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ABSTRACT OF THE DISSERTATION

Message Passing Algorithms and Extensions of Sparse Bayesian Learning

by

Maher Al-Shoukairi

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California San Diego, 2021

Professor Bhaskar D. Rao, Chair

Sparse Signal Recovery (SSR) has an essential role in a number of modern engineering

applications. This thesis focuses on Bayesian algorithms for sparse signal recovery, where it

addresses some of the shortcomings associated with such algorithms. The high complexity

of the sparse Bayesian learning algorithm is addressed first, where we present an algorithm

that incorporates damped Gaussian generalized approximate message passing (GGAMP) into

Expectation-Maximization (EM)-based sparse Bayesian learning (SBL). In particular, GGAMP

is used to implement the E-step in SBL in place of matrix inversion. We propose an algorithm

that is much more robust to arbitrary measurement matrices than the standard damped GAMP

algorithms while being much lower complexity than the standard SBL algorithm. We then

xiv



extend the approach from the single measurement vector (SMV) case to the temporally correlated

multiple measurement vector (MMV) case.

The approach developed for the standard SBL is extended to address the sparse non-

negative least squares (NNLS) problem using a rectified Gaussian scale mixture approach com-

bined with the generalized approximate message passing algorithm. This approach enhances

convergence compared to existing GAMP based sparse NNLS algorithms. Other advantages

include significant reduction in derivation complexity of the algorithm, and the ability to impose

different priors on the signal, simply by changing the less computationally demanding M-step.

Moreover, extending the algorithm to the multiple measurement vector case is straightforward,

and is achieved by a simple modification to the M-step as well.

Next, we provide a new perspective of the SBL algorithm. A novel interpretation of

the SBL algorithm’s iterations is developed, where the iterations are divided into a minimum

power distortionless receiver (MPDR) step and a denoising step. This interpretation provides

significant intuitive insights into the SBL, which can potentially enable enhancing the algorithm

and extending it beyond some of its current limitations. To demonstrate this potential, we propose

a low complexity algorithm that can handle a wide range of sparsity promoting priors. We also

show how the new perspective on SBL extends to other variants of the algorithm, such as the

sequential fast-SBL algorithm and the multiple measurement vector (MMV) SBL variants. We

demonstrate potential benefits of such interpretation by extending the fast-SBL to incorporate

more general priors, and by developing a low complexity MMV algorithm.

Finally, we address the MIMO semi-blind channel estimation problem, benefiting from the

insights gained from previous results. We propose an eigenvalue decomposition based technique

to significantly reduce the dimensionality of the Gaussian EM based estimation algorithm, greatly

lowering the computational complexity. In addition to that, we apply the MPDR based decoupling

principle to derive a tractable EM algorithm that uses the actual discrete prior of the data symbols.

xv



Chapter 1

Introduction

1.1 Sparse Signal Recovery

The problem of sparse signal recovery (SSR) and the related problem of compressed

sensing have received much attention in recent years [1–6]. Sparse signal recovery continues

to be deployed in an increasing number of engineering applications, the applications include

EEG/MEG [7, 8], array signal processing [9–11], pattern recognition [12], speech and audio

processing [13], wireless sensor networks [14, 15], wireless channel estimation [16, 17] and many

more.

The SSR problem, in the single measurement vector (SMV) case, consists of recovering a

sparse signal xxx ∈ RN from M ≤ N noisy linear measurements yyy ∈ RM:

yyy === AAAxxx+++ eee,,, (1.1)

where AAA ∈ RM×N is a known measurement matrix and eee ∈ RM is additive noise modeled by

eee∼N (0,σ2III). Although this is an underdetermined system, a unique solution can be obtained

when sufficient sparsity and appropriate conditions on the measurement matrix are met. The

1



sparse solution can be obtained by solving the following optimization problem:

argmin
xxx
‖yyy−−−AAAxxx‖2

2 +λ‖xxx‖0, (1.2)

where ‖.‖0 is the zero pseudo-norm which is a measure of the support and λ is a regularization

parameter related to the noise variance. The optimization in (1.2) is NP hard [5, 18], it requires

an exhaustive search over all subsets of columns of AAA. Despite the difficulty in solving this

problem, an important finding in recent years is that for a sufficiently sparse xxx and a well designed

AAA, accurate recovery of x is possible [18]. A popular technique to address (1.1) is based on

approximating the zero norm penalty factor in (1.2) by a suitable surrogate penalty factor g(xxx):

argmin
xxx
‖yyy−−−AAAxxx‖2

2 + λ̃g(xxx). (1.3)

Different SSR algorithms can be obtained using the proper choice of the penalty factor g(xxx). It

was shown that under some conditions the choice of strictly increasing concave penalty factor

results in an objective function with sparse local minima with the sparsest solution at the global

minimum [19, 20]. A popular choice of g(xxx) is the `1 norm, leading to the Basis Pursuit and

LASSO algorithms [21,22]. The popularity of the `1 approach is due to the theoretical guarantees

of exact recovery when certain conditions are met. More specifically the `1 minimization solution

recovers the `0 solution if AAA satisfies the restricted isometry property (RIP) [1, 23]. In addition

to the convex relaxation of (1.2), a range of different techniques were proposed to address (1.1).

The techniques include greedy algorithms, [5, 24–26], iteratively re-weighted algorithms [27–29]

and Bayesian techniques [30–37]. Greedy algorithms can achieve lower complexity compared to

other techniques, however they have limited success in noisy scenarios and are highly affected by

coherence in the columns of AAA.

A number of approaches have been empirically shown to outperform the `1 approach,

the approaches include reweighted `1, `2 algorithms [38], in addition to Bayesian algorithms

2



including those based on approximate message passing [31–33]. The Bayesian approach is based

on incorporating the sparsity constraint by choosing a sparsity promoting prior on the vector xxx.

Bayesian approaches can be mainly divided into two types: Type I MAP based approaches, and

a Type II Evidence Maximization approaches. The surrogate function in (1.3) can be imposed

using a type I MAP Bayesian approach through the proper prior:

x̂xxMAP = argmax
xxx

p(xxx|yyy) = argmax
xxx

p(yyy|xxx)p(xxx) (1.4)

= argmax
xxx

log
[
p(yyy|xxx)

]
+ log

[
p(xxx)

]
(1.5)

= argmin
xxx
‖yyy−−−AAAxxx‖2

2 +∑
i

log[p(xi)], (1.6)

therefore the surrogate function where g(xxx) can be determined by log p(xxx). For example, using

an i.i.d. Laplace prior p(xi) =
λ̃

2 exp(−λ̃‖xi‖1) will lead to the popular `1 minimization approach.

In the type II a prior is typically imposed using a hierarchical model, where the effective prior is

controlled by an unknown parameter that can be learned from the measurements using evidence

maximization. The implementation and performance differences between the two Bayesian

approaches were discussed in [31, 39–43]. Type II based algorithms were shown to experience

more robustness to the inaccurate choice of prior compared to Type I. In addition to that, certain

hierarchical models like the Gaussian scale mixture can allow for closed form solutions and other

desirable properties as we will see in parts of this dissertation. This dissertation will mainly focus

on Bayesian algorithms, more specifically the algorithm known as the sparse Bayesian learning

algorithm (SBL) and its variants, and on approximate message passing (AMP) algorithms.

1.1.1 Sparse Bayesian Learning Algorithm

SBL was first proposed in the context of machine learning in 2001 [30], and it was adapted

to be used for SSR in 2004 [31, 41]. We give a very brief description of SBL [30, 31] here, saving

a more detailed description for subsequent chapters. Essentially, SBL is a type II Bayesian
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approach that is based on a Gaussian scale mixture (GSM) [44–46] prior on xxx. That is, the prior

is Gaussian conditioned on a variance vector γγγ, which is then controlled by a suitable choice of

hyperprior p(γγγ). A large of number of sparsity-promoting priors, like the Student-t and Laplacian

priors, can be modeled using a GSM, making the approach widely applicable [44–48]. In the SBL

algorithm, the expectation-maximization (EM) algorithm is used to alternate between estimating

γγγ and estimating the signal xxx under fixed γγγ. Since the latter step uses a Gaussian likelihood and

Gaussian prior, the exact solution can be computed in closed form via matrix inversion. This

matrix inversion is computationally expensive, limiting the algorithms applicability to large scale

problems. In addition to the high complexity of the algorithm, SBL is limited to imposing priors

through a GSM which is quite flexible but not all encompassing. In this dissertation we will be

exploring techniques to lower the complexity of the SBL and extend it beyond the GSM prior to

allow it to incorporate more general sparsity promoting priors.

1.1.2 Generalized Approximate Message Passing Algorithm

Another important class of algorithms that we address in this dissertation is the Approx-

imate message passing (AMP) algorithms. AMP algorithms apply quadratic and Taylor series

approximations to loopy belief propagation to produce low complexity algorithms. Based on the

original AMP work in [49], a generalized AMP (GAMP) algorithm was proposed in [50]. The

GAMP algorithm provides an iterative Bayesian framework under which the knowledge of the

matrix AAA and the densities p(xxx) and p(yyy|xxx) can be used to compute the maximum a posteriori

(MAP) estimate x̂xxMAP = argminxxx∈RN p(xxx|yyy) when it is used in its max-sum mode, or approximate

the minimum mean-squared error (MMSE) estimate x̂xxMMSE =
∫
RN xxxp(xxx|yyy)dxxx = E(xxx|yyy) when it

is used in its sum-product mode.

The performance of AMP/GAMP algorithms in the large system limit (M,N→ ∞) under

an i.i.d zero-mean sub-Gaussian matrix AAA is characterized by state evolution [51], whose fixed

points, when unique, coincide with the MAP or the MMSE estimate. However, when AAA is generic,
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GAMP’s fixed points can be strongly suboptimal and/or the algorithm may never reach its fixed

points. Previous work has shown that even mild ill-conditioning or small mean perturbations

in AAA can cause GAMP to diverge [52–54]. To overcome the convergence problem in AMP

algorithms, a number of AMP modifications have been proposed. A “swept“ GAMP (SwAMP)

algorithm was proposed in [55], which replaces parallel variable updates in the GAMP algorithm

with serial ones to enhance convergence. But SwAMP is relatively slow and still diverges for

certain AAA. An adaptive damping and mean-removal procedure for GAMP was proposed in [54]

but it too is somewhat slow and still diverges for certain AAA. An alternating direction method of

multipliers (ADMM) version of AMP was proposed in [56] with improved robustness but even

slower convergence. In [32] another variant of the approximate message passing algorithms was

proposed. The algorithm referred to by Vector AMP (VAMP) uses a single time singular value

decomposition operation to enhance the convergence of the AMP algorithm.

The class of AMP based algorithms represent an important class of low complexity

Bayesian algorithms that can impose flexible priors on the signal of interest. Throughout the

dissertation we will exploit some of the results obtained by different AMP algorithms. We will

also use some of the previous AMP results as a benchmark to compare our contributions against.

1.1.3 Multiple Measurement Vector (MMV) Model

The MMV problem extends the SMV problem from a single measurement and signal

vector to a sequence of measurement and signal vectors. Applications of MMV include direction

of arrival (DOA) estimation and EEG/MEG source localization, among others. In our treatment

of the MMV problem, all signal vectors are assumed to share the same support also referred to by

having a common sparsity profile. The MMV model can be stated as:

yyy(t) = AAAxxx(t)+ eee(t), t = 1,2, ...,T,
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where we have T measurement vectors [yyy(1),yyy(2)...,yyy(T )] with yyy(t) ∈ RM. The objective is to

recover XXX = [xxx(t),xxx(2)...,xxx(T )] with xxx(t) ∈ RN , where in addition to the vectors xxx(t) being sparse,

they share the same sparsity profile. Similar to the SMV case, AAA ∈ RM×N is known, and

[eee(1),eee(2)...,eee(T )] is a sequence of i.i.d. noise vectors modeled as eee(t) ∼N (0,σ2III).

It was shown in [57–60] that having multiple vectors can improve the recovery perfor-

mance compared to the single measurement case. In practice it is often the case that the non-zero

signal elements will experience temporal correlation, i.e., each non-zero row of the signal matrix

can be treated as a correlated time series. If this correlation is not taken into consideration, the

performance of MMV algorithms can degrade quickly [61].

A number of Bayesian algorithms were proposed to address the MMV problem. Among

the most successful is a Bayesian algorithm known as the TMSBL algorithm [61–64], which

models the sparsity and correlation of the signals using a modified Gaussian scale mixture

prior. Other Bayesian algorithms addressed the high complexity issues associated with the

TMSBL algorithm by using an AMP based model with an AR(1) process to model the temporal

correlation [65, 66]. Although AMP algorithms did offer significant complexity improvements,

TMSBL still achieved superior successful recovery rates over them. This dissertation in part

explores how combining SBL assumptions with AMP based implementations can address the

shortcomings of both approaches.

1.2 Dissertation Outline and Contributions

• In Chapter 2, we develop low-complexity algorithms for sparse Bayesian learning

(SBL) [30, 31]. Since the traditional implementation of SBL uses matrix inversions at each

iteration, its complexity is too high for large-scale problems. We circumvent the matrix inverse

using the generalized approximate message passing (GAMP) algorithm [49,50,52]. Using GAMP

to implement the E step of EM-based SBL provides a significant reduction in complexity over
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the classical SBL algorithm. This work is a beneficiary of the algorithmic improvements and

theoretical insights that have taken place in recent work in AMP [49, 50, 52], where we exploit

the fact that using a Gaussian prior on p(xxx) can provide guarantees for the GAMP E-step to not

diverge when sufficient damping is used [52], even for a non-i.i.d.-Gaussian AAA. In other words,

the enhanced robustness of the proposed algorithm is due to the GSM prior used on xxx, as opposed

to other sparsity promoting priors for which there are no GAMP convergence guarantees when

AAA is non-i.i.d.-Gaussian. The resulting algorithm is the Gaussian GAMP SBL (GGAMP-SBL)

algorithm, which combines the robustness of SBL with the speed of GAMP.

• In chapter 2, to further illustrate and expose the synergy between the AMP and SBL

frameworks, we also propose a new approach to the multiple measurement vector (MMV)

problem with temporal correlation. Extensions of SBL to the MMV problem have been developed

in [60, 61, 64], such as the TSBL and TMSBL algorithms [61]. Although TMSBL has lower

complexity than TSBL, it still requires an order of O(NM2) operations per iteration, making it

unsuitable for large-scale problems. To overcome the complexity problem, [65] and [67] proposed

AMP-based Bayesian approaches to the MMV problem. However, similar to the SMV case, these

algorithms are only expected to work for i.i.d zero-mean sub-Gaussian AAA. We therefore extend

the proposed GGAMP-SBL to the MMV case, to produce a GGAMP-TSBL algorithm that is

more robust to generic AAA, while achieving linear complexity in all problem dimensions.

• In chapter 3, we show that the previously shown advantages of derivation simplification

and convergence improvement still apply in the non-negative constrained SSR problem when

an rectified GSM (RGSM) prior is used. We show how the RGSM prior allows to change the

effective prior on xxx by changing the mixing density, which translates into a simple change in the

overall algorithm. We additionally show how extending the algorithm to address the multiple

measurement vector (MMV) problem with common sparsity profile is also achieved by a simple

algorithm change.

• The main contribution of chapter 4 is offering a novel interpretation of the SBL algorithm
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based on the minimum power distortionless response (MPDR) beamforming method in array

processing. The SBL’s iterations are interpreted as the MPDR beamformer (BF) iteratively

applied to the measurements and the beamformer parameters updated based on the estimates at

each iteration, along with the ability to add a denoising step at the output of the MPDR BF when

a prior is imposed on xxx. Unlike the Bayesian formulation of the algorithm which was derived

using an expectation maximization (EM) approach and is harder to extend, this new interpretation

provides much needed intuitive support and significant clarity into how the SBL algorithm works

and it allows for more flexibility in the algorithm’s framework.

• In chapter 4, the benefits of the new insight is demonstrated by extending the algorithm to

incorporate priors other than GSM priors, where in the past obtaining a solution with such priors

was complex and could not be achieved in some cases, like the case of using an non-identical

Laplace prior [39]. We also present another important example on potential benefits of the new

interpretation by replacing the MPDR BF step with an approximate message passing (AMP)

based MPDR implementation, which results in a low complexity Bayesian algorithm that can

be used with a wide range of sparsity promoting priors. We refer to this methodology as the

MPDR-SSR framework, and present the Laplace SBL (LSBL) algorithm that uses a non-identical

Laplace prior as an example of the MPDR-SSR algorithm’s capabilities.

• The first contribution of chapter 5 is to show how the new insights into the SBL

algorithm extend into other variants of SBL. We show how the concept extends to the sequential

fast-SBL algorithm, where we provide an interpretation of its iterations based on the minimum

variance distortionless receiver (MVDR) BF 1. We exploit the significance of this interpretation

by showing how the algorithm can be extended to handle more general priors to incorporate

any extra information about xxx. We demonstrate how incorporating this information can provide

performance enhancement to the fast-SBL by presenting a number of algorithms.

• The second contribution of chapter 5 is to show that the MMV problem can be addressed

1The terminology MPDR and MVDR are adopted from [68]. Though both are equivalent in the decorrelated
source case, the problem formulation is different and this difference is relevant to our interpretation.
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using the MPDR framework when the common support assumption is met. We show how the

MPDR BF decouples the measurements in one dimension (space for arrays), making it much

easier to deal with correlation across measurements one row at a time. Using the assumptions of

TMSBL we show how the TMSBL can be derived using the MPDR framework, and based on this

derivation we propose the low complexity MPDR-TSBL algorithm that uses the AMP version of

the MPDR. We compare MPDR-TSBL to the previously proposed AMP based MMV algorithms.

MPDR-TSBL shows superior performance compared to the two AMP based algorithms. MPDR-

TSBL also provides an advantage in complexity over the other two algorithms when the number of

measurements is large. Moreover, based on the convergence properties of the AMP based MPDR,

the algorithm is expected to have better convergence compared the AMP-MMV when AAA is not i.i.d

Gaussian, since the AMP based MPDR was shown to converge for general AAA matrices [52, 66].

• In chapter 6, we show how the Minimum Power Distortionless Response (MPDR) based

decoupling principle, proposed in [69] to address the sparse signal recovery problem, can be

applied to the E-step of the MIMO channel estimation problem. Based on this decoupling, we

can impose the actual discrete prior on the data symbols and obtain a tractable approximate

posterior that can be used to implement the E-step of the EM algorithm. This MPDR based

approximation was shown to perform well in the SSR problem [69]. Similarly our results show

that this approximation outperforms the Gaussian and heuristic EM approaches from [70] in low

and high SNR scenarios.

• In chapter 6, we also address the dimensionality and complexity of the Gaussian prior

EM approach. We show how by using a one time eigenvalue decomposition of the received

data symbols, the dimensionality of the measurements and hence complexity is reduced to

be independent of the number of data symbols. We then use the eigenvalue decomposition

based Gaussian algorithm to initialize the MPDR based algorithm to significantly speed up the

convergence of the MPDR based algorithm.
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Chapter 2

A GAMP Based Low Complexity Sparse

Bayesian Learning Algorithm

2.1 Introduction

The SBL algorithm and its MMV extensions have shown excellent performance when

it comes to solving the SSR problem. However, because they need matrix inversions at each

iteration, the complexity level of such algorithms makes them unsuitable for the use on large

scale problems. In this chapter, we develop an algorithm based on the same assumptions used in

the SBL algorithms, but use the low complexity GAMP algorithm to recover the sparse signal.

Compared to the original EM-SBL algorithms, the proposed approach results in linear complexity,

which makes it perfect for large scale problems. On the other hand, approximate message

passing algorithms which can achieve low complexity, suffer from divergence issues when the

measurement matrix in not i.i.d. Gaussian. In the special case that the prior and likelihood are both

independent Gaussian, [52] was able to provide a full characterization of GAMP’s convergence.

In particular, it was shown that Gaussian GAMP (GGAMP) algorithm will converge if and only

if the peak to average ratio of the squared singular values in AAA is sufficiently small. When this
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condition is not met, [52] proposed a damping technique that guarantees convergence of GGAMP

at the expense of slowing its convergence rate. Although the case of Gaussian prior and likelihood

is not suitable to handle the sparse signal recovery problem directly, it is sufficient to replace the

costly matrix inversions in some the algorithms we develop in this chapter.

2.1.1 Chapter’s Organization

The organization of the chapter is as follows. In Section 2.2, we review the SBL algorithm.

In Section 2.3, we combine the damped GGAMP algorithm with the SBL approach to solve

the SMV problem. We introduce the GGAMP-SBL algorithm and investigate its convergence

behavior. In Section 2.4, we use a time-correlated multiple measurement factor graph to derive

the GGAMP-TSBL algorithm. In Section 2.5, we present numerical results to compare the

performance and complexity of the proposed algorithms with the original SBL and with other

AMP algorithms for the SMV case, and with TMSBL for the MMV case.

2.2 Sparse Bayesian Learning for SSR

2.2.1 GSM Class of Priors

We restate the sparse signal recovery problem here for chapter completeness. In the single

measurement vector (SMV) case, the SSR problem consists of recovering a sparse signal xxx ∈ RN

from M ≤ N noisy linear measurements yyy ∈ RM:

yyy === AAAxxx+++ eee,,, (2.1)

where AAA ∈ RM×N is a known measurement matrix and eee ∈ RM is additive noise modeled by

eee∼N (0,σ2III). We will assume that the entries of xxx are independent and identically distributed,

i.e. p(xxx) = Πn p(xn). The sparsity promoting prior p(xn) will be chosen from the GSM class and
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so will admit the following representation

p(xn) =
∫

N (xn;0,γn)p(γn)dγn, (2.2)

where N (xn;0,γn) denotes a Gaussian density with mean zero and variance γn. The mixing

density on hyperprior p(γn) controls the prior on xn. For instance, if a Laplacian prior is desired

for xn, then an exponential density is chosen for p(γn) [44].

In the empirical Bayesian approach, an estimate of the hyperparameter vector γγγ is itera-

tively estimated, often using evidence maximization. For a given estimate γ̂γγ, the posterior p(xxx|yyy)

is approximated as p(xxx|yyy; γ̂γγ), and the mean of this posterior is used as a point estimate for x̂xx. This

mean can be computed in closed form, as detailed below, because the approximate posterior is

Gaussian. It was shown in [39] that this empirical Bayesian method, also referred to as a Type II

maximum likelihood method, can be used to formulate a number of algorithms for solving the

SSR problem by changing the mixing density p(γn). There are many computational methods that

can be employed for computing γγγ in the evidence maximization framework, e.g, [30, 31, 71]. In

this work, we utilize the EM-SBL algorithm because of its synergy with the GAMP framework,

as will be apparent below.

2.2.2 SBL’s EM Algorithm

In EM-SBL, the EM algorithm is used to learn the unknown signal variance vector

γγγ [72–74], and possibly also the noise variance σ2. We focus on learning γγγ, assuming the

noise variance σ2 is known. We later state the EM update rule for the noise variance σ2 for

completeness.

The goal of the EM algorithm is to maximize the posterior p(γγγ|yyy) or equivalently1 to

minimize − log p(yyy,γγγ). For the GSM prior (2.2) and the additive white Gaussian noise model,

1Using Bayes rule, p(γγγ|yyy) = p(yyy,γγγ)/p(yyy) where p(yyy) is a constant with respect to γγγ. Thus for MAP estimation of
γγγ we can maximize p(yyy,γγγ), or minimize − log p(yyy,γγγ).
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this results in the SBL cost function [30, 31],

χ(γγγ) =− log p(yyy,γγγ)

=
1
2

log |Σy|+
1
2

yyy>ΣΣΣ
−1
yyy yyy− log p(γγγ), (2.3)

ΣΣΣyyy = σ
2III +AAAΓΓΓAAA>, ΓΓΓ , Diag(γγγ).

In the EM-SBL approach, xxx is treated as the hidden variable and the parameter estimate is

iteratively updated as follows:

γ
i+1 = argmax

γγγ
Exxx|yyy;γγγi [log p(yyy,xxx,γγγ)] , (2.4)

where p(yyy,xxx,γγγ) is the joint probability of the complete data and p(xxx|yyy;γγγi) is the posterior under

the old parameter estimate γγγi, which is used to evaluate the expectation. In each iteration, an

expectation has to be computed (E-step) followed by a maximization step (M-step). It is easy

to show that at each iteration, the EM algorithm increases a lower bound on the log posterior

log p(γγγ|yyy) [72], and it has been shown in [74] that the algorithm will converge to a stationary

point of the posterior under a fairly general set of conditions that are applicable in many practical

applications.

Next we detail the implementation of the E and M steps of the EM-SBL algorithm.

SBL’s E-step

The Gaussian assumption on the additive noise eee leads to the following Gaussian likelihood

function:

p(yyy|xxx;σ
2) =

1

(2πσ2)
M
2

exp
(
− 1

2σ2‖yyy−−−AAAxxx‖2
)
. (2.5)
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Due to the GSM prior (2.2), the density of xxx conditioned on γγγ is Gaussian:

p(xxx|γγγ) =
N

∏
n=1

1

(2πγn)
1
2

exp
(
− x2

n
2γn

)
. (2.6)

Putting (2.5) and (2.6) together, the density needed for the E-step is Gaussian:

p(xxx|yyy,γγγ) = N (xxx; x̂xx,ΣΣΣxxx) (2.7)

x̂xx = σ
−2

ΣΣΣxxxAAA>yyy (2.8)

ΣΣΣxxx = (σ−2AAA>AAA+ΓΓΓ
−1)−1

= ΓΓΓ−ΓΓΓAAA>(σ2III +AAAΓΓΓAAA>)−1AAAΓΓΓ. (2.9)

We refer to the mean vector as x̂xx since it will be used as the SBL point estimate of xxx. In the sequel,

we will use τττx when referring to the vector composed from the diagonal entries of the covariance

matrix ΣΣΣxxx. Although both x̂xx and τττx change with the iteration i, we will sometimes omit their i

dependence for brevity. Note that the mean and covariance computations in (2.8) and (2.9) are

not affected by the choice of p(γγγ). The mean and diagonal entries of the covariance matrix are

needed to carry out the M-step as shown next.

SBL’s M-Step

The M-step is then carried out as follows. First notice that

Exxx|yyy;γγγi,σ2
[
− log p(yyy,xxx,γγγ;σ

2)
]
=

Exxx|yyy;γγγi,σ2
[
− log p(yyy|xxx;σ

2)− log p(xxx|γγγ)− log p(γγγ)
]
. (2.10)

Since the first term in (2.10) does not depend on γγγ, it will not be relevant for the M-step and thus

can be ignored. Similarly, in the subsequent steps we will drop constants and terms that do not
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depend on γγγ and therefore do not impact the M-step. Since Exxx|yyy;γγγi,σ2[x2
n] = x̂2

n + τxn ,

Exxx|yyy;γγγi,σ2[− log p(xxx|γγγ)− log p(γγγ)] =

N

∑
n=1

((
x̂2

n + τxn

2γn

)
+

1
2

logγn− log p(γn)

)
. (2.11)

Note that the E-step only requires x̂n, the posterior mean from (2.8), and τxn,the posterior variance

from (2.9), which are statistics of the marginal densities p(xn|yyy,γγγi). In other words, the full joint

posterior p(xxx|yyy,γγγi) is not needed. This facilitates the use of message passing algorithms.

As can be seen from (2.7)-(2.9), the computation of x̂xx and τττx involves the inversion of an

N×N matrix, which can be reduced to M×M matrix inversion by the matrix inversion lemma.

The complexity of computing x̂xx and τττx can be shown to be O(NM2) under the assumption that

M ≤ N. This makes the EM-SBL algorithm computationally prohibitive and impractical to use

with large dimensions.

From (2.4) and (2.11), the M-step for each iteration is as follows:

γγγ
i+1 = argmin

γγγ

[
N

∑
n=1

(
x̂2

n + τxn

2γn
+

logγn

2
− log p(γn)

)]
. (2.12a)

This reduces to N scalar optimization problems,

γ
i+1
n = argmin

γn

[
x̂2

n + τxn

2γn
+

1
2

logγn− log p(γn)

]
. (2.12b)

The choice of hyperprior p(γγγ) plays a role in the M-step, and governs the prior for xxx. However,

from the computational simplicity of the M-step, as evident from (2.12b), the hyperprior rarely

impacts the overall algorithmic computational complexity, which is mainly that of computing the

quantities x̂xx and τττx in the E-step.

Often a non-informative prior is used in SBL. For the purpose of obtaining the M-step

update, we will also simplify and drop p(γγγ) and compute the Maximum Likelihood estimate of γγγ.

From (2.12b), this reduces to, γi+1
n = x̂2

n + τxn .
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Similarly, if the noise variance σ2 is unknown, it can be estimated using:

(σ2)
i+1

= argmax
σ2

E
xxx|yyy,γγγ;(σ2)

i[p(yyy,xxx,γγγ;σ
2)]

=
‖yyy−AAAxxx‖2 +(σ2)

i
∑

N
n=1

(
1− τxn

γn

)
M

. (2.13)

We note here that estimates obtained by (2.13) can be highly inaccurate as mentioned in [60].

Therefore, it suggests that experimenting with different values of σ2 or using some other applica-

tion based heuristic will probably lead to better results.

2.3 Damped Gaussian GAMP SBL

We now show how damped GGAMP can be used to simplify the E-step above, leading to

the damped GGAMP-SBL algorithm. Then we examine the convergence behavior of the resulting

algorithm.

2.3.1 GGAMP-SBL

Above we showed that, in the EM-SBL algorithm, the M-step is computationally simple

but the E-step is computationally demanding. The GAMP algorithm can be used to efficiently

approximate the quantities x̂xx and τττx needed in the E-step, while the M-step remains unchanged.

GAMP is based on the factor graph in Figure 2.1, where for a given prior fn(x) = p(xn) and

a likelihood function gm = p(ym|xxx), GAMP uses quadratic approximations and Taylor series

expansions, to provide approximations of MAP or MMSE estimates of xxx. The reader can refer

to [50] for detailed derivation of GAMP. The E-step in Table 2.1, uses the damped GGAMP

algorithm from [52] because of its ability to enhance traditional GAMP algorithm divergence

issues with non-i.i.d.-Gaussian AAA. The damped GGAMP algorithm has an important modification

over the original GAMP algorithm and also over the previously proposed AMP-SBL [67], namely
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the introduction of damping factors θs,θx ∈ (0,1] to slow down updates and enhance convergence.

Setting θs = θx = 1 in the damped GGAMP algorithm will yield no damping, and reduces the

algorithm to the original GAMP algorithm. We note here that the damped GGAMP algorithm

from [52] is referred to by GGAMP, and therefore we will be using the terms GGAMP and

damped GGAMP interchangeably in this chapter. Moreover, when the components of the matrix

AAA are not zero-mean, one can incorporate the same mean removal technique used in [54]. The

input and output functions gs(ppp,τττp) and gx(rrr,τττr) in Table 2.1 are defined based on whether the

max-sum or the sum-product version of GAMP is being used. The intermediate variables rrr and

ppp are interpreted as approximations of Gaussian noise corrupted versions of xxx and zzz = AAAxxx, with

the respective noise levels of τττr and τττp. In the max-sum version, the vector MAP estimation

problem is reduced to a sequence of scalar MAP estimates given rrr and ppp using the input and

output functions, where they are defined as:

[gs(ppp,τττp)]m = pm− τpmprox −1
τpm

ln p(ym|zm)
(

pm

τpm

) (2.14)

[gx(rrr,τττr)]n = prox−τrn ln p(xn)(rn) (2.15)

prox f (r), argmin
x

f (x)+
1
2
|x− r|2. (2.16)

Similarly, in the sum-product version of the algorithm, the vector MMSE estimation

problem is reduced to a sequence of scalar MMSE estimates given rrr and ppp using the input and

output functions, where they are defined as:

[gs(ppp,τττp)]m =

∫
zm p(ym|zm)N (zm; pm

τpm
, 1

τpm
)dzm∫

p(ym|zm)N (zm; pm
τpm

, 1
τpm

)dzm
(2.17)

[gx(rrr,τττr)]n =

∫
xn p(xn)N (xn;rn,τrn)dxn∫

p(xn)N (xn;rn,τrn)dxn
. (2.18)

For the parametrized Gaussian prior we imposed on xxx in (2.2), both sum-product and
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max-sum versions of gx(rrr,τττr) yield the same updates for x̂xx and τττx [50, 52]:

gx(rrr,τττr) =
γγγ

γγγ+++ τττrrr
rrr (2.19)

g′x(rrr,τττr) =
γγγ

γγγ+ τττr
. (2.20)

Similarly, in the case of the likelihood p(yyy|xxx) given in (2.5), the max-sum and sum-product

versions of gs(ppp,τττp) yield the same updates for sss and τττs [50, 52]:

gs(ppp,τττp) =
(ppp/τττp− yyy)
(σ2 +1/τττp)

(2.21)

g′s(ppp,τττp) =
σ−2

σ−2 + τττp
. (2.22)

We note that, in equations (2.19),(2.20),(2.21) and (2.22), and for all equations in Ta-

ble 2.1, all vector squares, divisions and multiplications are taken element wise.

g1

g2

gM

x1

x2

x3

xN

f1

f2

f3

fN

Figure 2.1: GAMP Factor Graph

In Table 2.1, Kmax is the maximum allowed number of GAMP algorithm iterations, εgamp

is the GAMP normalized tolerance parameter, Imax is the maximum allowed number of EM

iterations and εem is the EM normalized tolerance parameter. Upon the convergence of GAMP

algorithm based E-step, estimates for the mean x̂xx and covariance diagonal τττx are obtained. These
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Table 2.1: GGAMP-SBL algorithm

Initialization
SSS← |AAA|2 (component wise magnitude squared) (I1)
Initialize τ̆ττ

0
x ,γγγ

0,(σ2)0 > 0 (I2)
s̆ss0, x̆xx0← 000 (I3)
for i = 1,2, ...., Imax

Initialize τττ1
x ← τ̆ττ

i−1
x , x̂xx1← x̆xxi−1,sss1← s̆ssi−1

E-Step approximation
for k = 1,2, ....,Kmax

1/τττk
p← SSSτττk

x (A1)
pppk← sssk−1 + τττk

pAAAx̂xxk (A2)
τττk

s ← τττk
pg′s(pppk,τττk

p) (A3)
sssk← (1−θs)sssk−1 +θsgs(pppk,τττk

p) (A4)
1/τττk

r ← SSS>τττk
s (A5)

rrrk← x̂xxk− τττk
rAAA>sssk (A6)

τττk+1
x ← τττk

rg′x(rrr
k,τττk

r) (A7)
x̂xxk+1← (1−θx)x̂xxk +θxgx(rrrk,τττk

r) (A8)
if ‖x̂xxk+1− x̂xxk‖2/‖x̂xxk+1‖2 < εgamp , break (A9)

end for %end of k loop
s̆ssi← sssk, x̆xxi← x̂xxk+1 , τ̆ττ

i
x← τττk+1

x
M-Step
γγγi+1← |x̆xxi|2 + τ̆ττ

i
x (M1)

(σ2)
i+1←

‖yyy−AAAx̆xxi‖2+(σ2)
i
∑

N
n=1

(
1− τ̆i

xn
γi
n

)
M (M2)

if ‖x̆xxi− x̆xxi−1‖2/‖x̆xxi‖2 < εem , break (M3)
end for %end of i loop

estimates can be used in the M-step of the algorithm, given by equation (2.12b). These estimates,

along with the sss vector estimate, are also used to initialize the E-step at the next EM iteration to

accelerate the convergence of the overall algorithm.

Defining SSS as the component wise magnitude squared of AAA, the complexity of the GGAMP-

SBL algorithm is dominated by the E-step, which in turn (from Table 2.1) is dominated by the

matrix multiplications by AAA, AAA>, SSS and SSS> at each iteration, implying that the computational

cost of the algorithm is O(NM) operations per GAMP algorithm iteration multiplied by the total

number of GAMP algorithm iterations. For large M, this is much smaller than O(NM2), the
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complexity of standard SBL iteration.

In addition to the complexity of each iteration, for the proposed GGAMP-SBL algorithm

to achieve faster runtimes it is important for GGAMP-SBL total number of iterations to not be

too large, to the point where it over weighs the reduction in complexity per iteration, especially

when heavier damping is used. We point out here that while SBL provides a one step exact

solution for the E-step, GGAMP-SBL provides an approximate iterative solution. Based on that,

the total number of SBL iterations is the number of EM iterations needed for convergence, while

the total number of GGAMP-SBL iterations is based on the number of EM iterations it needs to

converge and the number of E-step iterations for each EM iteration. First we consider the number

of EM iterations for both algorithms. As explained in Section 2.3.2, the E-step of GGAMP-SBL

algorithm provides a good approximation of the true posterior [75]. In addition to that the number

of EM iterations is not affected by damping, since damping only affects the number of iterations

of GGAMP in the E-step, but it does not affect its outcome upon convergence. Based on these

two points, we can expect the number of EM iterations for GGAMP-SBL to be generally in the

same range as the original SBL algorithm. This is also shown in Section 2.3.2 Figs. 2.2a and

2.2b, where we can see the two cost functions being reduced to their minimum values using

approximately the same number of EM iterations, even when heavier damping is used. As for the

GGAMP-SBL E-step iterations, because we are warm starting each E-step with xxx and sss values

from the previous EM iteration, it was found through numerical experiments that the number

of required E-step iterations is reduced each time, to the point where the E-step converges to

the required tolerance within 2-3 iterations towards the final EM iterations. When averaging

the total number of E-step iterations over the number of EM iterations, it was found that for

medium to large problem sizes the average number of E-step iterations was just a fraction of

the measurements number M, even in the cases where heavier damping was used. Moreover, it

was observed that the number of iterations required for the E-step to converge is independent of

the problem size, which gives the algorithm a bigger advantage at larger problem sizes. Finally,
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based on the complexity reduction per iteration and the total number of iterations required for

GGAMP-SBL, we can expect it to have lower runtimes than SBL for medium to large problems,

even when heavier damping is used. This runtime advantage is confirmed through numerical

experiments in Section 2.5.

2.3.2 GGAMP-SBL Convergence

We now examine the convergence of the GGAMP-SBL algorithm. This involves two

steps; the first step is to show that the approximate message passing algorithm employed in the

E-step converges and the second step is to show that the overall EM algorithm, which consists of

several E and M-steps, converges. For the second step, in addition to convergence of the E-step

(first step), the accuracy of the resulting estimates is important. Therefore, in the second step

of our convergence investigation, we use results from [75], in addition to numerical results to

show that the GGAMP-SBL’s E and M steps are actually descending on the original SBL’s cost

function (2.3) at each EM iteration.

Convergence of the E-step with Generic Transformations

For the first step, we use the analysis from [52] which shows that, in the case of generic

AAA, the damped GGAMP algorithm is guaranteed to globally converge (to some values x̂xx and τττx)

when sufficient damping is used. In particular, since γγγi is fixed in the E-step, the prior is Gaussian

and so based on results in [52], starting with an initial estimate τττx ≥ γγγi the variance updates τττx, τττs,

τττr and τττp will converge to a unique fixed point. In addition, any fixed point (sss, x̂xx) for GGAMP is

globally stable if θsθx||ÃAA||22 < 1, where the matrix ÃAA is defined as given below and is based on the
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fixed-point values of τττp and τττr:

ÃAA := Diag1/2(τττpqqqs)AAA Diag1/2(τττrqqqx)

qqqs =
σ−2

σ−2 + τττp
, qqqx =

γγγ

γγγ+ τττr
.

While the result above establishes that the GGAMP algorithm is guaranteed to converge

when sufficient amount of damping is used at each iteration, in practice we do not recom-

mend building the matrix ÃAA at each EM iteration and calculating its spectral norm. Rather,

we recommend choosing sufficiently small damping factors θx and θs and fixing them for all

GGAMP-SBL iterations. For this purpose, the following result from [52] for an i.i.d.-Gaussian

prior p(xxx) = N (xxx;000,γxIII) can provide some guidance on choosing the damping factors. For the

i.i.d.-Gaussian prior case, the damped GAMP algorithm is shown to converge if

Ω(θs,θx)> ‖AAA‖2
2/‖AAA‖2

F , (2.23)

where Ω(θs,θx) is defined as

Ω(θs,θx) :=
2[(2−θx)N +θxM]

θxθsMN
. (2.24)

Experimentally, it was found that using a threshold Ω(θs,θx) that is 10% larger than (2.24) is

sufficient for the GGAMP-SBL algorithm to converge in the scenarios we considered.

GGAMP-SBL Convergence

The result above guarantees convergence of the E-step to some vectors x̂xx and τττx but it does

not provide information about the overall convergence of the EM algorithm to the desired SBL

fixed points. This convergence depends on the quality of the mean x̂xx and variance τττx computed by

the GGAMP algorithm. It has been shown that for an arbitrary AAA matrix, the fixed-point value
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of x̂xx will equal the true mean given in (2.8) [75]. As for the variance updates, based on the state

evolution in [51], the vector τττx will equal the true posterior variance vector, i.e., the diagonal of

(2.9), in the case that AAA is large and i.i.d. Gaussian, but otherwise will only approximate the true

quantity.

The approximation of τττx by the GGAMP algorithm in the E-step introduces an approxi-

mation in the GGAMP-SBL algorithm compared to the original EM-SBL algorithm. Fortunately,

there is some flexibility in the EM algorithm in that the M-step need not be carried out to minimize

the objective stated in (2.12a) but it is sufficient to decrease the objective function as discussed in

the generalized EM algorithm literature [73,74]. Given that the mean is estimated accurately, EM

iterations may be tolerant to some error in the variance estimate. Some flexibility in this regards

can also be gleaned from the results in [38], where it is shown how different iteratively reweighted

algorithms correspond to a different choice in the variance. However, we have not been able

to prove rigorously that the GGAMP approximation will guarantee descent of the original cost

function given in (2.3).

Nevertheless, our numerical experiments suggest that the GGAMP approximation has

negligible effect on algorithm convergence and ability to recover sparse solutions. We select two

experiments to illustrate the convergence behavior and demonstrate that the approximate variance

estimates are sufficient to decrease SBL’s cost function (2.3). In both experiments xxx is drawn from

a Bernoulli-Gaussian distribution with a non-zero probability λ set to 0.2, and we set N = 1000

and M = 500. Fig. 2.2 shows a comparison between the original SBL and the GGAMP-SBL’s

cost functions at each EM iteration of the algorithms. AAA in Fig. 2.2a is i.i.d.-Gaussian, while in

Fig. 2.2b it is a column correlated transformation matrix, which is constructed according to the

description given in Section 2.5, with correlation coefficient ρ = 0.9.

The cost functions in Fig. 2.2a and Fig. 2.2b show that, although we are using an ap-

proximate variance estimate to implement the M-step, the updates are decreasing the SBL’s cost

function at each iteration. As noted previously, it is not necessary for the M-step to provide the
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Figure 2.2: Cost functions on SBL and GGAMP-SBL algorithms versus number of EM
iterations

maximum cost function reduction, it is sufficient to provide some reduction in the cost func-

tion for the EM algorithm to be effective. The cost function plots confirm this principle, since

GGAMP-SBL eventually reaches the same minimal value as the original EM-SBL. While the two

numerical experiments do not provide a guarantee that the overall GGAMP-SBL algorithm will

converge, they suggest that the performance of the GGAMP-SBL algorithm often matches that of

the original EM-SBL algorithm, which is supported by the more extensive numerical results in

Section 2.5.

2.4 GGAMP-TSBL for the MMV problem

In this section, we apply the damped GAMP algorithm to the MMV empirical Bayesian

approach to derive a low complexity algorithm for the MMV case as well. Since the GAMP

algorithm was originally derived for the SMV case using an SMV factor graph [50], extending

it to the MMV case requires some more effort and requires going back to the factor graphs that

are the basis of the GAMP algorithm, making some adjustments, and then utilizing the GAMP

algorithm.

Once again we use an empirical Bayesian approach with a GSM model, and we focus on

the ML estimate of γγγ. We assume a common sparsity profile between all measured vectors, and

also account for the temporal correlation that might exist between the non-zero signal elements.

Previous Bayesian algorithms that have shown good recovery performance for the MMV problem
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include extensions of the SMV SBL algorithm, such as MSBL [60], TSBL and TMSBL [61].

MSBL is a straightforward extension of SMV SBL, where no temporal correlation between non-

zero elements is assumed, while TSBL and TMSBL account for temporal correlation. Even though

the TMSBL algorithm has lower complexity compared to the TSBL algorithm, the algorithm

still has complexity of O(NM2), which can limit its utility when the problem dimensions are

large. Other AMP based Bayesian algorithms have achieved linear complexity in the problem

dimensions, like AMP-MMV [65]. However AMP-MMV’s robustness to generic AAA matrices is

expected to be outperformed by an SBL based approach.

2.4.1 MMV Model and Factor Graph

The MMV model can be stated as:

yyy(t) = AAAxxx(t)+ eee(t), t = 1,2, ...,T,

where we have T measurement vectors [yyy(1),yyy(2)...,yyy(T )] with yyy(t) ∈ RM. The objective is to

recover XXX = [xxx(t),xxx(2)...,xxx(T )] with xxx(t) ∈ RN , where in addition to the vectors xxx(t) being sparse,

they share the same sparsity profile. Similar to the SMV case, AAA ∈ RM×N is known, and

[eee(1),eee(2)...,eee(T )] is a sequence of i.i.d. noise vectors modeled as eee(t) ∼N (0,σ2III). This model

can be restated as:

ȳyy === DDD(((AAA)))x̄xx+++ ēee,

where ȳyy , [yyy(1)
>
,yyy(2)

>
...,yyy(T )

>
]>, x̄xx , [xxx(1)

>
,xxx(2)

>
...,xxx(T )

>
]>, ēee , [eee(1)

>
,eee(2)

>
...,eee(T )

>
]> and

DDD(((AAA))) is a block-diagonal matrix constructed from T replicas of AAA.
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The posterior distribution of x̄xx is given by:

p(x̄xx | ȳyy) ∝

T

∏
t=1

[
M

∏
m=1

p(y(t)m | xxx(t))
N

∏
n=1

p(x(t)n | x(t−1)
n )

]
,

where

p(y(t)m | xxx(t)) = N (y(t)m ;aaa>m.xxx
(t),σ2),

where aaa>m. is the mth row of the matrix AAA. Similar to the previous work in [64, 65, 76], we use an

AR(1) process to model the correlation between x(t)n and x(t−1)
n , i.e.,

x(t)n = βx(t−1)
n +

√
1−β2v(t)n

p(x(t)n | x(t−1)
n ) = N (x(t)n ;βx(t−1)

n ,(1−β
2)γn), t > 1

p(x(1)n ) = N (x(1)n ;0,γn),

where β ∈ (−1,1) is the temporal correlation coefficient and v(t)n ∼ N (0,γn). Following an

empirical Bayesian approach similar to the one proposed for the SMV case, the hyperparameter

vector γγγ is then learned from the measurements using the EM algorithm. The EM algorithm

can also be used to learn the correlation coefficient β and the noise variance σ2. Based on these

assumptions we use the sum-product algorithm [77] to construct the factor graph in Fig. 2.3,

and derive the MMV algorithm GGAMP-TSBL. In the MMV factor graph, the factors are

g(t)m (xxx) = p(y(t)m | xxx(t)), f (t)n (x(t)n ) = p(x(t)n | x(t−1)
n ) for t > 1 and f (1)n (x(1)n ) = p(x(1)n ).

2.4.2 GGAMP-TSBL Message Phases and Scheduling (E-Step)

Due to the similarities between the factor graph for each time frame of the MMV model

and the factor graph of the SMV model, we will use the algorithm in Table 2.1 as a building

block and extend it to the MMV case. We divide the message updates into three steps as shown in
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Figure 2.3: GGAMP-TSBL factor graph

Fig. 2.4.

For each time frame the “within“ step in Fig. 2.4 is very similar to the SMV GAMP

iteration, with the only difference being that each x(t)n is connected to the factor nodes f (t)n and

f (t+1)
n , while it is connected to one factor node in the SMV case. This difference is reflected in

the calculation of the output function gx and therefore in finding the mean and variance estimates

for x̄xx. The details of finding gx and therefore the update equations for τττ
(t)
x and x̂xx(t) are shown in

Appendix A. The input function gs is the same as (2.21), and the update equations for τττ
(t)
s and sss(t)

are the same as (A3) and (A4) from Table 2.1, because an AWGN model is assumed for the noise.

The second type of updates are passing messages forward in time from x(t−1)
n to x(t)n through f (t)n .

And the final type of updates is passing messages backward in time from x(t+1)
n to x(t)n through

f (t)n . The details for finding the “forward“ and “backward“ message passing steps are also shown

in Appendix A.

We schedule the messages by moving forward in time first, where we run the “forward“

step starting at t = 1 all the way to t = T . We then perform the “within“ step for all time frames,
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Figure 2.4: Message passing phases for GGAMP-TSBL

this step updates rrr(t),τττ(t)r , xxx(t) and τττ
(t)
x that are needed for the “forward“ and “backward“ message

passing steps. Finally we pass the messages backward in time using the “backward“ step, starting

at t = T and ending at t = 1. Based on this message schedule, the GAMP algorithm E-step

computation is summarized in Table 2.2. In Table 2.2 we use the unparenthesized superscript to

indicate the iteration index, while the parenthesized superscript indicates the time frame index.

Similar to Table 2.1, Kmax is the maximum allowed number of GAMP iterations, εgamp is the

GAMP normalized tolerance parameter, Imax is the maximum allowed number of EM iterations

and εem is the EM normalized tolerance parameter. In Table 2.2 all vector squares, divisions and

multiplications are taken element wise.

The algorithm proposed can be considered an extension of the previously proposed AMP

TSBL algorithm in [67]. The extension to GGAMP-TSBL includes removing the averaging of

the matrix AAA in the derivation of the algorithm, and it includes introducing the same damping

strategy used in the SMV case to improve convergence. The complexity of the GGAMP-TSBL

algorithm is also dominated by the E-step which in turn is dominated by matrix multiplications

by AAA, AAA>, SSS and SSS>, implying that the computational cost is O(MN) flops per iteration per frame.
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Therefore the complexity of the proposed algorithm is O(T MN) multiplied by the total number

of GAMP algorithm iterations.

2.4.3 Derivation of GGAMP-TSBL Updates

The Within Step Updates

To make the factor graph for the within step in Fig. 2.4 exactly the same as the SMV

factor graph we combine the product of the two messages incoming from f (t)n and f (t+1)
n to x(t)n

into one message as follows:

V
f (t)n →x(t)n

∝ N (x(t)n ;η
(t)
n ,ψ

(t)
n )

V
f (t+1)
n →x(t)n

∝ N (x(t)n ;θ
(t)
n ,φ

(t)
n )

V
f̄ (t)n →x(t)n

∝ N (x(t)n ;ρ
(t)
n ,ζ

(t)
n )

∝ N (x(t)n ;

η
(t)
n

ψ
(t)
n
+ θ

(t)
n

φ
(t)
n

1
ψ
(t)
n
+ 1

φ
(t)
n

,
1

1
ψ
(t)
n
+ 1

φ
(t)
n

). (2.25)

Combining these two messages reduces each time frame factor graph to an equivalent one to

the SMV case with a modified prior on x(t)n of (2.25). Applying the damped GAMP algorithm

from [52] with p(x(t)n ) given in (2.25):

g(t)x =

rrr(t)

τττ
(t)
r
+ ρρρ(t)

ζζζ
(t)

1
τττ
(t)
r
+ 1

ζζζ
(t)

=

rrr(t)

τττ
(t)
r
+ ηηη(t)

ψψψ(t) +
θθθ
(t)

φφφ
(t)

1
τττ
(t)
r
+ 1

ψψψ(t) +
1

φφφ
(t)

τττ
(t)
x =

1
1

τττ
(t)
r
+ 1

ζζζ
(t)

=
1

1
τττ
(t)
r
+ 1

ψψψ(t) +
1

φφφ
(t)

.
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Forward Message Updates

V
f (1)n →x(1)n

∝ N (x(1)n ;0,γn)

V
f (t)n →x(t)n

∝ N (x(t)n ;η
(t)
n ,ψ

(t)
n )

∝

∫ ( M

∏
l=1

V
g(t−1)

l →x(t−1)
n

)
V

f (t−1)
n →x(t−1)

n
P(x(t)n | x(t−1)

n )dx(t−1)
n

∝

∫
N (x(t−1)

n ;r(t−1)
n ,τ

(t−1)
rn ) N (x(t−1)

n ;η
(t−1)
n ,ψ

(t−1)
n )N (x(t)n ;βx(t−1)

n ,(1−β
2)γn)dx(t−1)

n .

Using rules for Gaussian pdf multiplication and convolution we get the η
(t)
n and ψ

(t)
n

updates given in Table 2.2 equations (E3) and (E4).

Backward Message Updates

V
f (t+1)
n →x(t)n

∝ N (x(t)n ;θ
(t)
n ,φ

(t)
n )

∝

∫ ( M

∏
l=1

V
g(t+1)

l →x(t+1)
n

)
V

f (t+2)
n →x(t+1)

n
P(x(t+1)

n | x(t)n )dx(t+1)
n

∝

∫
N (x(t+1)

n ;r(t+1)
n ,τ

(t+1)
rn ) N (x(t+1)

n ;θ
(t+1)
n ,φ

(t+1)
n ) N (x(t+1)

n ;βx(t)n ,(1−β
2)γn)dx(t+1)

n .

Using rules for Gaussian pdf multiplication and convolution we get the θ
(t)
n and φ

(t)
n updates

given in Table 2.2 equations (E13) and (E14).

2.4.4 GGAMP-TSBL M-Step

Upon the convergence of the E-step, the M-step learns γγγ from the data by treating xxx as a

hidden variable and then maximizing Ex̄xx|ȳyy;γγγi,σ2,β[log p(ȳyy, x̄xx,γγγ;σ2,β)].

γγγ
i+1 = argmin

γγγ
Ex̄xx|ȳyy;γγγi,σ2,β[− log p(ȳyy, x̄xx,γγγ;σ

2,β)]

γ
i+1
n =

1
T

[
|x̂(1)n |2 + τ

(1)
xn +

1
1−β2

T

∑
t=2
|x̂(1)n |2 + τ

(t)
xn +β(|x̂(t−1)

n |2 + τ
(t−1)
xn )−2β(x̂(t)n x̂(t−1)

n +βτ
(t−1)
xn )

]
(2.26)
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Table 2.2: GGAMP-TSBL algorithm

Definitions

F(rrrk(t),τττ
k(t)
r ) =

rrrk(t)

τττ
k(t)
r

+ ηηηk(t)

ψψψk(t)+
θθθk(t)

φφφk(t)

1

τττ
k(t)
r

+ 1
ψψψk(t)+

1
φφφk(t)

(D1)

G(rrrk(t),τττ
k(t)
r ) = 1

1

τττ
k(t)
r

+ 1
ψψψk(t)+

1
φφφk(t)

(D2)

Initialization
SSS← |AAA|2 (component wise magnitude squared) (N1)
Initialize ∀t : τ̆ττ

0(t)
x ,γγγ0 > 0, s̆ss0(t)← 000 and x̆xx0(t)← 000 (N3)

for i = 1,2, ...., Imax

Initialize ∀t : τττ
1(t)
x ← τ̆ττ

i−1(t)
x , x̂xx1(t)← x̆xxi−1(t),

sss1(t)← s̆ssi−1(t)

E-Step approximation
for k = 1,2, ....,Kmax

ηηηk(1)← 0 (E1)
ψψψk(1)← γγγi (E2)
for t = 2 : T

ηηηk(t)← β

(
rrrk(t−1)

τττ
k(t−1)
r

+ ηηηk(t−1)

ψψψk(t−1)

)(
ψψψk(t−1)τττ

k(t−1)
r

ψψψk(t−1)+τττ
k(t−1)
r

)
(E3)

ψψψk(t)← β2
(

ψψψk(t−1)τττ
k(t−1)
r

ψψψk(t−1)+τττ
k(t−1)
r

)
+(1−β2)γγγi (E4)

end for %end of t loop
for t = 1 : T

1/τττ
k(t)
p ← SSSτττ

k(t)
x (E5)

pppk(t)← sssk−1(t)+ τττ
k(t)
p AAAx̂xxk(t) (E6)

τττ
k(t)
s ← σ−2τττ

k(t)
p

σ−2+τττ
k(t)
p

(E7)

sssk(t)← (1−θs)sssk−1(t)+θs

(
pppk(t)

τττ
k(t)
p
−yyy(t)

)
(σ2+1/τττ

k(t)
p )

(E8)

1/τττ
k(t)
r ← SSS>τττ

k(t)
s (E9)

rrrk(t)← x̂xx(t)− τττ
k(t)
r AAA>sssk(t) (E10)

τττ
k+1(t)
x ← G(rrrk(t),τττ

k(t)
r ) (E11)

x̂xxk+1(t)← (1−θx)x̂xxk(t)+θxFn(rrrk(t),τττ
k(t)
r ) (E12)

end for %end of t loop
for t = T −1 : 1

θθθ
k(t)← 1

β

(
rrrk(t+1)

τττ
k(t+1)
r

+ θθθ
k(t+1)

φφφ
k(t+1)

)(
φφφ

k(t+1)
τττ

k(t+1)
r

θθθ
k(t+1)+τττ

k(t+1)
r

)
(E13)

φφφ
k(t)← 1

β2

(
φφφ

k(t+1)
τττ

k(t+1)
r

φφφ
k(t+1)+τττ

k(t+1)
r

+(1−β2)γγγi
)

(E14)

end for %end of t loop

if 1
T ∑

T
t=1

(
‖x̂xxk+1(t)−x̂xxk(t)‖2

‖x̂xxk+1(t)‖2

)
< εgamp , break (E15)

end for %end of k loop
∀t, s̆ssi(t)← sssk+1(t), x̆xxi(t)← x̂xxk+1(t) , τ̆ττ

i(t)
x ← τττ

k+1(t)
x

M-step

γi+1
n = 1

T

[
|x̆i(1)

n |2 + τ̆
i(1)
xn +∑

T
t=2
|x̆i(t)

n |2+τ̆
i(t)
xn

1−β2

+ β

1−β2 ∑
T
t=2

(
|x̆i(t−1)

n |2 + τ̆
i(t−1)
xn

)
− 2β

1−β2 ∑
T
t=2

(
x̆i(t)

n x̆i(t−1)
n +βx̆i(t−1)

n

)]
(U1)

if 1
T ∑

T
t=1

(
‖x̆xxi(t)−x̆xxi−1(t)‖2

‖x̆xxi(t)‖2

)
< εem , break (U2)

end for %end of i loop
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The derivation of γi+1
n M-step update follows the same steps as the SMV case. The

derivation is omitted here due to space limitation, and γi+1
n update is given in (2.26). We note here

that the M-step γγγ learning rule in (2.26) is the same as the one derived in [64]. Both algorithms

use the same AR(1) model for xxx(t), but they differ in the implementation of the E-step. In the case

that the correlation coefficient β or the noise variance σ2 are unknown, the EM algorithm can be

used to estimate their values as well.

2.5 Numerical Results

In this section we present a numerical study to illustrate the performance and complexity

of the proposed GGAMP-SBL and GGAMP-TSBL algorithms. The performance and complexity

were studied through two metrics. The first metric studies the ability of the algorithm to recover

xxx, for which we use the normalized mean squared error NMSE in the SMV case:

NMSE , ‖x̂xx− xxx‖2/‖xxx‖2,

and the time-averaged normalized mean squared error TNMSE in the MMV case:

TNMSE ,
1
T

T

∑
t=1
‖x̂xx(t)− xxx(t)‖2/‖xxx(t)‖2.

The second metric studies the complexity of the algorithm by tracking the time the algorithm

requires to compute the final estimate x̂xx. We measure the time in seconds. While the absolute

runtime could vary if the same experiments were to be run on a different machine, the runtimes

of the algorithms of interest in relationship to each other is a good estimate of the relative

computational complexity.

Several types of non-i.i.d.-Gaussian matrix were used to explore the robustness of the

proposed algorithms relative to the standard SBL and TMSBL. The four different types of matrices
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are similar to the ones previously used in [54] and are described as follows:

-Column correlated matrices: The rows of AAA are independent zero-mean Gaussian Markov

processes with the following correlation coefficient ρ = E{aaa>.naaa.(n+1)}/E{|aaa.n|2}, where aaa.n is

the nth column of AAA. In the experiments the correlation coefficient ρ is used as the measure of

deviation from the i.i.d.-Gaussian matrix.

-Low rank product matrices: We construct a rank deficient AAA by AAA = 1
N HHHGGG with HHH ∈

RM×R, GGG ∈ RR×N and R < M. The entries of HHH and GGG are i.i.d.-Gaussian with zero mean and

unit variance. The rank ratio R/N is used as the measure of deviation from the i.i.d.-Gaussian

matrix.

-Ill conditioned matrices: we construct AAA with a condition number κ > 1 as follows.

AAA =UUUΣΣΣVVV>, where UUU and VVV> are the left and right singular vector matrices of an i.i.d.-Gaussian

matrix, and ΣΣΣ is a singular value matrix with Σi,i/Σi+1,i+1 = κ1/(M−1) for i = 1,2, ....,M−1. The

condition number κ is used as the measure of deviation from the i.i.d.-Gaussian matrix.

-Non-zero mean matrices: The elements of AAA are am,n ∼N (µ, 1
N ). The mean µ is used

as a measure of deviation from the zero-mean i.i.d.-Gaussian matrix. It is worth noting that in

the case of non-zero mean AAA, convergence of the GGAMP-SBL is not enhanced by damping but

more by the mean removal procedure explained in [54]. We include it in the implementation of

our algorithm, and we include it in the numerical results to make the study more inclusive of

different types of generic AAA matrices.

Although we have provided an estimation procedure, based on the EM algorithm, for the

noise variance σ2 in (2.13), in all experiments we assume that the noise variance σ2 is known. We

also found that the SBL algorithm does not necessarily have the best performance when the exact

σ2 is used, and in our case, it was empirically found that using an estimate σ̂2 = 3σ2 yields better

results. Therefore σ̂2 is used for SBL, TMSBL, GGAMP-SBL and GGAMP-TSBL throughout

our experiments.
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2.5.1 SMV GGAMP-SBL Numerical Results

In this section we compare the proposed SMV algorithm (GGAMP-SBL) against the

original SBL and against two AMP algorithms that have shown improvement in robustness over

the original AMP/GAMP, namely the SwAMP algorithm [55] and the MADGAMP algorithm [54].

As a performance benchmark, we use a lower bound on the achievable NMSE which is similar to

the one in [54]. The bound is found using a “genie“ that knows the support of the sparse vector xxx.

Based on the known support, ĀAA is constructed from the columns of AAA corresponding to non-zero

elements of xxx, and an MMSE solution using ĀAA is computed.

x̂xx = ĀAA>(ĀAAĀAA>+σ
2III)−1yyy.

In all SMV experiments, xxx had exactly K non-zero elements in random locations, and the nonzero

entires were drawn independently from a zero-mean unit-variance Gaussian distribution. In

accordance with the model (2.1), an AWGN channel was used with the SNR defined by:

SNR , E{‖AAAxxx‖2}/E{‖yyy−−−AAAxxx‖2}.

Robustness to generic matrices at high SNR

The first experiment investigates the robustness of the proposed algorithm to generic AAA

matrices. It compares the algorithms of interest using the four types of matrices mentioned above,

over a range of deviation from the i.i.d.-Gaussian case. For each matrix type, we start with an

i.i.d.-Gaussian AAA and increase the deviation over 11 steps. We monitor how much deviation

the different algorithms can tolerate, before we start seeing significant performance degradation

compared to the “genie“ bound. The vector xxx was drawn from a Bernoulli-Gaussian distribution

with non-zero probability λ = 0.2, with N = 1000, M = 500 and SNR = 60dB.
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Figure 2.5: NMSE comparison of SMV algorithms under non-i.i.d.-Gaussian AAA matrices with
SNR=60dB
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Figure 2.6: Runtime comparison of SMV algorithms under non-i.i.d.-Gaussian AAA matrices with
SNR=60dB
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The NMSE results in Fig. 2.5 show that the performance of GGAMP-SBL was able to

match that of the original SBL even for AAA matrices with the most deviation from the i.i.d.-Gaussian

case. Both algorithms nearly achieved the bound in most cases, with the exception when the

matrix is low rank with a rank ratio less than 0.45 where both algorithms fail to achieve the

bound. This supports the evidence we provided before for the convergence of the GGAMP-SBL

algorithm, which predicted its ability to match the performance of the original SBL. As for

other AMP implementations, despite the improvement in robustness they provide over traditional

AMP/GAMP, they cannot guarantee convergence beyond a certain point, and their robustness

is surpassed by GGAMP-SBL in most cases. The only exception is when AAA is non-zero mean,

where the GGAMP-SBL and the MADGAMP algorithms share similar performance. This is due

to the fact that both algorithms use mean removal to transform the problem into a zero-mean

equivalent problem, which both algorithms can handle well.

The complexity of the GGAMP-SBL algorithm is studied in Fig. 2.6. The figure shows

how the GGAMP-SBL was able to reduce the complexity compared to the original SBL imple-

mentation. It also shows that even when the algorithm is slowed down by heavier damping, the

algorithm still has faster runtimes than the original SBL.

Robustness to generic matrices at lower SNR

In this experiment we examine the performance and complexity of the proposed algorithm

at a lower SNR setting than the previous experiment. We lower the SNR to 30dB and collect the

same data points as in the previous experiment. The results in Fig. 2.7 show that the performance

of the GGAMP-SBL algorithm is still generally matching that of the original SBL algorithm with

slight degradation. The MADGAMP algorithm provides slightly better performance than both

SBL algorithms when the deviation from the i.i.d.-sub-Gaussian case is not too large. This can be

due to the fact that we choose to run the MADGAMP algorithm with exact knowledge of the data

model rather than learn the model parameters, while both SBL algorithms have information about
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Figure 2.7: NMSE comparison of SMV algorithms under non-i.i.d.-Gaussian AAA matrices with
SNR=30dB
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Figure 2.8: Runtime comparison of SMV algorithms under non-i.i.d.-Gaussian AAA matrices with
SNR=30dB
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the noise variance only. As the deviation in AAA increases, GGAMP-SBL’s performance surpasses

MADGAMP and SWAMP algorithms, providing better robustness at lower SNR.

On the complexity side, we see from Fig. 2.8 that the GGAMP-SBL continues to have

reduced complexity compared to the original SBL.

Performance and complexity versus problem dimensions

To show the effect of increasing the problem dimensions on the performance and com-

plexity of the different algorithms, we plot the NMSE and runtime against N, while we keep an

M/N ratio of 0.5, a K/N ratio of 0.2 and an SNR of 60dB. We run the experiment using column

correlated matrices with ρ = 0.9.

As expected from previous experiments, Fig. 2.9a shows that only GGAMP-SBL and SBL

algorithms can recover xxx when we use column correlated matrices with a correlation coefficient

of ρ = 0.9. The comparison between the performance of SBL and GGAMP-SBL show almost

identical NMSE.

As problem dimensions grow, Fig. 2.9b shows that the difference in runtimes between the

original SBL and GGAMP-SBL algorithms grows to become more significant, which suggests

that the GGAMP-SBL is more practical for large size problems.

Performance versus undersampling ratio M/N

In this section we examine the ability of the proposed algorithm to recover a sparse

vector from undersampled measurements at different undersampling ratios M/N. In the below

experiments we fix N at 1000 and vary M. We set the Bernoulli-Gaussian non-zero probability

λ so that M/K has an average of three measurements for each non-zero component. We plot

the NMSE versus the undersampling ratio M/N for i.i.d.-Gaussian matrices AAA and for column

correlated AAA with ρ = 0.9. We run the experiments at SNR=60dB and at SNR=30dB. In Fig. 2.10

we find that for SNR=60dB and i.i.d.-Gaussian AAA, all algorithms meet the SKS bound when the
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undersampling ratio is larger than or equal to 0.25, while all algorithms fail to meet the bound

at any ratio smaller than that. When AAA is column correlated, SBL and GGAMP-SBL are able

to meet the SKS bound at M/N ≥ 0.3, while MADGAMP and SwAMP do not meet the bound

even at M/N = 0.5. We also note the MADGAMP’s NMSE slowly improves with increased

underasampling ratio, while SwAMP’s NMSE does not. At SNR=30dB, with i.i.d.-Gaussian AAA

all algorithms are close to the SKS bound when the undersampling ratio is larger than 0.3. At

M/N ≤ 0.3, SBL and GGAMP-SBL are slightly outperformed by MADGAMP, while SwAMP

seems to have the best performance in this region. When AAA is column correlated, NMSE of

SBL and GGAMP-SBL outperform the other two algorithms, and similar to the SNR=60dB

case, MADGAMP’s NMSE seems to slowly improve with increased undersampling ratio, while

SwAMP’s NMSE does not improve.

2.5.2 MMV GGAMP-TSBL Numerical Results

In this section, we present a numerical study to illustrate the performance and complexity

of the proposed GGAMP-TSBL algorithm. Although the AMP MMV algorithm in [65] can be

extended to incorporate damping, the current implementation of AMP MMV does not include

damping and will diverge when used with the type of generic AAA matrices we are considering

for our experiments. Therefore, we restrict the comparison of the performance and complexity

of the GGAMP-TSBL algorithm to the TMSBL algorithm. We also compare the recovery

performance against a lower bound on the achievable TNMSE by extending the support aware

Kalman smoother (SKS) from [65] to include damping and hence be able to handle generic AAA

matrices. The implementation of the smoother is straight forward, and is exactly the same as the

E-step part in Table 2.2, when the true values of σ2, γγγ and β are used, and when AAA is modified to

include only the columns corresponding to the non-zero elements in xxx(t). An AWGN channel was

also assumed in the case of MMV.

42



0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Undersampling Rate M/N

-80

-60

-40

-20

0

N
M

S
E

 (
dB

)

a) SNR = 60dB, A is i.i.d-Gaussian
SBL
GGAMP-SBL
MADGAMP
SWAMP
GENIE

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Undersampling Rate M/N

-80

-60

-40

-20

0

N
M

S
E

 (
dB

)

b) SNR = 60dB, A is Column Correlated

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Undersampling Rate M/N

-40

-30

-20

-10

0

N
M

S
E

 (
dB

)

c) SNR = 30dB, A is i.i.d-Gaussian

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Undersampling Rate M/N

-40

-30

-20

-10

0

N
M

S
E

 (
dB

)

d) SNR = 30dB, A Column Correlated

Figure 2.10: NMSE comparison of SMV algorithms versus the undersampling rate M/N
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Figure 2.11: TNMSE comparison of MMV algorithms under non-i.i.d.-Gaussian AAA matrices
with SNR=60dB
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Figure 2.12: Runtime comparison of MMV algorithms under non-i.i.d.-Gaussian AAA matrices
with SNR=60dB
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Robustness to generic matrices at high SNR

The experiment investigates the robustness of the proposed algorithm by comparing it

to the TMSBL and the support aware smoother. Once again we use the four types of matrices

mentioned at the beginning of this section, over the same range of deviation from the i.i.d.-

Gaussian case. For this experiment we set N = 1000, M = 500, λ = 0.2, SNR = 60dB and the

temporal correlation coefficient β to 0.9. We choose a relatively high value for β to provide large

deviation from the SMV case. This is due to the fact that the no correlation case is reduced

to solving multiple SMV instances in the E-step, and then applying the M-step to update the

hyperparameter vector γγγ, which is common across time frames [60]. The TNMSE results in

Fig. 2.11 show that the performance of GGAMP-TSBL was able to match that of TMSBL in all

cases and they both achieved the SKS bound.

Once again Fig. 2.12 shows that the proposed GGAMP-TSBL was able to reduce the

complexity compared to the TMSBL algorithm, even when damping was used. Although the

complexity reduction does not seem to be significant for the selected problem size and SNR, we

will see in the following experiments how this reduction becomes more significant as the problem

size grows or as a lower SNR is used.

Robustness to generic matrices at lower SNR

The performance and complexity of the proposed algorithm are examined at a lower SNR

setting than the previous experiment. We set the SNR to 30dB and collect the same data points

collected as in the 60dB SNR case. Fig. 2.13 shows that the GGAMP-TSBL performance matches

that of the TMSBL and almost achieves the bound in most cases. Similar to the previous cases,

Fig. 2.14 shows that the complexity of GGAMP-TSBL is lower than that of TMSBL.
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Figure 2.13: TNSME comparison of MMV algorithms under non-i.i.d.-Gaussian AAA matrices
with SNR=30dB
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Figure 2.14: Runtime comparison of MMV algorithms under non-i.i.d.-Gaussian AAA matrices
with SNR=30dB
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Performance and complexity versus problem dimension

To validate the claim that the proposed algorithm is more suited to deal with large scale

problems we study the algorithms’ performance and complexity against the signal dimension N.

We keep an M/N ratio of 0.5, a K/N ratio of 0.2 and an SNR of 60dB. We run the experiment using

column correlated matrices with ρ = 0.9. In addition, we set β to 0.9, high temporal correlation.

In terms of performance, Fig. 2.15a shows that the proposed GGAMP-TSBL algorithm was able

to match the performance of TMSBL. However, in terms of complexity, similar to the SMV case,

Fig. 2.15b shows that the runtime difference becomes more significant as the problem size grows,

making the GGAMP-SBL a better choice for large scale problems.

2.6 Conclusion

In this chapter, we presented a GAMP based SBL algorithm for solving the sparse signal

recovery problem. SBL uses sparsity promoting priors on xxx that admit a Gaussian scale mixture

representation. Because of the Gaussian embedding offered by the GSM class of priors, we were

able to leverage the Gaussian GAMP algorithm along with it’s convergence guarantees given

in [52], when sufficient damping is used, to develop a reliable and fast algorithm. We numerically

showed how this damped GGAMP implementation of the SBL algorithm also reduces the cost

function of the original SBL approach. The algorithm was then extended to solve the MMV

SSR problem in the case of generic AAA matrices and temporal correlation, using a similar GAMP

based SBL approach. Numerical results show that both the SMV and MMV proposed algorithms

were more robust to generic AAA matrices when compared to other AMP algorithms. In addition,

numerical results also show the significant reduction in complexity the proposed algorithms offer

over the original SBL and TMSBL algorithms, even when sufficient damping is used to slow

down the updates to guarantee convergence. Therefore the proposed algorithms address the

convergence limitations in AMP algorithms as well as the complexity challenges in traditional
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SBL algorithms, while retaining the positive attributes namely the robustness of SBL to generic

AAA matrices, and the low complexity of message passing algorithms.
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Chapter 3

A GAMP Based Algorithm with

Hierarchical Priors for Recovering

Non-Negative Sparse Signals

3.1 Introduction

We consider a constrained single measurement recovery problem, where the goal is

to recover the unknown, non-negative and sparse vector xxx ∈ RN
+ from M ≤ N noisy linear

measurements yyy ∈ RM:

yyy === AAAxxx+++ eee,,, (3.1)

where AAA ∈ RM×N is a known measurement matrix and eee ∈ RN is the additive noise modeled by

eee ∼ N (0,σ2III). This problem arises in a number of applications, including imaging and non-

negative matrix factorization among others. A number of techniques were previously proposed

to address this problem, including greedy algorithms [4, 6], projected gradient descent [78] and
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Bayesian techniques [79, 80]. In this chapter we focus on the Bayesian technique proposed

in [80], where we compare it to the previously proposed Bayesian technique from [79], and

illustrate some of the advantages of the former. The Bayesian formulation in [80] assumes a

hierarchical prior on xxx and the prior is based on a rectified Gaussian scale mixture (RGSM).

The formulation is similar to the sparse Bayesian learning (SBL) algorithm [31], which uses a

Gaussian scale mixture hierarchical prior to address the sparse signal recovery (SSR) problem

without the non-negativity constraint on xxx. A number of alternative techniques are proposed

in [80] to implement the inference algorithm, and in this chapter we focus on the technique

based on the low complexity generalized approximate message passing algorithm (GAMP).

Bayesian algorithms proposed in [79] impose direct sparsity promoting priors on xxx and also

use GAMP to find the estimate of xxx. Previous results on the unconstrained SSR problem, have

observed that compared to other GAMP based techniques, using a hierarchical GSM prior with

the GAMP algorithm simplified the derivation of the algorithm [67], and significantly improved

convergence when the transformation matrix AAA was not i.i.d.-sub-Gaussian, which is a known

limitation with AMP based algorithms [52–54]. In this chapter we observe that the previously

shown advantages of derivation simplification and convergence improvement still apply in the

non-negative constrained problem when an RGSM prior is used. In addition to that, we show how

the RGSM prior allows to change the prior on xxx by changing the mixing density, which translates

into a simple change in the overall algorithm. We finally show how extending the algorithm to

address the multiple measurement vector (MMV) problem with common sparsity profile can also

be achieved by a simple algorithm change.

3.1.1 Chapter’s Organization

In section 3.2 we present the rectified GSM prior from [80]. In section 3.3 we revisit the

GAMP algorithm in both its sum-product and max-sum versions. In section 3.4 we show how the

prior on xxx can be changed by changing the mixing density of the scale mixture and introduce a
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number of algorithms based on these priors. In section 3.5 we extend the approach to handle the

NNLS MMV case. Finally, in section 3.6 we present numerical results to show the convergence

and performance advantages the proposed approach can provide over existing algorithms.

3.2 Rectified Gaussian Scale Mixture Prior

Since it was shown that most super Gaussian priors that are sparsity promoting priors

can be represented by Gaussian scale mixtures [45], Gaussian scale mixture priors have been

successfully used in the general SSR problem [31]. Inspired by that success, [80] proposed the

following rectified Gaussian scale mixture (RGSM) prior on xxx to address the non-negative SSR

problem:

p(xi|γi) = N R(xi;0,γi), (3.2)

N R(xi;0,γi) = 2N (x;0,γi)u(xi), (3.3)

p(xi) =
∫

∞

0
N R(xi;0,γi)p(γi)dγi. (3.4)

Where the prior on xxx is controlled by the choice of the mixing density p(γ).

A type II framework is used to infer the hyper-parameters γγγ, which is then used to obtain

a point estimate of xxx. The EM algorithm is chosen to estimate γγγ, treating xxx as the hidden variable.

Using the current estimate γγγn, the E-step involves determining the conditional expectation of the

complete data log-likelihood Q(γγγ,γγγn):

Q(γγγ,γγγn) =Exxx|yyy;γγγn [ln p(yyy|xxx)+ ln p(xxx|γγγ)+ ln p(γγγ)] (3.5)

=̇
M

∑
i=1

Exxx|yyy;γγγn

[
−1

2
lnγi−

x2
i

2γi
+ ln p(γi)

]
(3.6)

In the M-step, Q(γγγ,γγγn) is maximized with respect to γγγ by taking the derivative and setting it equal
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to zero. Note this maximization problem involves simple scalar decoupled optimization problems.

In this chapter, we focus on the choice of using the GAMP algorithm to implement the E-step,

where we aim to illustrate some of the advantages that using the RGSM prior within GAMP has

over directly imposing a sparsity promoting prior on xxx.

3.3 Generalized Approximate Message Passing (GAMP)

In this section we revisit the GAMP algorithm, and show how the E-step of the EM

algorithm, mentioned in the previous section, can be implemented using GAMP. Approximate

message passing algorithms use Gaussian and quadratic approximations to achieve low complexity.

When given the the prior p(xxx) and the likelihood p(yyy|xxx), GAMP can approximate the minimum

mean square error (MMSE) estimate when its product-sum mode is implemented, or GAMP is

able to approximate the MAP estimate of xxx when its max-sum version is implemented. In its

sum-product version, GAMP approximates the marginal posteriors as follows:

p(xi|ri;τri) ∝ p(xi)N (xi;ri,τri), (3.7)

where in (3.7) ri approximates an AWGN corrupted version of the true xi, an approximation

which becomes exact in the large system limit, when AAA is i.i.d sub-Gaussian [50, 81]:

ri = xi + r̄i (3.8)

r̄i ∼N (0,τri). (3.9)

Based on this approximation, in sum-product mode, GAMP sets the estimate x̂i at the scalar

MMSE estimate of xi given ri, and it sets the estimated variance of the marginal posteriors τxi as
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follows:

x̂i = E{xi|ri = ri;τri} (3.10)

τxi = var{xi|ri = ri;τri} (3.11)

Applying the assumed rectified Gaussian scale mixture in (3.10) and (3.11) we find the

first two moments of the approximate marginal posterior distributions using sum-product GAMP:

x̂i = E{xi|ri = ri;τri}=
∫

xi

p(x|ri;τri) (3.12)

=
∫
+

xiN R(xi;0,γi)N (xi,ri,τri) (3.13)

using Gaussian pdf multiplication rule, and the mean of a rectified Gaussian

x̂i = ηi +
√

νih(
ηi

νi
) (3.14)

ηi =
riγi

τri + γi
(3.15)

νi =
τriγi

τri + γi
(3.16)

h(a) =
ϕ(a)

Φc(a)
, (3.17)

where ϕ refers to the pdf and Φc refers to the complimentary cdf.

τxi = var{xi|ri = ri;τri}=
∫

xi

x2
i p(x|ri;τri)− x̂2

i (3.18)

=
∫
+

x2
i N R(xi;0,γi)N (xi,ri,τri)− x̂2

i (3.19)
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using the Gaussian pdf multiplication rule, and the variance of a rectified Gaussian:

τxi = νig(
ηi

νi
) (3.20)

g(a) = 1−h(a)(h(a)−a) . (3.21)

In the max-sum version, GAMP sets x̂i at the scalar MAP estimate given ri using the

proximal operator, and it sets the parameter τxi as follows:

x̂i = prox− ln p(xi)(ri;τri) (3.22)

τxi = τrprox′− ln p(xi)(ri;τri) =
τri

1− (− ln p(xi))′′
(3.23)

prox f (â,τ
a), argmin

x∈RRR
f (x)+

1
2τa |x− â|2 (3.24)

In the case of max-sum GAMP implementation, we evaluate (3.22) and (3.23) with the assumed

prior on xxx:

x̂i = argmin
x≥0

1
2γi

+
1

2τri

|x− ri| (3.25)

x̂i =


riγi

τri+γi
= ηi if x≥ 0

0 if x < 0
(3.26)

τxi =
τriγi

τri + γi
= νi (3.27)

We point out here, that the computations we just showed in both the sum-product and max-sum

modes are relatively simple and generally readily available from previous results, unlike the more

involved computations typically needed for algorithms that impose non-negative direct sparsity

promoting priors.

The approximate marginal distributions can be obtained upon convergence of the max-
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sum GAMP, by computing (3.14) and (3.20). As shown in [80], there is no closed form for the

posterior distribution based on the RGSM prior, therefore one option is to use the the approximate

posterior computed by GAMP in its sum-product version. However in this chapter we would

like to use GAMP in its max-sum mode, where GAMP does not provide marginal distribution

approximations. Nonetheless, an extra step can be added to compute marginal distributions using

(3.14) and (3.20), and the computed marginals can be used in the E-step, which is similar to the

approach in [79]. This step is valid, because the assumption that ri is an AWGN corrupted version

of the true xxx still holds in the max-sum case, in the large system limit and under i.i.d sub-Gaussian

AAA [81].

As we mentioned, we focus in this chapter on the max-sum version of GAMP, where

we use it to find the approximate MAP estimate of xxx, and to implement the E-step as described

above. The GAMP portion of the algorithm is stated under the E-step portion of Table 3.1, where

we note here that we are using the version of GAMP from [52] that uses damping to enhance

convergence, where θs is the damping factor. We emphasize here that since γγγ is fixed during the

E-step, the E-step is not affected by the chosen mixing density p(γγγ), and remains unchanged

when the choice of p(γγγ) is changed.

3.4 Examples of Mixing Densities

In this section we demonstrate the flexibility of the RGSM framework by showing how

different priors can be imposed on xxx by changing the mixing density p(γγγ), resulting in a change

only to the M-step.

RGGAMP-SBL

For the first example choose a non-informative prior on γγγ, this choice results in an

algorithm that is equivalent to the algorithm in [80] when implemented using GAMP. In [80] the
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algorithm with non-informative prior was named rectified sparse Bayesian learning (RSBL). A

number of differernt techniques were used to implement the E-step of the algorithm including

GAMP. Here we would like to refer to the algorithm using a convention similar to [66], where we

call the algorithm rectified Gaussian GAMP (RGGAMP-SBL). For the non informative prior on

γγγ the M-step is:

γ
n+1
i = x̂i

2 + τxi (3.28)

Where as mentioned in the previous section x̂i and τxi are obtained using (3.14) and (3.20).

RGGAMP-LASSO

For the second example, we choose to demonstrate how the non-negative LASSO algo-

rithm can be implemented using this framework. The following mixing density is chosen for

p(γ):

p(γ) =
λ2

2
e−

λ2γ

2 u(γ) (3.29)

Based on this selection the effective prior on xxx becomes a rectified Laplacian:

p(x) =2u(x)
∫

∞

0
N (x|0,γi)

λ2

2
e−

λ2γ

2 u(γ)dγ

=λe−λxu(x).

It was previously shown in [79] and [80] that imposing a rectified Laplacian prior on xxx is equivalent

to solving the non-negative LASSO problem. Based on that, the M-step updates for λ and γ are
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be found to be the same as the GSM based LASSO from [39]:

γ
n+1
i =−1+

√
1+4λn(x̂2

i + τxi) (3.30)

λ
n+1 = 2N/∑

i
γ

n+1
i (3.31)

The full EM implementation of both algorithms is found in Table I

3.5 Multiple Measurement vector extension

In this section, we extend the SMV RGGAMP-SBL algorithm to the multiple measurement

vectors (MMV) problem. The MMV model can be represented as an extension of the SMV model

in (3.1) as follows:

yyy(t) === AAAxxx(t)+++ eee(t), t = 1,2...T (3.32)

xxx(t) ∈ RN
+, yyy(t) ∈ RM, (3.33)

where a common sparsity profile is assumed, meaning that all vectors share the same non-zero

locations. No correlation is assumed between non-zero elements. The prior assumed on each

element of the vector xxx(t) is:

p(x(t)i |γi) = N R(x(t)i ;0,γi) (3.34)

In this formulation, γγγ is the sparsity controlling parameter and is shared across t. To demonstrate

how this problem can be solved based on the RGSM prior we employed, we include here the

factor graphs of both the SMV and MMV cases in Fig. 3.1a and Fig. 3.1b, where in the factor

graphs gi corresponds to the likelihood function and fi corresponds to the prior. The SMV factor

graph corresponds to the E-step update implemented by GAMP, keeping in mind that during
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Table 3.1: RGGAMP based algorithms

Define
h(a) = ϕ(a)

Φc(a)
,

ϕ(a) is the pdf and Φc(a) is the complementary cdf of N (a;0,1)
g(a) = 1−h(a)(h(a)−a)
Initialization
SSS← |AAA|2 (component wise magnitude squared)
Initialize τ̇ττ

0
x > 0

sss0, ẋxx0← 000
for n = 1,2, ....,Nmax

Initialize τττ1
x ← τ̇ττ

n−1
x ,xxx1← ẋxxn−1

E-Step approximation
for k = 1,2, ....,Kmax

1/τττk
p← SSSτττk

x
pppk← sssk−1 + τττk

pAAAxxxk

τττk
s ←

σ−2τττk
p

σ−2+τττk
p

sssk← (1−θs)sssk−1 +θs(pppk/τττk
p− yyy)/(σ2 +1/τττk

p)

1/τττk
r ← SSS>τττk

s
rrrk← xxxk− τττk

rAAA>sssk

τττk+1
x ← νννk

x̂xxk+1← ηηηku(rrrk)

if ‖x̂xxk+1− x̂xxk‖2/‖x̂xxk‖2 < εgamp , break
end for %end of k loop

ẋxxn← ηηηk+1 +
√

νννk+1h(ηηηk+1

νννk+1 ) , τ̇ττ
n
x ← νννk+1g(ηηηk+1

νννk+1 )

M-Step
for GGAMP-RSBL
γγγn+1← |ẋxxn|2 + τ̇ττ

n
x

for GGAMP-Lasso

γγγn+1← −1+
√

1+4λn(|ẋxxn|2+τ̇ττ
n
x)

2λn

λn+1← 2N
∑i γ

n+1
i

if ‖ẋxxn− ẋxxn−1‖2/‖ẋxxn−1‖2 < εem , break
end for %end of i loop
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Figure 3.1: SMV Versus MMV factor graphs

the E-step γγγ is fixed and therefore is not included as a variable in the factor graph. When the

SMV factor graph is extended to the MMV case, we clearly see that it corresponds to solving

a number of independent E-step problems, since no connections between the individual factor

graphs exist. We mention here, that using a Bernoulli-Gaussian prior to directly impose sparsity

on xxx, would have required introducing a new variable on the factor graph which represents the

common support, and connects all SMV factor graphs together, which would add significant

complexity to deriving the algorithm. Therefore, the RGSM framework provides a significant

advantage in terms of simplicity. Assuming a non-informative prior on γγγ, once the individual

E-step estimates are obtained, the M-step can be implemented to update γγγ as follows:

γ
n+1
i =

1
T

T

∑
t=1
|x̂(t)i |

2 + τ
x(t)i

(3.35)
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3.6 Numerical Results

SMV Numerical Results

In this section we conduct a numerical study to compare the performance and runtimes

of the two SMV algorithms proposed in this chapter, and the algorithms previously proposed

in [79], where all algorithms are implemented using GAMP. The study also aims to illustrate the

convergence enhancement the RGSM hierarchical prior provides. The performance is studied

through the normalized mean squared error (NMSE):

NMSE , ‖x̂xx− xxx‖2/‖xxx‖2

In the following we compare the two algorithms proposed in this chapter, namely RGGAMP-SBL

and RGGAMP-LASSO in addition to the two algorithms from [79] which are the non-negative

Gaussian mixture approximate message passing (NNGMAMP) and the non-negative LASSO

approximate message passing (NNLAMP) algorithms. In all subsequent numerical experiments

we chose N = 1000, M = 500 and the number of non-zero elements K = 250. The experiments

were run over three different types on non-iid Gaussian matrices AAA, which are a) column correlated,

b) Low rank and c) Ill conditioned matrices. The details for how these matrices are built can be

found in [54] and [66].

Setting the SNR to 60dB, Fig. 3.2 shows the NMSE for all of the four algorithms over

a range of deviation from the i.i.d.-Gaussian AAA. We can clearly see that the RGGAMP-SBL

algorithm provides significant convergence improvement over the NNGMAMP algorithm as

AAA deviates from the i.i.d-Gaussian case. Moreover, despite the slight degradation in perfor-

mance RGGAMP-LASSO also shows better convergence properties. We also note here that the

NNLAMP experiences improved convergence when compared to the NNGMAMP algorithm.

We next reduce the SNR to 30dB and repeat the experiments. We can see in Fig. 3.3 that

RGGAMP-SBL still provides improved convergence compared to NNGMAMP. We also note
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Figure 3.2: NMSE comparison of SMV algorithms under non-i.i.d.-Gaussian AAA matrices with
SNR=60dB
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Figure 3.4: Runtime comparison of SMV algorithms under non-i.i.d.-Gaussian AAA matrices with
SNR=30dB

that except for the NNGMAMP, all other algorithms seem to have close performance when the

deviation from the i.i.d.-Gaussian case grows larger.

Finally, we present in Fig. 3.4 a comparison between the runtimes of different algorithms

at 30dB SNR. The figure shows that although there are slight variations in runtimes, all algorithms

have runtimes within the same range, which is expected since all algorithms are using the low

complexity GAMP.

MMV Numerical Results

In the MMV case we compare the developed RGGAMP-MSBL MMV algorithm to

the SMV algorithms, RGGAMP-SBL and NNGMAMP. The comparison aims to show the

advantage of jointly using the common support information, instead of solving for each vector xxx(t)
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Figure 3.5: TNMSE comparison of the MMV algorithm and SMV algorithms

independently. While more comparison to existing MMV algorithms should be done, we leave

that to future work, which should also include studying the case of having correlation between

non-zero elements of xxx, as was done before in the unconstrained case. We use time-averaged

normalized mean squared error TNMSE as the performance measure in the MMV case:

TNMSE ,
1
T

T

∑
t=1
‖x̂xx(t)− xxx(t)‖2/‖xxx(t)‖2

The experiments in Fig. 3.5 show the TNMSE for each algorithm against the sparsity

ratio K/N, where K is the number of non-zero elements in xxx. The experiments were performed

over different values of SNR with N = 1000, M = 500 and T = 5. We use a randomly generated

i.i.d.-Gaussian matrix AAA for each of the experiments. From the experiments, it is clear that

RGGAMP-MSBL is able to provide significant improvement in performance as K/M grows
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larger, where the improvement is more noticeable at higher SNRs. We re-emphasize here, that

this improvement comes at a small price of modifying the M-step of the algorithm.

3.7 Conclusion

In this chapter we showed the advantages of considering a hierarchical rectified Gaussian

scale mixture prior combined with the GAMP algorithm to solve the sparse non-negative least

squares problem. We focused on comparing the approach against other GAMP based algorithms

that directly impose a sparsity promoting prior on the unknown signal. We showed that the

advantages include simpler algorithm development, better convergence properties when the

transformation matrix is non-i.i.d.-Gaussian, the ability to change the prior on the unknown signal

through a simple change in the algorithm and the ability to extend the algorithm to the MMV

case through a simple change as well.
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Chapter 4

An MPDR Perspective and Extension of

Sparse Bayesian Learning

4.1 Introduction

In this chapter we offer a novel interpretation of the SBL algorithm based on the minimum

power distortionless response (MPDR) beamforming method in array processing. The SBL’s

iterations are interpreted as the MPDR beamformer (BF) iteratively applied to the measurements

and the beamformer parameters updated based on the estimates at each iteration, along with the

ability to add a denoising step at the output of the MPDR BF when a prior is imposed on xxx. The

potential of the new insight is demonstrated by extending the algorithm to incorporate priors other

than GSM priors. We present a low complexity version of the algorithm by replacing the MPDR

BF step with an approximate message passing (AMP) based MPDR implementation. We refer to

this methodology as the MPDR-SSR framework. We provide an interpretation of the proposed

algorithm’s convergence, where we show the Gaussian nature of the output noise of the MPDR

BF, and how the noise variance at the output of the MPDR BF and the output of the denoiser are

reduced at each iteration. These two concepts provide important intuition into designing better
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algorithms when more information about xxx is available.

4.1.1 Chapter’s Organization

The organization of the chapter is as follows. In Section 4.2, we present the general idea

of addressing the SSR problem from a source localization perspective. We then propose the

MPDR-SSR framework and use it to derive the LSBL algorithm. In section 4.3 we list some

denoising options based on different priors. In section 4.4 we numerically analyze the MPDR-SSR

convergence. Finally, in Section 4.5, we present numerical results to show the benefits of the

algorithms that we proposed in the light of the new understanding of SBL algorithm.

4.2 SSR as a Source Localization Problem

In this section we first restate the SSR problem and re-summarize the SBL algorithm for

completeness. We then present our main idea of treating the SSR problem as a source localization

one. We will rewrite the SBL updates to provide a new perspective of the algorithm based on an

MPDR interpretation. Using this new perspective we will extend the algorithm to a more general

SSR framework that can accept non-GSM priors that do not have closed form posteriors.

4.2.1 SSR problem and SBL Algorithm Summary

We start by restating the SSR problem and re-summarizing the SBL algorithm for com-

pleteness. The single measurement vector (SMV) sparse signal recovery (SSR) problem is

formulated as:

yyy === AAAxxx+++ eee, (4.1)
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where yyy ∈ RM is the observed measurement vector, xxx ∈ RN is the sparse vector to be recovered

from the measurement vector, AAA ∈ RM×N is a known transformation measurement matrix and

eee ∈ RM is additive Gaussian noise that can be modeled by eee∼N (0,σ2III), where in this chapter

we will assume that σ2 is known. Using a Gaussian scale mixture, the SBL algorithm imposes

a separable sparsity promoting prior on xxx, i.e. p(xxx) = Πp(xi). The prior of each element xi is a

zero mean Gaussian with the hyperparameter γi as its variance, p(xi) = N (xi;0,γi). The chosen

prior on γi specifies the mixing density and therefore determines the effective prior on xxx:

p(xi) =
∫

N (xi;0,γi)p(γi)dγi, (4.2)

It was shown in [45] that a number of sparsity promoting priors can be imposed by a GSM

prior, when using a proper mixing density p(γi). The goal of the algorithm is to estimate the

hyperparameter vector γγγ = [γ1, . . . ,γN ]
T , which can be achieved using evidence maximization.

Once an estimate γ̂γγ is obtained, it can be used to obtain an approximation for the posterior p(xxx|yyy)

by using p(xxx|yyy; γ̂γγ). One of the reasons this GSM prior is unique and desirable is that the posterior

has a closed form solution. One option to iteratively learn the hyperparameter vector γγγ is to use

the EM algorithm resulting in the EM-SBL [31]. To obtain an estimate of the hyperparameter,

EM-SBL uses the EM algorithm to minimize the SBL’s cost function given by [30, 31]:

χ(γγγ) =− log p(yyy,γγγ) =
1
2

log |ΣΣΣy|+
1
2

yyy>ΣΣΣ
−1
y yyy− log p(γγγ) (4.3)

ΣΣΣy = σ
2III +AAAΓΓΓAAA>, ΓΓΓ , Diag(γγγ).

xxx is treated as the hidden variable in EM-SBL and the hyperparameter update becomes:

γ
l+1 = argmax

γγγ
Exxx|yyy;γγγl [log p(yyy,xxx,γγγ)] , (4.4)
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where p(yyy,xxx,γγγ) is the joint probability of the complete data and p(xxx|yyy;γγγl) is the posterior under

the current hyperparameter estimate γγγl . Each iteration constitutes of an expectation step (E-step)

followed by a maximization step (M-step) and the algorithm iterates between the two until

convergence. In the following we will summarize the EM-SBL algorithm’s steps, and we will

rewrite them in subsequent subsections to provide an MPDR interpretation.

SBL’s E-step Based on the system model in (4.1), the likelihood function p(yyy|xxx;σ2) is

given by:

p(yyy|xxx;σ
2) =

1

(2πσ2)
M
2

exp
(
− 1

2σ2‖yyy−−−AAAxxx‖2
)
. (4.5)

Due to the GSM prior, for a given value of the hyperparameter γγγ the posterior p(xxx|yyy,γγγ) is Gaussian,

and is defined by its mean and variance given by:

p(xxx|yyy,γγγ) = N (xxx; x̂xx,ΣΣΣxxx) (4.6)

x̂xx = ΓΓΓAAA>ΣΣΣ
−1
y yyy, ΣΣΣxxx = ΓΓΓ−ΓΓΓAAA>ΣΣΣ

−1
y AAAΓΓΓ. (4.7)

We will refer to the posterior mean by x̂xx and we will use it as the algorithm’s point estimate of xxx.

We will also use τττx to refer to the vector of the diagonal entries of the covariance matrix ΣΣΣxxx. The

mean and variance defining the posterior p(xxx|yyy,γγγ) will be used to execute the M-step.

SBL’s M-Step: The M-step carried out by minimizing Exxx|yyy;γγγl ,σ2
[
− log p(yyy,xxx,γγγ;σ2)

]
over

γγγ where:

log p(yyy,xxx,γγγ;σ
2) = log p(yyy|xxx;σ

2)+ log p(xxx|γγγ)+ log p(γγγ) (4.8)

For the rest of this chapter we will assume that a non-informative prior is imposed on p(γi). Since
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log p(yyy|xxx) does not depend on γγγ and p(γγγ) is a non informative prior, the M-step becomes:

(EM-SBL) γ
l+1
i = argmin

γi

[
x̂2

i + τxi

2γi
+

1
2

log(γi)

]
= x̂2

i + τxi. (4.9)

where x̂i and τxi depend on γγγl and computed using Equation (4.7).

Another option for estimating γγγ is finding a fixed point iteration by the differentiation of

(4.3) and equating to zero. This leads to the algorithm from [30], referred to as FP-SBL, with the

following update:

(FP-SBL) γ
l+1
i = argmin

γi
[χ(γγγ)] = γ

l
i x̂

2
i /(γ

l
i− τxi). (4.10)

Where (4.10) assumes a non-informative prior on γγγ as well. We will drop the dependency of γγγ on

the iteration l in the sequel for brevity.

4.2.2 A Source Localization Perspective of the SSR Problem

Applying the SSR algorithms to address the source localization problem was previously

proposed in papers like [11]. In this section however, we present the novel idea of interpreting

the SSR SBL algorithm from a source localization perspective. Compared to the pure Bayesian

formulation of the SSR problem above, the proposed MPDR framework provides a deeper and

more intuitive understanding of the algorithm’s intermediate steps, allowing for improving and

expanding the algorithm based on this understanding.

The idea is to treat the non-zero elements of xxx as unknown source signals. In the direction

of arrival problem in array processing, each column of AAA is determined by the array manifold

and is computed using an incoming source angle and the array geometry. In the general SSR

formulation, the matrix AAA can be thought of sampling a fictitious array manifold, where each

column of AAA is associated with a fictitious location. AAA does not necessarily have structure, and the
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locations associated with the columns will not always have a physical interpretation. However we

can still apply the source localization concepts and benefit from the physical intuition of array

processing even for general AAA matrices as we will demonstrate in this chapter. Based on the

source localization interpretation, one can iteratively construct a linear receiver or BF to estimate

these unknown sources or non-zeros elements. In the SSR problem, the linear receiver or BF

build for source localization will not have very good performance at first. However, based on the

sparsity of the original vector xxx, the output of the estimator can be further improved by proper

soft thresholding [82]. The choice of linear receiver/BF should allow for this new estimate of xxx to

be used to adaptively improve the receiver. This improved receiver’s output can be used to get

an even better estimate of xxx, which will be used to improve the receiver further, and so on until

convergence.

We point out that the stagewise orthogonal matching pursuit (StOMP) algorithm [82]

uses this concept, where it applies a matched filter to the measurement as the choice of its linear

receiver/BF. The output of the matched filter represents a noise corrupted version of xxx where each

element experiences interference from the other non-zero elements of xxx. The algorithm estimates

the largest non-zero entry out of the matched filter. Based on this estimate, the matched filter

output is improved by removing the effect of the detected non-zero element from the measurement

vector. At the output of the matched filter the second largest non-zero element can now be detected

given that the interference from the largest element is removed. This process is repeated until all

the non-zero elements are recovered. In [82] the connection of (StOMP) is made to the multiple

user communication systems, and the interference at the output of the matched filter is referred to

as the multiple access interference (MAI), where the process of estimating elements and removing

them is analogous to the successive interference cancellation in multi-user communications.

Rather than using a matched filter, in this chapter we focus on a class of sparse signal

recovery algorithms associated with the MPDR/MVDR estimators and involves joint estimation of

sources. The approach is inspired by a novel understanding of the SBL algorithm, where instead
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of the posterior evaluation using Bayesian techniques, a multi-step array processing analysis of

the algorithm is proposed. The MPDR/MVDR algorithms depend on the covariance matrix of the

measurements which can be modeled using the powers of the elements of xxx. Therefore instead of

using successive interference cancellation like StOMP, we can use estimates of the powers of xxx to

improve the receivers/BFs at each iteration as we will show in the following sections.

4.2.3 Iterative Array Processing

By definition, when detecting xi the MPDR receiver minimizes the output variance of the

linear BF while leaving xi undistorted. This is expressed by the following optimization:

argmin
wwwi

www>i ΣΣΣywwwi s.t. www>i aaa.i = 1, (4.11)

where ΣΣΣy is the measurement covariance matrix and aaa.i is the column i of the matrix AAA. Using

Lagrange multipliers to solve (4.11), the MPDR receiver is found to be [68]:

wwwi =
ΣΣΣ
−1
y aaa.i

(aaa>.i ΣΣΣ
−1
y aaa.i)

(4.12)

ri = www>i yyy, τ̂ri = 1/(aaa>.i ΣΣΣ
−1
y aaa.i) (4.13)

where rrr is the output vector of the separate MPDR BFs utilized to estimate all sources, and τ̂ττr is

the vector of the corresponding total output variance. In the case that ΣΣΣy is unknown, one can use

a model for the measurement covariance matrix based on (4.1):

ΣΣΣy = (AAAΓΓΓAAA>+σ
2III). (4.14)

We reemphasize that γis are the diagonal elements of ΓΓΓ and they represent the powers of xis. In

this model, the powers γi are not known, and the closer they are to the true xi powers the better
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the performance of the MPDR BF becomes. Based on this model, we define the output noise

variance associated with each element ri as (total power - signal power):

τri = 1/(aaa>.i ΣΣΣ
−1
y aaa.i)− γi (4.15)

Previous work has suggested iteratively learning these powers using optimization tech-

niques [83]. However, this work did not go as far as making the connection to Bayesian algorithms,

and it is missing the important denoising step that is based on the prior on xxx. In the following

sections we will show how the SBL algorithm provides a framework for learning the covariance

matrix model in (4.14) by learning ΓΓΓ, and how it can be extended to incorporate different priors

on xxx.

4.2.4 An MPDR perspective of SBL

We now proceed to rewrite the equations of the EM-SBL algorithm in element wise form,

then we rewrite them in a form that allows us to see a new angle of the SBL algorithm:

x̂i = γiaaa>.i ΣΣΣ
−1
y yyy =

γiaaa>.i ΣΣΣ
−1
y yyy(aaa>.i ΣΣΣ

−1
y aaa.i)

(aaa>.i ΣΣΣ
−1
y aaa.i)

=
www>i yyyγi

( 1
aaa>.i ΣΣΣ

−1
y aaa.i
− γi)+ γi

=
riγi

τri + γi
(4.16)

τxi = γi− γ
2
i aaa>.i ΣΣΣ

−1
y aaa.i = aaa>.i ΣΣΣ

−1
y aaa.i(

γi

aaa>.i ΣΣΣ
−1
y aaa.i

− γ
2
i )

=
γi(

1
aaa>.i ΣΣΣ

−1
y aaa.i
− γi)

( 1
aaa>.i ΣΣΣ

−1
y aaa.i
− γi)+ γi

=
γiτri

γi + τri

(4.17)

Now that we have rewritten the SBL’s mean and variance estimates we can easily reformulate the

SBL’s iterations into the following three steps. The steps are detailed in Fig. 4.1, the steps of the

algorithm are also explained below.
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MPDR
aaa>.i ΣΣΣ

−1
y

aaa>.i ΣΣΣ
−1
y aaa.i

yyy

ΣΣΣy = (AAAΓΓΓAAA>+σ2III)

MMSE
x̂i = E{xi|ri} ,
τxi = var{xi|ri}

yyy

p(xi)
Initialize Powers γγγ

ΓΓΓ = Diag(γγγ)

Update Powers
γi = x̂2

i + τxi

ri ≈ xi +N (0,τri)

Figure 4.1: MPDR SSR Algorithm

A) MPDR Estimation: The algorithm builds an MPDR receiver with a measurement

covariance matrix ΣΣΣy modeled as (4.14), since the powers of xi are unknown they are initialized

to the same value, typically all ones. The MPDR receiver is then applied to the measurement

vector, where based on the MPDR’s definition the output is the desired xi plus noise,

www>i yyy = ri = xi + vi. (4.18)

With enough number of interfering sources (columns of AAA), this noise can be justifiably modeled

as Gaussian, vi ≈N (0,τri), where τri is given by (4.15). Previous work had shown that for linear

receivers the output noise corrupting the signal is Gaussian in the large system limit. In the next

section we will list some of the references and verify this claim as part of the convergence analysis

of our algorithm.

B) MMSE Estimation: Based on the AWGN assumption, the algorithm carries out an

MMSE estimate of xi using the prior p(xi). In the case of the SBL, equations (4.16) and (4.17)

show this MMSE step based on ri and τri and the GSM prior with a non-informative prior on

p(γγγ). The MMSE step enhances the estimate of xi.

C) Model Update: In this step the algorithm updates the powers of xxx using the MMSE
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estimate γi = E[x2
i ] = x̂2

i + τxi . Now that we have improved our power estimates, the output of the

updated MPDR will have lower noise variance which is reduced even further by the MMSE step,

which in turn results in more improvement of the MPDR and so on.

This interpretation of the SBL algorithm provides significant improvement in the un-

derstanding of the algorithm’s iterations, an understanding that goes beyond the mathematical

reduction of a cost function. The breakdown of the E-step of the algorithm into an MPDR and a

de-noising step allows for improvements and potential extensions of each of these steps based on

its function. Some of the enhancements can include:

1- Generalizing the algorithm beyond GSM priors, because it is possible to compute the MMSE

estimate for an AWGN corrupted version of the decoupled xis for a wide range of priors. Based

on this flexibility in the MMSE step we present an MPDR based SSR framework that we refer

to by MPDR-SSR. MPDR-SSR uses the algorithm from Fig. 4.1 with the choice of sparsity

promoting prior. The prior can reflect restrictions on xxx, like a non-negative constraint. It can

reflect more information, like knowing the exact generating prior of xxx. It can be due to choosing a

different modeling prior like a non-identically distributed Laplace prior, which did not previously

have a way to be evaluated directly and was solved by modeling it using a GSM [39, 84]. In the

following subsections we will provide details of the MMSE step for a Laplace prior, we also

apply some of the previously used priors in the MMSE step to produce different SSR algorithms.

2- If the imposed prior on xxx has some unknown hyperparameters, they can be updated at each

iteration applying the EM algorithm and using the approximate posterior E[xxx|rrr]. The same

approach is also used to learn any unknown parameters of the problem in the case that they are

not given beforehand.

3- The MMSE step can be replaced by a general noise filtering step, it can apply known successful

denoising filters, like the previously developed image filters for example.
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4.2.5 An MPDR perspective of FP-SBL

Although our main focus in this chapter is the EM-SBL algorithm, we also provide an

MPDR based interpretation of the FP-SBL algorithm (4.10) to illustrate that variants can also

understood intuitively based on this work. We rewrite the γi update from (4.10) in terms of the

MPDR outputs given in Eqs. (4.16) and (4.17) as follows:

γi← γi
(aaa>.i ΣΣΣ

−1
y yyy)2

aaa>.i ΣΣΣ
−1
y aaa.i

= γi
(aaa>.i ΣΣΣ

−1
y yyy)2/(aaa>.i ΣΣΣ

−1
y aaa.i)2

1/(aaa>.i ΣΣΣ
−1
y aaa.i)

. (4.19)

Examining (4.19) we point out that the numerator represents the measured instantaneous output

power of the MPDR BF, while the denominator represents the expected output power. The

algorithm adjusts the current estimate of γi by the ratio of these two values. When examining a

zero element xi if its power in the model γi is non-zero, the measured output power of the MPDR

will likely be lower than the expected power based on γi and therefore γi will be reduced at each

iteration until it reaches zero. If xi is a non-zero element, then its value will be adjusted at each

iteration until the measured and expected powers are equal and iteration for γi converges. Other

variants of the SBL algorithm that have been developed subsequently use these two quantities

to update γi with different variations; some use the square root of the ratio [85] and others like

the IAA algorithm use the measured output power of the MPDR to directly update γγγ skipping

the MMSE step in the EM-SBL [86]. An important insight this interpretation provides is that

the mentioned algorithms do not include a denoising step. They are effectively agnostic to the

prior on xxx and they only uses MPDR powers to iteratively update γγγ. This can explain the better

performance EM-SBL has been reported to achieve over other SBL variants.

4.3 Sparsity Promoting Priors and their MMSE Estimates
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4.3.1 A Non-Identical Laplace Prior Example

In this section we present a non-identical Laplacian density based algorithm that we call

Laplace sparse Bayesian learning (LSBL). We choose this particular prior to demonstrate the

capabilities of the new framework. Previous methods could not directly apply a such a prior,

and therefore resorted to expressing it as a GSM prior [39]. Other methods like VAMP can only

impose an i.i.d. Laplace prior on xxx but cannot handle the type of prior we use in this section. The

prior on xxx is:

p(xi) = 1/(2βi) exp
(
−|xi|/βi). (4.20)

The prior has the unknown hyperparameter vector βββ, which needs to be estimated from the

data. We note here that this prior is a special case of the Laplace scale mixture prior with a

non-informative prior on βββ. As mentioned before, for a chosen prior, the MPDR model and model

update steps do not change. We only need to change the MMSE step according to the prior, and

update any unknown parameters in the prior itself. In the following we detail the equations for

the MMSE step and βββ update. The derivation is very similar to the one in [87] with the difference

that the prior in [87] is an i.i.d. Laplace prior where all βis are equal. Therefore we will omit

the details of the derivation for space considerations. Given the output of the MPDR (4.11) with

output vector rrr and noise variance τττr we carry out the MMSE step as:

x̂i =
1

2βiΨi

[
e−α

−
i γ
−
i Q
(

γ
−
i√
τri

)
+ e−α

+
i γ

+
i Q
(
−γ

+
i√

τri

)]
(4.21)

τxi =
1

2βiΨi

[(
(γ+i )

2 + τri

)
e−α

+
i γ

+
i Q
(
−γ

+
i√

τri

)
+
(
(γ−i )

2 + τri

)
e−α

−
i γ

+
i Q
(

γ
−
i√
τri

)
− 2(τri)

2

βi
√

2πτri

e
−r2

i
2τri

]
(4.22)
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Ψi =
1

2βi

[
e−α

−
i Q
(

γ
−
i√
τri

)
+ e−α

+
i Q
(
−γ

+
i√

τri

)]
(4.23)

α
+
i =− ri

βi
− τri

2β2
i
, α
−
i =

ri

βi
− τri

2β2
i

(4.24)

γ
+
i = ri +

τri

βi
, γ
−
i = ri−

τri

βi
, (4.25)

where Q (.) is the standard Q-function, Q (x) = 1
2π

∫
∞

x e
u2
2 du. βββ is updated using the EM algorithm,

the update rule is:

βi =
1
ξi

2τri√
2πτri

e
− r2

i
τri +

ξ′i
ξi

(4.26)

ξi = e−α
−
i Q (

γ
−
i√
τri

)+ e−α
+
i Q (
−γ

+
i√

τri

) (4.27)

ξ
′
i = e−α

+
i γ

+
i Q (
−γ

+
i√

τri

)− e−α
−
i γ
−
i Q (

γ
−
i√
τri

) (4.28)

In addition to the GSM and Laplace priors, other sparsity promoting priors can be imposed

on xxx. The MMSE estimate for of an AWGN signal xxx with a sparsity promoting prior p(xxx) was

previously found for a number of priors. In the following we will summarize some the priors with

their corresponding AWGN MMSE.

4.3.2 Bernoulli-Gaussian Prior

The Bernoulli-Gaussian prior is given by:

p(xi) = (1−λ)δ(xi)+λN (xi;θ,φ) (4.29)
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The MMSE estimate for an AWGN corrupted xxx with a Bernoulli-Gaussian prior is [88]:

x̂i = E[xi|ri] = πiµi (4.30)

τxi = var[xi|ri] = πi(vi + |µ2
i |)− (π2

i |µ2
i |) (4.31)

πi =

[
1+
(

λ

1−λ

N (ri;θ,φ+ τri)

N (ri;0,τri)

)−1]−1

(4.32)

µi =
ri/τri +θ/φ

1/τri +1/φ
, vi =

1
1/τri +1/φ

(4.33)

4.3.3 Non-Negative Gaussian Scale Mixture

To enforce a non-negativity constraint on xxx a rectified GSM prior can be imposed on xxx as

follows [80]:

p(xi) = N R(xi;0,γi) = 2N (xi;0,γi)u(xi). (4.34)

The MMSE estimate for a non-negative GSM prior is:

x̂i = E[xi|ri] = ηi +
√

νih(
ηi

νi
), τxi = var[xi|ri] = νig(

ηi

νi
) (4.35)

ηi =
riγi

τri + γi
, νi =

τriγi

τri + γi
(4.36)

h(a) =
ϕ(a)

Φc(a)
, g(a) = 1−h(a)(h(a)−a) (4.37)

where ϕ refers to the pdf and Φc refers to the complimentary cdf of a zero-mean and unit-variance

Gaussian distribution.

Similar to the GSM case in EM-SBL, the hyperparameter vector γγγ is unknown and can be
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learned from the MMSE estimates using the EM algorithm:

γi = E[x2
i ] = x̂2

i + τxi (4.38)

4.3.4 Non-Negative Bernoulli-Gaussian

Another option to impose a non-negativity constraint on xxx is to impose a non-negative

Bernoulli-Gaussian prior on xxx as follows [79]:

p(xi) = (1−λ)δ(xi)+λN+(xi,θ,φ) (4.39)

N+(xi,θ,φ) =


N (xi,θ,φ)

Φc(−θ/
√

φ)
, if xi > 0

0, if xi ≤ 0

(4.40)

The MMSE estimate is given by:

x̂i = E[xi|ri] =
λ

ξi
πi
(
µi +
√

vih(αi)
)

(4.41)

τxi = var[xi|ri] =
λ

ξi
πi

(
vig(αi)+

(
µi +
√

vih(αi)
)2
)
− x̂i

2 (4.42)

ξi = (1−λ)N (0;ri,τri)+λπi (4.43)

αi =
−µi√

vi
, µi =

ri/τri +θ/φ

1/τri +1/φ
(4.44)

vi =
1

1/τri +1/φ
, πi =

N (ri;θ,τri +φ)Φc(αi)

Φc(−θ/
√

φ)
(4.45)

where ϕ refers to the pdf and Φc refers to the complimentary cdf of a zero-mean and unit-variance

Gaussian distribution. h(.) and g(.) are given in (4.37).

4.3.5 A Low Complexity Implementation

Examining the three steps of the proposed algorithm, we can identify that the step with the

highest complexity is the MPDR step, since it requires a matrix inversion of order M×M. In this
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section we propose using the low complexity generalized approximate message passing algorithm

(GAMP), to implement the MPDR step to reduce the complexity of the algorithm. In [66] it was

shown that the LMMSE estimator can be efficiently implemented using the Gaussian GAMP

(GGAMP) given in Table 4.1. It was also shown that when used as an LMMSE estimator GGAMP

had enhanced convergence properties compared to other AMP implementations. These properties

included robustness to non i.i.d. Gaussian transformation matrices AAA when proper damping was

used, exact mean upon convergence and it was numerically shown that the approximate variance

did not affect the overall performance of the algorithm. Using the linear relationship between the

MPDR and the LMMSE [68], the MPDR estimator can be implemented by scaling the GGAMP

LMMSE output. The low complexity MPDR algorithm is summarized in Table 4.1.

Table 4.1: GGAMP Low Complexity LMMSE/MPDR

Inputs AAA,γγγ,σ2

Initializations
SSS← |AAA|2 (component wise magnitude squared)
zzz0, x̂xx1← 000 and τττ1

x > 0
for k = 1,2, ....,Kmax

τττk
z ← 1/(σ2 +SSSτττk

x)

zzzk← (1−θz)zzzk−1 +θz
yyy−zzzk−1SSSτττk

x−AAAx̂xxk

SSSτττk
x+σ2

τττk
r ← 1/(SSS>τττk

z)

rrrk = (x̂xxk + τττk
rAAA>zzzk)

τττk+1
x ← τττk

r γγγi

τττk
r+γγγi

x̂xxk+1← (1−θx)x̂xxk +θx
rrrγγγi

τττk
r+γγγi

end for %end of k loop

In the algorithm, Kmax is the maximum number of iterations and θz and θx are damping

factors that are used to guarantee the convergence of the algorithm with non-i.i.d Gaussian AAA,

whose values can be determined according to an SVD operation on AAA [52, 66], or an adaptive

procedure of setting the factors can be implemented as in [54]. Instead of scaling the output of the

GGAMP algorithm to find the MPDR output, we notice that in the algorithm in Table 4.1, xxx itself

is computed as the LMMSE estimate given rrr. Therefore, upon convergence of the GGAMP, rrr and
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τττr can be directly used as the MPDR’s output and noise variance. The effect this low complexity

approximation might have on the convergence of the algorithm will be studied in Section 4.4, and

in the numerical analysis.

With the introduction of this low complexity version of the algorithm, we point out that

the VAMP algorithm [32] is another low complexity algorithm that can use general priors for

solving the SSR problem. However, while VAMP uses averaged variance vectors, MPDR-SSR

uses full vectors which allows the algorithm to address more general priors that are not necessarily

identically distributed. Another difference is that the VAMP reduces the complexity using a

one time SVD decomposition of AAA, which can be avoided in the case of MPDR-SSR. The SVD

computation might be problematic for extra large AAA matrices, especially that the MPDR-SSR can

be fully distributable, where AAA can be broken down into smaller blocks and does not need to be

fully stored when there are memory limitations. Since this chapter focuses on the connection

between SBL and its variants to MPDR, extensive comparisons between the proposed algorithm

and VAMP are beyond the scope of this chapter and is left for future research.

4.4 Convergence of the Algorithm

In this section we analyze the convergence of the proposed MPDR-SSR algorithm using

two main concepts. The first concept is that the MPDR output can be modeled as an AWGN

corrupted version of the sparse signal xxx. The second concept, is that proper denoising of the

MPDR output reduces the MPDR noise variance and provides a better estimate of xxx. Because

the iterative MPDR in our model depends on the power estimates of the elements of xxx, the better

estimate of xxx can be used at the next iteration to improve the MPDR receiver and produce a better

AWGN corrupted estimate which can be denoised and so on until convergence. In the following

we will refer to previous work that had shown these two concepts, then we will numerically

demonstrate their validity.
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When the MPDR receiver is applied to an element xi the interference and noise term vi

from (4.18) is given by:

vi = ∑
n6=i

aaa>.i aaa.ixi

aaa>.i ΣΣΣ
−1
y aaa.i

+www>i eee. (4.46)

Given the linear relationship between the MPDR and the LMMSE, we can exploit LMMSE

results for the statistics of the multi-user interference (MAI) in multi-user communication systems.

Intuitively, given that the interference corrupting xi is a summation of the dot product of columns

of AAA and the independent elements x j, in the large system limit the central limit theorem will apply,

and the interference can be modeled as additive Gaussian noise corrupting the signal. In addition

to that the term www>i eee is a linear transformation of the Gaussian noise, and is also Gaussian. The

noise and interference combined are assumed to be Gaussian with zero mean and variance τττrrr. The

Gaussianity assumption of the interference was shown to be true in the large system limit using

different methods, for example [89] used the central limit theorem, while [90, 91] used random

matrix theory and finally [92] used statistical physics to show that. In addition to that, the low

complexity AMP based MPDR approximation was also shown to produce an AWGN corrupted

version of xxx when the columns of AAA are i.i.d. Gaussian. In the following we will use QQ-plots to

demonstrate the validity of this assumption. We will use column correlated and ill-conditioned AAA

matrices to show that the Gaussianity assumption still holds under non-i.i.d Gaussian AAA, even

when using the low complexity versions of the algorithm. Finally, we use multiple priors to show

that the result holds beyond the GSM prior assumption. Fig. 4.2 shows QQ-plots for the first, a

middle and last iterations of the MPDR output. We can see that empirically the MAI Guassianity

assumption is valid throughout the algorithm’s iterations. We can also see that the assumption is

valid for cases when the entries of AAA are non i.i.d Gaussian, even for the low complexity MPDR.

Finally the assumption is valid when the prior on xxx is not imposed by a GSM.

For the second part of the convergence study we will examine how the noise variance
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Figure 4.2: QQ plots comparing MAI with a Gaussian distribution. (Left column) First iteration.
(Middle column) Middle iteration. (Right column) Last iteration. (Top row) SBL GSM prior with
i.i.d Gaussian A and full complexity MPDR. (Middle row) Laplace prior with column correlated
A and full complexity MPDR. (Bottom row) Bernoulli-Gaussian prior with ill-conditioned A
and low complexity MPDR.

evolves with each iteration. We will show how the MMSE estimate based on the AWGN corrupted

xxx and the prior on xxx can reduce the noise variance. We note here that the variance estimate τττrrr

from (4.15) is not exact, it is an approximation based on assuming the modeled ΣΣΣy matches the

actual covariance matrix of the measuerment vector, therefore we will also plot the evolution

of the actual and estimated variance of the output noise from the MPDR. Based on the results

from [82] proper thresholding of a sparse signal corrupted with AWGN can reduce the noise

variance. In our case the thresholding is provided by the MMSE estimate, and in the cases of

scale mixture priors in addition to the MMSE step we also apply pruning, where the γ values less

than a predetermined threshold are set to zero to provide an actual thresholding function. We

expect the noise variance from the MPDR output to be reduced by the MMSE step, producing a

better estimate of xxx. For the experimental study, we introduce the MPDR-BG algorithm that uses

the exact Bernoulli-Gaussian prior on xxx, where the MMSE step details for this prior can be found

in [88].
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Figure 4.3: Noise variance development with each iteration.(Top) SBL GSM prior with i.i.d
Gaussian A and full complexity MPDR. (Middle) Laplace prior with column correlated A and
full complexity MPDR. (Bottom) Bernoulli-Gaussian prior with ill-conditioned A and low
complexity MPDR.

88



From Fig. 4.3, it is clear that the MMSE estimate reduces the noise variance compared to

the output of the MPDR as expected from the results in [82]. It is also evident that this leads to

further reduction in the output noise variance at the next iteration and so on until convergence.

We observe that using an exact Bernoulli-Gaussian prior yields the most noise reduction at each

iteration and therefore requires the least number of iterations. Moreover, the Laplace based

algorithm requires a fewer number of iterations to converge compared to GSM one. We also

notice that for the scale mixture algorithms, when we start applying pruning, the difference

between the output of the MPDR and the thresholding noise becomes very minimal, and we see

significant improvement in noise variance. Finally, we notice that the output variance of the noise

is overestimated at first, until the algorithm starts converging and the estimate becomes more

accurate.
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4.5 Numerical Results

4.5.1 MPDR-SSR Numerical Analysis

In this section we present a numerical study to show the potential benefits of using a non-

GSM prior within the MPDR-SSR framework. We will present results for the LSBL algorithm

detailed in section 4.3.1. We will also present results for the MPDR-SSR framework with a

known Bernoulli-Gaussian prior, assuming that the prior matches the distribution used to generate

the signal xxx. Both algorithms will be compared with the EM-SBL algorithm. In addition to the

full complexity versions of the algorithms, we will also present results for the low complexity

versions of all three algorithms. We will focus on the high SNR case in our numerical analysis,

since the estimation of the noise variance can affect the algorithms’ performance. It is left for

future research to exploit the new understanding of the SBL and corresponding algorithms to find

an optimal estimate of the noise variance.

For the first experiment we set N = 1000, M = 500 and SNR = 60dB. Elements of xxx are

independently drawn from a Bernoulli-Gaussian distribution with zero mean and unit variance,

where the sparsity of xxx spans a range of K/N from 0.05 to 0.15. The performance metric we use

is the normalized means square error given by, NMSE , ‖x̂xx− xxx‖2/‖xxx‖2.
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Figure 4.4: Performance of SSR Algorithms with BG Elements
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From Fig. 4.4 we can see that Bernoulli-Gaussian algorithms provide a slight performance

improvement compared to the original SBL algorithm. In addition to that, the LSBL provides

some improvement over SBL as well. However, in general all three algorithms perform within

the same range. We also can conclude that the low complexity implementation of the algorithms

does not cause significant performance degradation compared to the full complexity algorithms.

To highlight some of the benefits of the other algorithms compared to the EM-SBL, we

will examine the runtimes of the algorithms. We run a comparison between runtimes of the

low complexity EM-SBL, LSBL and MPDR-BG algorithms. We exclude the full complexity

algorithms because when complexity is of interest, using the high complexity algorithms is

impractical given that the low complexity ones provide similar performance with significantly

lower complexity as shown in [66, 67]. We run the experiments using N = 10000, M = 2500 and

SNR = 60dB. We compute the runtimes for a range of K/N from 0.025 to 0.125. We plot the

runtimes in seconds of the three algorithms in Fig. 4.5.
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Figure 4.5: Runtime of Fast SSR Algorithms

From section 4.4, we saw how the LSBL requires fewer iterations to converge compared to

the EM-SBL, and the Bernouli-Gaussian algorithms required fewer iterations than both algorithms.

It is clear from Fig. 4.5 that this translates into faster runtimes for the LSBL compared to EM-SBL.

This result reinforces the conclusions from [38] since the LSBL prior is equivalent to a reweighed
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`1 and the EM-SBL is equivalent to a reweighed `2 algorithm. The performance and runtimes

results suggest that the LSBL can provide a faster algorithm compared to the EM-SBL without any

performance degradation. They also indicate that when the prior on xxx is known, the MPDR-BG

algorithm can provide better performance and faster runtimes than the other two algorithms.

To highlight the benefits of the knowledge of the prior on xxx, we repeat the performance

experiment with samples of xxx generated from a Bernoulli-Gaussian with a non-zero mean. We

use a mean value θ = 5 and repeat the experiment from Fig 4.4 with N = 1000, M = 500 and

SNR = 60dB.
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Figure 4.6: Performance of SSR Algorithms with BG Non-Zero Mean Elements

Fig. 4.6 shows how the MPDR-BG algorithm can perform better than the other two

algorithms when the non-zero elements of xxx are non-zero mean. Compared to the other two

algorithms, the MPDR-BG algorithm was able to handle lower sparsity levels before it failed.

This serves as an example of how our proposed framework provides more flexibility in choosing

the prior which can translate into better performance when more information about xxx is available.
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4.6 Conclusion

We presented an MPDR based interpretation of the SBL algorithm. A more intuitive

understanding of the algorithm can be achieved based on this interpretation, which can provide

important insight into the algorithm. We showed how this insight can be of significant value

by proposing modifications to the original SBL in the light of this new understanding. The

modifications enabled us to lower the complexity of the algorithm, while enabling incorporation of

a wider range of sparsity promoting priors, resulting in the MPDR-SSR framework. Improvements

to the SBL algorithm and its variants based on the new insights are not limited to the examples we

have presented in this work. Future research can include finding better noise estimates to improve

the denoising step, or using denoisers that are specifically designed for a certain application like

imaging for example.
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Chapter 5

An Array Processing Perspective of Sparse

Bayesian Learning Variants

5.1 Introduction

The fast-SBL algorithm was proposed in [71]. The proposed algorithm descends on the

SBL’s cost function sequentially using a greedy approach which adds basis to the model one

at a time to avoid inverting a large matrix. Similar to the original SBL the fast-SBL algorithm

is limited in the choice of prior to the GSM class and cannot directly incorporate additional

information about xxx. In this chapter, we show how the array processing interpretation of the EM-

SBL algorithm can be extended to interpret the fast-SBL algorithm. Moreover, we demonstrate

how this novel interpretation allows us to incorporate more general priors into the fast-SBL

algorithm, enhancing its performance in certain cases.

We also demonstrate how the how the array processing interpretation extends to the MMV

SBL variant that is TMSBL. Based on this interpretation we propose a novel AMP based low

complexity MMV algorithm that reduces the complexity of the TMSBL algorithm. The proposed

algorithm outperforms other AMP algorithms such as AMP-MMV algorithm from [65] and the
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GGAMP-TSBL from [66]. The proposed algorithm also offer complexity advantages over the

AMP algorithms when the number of measurements is large.

5.1.1 Chapter’s Organization

In Section 5.2 we provide an MVDR interpretation of the sequential fast-SBL algorithm,

and we propose an algorithm that extends it beyond GSM priors. In Section 5.3 we apply the

MPDR framework to the MMV problem, where we re-derive the TMSBL algorithm and propose

a low complexity version of it. In section 5.4 we present numerical results to show the benefits

of the algorithms that we proposed based on the array processing interpretation of the original

algorithms.

5.2 An Array Processing Perspective of the Sequential Fast-

SBL Algorithm

The sequential fast-SBL algorithm [71] was proposed to address the high complexity of

the SBL algorithm. The algorithm is a greedy version of the SBL and is based on updating a

single hyperparameter γi at each iteration to avoid solving a system of N linear equations. In

the following we summarize the algorithm from [71] and then we introduce an MVDR based

explanation of the algorithm. Similar to previous sections, the new interpretation provides

important insight into the algorithm’s iterations. As an example, we will show how this insight

allows us to extend the algorithm to incorporate additional information about the sparse vector xxx

when available. We demonstrate how incorporating this information can improve the algorithm’s

performance.
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5.2.1 Fast SBL Algorithm Summary

The original SBL algorithm suggests that when estimating the full vector γγγ any γi that

becomes close to zero can be pruned out of the system. The column of AAA denoted by the basis

vector aaa.i corresponding to a pruned γi will be pruned out, lowering the complexity of each

iteration. When the algorithm is close to convergence the problem size becomes closer to the

number of non-zero elements in xxx which is typically much smaller than the length of xxx. The

sequential fast-SBL algorithm in [71] exploits the sparsity of the vector xxx and the corresponding

hyperparameter vector γγγ. The algorithm starts with an empty set assuming all γis are equal

to zero, and then sequentially adds, deletes or updates the values of γis and the corresponding

columns of AAA, leading to a more computationally efficient algorithm. We will summarize the main

idea behind the algorithm, while the detailed derivation can be found in [71]. In the fast-SBL

algorithm [71], sequential updates of γis are achieved by decomposing the covariance matrix Σy

in the cost function of the SBL algorithm (4.3):

ΣΣΣy = σ
2III +∑

j 6=i
γ jaaa. jaaa>. j + γiaia>i = ΣΣΣIi + γiaia>i , (5.1)

where ΣIi is the measurement covariance matrix with the contribution of γi removed. We refer to

ΣIi as the covariance matrix of the interference from all the other x js when the element of interest

to be recovered is xi. This notation is consistent with the array processing perspective of the

problem at hand. Based on this decomposition the SBL cost function (4.3) can be decomposed

into a term which is independent of γi and a term dependent on a single γi, and the cost function

can be minimized with respect to a single element at a time. In [71] it was shown that the unique

minimum of χ(γγγ) with respect to γi is:

γi =


q2

i − si

s2
i

, if q2
i > si

0, if q2
i ≤ si

(5.2)
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qi = aaa>.i ΣΣΣ
−1
Ii

yyy, si = aaa>.i ΣΣΣ
−1
Ii

aaa.i. (5.3)

Based on (5.2), the fast-SBL algorithm starts by assuming all γi values are zeros, and the

set of corresponding effective columns or basis chosen of the matrix AAA is empty at this stage.

For a single chosen γi the values qi and si are computed and a decision on whether to include it

and its corresponding basis, or exclude it from the model representation is made based on (5.2).

The schedule for choosing which γi to update next can be random, but in general the algorithm

chooses the next γi that results in the maximum reduction of the SBL’s cost function. x̂xx and Σx can

be updated based on the updated γi and corresponding aaa.i using (4.7) with a modified AAA matrix

that includes active columns only.

5.2.2 An MVDR Interpretation of Fast SBL

The algorithm can be interpreted as a greedy way of constructing an MVDR beamformer.

We start with rewriting the fast-SBL’s γγγ update rules to make them more inline with the MVDR

receiver. Using si and qi definitions, (5.2) can be rewritten as:

γi =


(

aaa>.i ΣΣΣ
−1
Ii yyy

aaa>.i ΣΣΣ
−1
Ii aaa.i

)2− 1
aaa>.i ΣΣΣ

−1
Ii aaa.i

, if (
aaa>.i ΣΣΣ

−1
Ii yyy

aaa>.i ΣΣΣ
−1
Ii aaa.i

)2 >
1

aaa>.i ΣΣΣ
−1
Ii aaa.i

0, if (
aaa>.i ΣΣΣ

−1
Ii yyy

aaa>.i ΣΣΣ
−1
Ii aaa.i

)2 ≤ 1
aaa>.i ΣΣΣ

−1
Ii aaa.i

(5.4)

Similar to the previous section, the algorithm starts by modeling the measurement covariance

matrix by ΣΣΣy = (σ2III +AAA>ΓΓΓAAA), where ΓΓΓ = diag(γγγ). In this case the algorithm starts with an

all zero vector γγγ, where single γis are added to the model at each iteration, and later on they

can updated or deleted. After initializing the algorithm with the first γi value, and based on the

covariance matrix model ΣΣΣy, the algorithm seeks detecting non-zero elements of xxx one at a time.

To do so the algorithm builds an MVDR receiver for xi, where unlike the MPDR receiver, the
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MVDR receiver uses the noise and interference covariance matrix ΣΣΣIi from (5.1), the receiver is:

ŵwwi =
aaa>.i ΣΣΣ

−1
Ii

yyy

aaa>.i ΣΣΣ
−1
Ii

aaa.i
, ŵww>i yyy = xi + vi, (5.5)

where vi is refered to by MAI because it represents the interference from other elements of xxx

corrupting the element xi at the output of the MVDR. Since this is a linear receiver, MAI results

referred to in previous sections hold here as well. Therefore the output of the receiver is an

AWGN corrupted version of xi and vi is modeled as a zero mean Gaussian with its variance

given by 1
aaa>.i ΣΣΣ

−1
Ii

aaa.i
[68]. Our interpretation of the fast SBL algorithm is based on two values of

interest associated with the given MVDR. The first value is the total measured output power of

the receiver given by (
aaa>.i ΣΣΣ

−1
Ii

yyy

aaa>.i ΣΣΣ
−1
Ii

aaa.i
)2 which represents the total output power from the MVDR BF,

combining the powers of the desired xi and the MAI power from all other elements of xxx. The

second value is the expected MAI power given by the model which is the variance of the output

AWGN noise given by 1
aaa>.i ΣΣΣ

−1
Ii

aaa.i
. We note here that the accuracy of the noise power estimate

depends on how good ΣΣΣy approximates the actual measurement covariance matrix, and therefore

as more γis are estimated properly this MAI power estimate will become more accurate. Based

on these definitions, the algorithm proceeds by comparing the total measured output power of the

MVDR BF to the expected output noise power at a chosen xi. If the total output power of the

MVDR exceeds the expected noise power, the algorithm attributes the difference to a non-zero xi

at that location, and sets the power of that source γi to that difference. If γi was already previously

added to the model, it’s value is updated as the difference as well. If the output power is equal to or

less than the noise power, the algorithm attributes the output power to noise only and assumes the

absence of a non-zero element at that location, therefore γi is removed from the model. Because

the estimate of the covariance matrices ΣΣΣIis are improving as we improve the estimates of γis, the

noise variance estimates are also improving with each iteration. Therefore the algorithm needs

to revisit its decisions on γis as we go forward. Similar to the convergence analysis in previous
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sections, each iteration improves the estimate of γγγ which improves the estimate of the output

noise, which in turn leads to further improvement in the estimate of γγγ, and so on until convergence.

Based on the γis included in the model, the mean x̂xx and covariance ΣΣΣx of xxx from (4.7) can be

computed using fewer number of columns of AAA hence reducing the complexity.

5.2.3 Exploiting Additional Information with Fast SBL

This new perspective of the fast SBL algorithm provides opportunities to improve on the

algorithm. As an example, we extend the algorithm to incorporate additional information about xxx

by imposing priors that represent this information. To demonstrate the performance gains from

such extension, we will impose some new priors on xxx and propose modifications to the fast-SBL

algorithm to incorporate these priors.

To include the prior in the process of improving the MVDR, we propose a modified

algorithm. The proposed algorithm keeps the steps of adding and deleting γis from the model

unchanged. However, the values of x̂xx and τττxxx are computed using the two steps used in the previous

section, where the MVDR receiver is first applied to xi and then an MMSE estimate is computed

based on the output of the MVDR and the chosen prior on xi. In addition to that, whenever

we need to re-estimate a value of γi the estimate is computed using the power estimate of xi

which is E[x2
i ] = x̂2

i + τxi . If the prior on xxx has unknown parameters, they are learned using the

EM algorithm based on the approximate posterior p(x̂xx|rrr) produced by the MMSE output. The

algorithm’s details are summarized in Table 5.1.

Previous work from [34] imposed a Laplacian prior on xxx by representing it using a GSM

and a density on γγγ. However, non GSM priors could not be previously incorporated into the

fast-SBL algorithm. In the numerical analysis section we will compare the algorithm from [34] to

some more flexible priors that can be handled by the proposed algorithm, and we will demonstrate

how in some cases imposing non-GSM priors can enhance the performance of the algorithm. We

will present results for a number of algorithms, the first set addresses the problem in (4.1), where
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Table 5.1: Fast MVDR-SSR algorithm

Input: AAA,yyy,σ2

Set all γis to 0

Initialize a single γi: γi =
‖aaa>.i yyy‖2/‖aaa.i|2−σ2

‖aaa.i|2

While convergence is not achieved
Select a candidate element γi and the corresponding basis aaa.i
update si and qi using (5.3)
if q2

i − si > 0 AND γi = 0 then
add aaa.i to the model and set γi = q2

i − si
compute ri = qiyyy/si,τri = 1/si

x̂i = E[xi|ri],τxi = var[xi|ri]
else if q2

i − si > 0 AND γi > 0 then
compute ri = qiyyy/si,τri = 1/si

x̂i = E[xi|ri],τxi = var[xi|ri]
re-estimate γi, γi = x̂2

i + τxi

else if q2
i − si < 0 AND γi = 0 then

prune aaa.i from the model and set γi = 0
end if

end while

we will impose an i.i.d. Laplace prior, a non-identical Laplace and a Bernoulli-Gaussian prior

on xxx, resulting in the algorithms, Fast-MVDR-`1, Fast-MVDR-Laplace and Fast-MVDR-BG.

The second set of algorithms address the case when a non-negative constraint is imposed on xxx,

therefore we impose a non-negative GSM prior and a known non-negative Bernoulli-Gaussian

prior on xxx resulting in the algorithms Fast-NN-MVDR-SBL and Fast-NN-MVDR-BG where the

MMSE step details can be found in [79, 80].

5.3 MMV SBL Using MPDR

In this section, we demonstrate the strength of the proposed MPDR framework by ap-

plying it to the Multiple Measurement Vector (row sparse signal vectors using a sequence of

measurements that are acquired using the same sensing matrix AAA). The row sparse signal vectors

of interest share a common sparsity profile, and it is common for the amplitudes of non-zero
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elements of the signals to be correlated. We refer to this correlation by temporal correlation,

assuming the measurements are acquired at different points in time. It was shown in [57–60]

that having multiple vectors can improve the recovery performance compared to the single mea-

surement case. Moreover it was found that not accounting for the temporal correlation can result

in serious degradation in the algorithm’s performance. A number of Bayesian algorithms were

proposed to address the MMV problem. Among the most successful is a Bayesian algorithm

known as the TMSBL algorithm [61], which models the sparsity and correlation of the signals

using a modified Gaussian scale mixture prior. Other Bayesian algorithms addressed the high

complexity issues associated with the TMSBL algorithm by using an AMP based model with

an AR(1) process to model the temporal correlation [65, 66]. Although AMP algorithms did

offer significant complexity improvements, TMSBL still achieved superior successful recovery

rates over them. In the following we summarize the TMSBL model and algorithm, we will then

demonstrate how the MPDR SSR framework can be applied to the MMV problem. The strength

of the approach lies in the fact that the MPDR decouples the measurements in space, allowing

us to deal with the temporal correlation one row at a time simplifying the problem significantly.

This approach enables the potential to deal with temporal correlation models that would be too

complex to address without decoupling the measurements. As an example, we will apply the

MPDR framework to the TMSBL model and show how the resulting algorithm is equivalent to the

TMSBL. Based on this new MPDR derivation of the TMSBL, we will propose a low complexity

algorithm based on the AMP MPDR receiver. In the numerical analysis section we will show

how the proposed algorithm outperforms previous AMP based MMV algorithms, and how it has

an advantage over them in complexity as the number of measurement grows.
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5.3.1 TMSBL Algorithm

The MMV model can be stated as:

YYY = AAAXXX +EEE, (5.6)

where YYY = [yyy(1),yyy(2)...,yyy(T )] with yyy(t) ∈ RM. The objective is to recover XXX = [xxx(t),xxx(2)...,xxx(T )]

with xxx(t) ∈RN , where the index (t) indicates the measurement number, with T total measurements.

AAA ∈ RM×N is known, and EEE = [eee(1),eee(2)...,eee(T )] is matrix with columns of i.i.d. noise vectors

modeled as eee(t) ∼N (0,σ2III).

As mentioned before, TMSBL assumes a common sparsity profile. Furthermore, TMSBL

assumes the sources and therefore the rows of XXX are independent. The common sparsity profile

and the temporal correlation are modeled using the following Gaussian prior on each row of XXX :

xxxi. = N (0,BBBγi), (5.7)

where xxxi. is the row i of the matrix XXX , γi controls the row sparsity and BBB ∈ RT×T models the

temporal correlation within xxxi.. BBB is estimated by the algorithm, and to avoid over-fitting BBB is

assumed to be the same across all rows.

Based on this prior and the system model (5.6), TMSBL attempts to use the EM algorithm

to learn the hyperparamer vector γγγ and BBB from the data. TMSBL steps are derived in [61] by

reducing the original problem’s size and applying some approximations. We summarize the

approximate E and M steps of the algorithm, while the The details of the derivation can be found
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in [61].

TMSBL E-step :ΣΣΣx = (ΓΓΓ−1 +σ
−2AAA>AAA)−1 (5.8)

X̂ = ΓΓΓAAA>(σ2III +AAAΓΓΓAAA>)−1YYY (5.9)

TMSBL M-step :γi =
1
T

xxxi.BBB−1xxx>i. +(ΣΣΣx)ii (5.10)

B̃BB =
N

∑
i=1

xxx>i. xxxi.

γi
, BBB = B̃BB/‖BBB‖F (5.11)

5.3.2 Iterative MPDR Applied to MMV Problems

The same three step technique proposed in section 4.2.4 is applied to the MMV problem:

applying an MPDR receiver based on the current estimate of XXX to the measurement matrix YYY , an

MMSE step based on the assumed prior on XXX to denoise the output of the MPDR and finally an

update to the powers in the MPDR model based on the new estimate of XXX .

MPDR Receiver Step: As before, the ith source xxxi. is isolated using the MPDR BF:

wwwi =
ΣΣΣ
−1
y aaa.i

aaa>.i ΣΣΣ
−1
y aaa.i

, ΣΣΣy = (AAAΓΓΓAAA>+σ
2III), ΓΓΓ = Diag(γγγ) (5.12)

This MPDR step is general, and it only uses the common sparsity profile assumption of XXX .

Therefore each row of XXX shares the power estimate parameter in the model which is represented

by γi. Another insight, the framework provides into TMSBL (Equation 5.9) is that for the method

to be successful, i.e. mitigate interference for each measurement, the power levels have to

consistent in time. This means a B matrix with ones or near ones along the diagonal. When the

MPDR receiver is applied to the measurement matrix, each row is decoupled into the original

signal corrupted by noise:

rrri. = www>i YYY = xxxi.+ vvvi., (5.13)
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where vvvi. represents the interference plus noise, and we will refer to it by the output noise. Based

on the results of linear receivers presented in section 4.4, the distribution of each element of the

output noise vit is Gaussian, and therefore each row of the noise matrix vvvi. is jointly Gaussian.

Denoising (MMSE) Step: Decoupling reduces the complexity of the problem signifi-

cantly, because the decoupled rows need to be only jointly denoised in time. This is as opposed to

jointly processing the full matrix XXX when the MPDR receiver is not applied first. In the following,

we will use the TMSBL prior on xxxi. as an example on how to proceed with denoising based on an

MMSE estimate of xxxi.. Other techniques can be applied for the denoising step, but we leave that

for future work.

Given that each row of the noise matrix is jointly Gaussian, to carry out the MMSE step

we will need to find noise covariance matrix of noise vvvi.. We start by finding the covariance

matrix of the output of the MPDR receiver rrri. denoted by ΣΣΣri , to simplify the analysis we will

consider one element of the cavariance matrix at a time. We use the subscripts a and b to denote

measurement indexes:

(ΣΣΣri)aa =
N

∑
l=1

www>i (aaa.lBaaγlaaa>.l +σ
2)wwwi

= www>i (BaaAAAΓΓΓAAA>+σ
2III)wwwi ≈ www>i Baa(AAAγγγAAA>+σ

2III)wwwi (5.14)

(ΣΣΣri)ab =
N

∑
l=1

www>i (aaa.lBabγlaaa>.l )wwwi

= www>i (BabAAAΓΓΓAAA>)wwwi ≈ www>i Bab(AAAΓΓΓAAA>+σ
2III)wwwi (5.15)

We argue that the approximations in (5.14) and (5.15) are valid not only at high SNR, but at lower

SNR values as well. The iterative MPDR insight allows us to see that at initial iterations the term

www>i AAAΓΓΓAAA>wwwi will be more dominant than the noise term. This is due to the fact that the MPDR

receiver is not providing sufficient interference cancellation when γγγ is not accurate. While the

algorithm has not converged to the correct γγγ values, the first term will continue to be dominant.
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However, if the algorithm does converge to the correct γγγ it means that the algorithm has converged

to the correct solution and the approximation is no longer relevant. This explanation highlights

why the MPDR interpretation is valuable in understanding TMSBL’s iterations, where a similar

approximation was made in [61], but it was only able to point out its validity at high SNR without

providing further insight into why it still works for lower SNR values.

ΣΣΣri = BBB
1

aaa>.i ΣΣΣ
−1
y aaa.i

(5.16)

ΣΣΣvi = BBB
1

aaa>.i ΣΣΣ
−1
y aaa.i

−BBBγi = BBBτri. (5.17)

Based on the noise covariance matrix and the prior on XXX the MMSE step can be carried out as

follows:

x̂xxi. = BBBγi(BBBγi +BBBτri)
−1rrri. = γi(γi + τri)

−1rrri. (5.18)

ΣΣΣxi. = BBBγi−BBBγi(BBBγi +BBBτri)
−1BBBγi = BBBτxi (5.19)

MPDR Model Update To update the MPDR receiver with the proper values γγγ, we will

use the fact that in the model E[xxxi.xxx>i. ] = BBBγi. Given the posterior mean (5.18) and covariance

(5.19) of xxxi. we have:

E[xxxi.xxx>i. ] = BBBγi = ΣΣΣxi. + x̂xx.ix̂xx>.i (5.20)

γi =
Tr
[
BBB−1(ΣΣΣxi. + x̂xx.ix̂xx>.i )

]
T

(5.21)

To update BBB we use the same TMSBL update rule from (5.11), where in the context of estimating

unknown parameters from the output, this update rule can be thought of as a sample covariance

matrix of the elements in each row averaged over all the rows of XXX . Putting these steps together we

refer to the resulting algorithm by the MPDR-TSBL. It can be easily seen that the MPDR-TSBL

algorithm derived is exactly equivalent to the TMSBL algorithm. This new perspective of the
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TMSBL algorithm allows us to use the AMP based low complexity MPDR algorithm to propose a

low complexity TMSBL algorithm. The low complexity TMSBL can be implemented simply by

replacing the MPDR step from (5.13) by the GAMP MPDR from Table 4.1. We will show in the

numerical analysis section how this proposed low complexity algorithm outperforms previously

proposed AMP based MMV algorithms. Moreover, the complexity of the algorithm does not

grow with increasing the number of time measurements, since we use a common MPDR receiver

to process all columns of XXX , in contrast to other AMP based methods that build a separate factor

graph for each measurement and therefore their complexity grows as the number of measurements

grows.

5.4 Numerical Analysis

5.4.1 Fast-SBL Numerical Results

In this section we present numerical studies to illustrate the performance improvement

provided by using general priors with the fast-SBL algorithms as opposed to GSM priors. For the

first experiment we study the performance of three algorithms proposed in section 5.2.3, namely

Fast-MVDR-`1, Fast-MVDR-Laplace and Fast-MVDR-BG. The algorithms will be compared

against the original Fast-SBL algorithm from [71], and against the Fast-Laplace-SBL [34]. We

set N = 1000, M = 500 and SNR = 60dB. We compute the NMSE for a range of K/N from 0.05

to 0.15 in Fig. 5.1.

From Fig. 5.1, we can see how the Bernoulli-Gaussian and Laplace priors provide perfor-

mance enhancement compared to the GSM based fast-SBL and fast-Laplace-SBL algorithms.

In the second experiment we show how using general priors with the fast-SBL algorithm

can be of value when some restrictions apply to xxx. We enforce a non-negative constraint on xxx,

and based on that we propose a non-negative fast-SBL algorithm denoted by NN-Fast-SBL using

a non-negative GSM prior. We also study the performance of the NN-Fast-SBL-BG algorithm
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Figure 5.1: Performance of Fast SSR Algorithms

which uses a non-negative known Bernoulli-Gaussian prior. We compare both algorithms to the

fast-SBL algorithm from [71]. We set N = 1000, M = 500 and SNR = 60dB. We compute the

NMSE for a range of K/N from 0.05 to 0.2, we limit the comparison to this range since beyond

this range all of the algorithms will fail.
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Figure 5.2: Performance of Non-Negative Fast SSR Algorithms

From the results in Fig. 5.2, we can see that imposing a non-negative GSM prior on

xxx improves the recovery performance of the non-negative signal. Moreover, using the exact

non-negative Bernoulli-Gaussian prior on xxx provides further performance improvement. These

two algorithms serve as an example on how extra information about xxx can be incorporated into
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the fast-SBL to achieve better results.

5.4.2 MMV MPDR-TSBL Numerical Results

In this subsection we will compare the performance and complexity of the low complexity

MPDR-TSBL to the full complexity TMSBL algorithm. we will also compare MPDR-TSBL

to two other AMP based MMV algorithms, namely the GGAMP-TSBL [66] and the AMP-

MMV [65].

We will use the time-averaged normalized mean squared error (TNMSE) as a metric to

evaluate the quality of the recovered MMV vectors, TNMSE , 1
T ∑

T
t=1 ‖x̂xx(t)− xxx(t)‖2/‖xxx(t)‖2. We

will also apply a complexity measure by tracking the time each algorithm requires to compute the

final estimate, where we measure the time in seconds.

For the first experiment we study the performance of different algorithms versus the

sparsity ratio K/N. The source matrix xxx was generated with K non-zero rows that are randomly

chosen, the correlation between the non-zero elements in each row was modeled by an AR(1)

process with a correlation coefficient ρ = 0.95. The problem dimension were set to N = 1000,

M = 500 and T = 4. K was increased from 0 to M and the SNR set to SNR = 60dB. We choose

to use an i.i.d. Gaussian AAA. This choice is made to allow us to include the AMP-MMV algorithm

in the comparison, because while the other algorithms can be shown to converge using non-i.i.d.

Gaussian AAA, AMP-MMV will diverge in such a case. Fig. 5.3 shows that as the number of non-

zero elements increases, MPDR-TSBL experiences minimal performance degradation compared

to the full complexity TMSBL algorithm. On the other hand, we can clearly see that the other two

AMP based algorithms experience significant performance degradation compared to the TMSBL

and MPDR-TSBL as K/N is increased. The MPDR-TSBL algorithm offers similar performance

to the TMSBL algorithm with potentially significant complexity reduction, which will be shown

next.

For the second experiment, we study the complexity advantage the MPDR-TSBL provides
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Figure 5.3: Performance of MMV Algorithms

over the TMSBL algorithm, and potentially over the other two AMP based algorithms. For

this experiment we use the same generating model from the previous experiment, where we fix

the ratio K/N at 0.2 and M/N at 0.5, and we increase N. To study the effect of the number of

measurements on the complexity of different algorithms, we run two experiments, one with T = 4

time measurements, and another with T = 20.

In Fig. 5.4 we use solid lines for the results obtained using T = 4 and dashed lines for

results obtained from T = 20. Fig. 5.4 shows the significant complexity reduction MPDR-TSBL

provides over TMSBL. The TMSBL complexity was shown to be O(NM2) in [66] due to the

matrix inverse computation in (5.9) and (5.8). While the complexity of the low complexity

MPDR was found to be O(NM) in [66] which explains the complexity difference. Another

important observation is that the other two AMP algorithms have complexity orders of O(T NM)

because they were designed by building separate factor graphs for each time measurement. Both

TMSBL and MPDR-TSBL apply a common MPDR step to all measurements, and therefore their

complexities do not depend on T . This is clear in Fig. 5.4, where GGAMP-TSBL and AMP-MMV

experienced increased runtimes as we increased the number of measurements, however the other

two algorithms had minimal runtime increase with increased T .
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Figure 5.4: Complexity of MMV Algorithms

5.5 Conclusion

We showed how the SBL’s MPDR interpretation from the previous results extends to other

versions of the SBL algorithm, like the sequential fast-SBL and the MMV TMSBL algorithms. For

the fast-SBL algorithm, we were able to enhance the algorithm’s performance by incorporating

extra information into the imposed priors. Where in the MMV case we demonstrated how the

MPDR framework can decouple the problem in space transforming it into a much easier problem

to solve. Based on this decoupling, we proposed a low complexity TMSBL algorithm that

outperforms existing AMP based low complexity MMV algorithms.
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Chapter 6

Semi-Blind Channel Estimation in MIMO

Systems with Discrete Priors on Data

Symbols

6.1 Introduction

Obtaining accurate channel estimates is an important factor in achieving capacity gains in

MIMO systems. Traditionally channel estimates were obtained using training pilots. However, as

the number of users in a MIMO system increases, maintaining accurate channel estimates requires

the length of the training pilots to increase, lowering the effective throughput. Semi-blind channel

estimation uses data symbols in addition to the training symbols to improve channel estimates.

This allows semi-blind techniques to have shorter training overhead and achieve better accuracy

of channel estimates at the cost of increased processing at the receiver. Different techniques have

been investigated for semi-blind channel estimation. In [93], the channel matrix was divided into a

whitening matrix that is estimated using received data and a rotation matrix that is estimated using

pilot symbols. In [94], a two level maximum likelihood (ML) optimization method is proposed
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for channel and data estimation. In addition, a number of papers proposed to solve the problem

using different formulations of the Expectation Maximization (EM) algorithm [70, 95–97]. In

this letter we focus on the EM formulation that alternates between estimating the data symbols in

the E-step and finding the best channel estimate in the M-step. To keep the algorithms tractable,

in [97] a Gaussian prior on the data symbols is assumed, although the data symbols are drawn

from a discrete distribution that represents the data constellation. To better represent the discrete

distribution, in [70] a heuristic approach is proposed to demap the E-step’s output to discrete

symbols at each EM iteration. A Gaussian mixture model on data symbols is also considered

to theoretically justify the approach in [70] while keeping the E-step tractable. The heuristic

approach showed improvements in channel estimates at higher SNRs compared to the Gaussian

prior case, while the Gaussian prior was superior in the low SNR region. This is due to the

hard decisions made by method, which are much less accurate in low SNR. It was also shown

in [97], how using the actual discrete prior on the data symbols results in exponential growth of

complexity of the algorithm as the number of symbols in the data constellation increases deeming

the approach not practical.

6.1.1 Chapter’s Organization

The organization of the chapter is as follows. In Section 6.2, we describe the system

model and discuss previous EM algorithms. In Section 6.3 we show how the dimentionality of the

Gaussian EM algorithm can be reduced using the eigenvalue decomposition. In Section 6.4 we

apply the MPDR decoupling principle to the E-step to incorporate the discrete prior that is based

on the data constellation. Finally, in Section 6.5, we present numerical results to demonstrate the

performance and complexity advantages achieved by the proposed algorithms.
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6.2 System Model and Previous EM algorithms

We will generally follow the same system model and EM formulation from [70,97], where

we will summarize it here for completeness. We consider the uplink transmission in a TDD

multi-user MIMO system with a single serving base station (BS) equipped with M antennas. The

BS serves K users with random locations within the cell, we also assume M ≥ K. We consider

an orthogonal division multiplexing system that is able to achieve flat fading over each of the

carriers. Based on this model the channel matrix GGG ∈ CM×K can be represented by:

GGG = HHHBBB1/2, (6.1)

where BBB1/2 ∈CK×K is a diagonal matrix with diagonal elements βk, that model large scale fading

effects such as path loss and shadowing between each user and the BS. HHH ∈ CM×K on the other

hand models small scale fading effects. Those effects are modeled by circularly symmetric

complex Gaussian columns of HHH with unit variance. For each user, an uplink transmission

consists of N symbols, where the first L symbols are reserved for known pilot symbols, and the

next (N−L) symbols are unknown data symbols drawn randomly from a discrete constellation.

At time n the received signal yyy(n) ∈ CM×1 at the BS is given by:

yyy(n) = GGGsss(n)+ vvv(n), (6.2)

where sss(n) ∈ CK×1 represents the transmit vector from K users at time n. When n = [0, ...,L−

1], sss(n) is a known pilot vector and when n = [L, ...,N], sss(n) is an unknown data vector with

E[sss(n)sss(n)H
] = IIIK . vvv(n) is the noise vector at time n with vvv(n) ∼ CN (vvv(n);0,σ2

vIIIM). In the

following we will refer to the group of pilot symbols [sss(0), ...,sss(L−1)] by the matrix SSSp. While

data symbols are grouped in the matrix SSSd = [sss(L), ...,sss(N)]. Similarly, at the receiver the first L

received vectors corresponding to the pilot symbols are denoted by YYY p and the following (N−L)
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vectors corresponding to the data symbols are denoted by YYY d .

6.2.1 Pilot Based ML Receiver

The ML estimator of the channel matrix GGG based on the known pilot symbols SSSp only, is

given by [70, 97, 98]:

ĜGG
p
ML = (YYY pSSSH

p )(SSSpSSSH
p )
−1, (6.3)

where using orthogonal pilots that satisfy SSSpSSSH
p = LIIIK minimizes the MSE of the channel

estimate [98].

6.2.2 EM Semi-Blind Channel Estimation with Gaussian Prior

Previous work showed how the channel estimate can be improved by using the data

symbols in addition to pilots to estimate the channel. A maximum likelihood estimate of the

channel based on the full received symbols consisting of pilots and data, i.e. Y = [Yp,Yd], is

given by:

ĜGGML = argmax
G

log p(YYY |GGG) (6.4)

This ML estimate requires the maximization over all possible data symbol combinations. To

avoid that, a number of iterative techniques were proposed to solve this problem, where we will

focus on the EM based techniques in this letter. The EM algorithm can be used to address (6.4).

An estimate of the channel can be obtained by:

ĜGG`+1 = Ep(SSSd |YYY ,ĜGG`)
[log p(YYY ,SSSd|GGG)], (6.5)
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where ` is the EM iteration index. Based on (6.5), the EM algorithm iterates between an

expectation step and a maximization step. The expectation step is given by:

µµµ(n)
`

s = E[sss(n)|ĜGG`,YYY ], ΣΣΣ
(n)`
s =Cov[sss(n)|ĜGG`,YYY ], (6.6)

The maximization step is then given by [70]:

ĜGG`+1 =

(
YYY pSSSH

p +
N

∑
n=L

yyy(n)µµµ(n)
`

s
H
)

×
(

SSSpSSSH
p +

N

∑
n=L

(
µµµ(n)

`

s µµµ(n)
`

s
H)

+ΣΣΣ
(n)`
s

)−1

. (6.7)

Ideally the E-step should be executed based on a discrete prior that represents the constellation

of the data symbols. It was shown in [97] that using the exact posterior directly in (6.6) grows

the complexity exponentially with K and is computationally unfeasible. Therefore, approximate

posteriors were previously proposed. The first approximation assumes a Gaussian distribution for

the data symbols sss(n) ∼ CN (sss(n);0, IIIK). This assumptions yields a closed form solution for the

E-step as follows.

µµµ(n)
`

s =
(
ĜGG

H
` ĜGG`+σ

2
vIIIK
)−1ĜGG

H
` yyy(n)

ΣΣΣ
(n)`
s = σ

2
v
(
ĜGG

H
` ĜGG`+σ

2
vIIIK
)−1 (6.8)

While we will discuss other potential priors for the data symbols next, we point out that using

different priors will only affect the E-step and will leave the M-step in (6.7) unchanged.

6.2.3 EM Semi-Blind Channel Estimation with Heuristic Demapping

To exploit the actual constellation of the data symbols, a heuristic approach to demap the

output of the Gaussian E-step to the corresponding symbols was proposed in [70], resulting in the
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following E-step:

µµµ(n)
`

s = F
((

ĜGG
H
` ĜGG`+σ

2
vIIIK
)−1ĜGG

H
` yyy(n)

)
ΣΣΣ
(n)`
s = σ

2
v
(
ĜGG

H
` ĜGG`+σ

2
vIIIK
)−1

, (6.9)

where the function F(.) performs an elementwise demapping of the estimates to their closest

constellation points. In [70], an analytical justification was also provided for this approach by

imposing a Gaussian mixture model to represent the data constellation, which provided similar

results to the heuristic mapping approach. Therefore, in the numerical results section we will only

consider the heuristic approach for comparison and not the Gaussian mixture algorithm.

6.3 Reduced dimensionality Gaussian EM algorithm

When the assumed prior on the data symbols is Gaussian, the ML optimization of the

channel estimate (6.4) can be marginalized over the data symbols, resulting in the following ML

optimization:

ĜGGML = argmin
G

L−1

∑
n=0

1
σ2

v
‖yyy(n)−GGGsss(n)‖2

+(N−L) log |Σy|+
N

∑
n=L

yyy(n)
H

Σ
−1
y yyy(n), (6.10)

Where Σy = (GGGGGGH +σ2
vIIIM) is the estimate of the received data symbols covariance matrix.

Using the fact that
N

∑
n=L

yyy(n)
H

Σ
−1
y yyy(n) = Tr(Σ−1

y YYY dYYY H
d ), (6.11)

from (6.10) and (6.11) we can see how the channel estimate in the Gaussian prior case is a function

of the covariance matrix of the received data symbols, rather than the actual received symbols

themselves. Based on that, received data symbols can be replaced by a reduced dimensionality
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representation with the same covariance matrix. The new representation of the received data

symbols reduces the data matrix from a M× (N−L) to a M×M matrix. This can be achieved

using the eigenvalue decomposition of the covariance matrix:

ỸYY d =UUUΣΣΣ
1/2, (6.12)

where YYY dYYY H
d =UUUΣΣΣUUUH is the eigenvalue decomposition of YYY dYYY H

d . Based on this new representa-

tion µµµ(n)
`

s in (6.8) can be replaced by:

MMM`
d =

(
ĜGG

H
` ĜGG`+σ

2
vIIIK
)−1ĜGG

H
` ỸYY d, (6.13)

the sum ∑
N
n=L yyy(n)µµµ(n)

`

s
H

from (6.7) can be replaced by ỸYY dMMM`
d

H
, and ∑

N
n=L µµµ(n)

`

s µµµ(n)
`

s
H

can be

replaced by MMM`
dMMM`

d
H

. This dimensionality reduction relaxes memory requirements to store the

full data matrix, and speeds up the algorithm by reducing the complexity of the mean estimate in

(6.8) for each EM iteration, leaving the final estimate unchanged.

6.4 MPDR Based Discrete Prior EM algorithm

In this section we show how the MPDR decoupling concept from [69] can be applied

to the E-step of the semi-blind MIMO channel estimation. Because the MPDR decouples the

measurements in space, we can compute a tractable E-step using a discrete prior for each s(n)k .

The posterior mean µµµ(n)
`

s and the diagonal of the posterior covariance matrix ΣΣΣ
(n)`
s from (6.6),

can be approximated using the actual discrete prior on the data symbols. The discrete prior on a

transmitted data symbol from user k at time n is based on the data constellation. Given I complex
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symbols in the data constellation, the prior on s(n)k is:

p(s(n)k ) =
I

∑
i=1

πiδ{s
(n)
k = ai}, (6.14)

where ais are the complex symbols of the constellation and πi is the probability of each symbol.

Based on the MPDR framework from [69], we first apply the MPDR receiver to the received data

symbols:

r(n)k

`
=

ĝggH
.kΣΣΣ
−1
y yyy(n)

ĝggH
.kΣΣΣ
−1
y ĝgg.k

= s(n)k +n(n)k (6.15)

Σ
`
r̃kk

=
1

ĝggH
.kΣΣΣ
−1
y ĝgg.k

, Σ
`
rkk

=
1

ĝggH
.kΣΣΣ
−1
y ĝgg.k

−E[s(n)k

2
] (6.16)

ΣΣΣy = (ĜGG`ĜGG`
H
+σ

2
vIIIM), (6.17)

where ĝgg.k is the kth column of the matrix ĜGG`. r(n)k

`
is the kth element of the output of the MPDR

receiver applied to yyy(n) and n(n)k is the associated output noise. Σ`
r̂kk

represents the current estimate

of the total signal and noise power out of the MPDR and Σ`
rkk

is the current estimate of the noise

power. Based on the assumption that rrr(n)
`

decouples the measurements into the transmitted

symbol vector sss(n) with AWGN noise [69], we can perform element wise MMSE estimation on

each of the s(n)k symbols as follows:

µ(n)sk

`
≈ E[s(n)k |r

(n)
k

`
] =

∑
I
i=1 πiaiζ

(n)
ik

`

∑
I
i=1 πiζ

(n)
ik

`
(6.18)

Σ
(n)
skk

`
≈Cov[s(n)k |r

(n)
k

`
] =

∑
I
i=1 πi|ai|2ζ

(n)
ik

`

∑
I
i=1 πiζ

(n)
ik

`

−
(∑I

i=1 πiaiζ
(n)
ik

`
)(∑I

i=1 πiaH
i ζ

(n)
ik

`
)

(∑I
i=1 πiζ

(n)
ik

`
)2

, (6.19)
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where ζ
(n)
ik

`
= exp(− 1

Σ`
rkk
|r(n)k

`
− ai|2). This E-step approximation with the discrete prior from

(6.14) produces estimates of only the diagonal of the posterior covariance matrix ΣΣΣ
(n)`
s . However,

in the numerical analysis section it was found that we are still able to obtain good estimates of the

channel by approximating ΣΣΣ
(n)`
s with a diagonal matrix. This E-step formulation has an advantage

over the Gaussian prior E-step because it uses the actual discrete data constellation. Moreover,

unlike (6.9) the E-step presented here produces soft outputs, which as we will see in the next

section improves the performance for low SNR values. However, because the soft outputs do not

make a quick decision on the symbols, using the proposed E-step can result in a larger number

of iterations before convergence, which can potentially slow down the algorithm. To resolve

this issue we propose using a combination of initializing the algorithm with a partial estimate

obtained using the reduced dimensionality Gaussian prior from section 6.3 and then performing

few iterations using the discrete prior based E-step.

6.5 Numerical Results

Similar to [70], we will setup our numerical model with a single cell equipped with a BS

at its center. The radius of the cell is 500m with users uniformly distributed within the cell. We

define the SNR to be SNR = E[βk]
σ2

v
. We use the large scale fading model from [97] and We use a

QPSK constellation for both pilot and data symbols.

6.5.1 Performance of the Proposed Algorithm

We will examine the performance of the MPDR based proposed algorithm against the

algorithms from [70], which are the EM algorithm with Gaussian prior, and the EM algorithm

with heuristic demapping. In addition to that we include the ML estimator based on pilots only,

and a genie ML estimator that is given the full transmitted data symbols. We will use the scaled

mean squared error (MSE) given by E[‖GGG−ĜGG‖2
F ]/E[βk] as a measure of the quality of the channel
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estimate. For the first experiment we set M = 8, K = 4, L = 16 and N = 512. For the second

experiment we set M = 16, K = 8, L = 16 and N = 1024.
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Figure 6.1: MSE vs SNR (First Experiment)

From Fig. 6.1 and Fig. 6.2 we can see that the proposed MPDR based algorithm that uses

the actual data constellation provides significant improvement over the pilot only ML estimation.

It is also clear that the algorithm outperforms the EM Gaussian and heuristic algorithms for both

low and high SNR regions.

6.5.2 Runtime of the Proposed Algorithm

In this section we study the runtime of the reduced dimensionality Gaussian algorithm,

and the runtime of the proposed MPDR based algorithm. We will use the same parameters from

the experiments in the previous section, and we will track the time needed by each algorithm to

converge in seconds.

From Fig. 6.3 and Fig. 6.4 we can see how reducing the dimensionality of the EM
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Figure 6.2: MSE vs SNR (Second Experiment)
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Figure 6.4: Runtime vs SNR (Second Experiment)

Gaussian algorithm can reduce the runtime in addition to reducing memory requirements for

storing the data. The reduction in runtime is more significant when the number of data symbols

is increased. We can also see in the figures that initializing the proposed MPDR algorithm with

some reduced dimensionality EM Gaussian iterations and then performing few MPDR based

iterations produces an algorithm with very efficient runtimes. The algorithm generally has faster

runtimes than the other algorithms, except for the high SNR case, where the heuristic approach

runs faster. This is due to the heuristic algorithm’s ability to make good hard decisions on the

data symbols at that SNR level.

6.6 Conclusion

We addressed the semi-blind channel estimation problem in MIMO systems, where we

proposed an eigenvalue decomposition based technique to reduce the dimensionality of the EM

algorithm with a Gaussian prior. The reduction is particularly beneficial when a large number of
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data symbols is available. We also proposed another EM based algorithm with tractable MPDR

based E-step and a discrete prior on the data symbols. The proposed MPDR based discrete prior

algorithm outperforms previously used EM based algorithms in all SNR regions. We also showed

how proper initialization of the MPDR based algorithm can reduce its runtime by reducing the

number of iterations required for its convergence.
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