d/2−1it(trE(AA′))

+

Remainder from hC1(t)︷ ︸︸ ︷
O
(
nh2r+1

)
+O

(
hr+1

)
+O(h2)

= (1− 2it)−d/2 + (1− 2it)−d/2−1it
{∥∥√nEW ∗

j

∥∥2 − h(trE(AA′))
}

+O(h2 + nh2r+1).

Taking a Fourier-Stieltjes inversion, we have

P
(
SLn < x

)
= Gd(x)− 1

d
G ′d(x)x

{∥∥√nEW ∗
j

∥∥2 − h(trE(AA′))
}

+O(h2 + nh2r+1).

See Phillips and Park (1988, Theorem 2.4).

A direct implication is that type I error is

P
(
m′nV̂

−1mn > cα

)
= α+

1

d
G ′d(cα)cα

{∥∥√nEW ∗
j

∥∥2 − h(trE(AA′))
}

+O(h2+nh2r+1). �

Lemma 7. Let the assumptions in Theorem 5 hold. Then

√
n(β̂ − β0) = −

{
E

∂

∂β′
1√
n
mn(β0)

}−1
mn +Op

(
1√
nh

)
+Op

(
1√
n

)
,
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and

E
∂

∂β′
1√
n
mn(β0) = ΣZX +O(hr).

Proof. We first prove that β̂ is consistent. Using the Markov inequality, we can show

that when E(‖Zj‖2) <∞,

1√
n
mn(β) =

1√
n
Emn(β) + op(1)

for each β ∈ B. It is easy to show that the above op(1) term also holds uniformly over

β ∈ B. But

lim
h→0

sup
β∈B

∥∥∥∥ 1√
n
Emn(β)− E(Z[1{Y < X ′β} − q])

∥∥∥∥
= lim

h→0
max
β∈B

∥∥∥∥EZ[G(X ′β − Yh

)
− 1{Y < X ′β}

]∥∥∥∥
= lim

h→0

∥∥∥∥EZ[G(X ′β∗ − Yh

)
− 1{Y < X ′β∗}

]∥∥∥∥ = 0

by the dominated convergence theorem, where β∗ is the value of β that achieves the

maximum. Hence

1√
n
mn(β) = E(Z[1{Y < X ′β} − q]) + op(1)

uniformly over β ∈ B. Given the uniform convergence and the identification condition

in Assumption 2, we can invoke Theorem 5.9 of van der Vaart (1998) to obtain that

β̂ → β0.

Next we prove the first result of the lemma. Under Assumption 5(i–ii), we can use

the elementwise mean value theorem to obtain

√
n(β̂ − β0) = −

[
∂

∂β′
1√
n
mn

(
β̃
)]−1

mn

where
∂

∂β′
mn(β̃) =

[
∂

∂β
mn,1(β̃1), . . . ,

∂

∂β
mn,d(β̃d)

]′
and each β̃i is a point between β̂ and β0. Under Assumptions 1 and 5(i–ii) and that

E ∂
∂β′

1√
n
mn(β) is continuous at β = β0, we have, using standard textbook arguments,

that ∂
∂β′

1√
n
mn

(
β̃
)

= ∂
∂β′

1√
n
mn(β0) + op(1). But

∂

∂β′
1√
n
mn(β0) =

1

nh

n∑
j=1

ZjX
′
jG
′
(
−Uj
h

)
p→ ΣZX .
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Hence, under the additional Assumption 6 and nonsingularity of ΣZX , we have
√
n(β̂−

β0) = Op(1). With this rate of convergence, we can focus on a
√
n neighborhood N0

of β0. We write

√
n
(
β̂ − β0

)
= −

{
∂

∂β′
1√
n
mn(β0) +

[
∂

∂β′
1√
n

[
mn

(
β̃
)
−mn(β0)

]]}−1
mn.

Using standard arguments again, we can obtain the following stochastic equicontinuity

result:

sup
β∈N0

∥∥∥∥[ ∂

∂β′
mn(β)− E ∂

∂β′
mn(β)

]
−
[
∂

∂β′
mn(β0)− E

∂

∂β′
mn(β0)

]∥∥∥∥ = op(1),

which, combined with the continuity of E ∂
∂β′
mn(β), implies that[

∂

∂β′
1√
n

[
mn

(
β̃
)
−mn(β0)

]]
= Op

(
1√
n

)
.

Therefore

√
n
(
β̂ − β0

)
= −

{
∂

∂β′
1√
n
mn(β0) +Op

(
1√
n

)}−1
mn

= −
{
∂

∂β′
1√
n
mn

}−1
mn +Op

(
1√
n

)
.

Now

Var

(
vec

[
∂

∂β′
mn/
√
n

])
= n−1Var

[
vec
(
ZjX

′
j

)
h−1G′(−Uj/h)

]
≤ n−1E

[
vec
(
ZjX

′
j

)[
vec
(
ZjX

′
j

)]′
h−2[G′(−Uj/h)]

2
]

= n−1E

{
vec
(
ZjX

′
j

)[
vec
(
ZjX

′
j

)]′ ∫
h−2[G′(−u/h)]

2
fU |Z,X(u|Zj, Xj)du

}
= (nh)−1E

{
vec
(
ZjX

′
j

)[
vec
(
ZjX

′
j

)]′ ∫
[G′(v)]

2
fU |Z,X(−hv|Zj, Xj)dv

}
= O

(
1

nh

)
,

so
∂

∂β′
1√
n
mn = E

∂

∂β′
1√
n
mn +Op

(
1√
nh

)
.

As a result,

√
n
(
β̂ − β0

)
= −

{
E

∂

∂β′
1√
n
mn +Op

(
1√
nh

)}−1
mn +Op

(
1√
n

)
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= −
{
E

∂

∂β′
1√
n
mn

}−1
mn +Op

(
1√
nh

)
+Op

(
1√
n

)
.

For the second result of the lemma, we use the same technique as in the proof of

Theorem 1. We have

E

[
∂

∂β′
mn/
√
n

]
= E

[
1

nh

n∑
j=1

ZjX
′
jG
′(−Uj/h)

]
= E

[
E
{
ZjX

′
jh
−1G′(−Uj/h)|Zj, Xj

}]
= E

[
ZjX

′
j

∫
G′(−u/h)fU |Z,X(u|Zj, Xj)d(u/h)

]
= E

[
ZjX

′
j

∫
G′(v)fU |Z,X(−hv|Zj, Xj)dv

]
= E

[
ZjX

′
jfU |Z,X(0|Zj, Xj)

]
+O(hr),

as desired. �
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