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Abstract

Evidence from animal and histological studies has indicated that accumulation of iron

in the brain results in reactive gliosis that contributes to cognitive deficits. The cur-

rent study extends these findings to human cognitive aging and suggests that mag-

netic resonance imaging (MRI) techniques like quantitative relaxometry can be used

to study iron and its effects in vivo. The effects of iron on microstructure and mem-

ory performance were examined using a combination of quantitative relaxometry

and multicompartment diffusion imaging in 35 young (21.06 ± 2.18 years) and 28

older (72.58 ± 6.47 years) adults, who also completed a memory task. Replicating

past work, results revealed age-related increases in iron content (R2*) and diffusion,

and decreases in memory performance. Independent of age group, iron content was

significantly related to restricted (intracellular) diffusion in regions with low-moderate

iron (hippocampus, caudate) and to all diffusion metrics in regions with moderate-

high iron (putamen, globus pallidus). This pattern is consistent with different stages

of iron-related gliosis, ranging from astrogliosis that may influence intracellular diffu-

sion to microglial proliferation and increased vascular permeability that may influence

all sources of diffusion. Further, hippocampal restricted diffusion was significantly

related to memory performance, with a third of this effect related to iron content;

consistent with the hypothesis that higher iron-related astrogliosis in the hippocam-

pus is associated with poorer memory performance. These results demonstrate the

sensitivity of MRI to iron-related gliosis and extend our understanding of its impact

on cognition by showing that this relationship also explains individual differences in

memory performance.

K E YWORD S
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1 | INTRODUCTION

While the neurobiological basis of neurodegeneration and memory

decline are multi-faceted, iron accumulation and gliosis within gray

matter are recognized here as two important contributors. Rather

than being independent processes, however, evidence suggests that

age-related accumulation of intracellular unbound, non-heme iron

(Hallgren & Sourander, 1958; Mackenzie, Iwasaki, & Tsuji, 2008;

Zecca, Youdim, Riederer, Connor, & Crichton, 2004) can promote acti-

vation and proliferation of glia (gliosis; Beach, Walker, &
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McGeer, 1989). For example, in vitro (Macco et al., 2013; Pelizzoni,

Zacchetti, Campanella, Grohovaz, & Codazzi, 2013) and in vivo

(Thomsen et al., 2015; You et al., 2017) studies in animal models have

directly linked iron-related inflammation to gliosis and subsequent

cognitive decline, specifically, memory decline (Schröder, Figueiredo, &

De Lima, 2013; Weber et al., 2015). The recently proposed Free-Radi-

cal-Induced Energetic and Neural Decline in Senescence (FRIENDS;

Raz & Daugherty, 2018) model extends these findings to human cog-

nitive aging and suggests that magnetic resonance imaging (MRI)

methods may be sensitive to markers of iron-related gliosis in vivo for

the study of cognitive aging. The current study applies this model by

characterizing the relationships between iron content, gray matter

gliosis and memory performance using a combination of quantitative

relaxometry and diffusion MRI in young and older adults who also

completed a recall memory task.

Although non-heme iron is essential to neurons and glia for key

metabolic functions (e.g., adenosine triphosphate production, neu-

rotransmitter synthesis; Zecca et al., 2004), chronic iron-related

oxidative damage can overwhelm endogenous antioxidant defenses

(e.g., glutathione; Vilhardt, Haslund-Vinding, Jaquet, &

McBean, 2017) and result in reactive gliosis (Freitas, Ferreira,

Trevenzoli, Oliveira, & Reis, 2017; Zecca et al., 2004). This can

occur when large concentrations of intracellular iron outside bind-

ing complexes (e.g., ferritin; Connor, Menzies, Martin, &

Mufson, 1990) produce reactive oxygen species (Macco

et al., 2013; Mills, Dong, Wang, & Xu, 2010) that directly stimulate

gliosis (Burda & Sofroniew, 2014). Iron-related oxidative damage

and subsequent gliosis drive the cumulative and progressive cogni-

tive declines that are typical in human aging (Raz & Daugherty,

2018). Applying this FRIENDS model, the current study will use

individual and age-group differences in gray matter and perfor-

mance to characterize the nature of the relationship between iron

content and gliosis and their joint contributions to memory perfor-

mance, which has not yet been assessed in humans in vivo.

A well-established MRI approach for measuring iron content is

R2
* relaxometry (Langkammer et al., 2010). This approach has been

used in humans to demonstrate age-related accumulation of iron in

the basal ganglia and hippocampus (Daugherty, Haacke, & Raz, 2015;

Ghadery et al., 2015), consistent with human histological studies

(Bartzokis et al., 2007; Zecca et al., 2004). Within the basal ganglia,

the globus pallidus has the highest iron concentration across the adult

lifespan, whereas the putamen and caudate have a moderate concen-

tration in young adulthood and continue to accumulate iron into old

age. This contrasts with the hippocampus, which has less iron concen-

tration in young adulthood and modest accumulation with age

(Ghadery et al., 2015). These regional and age group differences in

iron content may both affect the relationships between iron and

gliosis across the basal ganglia and hippocampus.

Gliosis can have several phenotypes within gray matter, including

astrocyte swelling (Singh, Trivedi, Devi, Tripathi, & Khushu, 2016),

microglia proliferation (Yi et al., 2019) and increased blood–brain per-

meability (Simon & Iliff, 2016). The sensitivity of diffusion imaging to

these phenotypes has been validated in animal models of age and

acute injury (Badaut et al., 2011; Budde, Janes, Gold, Turtzo, &

Frank, 2011; Debacker, Djemai, Ciobanu, Tsurugizawa, & Bihan, 2020;

Singh et al., 2016; R. A. Weber et al., 2017; Yi et al., 2019; Zhuo

et al., 2012) and in vitro human (Grussu et al., 2017) studies using a

combination of diffusion imaging and histology. Since diffusion imag-

ing is sensitive to different phenotypes of gliosis, it may be used to

characterize how different phenotypes and stages (as outlined in

Burda & Sofroniew, 2014; Sofroniew, 2015) vary by gray matter

region, with the expectation that higher iron would be associated with

more pronounced gliosis.

Whereas most of the previous studies have used traditional

single-tensor diffusion imaging to investigate gray matter gliosis, the

current study will use a multicompartment diffusion approach

(Neurite Orientation Dispersion and Density Imaging, NODDI; Zhang,

Schneider, Wheeler-Kingshott, & Alexander, 2012). NODDI models

diffusion as three separate compartments including restricted

(e.g., intracellular), hindered (e.g., extracellular), and free (e.g., cerebral

spinal fluid, CSF) diffusion (Fukutomi et al., 2018; Kaden, Kelm, Car-

son, Does, & Alexander, 2016; Rae et al., 2017; Zhang et al., 2012),

which may allow this approach to be more sensitive to gliosis and its

different stages across gray matter regions. When viewed from the

perspective of iron-related gliosis, correlations between R2
* and

NODDI measures across gray matter regions can demonstrate the

sensitivity of MRI techniques to regional differences in gliosis staging.

For example, in regions with less iron (e.g., hippocampus), early stages

of gliosis, including astrocyte swelling (Norenberg, 1994), may be seen

as increases in restricted diffusion. In contrast, regions with more iron

(e.g., globus pallidus) may also display gliosis associated with microglia

proliferation (Yi et al., 2019) and dysregulation of the blood–brain bar-

rier (Andersen, Johnsen, & Moos, 2014), which can increase hindered

and free diffusion. Alternatively, regions with the largest age group

differences in iron content (e.g., putamen, caudate) may display the

most pronounced gliosis compared regions with smaller age group dif-

ferences in iron (e.g., hippocampus). In either scenario, the hippocam-

pus is likely to have relatively low levels of gliosis that may

nonetheless impact cognition in young and older adults given the criti-

cal role of this region in memory performance (Lister & Barnes, 2009).

The FRIENDS model of cognitive aging predicts a specific, but as

yet untested, combined effect of iron-related gliosis on cognition. Pre-

vious studies have separately demonstrated that hippocampal iron

content (Ghadery et al., 2015; Rodrigue, Daugherty, Haacke, &

Raz, 2013; Schröder, Figueiredo, & De Lima, 2013) and microstructure

(Carlesimo, Cherubini, Caltagirone, & Spalletta, 2010; Den Heijer

et al., 2012; Radhakrishnan, Stark, & Stark, 2020) relate to recall mem-

ory performance. Here, we aim to assess the combined influence of

hippocampal iron and diffusion to differences in memory performance

using a commonality analysis between R2
* and NODDI measures.

Building on previous animal research and the FRIENDS model of

cognitive aging, the current study aimed to characterize relationships

among iron (R2
*), microstructure (hindered, restricted, free diffusion)

and memory performance (RAVLT delayed) in younger and older

adults using a multimodal MRI approach. The primary objectives were

to: (1) replicate regional and age group differences in iron content,

5762 VENKATESH ET AL.



microstructure and memory performance; (2) examine relationships

between iron and microstructure in light of the regional and age

group differences in iron, and (3) test functional relevance of the

iron-microstructure relationship in the hippocampus by examining

their contribution to memory performance. Results are expected to

show that higher iron concentration (regional difference) and accu-

mulation (age group difference) relates to higher diffusion across the

hippocampus and basal ganglia nuclei, with hippocampal iron and

microstructure explaining memory performance. Consistent with the

FRIENDS model, these results would provide support to the notion

that human MRI data can be interpreted using mechanistic hypothe-

ses from the animal research to ultimately better understand cogni-

tive aging.

2 | MATERIALS AND METHODS

2.1 | Participants

Young and older adults were recruited from the University of Califor-

nia, Riverside (UCR) and surrounding neighborhoods. Prior to enroll-

ment, participants were screened over the phone for neurological

conditions (e.g., depression, stroke), scanner related contraindications

(e.g., claustrophobia, pregnancy), and general cognition using non-

visual portions of the Montreal Cognitive Assessment (MoCA;

Nasreddine et al., 2005; Pendlebury et al., 2017). After completing

remaining portions of the MoCA in person, all participants exhibited

normal cognition with scores >23 (27.3 ± 1.63). One young and two

older participants were excluded due to excessive motion in R2
* maps.

The final sample included 35 young (mean ± standard deviation

[SD] = 21.06 ± 2.18 years, median = 20.64, range = 18–28, inter-

quartile range [IQR] = 2.34, 24 female) and 28 older adults (mean

± SD = 72.58 ± 6.47 years, median = 70.16, range = 65–86,

IQR = 8.49, 13 female).

All individuals provided informed consent prior to participation in

this study. The UCR Institutional Review Board approved the experi-

mental procedures and participants were compensated for their time.

2.2 | Episodic memory test

The Rey Auditory Verbal Learning Test (RAVLT; Rey, 1941) was

administered to assess delayed free recall, measured as the number of

items (out of 15) correctly recalled approximately 25 min after com-

pleting five immediate free recall trials of the same word list and one

immediate free recall trial of a second word list.

2.3 | MRI scanning protocol

Imaging data were acquired using a 3T Siemens Prisma MRI (Siemens

Healthineers, Malvern, PA) scanner fitted with a 32-channel receive-

only head coil at the UCR Center for Advanced Neuroimaging.

A high-resolution magnetization-prepared rapid gradient-echo

(MP-RAGE) image was acquired with the following parameters: echo

time (TE)/repetition time (TR) = 2.72/2400 ms, 208 axial slices, voxel

size = 0.8 � 0.8 � 0.8 mm, and GRAPPA acceleration factor = 2.

Two diffusion-weighted echo-planar imaging (EPI) sequences

were acquired with phase-encoding directions of opposite polarity for

correction of susceptibility distortions (Andersson, Skare, &

Ashburner, 2003), each with the following parameters:

TE/TR = 102/3500 ms, FOV = 212 � 182 mm, matrix size of

128 � 110, voxel size = 1.7 � 1.7 � 1.7 mm, 64 axial slices, and

multiband acceleration factor = 4. For each acquisition, bipolar diffu-

sion encoding gradients (b = 1,500 and 3,000 s/mm2) were applied in

64 orthogonal directions, with six images having no diffusion

weighting (b = 0; 12 total).

Multi-echo data derived from a 12-echo 3D gradient recalled

echo (GRE) sequence were acquired with the following parameters:

TE/ΔTE/TR = 4/3/40 ms, FOV = 192 � 224 mm, matrix

size = 192 � 224 � 96, slice thickness = 1.7 mm, and GRAPPA accel-

eration factor = 2. Magnitude and phase images were saved for later

calculation of R2
* values.

2.4 | Region of interest segmentations

Bilateral hippocampus, caudate, putamen, and globus pallidus were

automatically segmented on each participant's MP-RAGE image using

FMRIB Software Library's (FSL; Jenkinson, Beckmann, Behrens,

Woolrich, & Smith, 2012) Integrated Registration and Segmentation

Tool (FIRST; Patenaude, Smith, Kennedy, & Jenkinson, 2011), with the

flag for three-stage affine registration for hippocampus (as in

Venkatesh, Stark, Stark, & Bennett, 2020). After visual inspection of

each region of interest (ROI), caudate segmentations that under-

estimated the structure were corrected using a flag to increase the

number of modes of variation for fitting from the default (40) to the

maximum (336; n = 4 young) and those that were misaligned were

corrected using a linear registration between the MP-RAGE and stan-

dard brain (Montreal Neurological Institute; MNI) instead of the

default subcortical mask (n = 1 young). No corrections were needed

for the hippocampus, putamen or globus pallidus segmentations.

2.5 | Iron image processing

For each participant, iron data were preprocessed using the procedure

outlined in Langley et al. (2020). Briefly, R2
* values were estimated

using a custom script in MATLAB which fit a monoexponential model,

(Si = S0exp [�R2
*TE], where Si indicates the signal of a voxel at the ith

echo time and S0 indicates a fitting constant) to the GRE images.

FSL's FMRIB Linear Image Registration Tool (FLIRT) was used to

align the resulting R2
* map to the MPRAGE image via the magnitude

image from the first echo, using a rigid body transformation (six

degrees of freedom, DOF). An affine transformation (12 DOF) with

nearest neighbor interpolation was used to align the FIRST segmented
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ROIs into iron space using FLIRT and the matrix file from the previous

step. Each bilateral iron space-aligned ROI mask was then multiplied

by the voxel-wise R2
* map before taking the average across voxels

and mean R2
* was extracted for each participant.

For each bilateral ROI, mean R2
* (Ironraw) was adjusted for ROI

volume using the normalization method from Jack et al. (1989). The

FIRST-segmented ROI volumes (Volumeindiv) were used to calculate

adjusted R2
* (Ironnorm) separately for each participant using the follow-

ing equation: Ironnorm = Ironraw � β (Volumeindiv � Volumemean).

Mean volume (Volumemean) and slope (β) were calculated within the

young adults. Volume-adjusted R2
* values were used for all analyses.

2.6 | Diffusion data processing

For each participant, diffusion data were pre-processed using FSL,

except that a binary brain mask was created using Analysis of Func-

tional Neuro Images (AFNI; Cox, 1996). After generating a field map

using Topup, Eddy was used to correct for distortions due to motion,

eddy-currents, and susceptibility (Andersson et al., 2003; Andersson &

Sotiropoulos, 2016).

The NODDI MATLAB toolbox was then used to estimate voxel-

wise measures of restricted (also known as intracellular volume frac-

tion, ICVF), hindered (also known as orientation dispersion index,

ODI) and free (also known as isotropic fraction, fISO) diffusion (http://

mig.cs.ucl.ac.uk/index.php; Zhang et al., 2012). To more accurately

model diffusion within gray matter, the intrinsic diffusivity assump-

tion, used to estimate restricted and hindered diffusion, was set to

1.1 � 10�3 mm2/s (Fukutomi et al., 2018; Fukutomi et al., 2019;

Guerrero et al., 2019).

For each participant, diffusion metrics were extracted separately for

each FIRST segmented ROI. A rigid body transformation was used to

align the FIRST segmented ROIs to diffusion space using FLIRT. For free

diffusion, a bilateral diffusion space-aligned ROI mask was multiplied by

the voxel-wise free diffusion image before taking the average across

voxels. To limit hindered and restricted diffusion metrics to voxels with

sufficient tissue content, an inclusion mask was created by thresholding

the free diffusion image to voxels with high tissue content (free diffusion

< 90%). The inclusion mask was then multiplied by each bilateral diffusion

space-aligned ROI mask and then by the corresponding voxel-wise diffu-

sion image before taking the average across voxels and hemispheres.

2.7 | Statistical analyses

All analyses were conducted using SPSS (Version 24.0; IBM,

Armonk, NY). Separate 2 Age Group (young, older) � 4 Region (hip-

pocampus, caudate, putamen, globus pallidus) mixed factorial ANO-

VAs were conducted for each measure of iron content (R2
*) and

diffusion (restricted, hindered, free), with age group as a between-

subjects factor and region as a within-subjects factor. Significant main

effects of Regions were followed with post-hoc paired t tests for each

pair of regions and significant interactions were followed with post-

hoc 2 Age Group � 2 Region mixed factorial ANOVAs for each pair of

regions. For these post-hoc comparisons, the significance threshold

was adjusted by Bonferroni correction for six comparisons (α0 = 0.008).

Separate linear regressions were conducted for each diffusion

metric (restricted, hindered, free) and each region (hippocampus, cau-

date, putamen, globus pallidus), with Age Group, R2
*, and Age Group

� R2
* as predictor variables. Significant effects were Bonferroni

corrected for three comparisons per region (α0 = 0.017).

To test for neural correlates of the memory measure, it is equally

important to consider the correlated effect of iron content and gliosis

as well as their unique effects. To determine the shared effect, a com-

monality analysis was performed (Lindenberger, von Oertzen,

Ghisletta, & Hertzog, 2011). The commonality analysis uses a series of

linear regressions to calculate the shared and unique effects of each

predictor (iron content and diffusion) and estimates the shared vari-

ance of the predictors as a proportion of the total variance explained

in memory performance (shared over simple effect; SOS). Large values

would indicate high commonality between predictors, which is consis-

tent with the iron-related gliosis model reviewed.

3 | RESULTS

3.1 | Iron content

An Age Group (young, older) � Region (hippocampus, caudate, puta-

men, globus pallidus) repeated measures ANOVA was conducted for

R2
* (Figure 1). There was a significant effect of Region, F

(3, 183) = 492.36, p< .001, with the highest iron content in the globus

pallidus (33.46±4.72), followed by the putamen (24.27±4.84), cau-

date (20.97±2.57), and hippocampus (16.40±1.49). Post hoc pairwise

comparisons revealed that iron content was significantly different

between all regions, ps < .001.

There were also significant effects of Age Group, F(1, 61) = 51.47,

p < .001, and Age Group � Region, F(3, 183) = 16.77, p< .001. Overall,

iron content was higher in older adults (25.81±0.38) compared to

young (22.15±0.34). Post hoc 2 Age Group � 2 Region comparisons

revealed that the age group difference was significantly larger in the

putamen (7.29±0.81) compared to the caudate (3.46±0.49), F

(1, 61) = 40.10, p< .001, globus pallidum (3.06±1.14), F(1, 61) = 13.67,

p< .001, and hippocampus (0.83±0.37), F(1, 61) = 49.27, p< .001; and

in the caudate compared to the hippocampus, F(1, 61) = 49.27,

p< .001. The age-related differences in globus pallidus were statistically

equivalent to that in the caudate (p> .20) and hippocampus (p> .05).

3.2 | Microstructure

Age Group (young, older) � Region (hippocampus, caudate, putamen,

globus pallidus) repeated measures ANOVAs were conducted sepa-

rately for each diffusion metric. In the event of significant interactions,

post-hoc Age Group � Region ANOVAs for each pair of regions was

conducted.
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3.2.1 | Restricted diffusion

There was a significant effect of Region, F(3, 183) = 1851.3, p < .001,

with the highest restricted diffusion in the globus pallidus (0.89

± 0.06), followed by the putamen (0.50 ± 0.12), caudate (0.43 ± 0.07),

and hippocampus (0.41 ± 0.05). Post hoc pairwise comparisons rev-

ealed that restricted diffusion was significantly different between all

regions, ps < .008.

There were significant effects of Age Group, F(1, 61) = 102.84,

p < .001, and Age Group � Region, F(3, 183) = 41.05, p< .001. Overall,

restricted diffusion was higher in older adults (0.61±0.01) compared

to young (0.51± 0.01). Post hoc 2 Age Group � 2 Region comparisons

revealed that the age group difference was significantly larger in the

putamen (0.19±0.02) compared to the caudate (0.11±0.01), F

(1, 61) = 46.97, p< .001, globus pallidus (0.06±0.01), F(1, 61) = 78.73,

p< .001, and hippocampus (0.05±0.01), F(1, 61) = 65.11, p< .001; in

the caudate compared to the globus pallidus (0.05±0.01), F(1, 61)

=14.95, p< .001, and hippocampus, F(1, 61) = 20.76, p< .01; and in the

globus pallidus compared to the hippocampus, F(1, 61) =0.09, p< .001.

3.2.2 | Hindered diffusion

The effect of Region was not significant, p > .08, but there were sig-

nificant effects of Age Group, F(1, 61) = 16.10, p < .001, and Age

Group � Region, F(3, 183) = 21.63, p< .001. Overall, hindered diffu-

sion was higher in older adults (0.42±0.01) compared to young (0.40

±0.01). Post hoc 2 Age Group � 2 Region comparisons revealed that

the age group difference was significantly larger in the hippocampus

(0.06±0.01) compared to the caudate, F(1, 61) = 74.63, p< .001,

putamen, F(1, 61) = 58.46, p< .001, and globus pallidus, F

(1, 61) = 19.84, p< .001. The results did not statistically differ

between the remaining regions, ps > .09.

3.2.3 | Free diffusion

There was a significant effect of Region, F(3, 183) = 81.37, p < .001,

with the highest free diffusion in the hippocampus (0.30 ± 0.04),

followed by globus pallidus (0.29 ± 0.05), caudate (0.23 ± 0.07) and

putamen (0.20 ± 0.08). Post hoc pairwise comparisons revealed that

free diffusion was significantly different between all regions, ps < .001,

except between globus pallidus and hippocampus, p > .23.

There were also significant effects of Age Group, F(1, 61) = 58.14,

p < .001, and Age Group � Region, F(3, 183) = 34.22, p< .001. Overall,

free diffusion was higher in older (0.29±0.01) compared to young

(0.22±0.01) adults. Post hoc 2 Age Group � 2 Region comparisons

revealed that the age group difference was significantly larger in the

hippocampus (0.05±0.02) compared to the globus pallidus (0.01

±0.01), F(1, 61) = 9.66, p< .004, caudate (0.11±0.04), F(1, 61) = 31.74,

p< .001, and putamen (0.12±0.03), F(1, 61) = 61.00, p< .001; and in

the globus pallidus compared to the caudate, F(1, 61) = 40.81, p< .001,

and putamen, F(1, 61) = 58.92, p< .001. The results did not statistically

differ between the remaining regions, ps > .30.

3.3 | Relation between iron and microstructure

Separate linear regressions for each region tested the relationship

between iron content (R2
*) and each diffusion metric, as well as the

potential moderating effect of age group (by including Age Group �
R2

* as a predictor). Age group was included as a covariate in all models

given the previously described age effects. Significant effects were

Bonferroni corrected for three comparisons per region (p< .017;

Figure 2).
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For the hippocampus, β = 0.34, t(62) = 3.31, p < .003, and cau-

date, β = 0.39, t(62) = 3.75, p < .001, significant positive relationships

were observed between R2
* and restricted diffusion, but not hindered

or free diffusion, ps > .03. For the putamen, significant positive rela-

tionships were observed between R2
* and restricted, β = 0.67, t

(62) = 8.85, p < .001, hindered, β = 0.95, t(62) = 6.23, p < .001, and

free, β = 0.54, t(62) = 4.98, p < .001, diffusion. For the globus

pallidus, significant positive relationships were observed between R2
*

and restricted, β = 0.40, t(62) = 3.83, p < .001, and hindered,

β = 0.52, t(62) = 4.52, p < .001, diffusion, whereas a significant

negative relationship was observed between R2
* and free diffusion,

β = �0.47, t(62) = �3.83, p < .001. There was no evidence of age

group moderating these relationships in any region, ps > .10, indi-

cating that the R2
*-diffusion relationship was comparable in young

and older adults.

3.4 | Contributions of iron and microstructure to
memory performance

An independent sample t test assessed age group differences in

RAVLT delayed recall, t(47) = �4.06, p < .001, 95% CI [�4.90,

�1.66]. As expected, older adults (8.04 ± 3.59) recalled significantly

fewer words than young (11.31 ± 2.57), and performed within 2 SD

of the expected normative range for age and education (Lezak, 1995;

Messinis et al., 2015).

A commonality analysis quantified the shared variance between

hippocampal iron (R2
*) and microstructure (restricted diffusion) in

explaining memory performance (delayed free recall). These analyses

were limited to the hippocampus due to its known role in memory

and to the restricted diffusion metric given its previously described

relationship to hippocampal iron. Results revealed that 31.5% of the

variance in delayed recall performance was explained by restricted dif-

fusion alone, 11.8% by R2
* alone, and a total of 32.4% when both

restricted diffusion and R2
* were included in the model (see Table 1).

From this procedure, of the total variance in RAVLT recall that was

explained by diffusion, 34.6% of the effect was shared with hippo-

campal R2
*.

Since the variance in delayed recall performance explained by

our metrics of interest may be shared with age, the commonality

analysis was repeated after including age group as a covariate
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F IGURE 2 Significant associations between iron content (R2*) and microstructure (restricted diffusion) are shown separately for each region
after controlling for age group

TABLE 1 Summary of regression models for the commonality
analysis

Model R2 F df p

Restricted diffusion 0.315 28.10 (1, 62) .001

R2* 0.118 8.17 (1, 62) .006

Total effect 0.324 14.36 (2, 62) .001

Note: The dependent variable was RAVLT delayed recall.
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(see Figure 3). In this model, restricted diffusion uniquely

explained 12.7% of variance in delayed recall, R2 = 0.13, p < .001,

the unique effect of R2
* was 4.8%, R2 = 0.05, p = .05, and the

total effect of both predictors was 13.5%. Therefore, even inde-

pendent of age group, 31.5% of the total variance in delayed

recall that was explained by hippocampal restricted diffusion was

shared with hippocampal R2
*. Taken together, hippocampus micro-

structure significantly contributes to memory performance inde-

pendent of age, and approximately 32% of its effect is also

related to iron content.

4 | DISCUSSION

The current study tested the relationships between brain iron, gliosis,

and memory in humans using a combination of neuroimaging tech-

niques, consistent with the FRIENDS model of cognitive aging. Our

results revealed several major findings. First, we replicated well-

known regional and age group differences in iron content (R2
*), tissue

microstructure (NODDI) and memory performance (RAVLT delayed

recall). Second, we observed relationships between iron and micro-

structure that were specific to restricted diffusion in the hippocam-

pus and caudate, whereas they were observed in all diffusion

measures in the putamen and globus pallidus, consistent with stages

of gliosis as a function of regional iron content. Moreover, these

iron-microstructure relationships were not moderated by age group,

suggesting that the effect of iron on microstructure may be cumula-

tive and progressive across the adult lifespan. Third, restricted diffu-

sion in the hippocampus related to recall memory performance, with

a third of this variance shared with iron estimates. These results dem-

onstrate that MRI is sensitive to iron-related gliosis within gray mat-

ter, which contributes to individual differences in memory

performance.

As expected, we observed age group differences in delayed recall

(Bennett, Huffman, & Stark, 2015), gray matter microstructure (Nazeri

et al., 2015; Radhakrishnan et al., 2020; Venkatesh et al., 2020), and iron

content (Bartzokis et al., 2007; Ghadery et al., 2015) that replicated previ-

ous studies, indicating that these differences are likely part of normal

aging processes. Of particular importance given our interest in relation-

ships between iron and diffusion measures, we observed the expected

patterns of regional and age group differences in iron. Iron concentration

was highest in the globus pallidus and putamen followed by the caudate

and hippocampus, whereas age-related iron accumulation was largest in

the putamen and caudate followed by the globus pallidus and hippocam-

pus, consistent with previous reports in healthy older adults (Bartzokis

et al., 2007; Daugherty & Raz, 2013; Ghadery et al., 2015). This allowed

us to examine the extent to which NODDI metrics are sensitive to various

stages of iron-related gliosis across the gray matter regions of interest.

We further observed significant relationships between iron con-

tent and microstructure that varied across the hippocampus and basal

ganglia nuclei. Within the hippocampus and caudate, relationships

between R2
*and NODDI metrics were specific to restricted diffusion.

Of note, these regions had low to moderate overall iron concentration

in spite of having both small (hippocampus) and large (caudate) age

group differences in iron accumulation. We interpret this pattern of

results as being consistent with an earlier stage of iron-related gliosis

(Norenberg, 1994; Pekny & Nilsson, 2005), in which astrocyte activa-

tion and swelling are limited to the intracellular source of diffusion.

The positive direction of these effects also supports the notion that

higher iron content is accompanied by reactive astrogliosis through

oxidative damage, and hence an increase in intracellular sources of

diffusion. Proposing astrogliosis as a potential mechanism that influ-

ences restricted diffusion extends previous work that has traditionally

attributed this diffusion metric to neurite density (Fukutomi

et al., 2019; Grussu et al., 2017; Metzler-Baddeley et al., 2019;

Radhakrishnan et al., 2020) and provides a parsimonious explanation

for previous observations of age-related increases in gray matter

restricted diffusion seen by our group (Franco, Petok, Langley, Hu, &

Bennett, 2020; Venkatesh et al., 2020) among others (Metzler-

Baddeley et al., 2019; Radhakrishnan et al., 2020).

In contrast, within the putamen and globus pallidus, R2
* was

related to all three diffusion metrics. These regions had moderate to

high overall iron concentration, but both large (putamen) and small

(globus pallidus) age group differences in iron accumulation. This pat-

tern of results may indicate later stages of iron-related gliosis in which

astrogliosis is coupled with microglia proliferation (Yi et al., 2019) and

increased vascular permeability (Elahy et al., 2015) that would influ-

ence extracellular and free, not just intracellular, sources of diffusion.

Recent evidence supports the notion that hindered diffusion is sensi-

tive to infiltrating microglia, as one study demonstrated that hindered

diffusion significantly varied depending on microglia density in mice

(Yi et al., 2019). Whereas R2* was only positively related to restricted

and hindered diffusion, positive (putamen) and negative (globus

pallidus) correlations were seen for free diffusion, which likely reflects

low signal to noise ratios in the diffusion signal within the globus

pallidus. Taken together, the regional patterns between iron content

-0.10 -0.05 0.00 0.05 0.10
-10

-5

0

5

10

Restricted Diffusion  | Age Group 

R
A

V
LT

 D
e
la

y
 R

e
c
a
ll 

| A
g
e
 G

ro
u
p

Young

Older 

R2 = 0.17, p < 0.001

F IGURE 3 Significant association between hippocampal
restricted diffusion and RAVLT delayed recall performance,
independent of age group

VENKATESH ET AL. 5767



and microstructure observed here appear to reflect an iron

concentration-dependent effect on microstructure. As such, our find-

ings are consistent with and extend the iron-gliosis hypothesis in

humans by demonstrating that increased iron accumulation in gray

matter is accompanied by a glial response that can be detected ini-

tially with intracellular (restricted) and then extracellular (hindered,

free) diffusion metrics. Further, by finding that the iron-microstructure

relationships were comparable between young and older adults across

the hippocampus and all basal ganglia nuclei, our results suggest that

iron-related gliosis is cumulative and progressive across the lifespan.

Finally, we demonstrated the shared consequence of hippocam-

pal iron-related gliosis on recall memory performance, providing func-

tional relevance to the current findings. Greater hippocampal

restricted diffusion explained 31.5% of the variance in memory per-

formance, 34.6% of this effect was shared with hippocampal R2
*. Con-

sistent with our interpretation of a cumulative effect of iron across

the lifespan, approximately 31.5% of shared variance between micro-

structure and iron estimates remained after statistically controlling for

age. These findings extend at least one previous study that observed

higher restricted diffusion related to poorer memory performance in

younger and older adults (Radhakrishnan et al., 2020) by revealing the

extent to which this diffusion-memory relationship is shared with iron.

More importantly, these behavioral results provide an important piece

of evidence in support of the iron-gliosis hypothesis and FRIENDS

model by demonstrating the sensitivity of MRI to iron-related hippo-

campal astrogliosis as a correlate to memory performance.

In conclusion, the current study revealed key pieces of evidence

in support of the iron-gliosis hypothesis in humans. We found sig-

nificant relationships between iron content and tissue microstruc-

ture that systematically varied across subcortical regions (but not

age groups) in an iron concentration-dependent manner. This has

functional consequences as iron content and tissue microstructure

together contribute to recall memory performance, independent of

age. Future studies could build on these results by investigating

other MRI techniques (e.g., Fluid-Attenuated Inversion Recovery)

and cognitive processes (e.g., psychomotor speed) that may influ-

ence relationships among iron content, gray matter microstructure

and memory performance in aging. Nonetheless, this study repre-

sents an important validation and extension of both the animal liter-

ature that gave rise to the iron-gliosis hypothesis and the FRIENDS

model by demonstrating that MRI is sensitive to individual differ-

ences in iron and gliosis, and that their combined effect explains

memory performance.
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