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Abstract

Development and Applications of a Carbon-Weather Data Assimilation System

by

Stephanie M. Wuerth

Doctor of Philosophy in Earth and Planetary Science

Designated Emphasis in Computational and Data Science and Engineering

University of California, Berkeley

Professor Inez Y. Fung, Chair

This dissertation explores the utility of high-resolution satellite carbon dioxide (CO2) and
water vapor measurements for advancing climate treaty verification, for improving numerical
weather prediction (NWP), and for understanding natural carbon cycling in the terrestrial
biosphere. We present a series of Observing System Simulation Experiments (OSSEs) using
a carbon-weather data assimilation (DA) system, where the state vector comprises weather
variables (wind, temperature, humidity and pressure) and atmospheric CO2 mixing ratios.
The system seeks the optimal fit between a suite of synthetic meteorological and satellite-
based total column CO2 (XCO2) observations with forecasts from a global Earth system
model. Given the incomplete observations and imperfect model, the simultaneous assim-
ilation of weather and CO2 observations into our system yields the best approximation of
atmospheric transport as well as its uncertainty, something not captured by other community
carbon data assimilation and surface flux inversion systems which use a single realization of
atmospheric transport. Our assimilation window is six hours, meaning that we have a time-
evolving estimate of the atmospheric state, and its uncertainty (represented by the spread
in the ensemble) at the resolution of six hours.

In Chapter 2, we employ this machinery to assess the capability of our carbon-weather
DA system, along with satellite-borne XCO2 observations, to detect underreporting of CO2

emissions at the scale of a large country. In a series of OSSEs, we assimilate synthetic
observations of XCO2 at the locations of (1) the Orbiting Carbon Observatory 2 (OCO-2)
soundings and (2) a hypothetical observing system which observes globally at 1pm local
time. Fossil fuel CO2 emissions are modified to have a -50% bias over China, but the
observations are pulled from a model run where this bias is not present. We test whether
the data assimilation system can detect the imposed bias by examining the near-surface
innovation in CO2 mass in a method similar to the mass-balance inversion. We find that
with the hypothetical observation strategy, we can recover half of the imposed bias, and
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that the ensemble mean of the near-surface CO2 tracks the truth during the daytime, but
underestimates the truth during the unconstrained nighttime hours over the region of the
imposed bias. For the OCO-2 strategy, we detect a signal at the location of the imposed bias
that is obscured by problems such as observation coverage. We discuss potential additions to
the observing system which could optimize the detection of biased emissions with our data
assimilation machinery.

Chapter 3 presents results from OSSEs aimed at understanding the potential of OCO-2
total precipitable water (TPW) and XCO2 to improve weather forecasting capabilities. The
hypothesis is that the time- and space-varying correlation between the satellite observable
and wind in the Earth System Model could be used to improve the weather forecast where
wind observations are sparse. We find that the TPW observations impact all meteorological
state variables in the experiment, and that the XCO2 observations reduce weather forecast
errors globally, and most significantly in the southern extratropics, in all meteorological fields
except humidity. We conclude that both of these observation types from OCO-2 could serve
as useful additions to the suite of observations assimilated by national weather forecasting
centers.

In Chapter 4, we calculate global CO2 surface fluxes as a residual in the vertically-
integrated CO2 tracer transport equation, using time-varying 3D-CO2 and meteorology re-
analysis fields from a carbon-weather DA system that assimilates weather and XCO2 from the
Atmospheric Infrared Sounder (AIRS). As AIRS XCO2 is weighted in the mid-troposphere,
we find that the most significant impact on the surface flux calculation is in the tropics,
especially over the Amazon and in the tropical Pacific, where intense convection mixes CO2

through the entire tropospheric column. We compare our posterior flux estimates to those
made by CarbonTracker and find general sign agreement except in the Amazon region. Here
we estimate a net annual sink of -0.26 PgC whereas CarbonTracker, which uses only surface
observations, estimates a net annual source of about the same magnitude.
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Chapter 1

Introduction

Carbon cycles naturally through several terrestrial reservoirs. On geologic time scales,
airborne carbon dioxide (CO2) becomes part of the chemical weathering cycle: it dissolves
in rain water to form carbonic acid, erodes newly-formed mountains, is transported by
rivers and deposited as limestone on the sea floor. On shorter timescales, it can be taken
up by plants in the terrestrial biosphere as they photosynthesize, and emitted back to the
atmosphere as heterotrophs metabolize organic material, or it can be exchanged with the
ocean via both physical and biological processes.

Human activity has perturbed this natural carbon cycling, increasing the pre-industrial
concentration of atmospheric CO2 from ∼277 parts per million (ppm) (Joos and Spahni
2008) in 1750 to 405.0 ± 0.1 ppm in 2017 (Le Quéré et al. 2018). Until 1950, the increase
was predominantly from land use change activity such as deforestation, but since then it has
been dominated by fossil fuel emission (Stocker et al. 2013).

This increase in CO2 in Earth’s atmosphere from human activity has been observed
continuously at the Mauna Loa Observatory (Keeling et al. 1976b) and the South Pole
Observatory (Keeling et al. 1976a) since the late 1950s. Starting around the same time,
measurements of the partial pressure of CO2 at the ocean surface have been recorded (Taka-
hashi et al. 1997). In 1967, collection of air samples from land and aboard ships began, for
offsite processing to determine the CO2 concentration at the sites (Tans and Conway 2005).
In 1992, a network of tall towers, which observe CO2 at three tropospheric heights, were
added to the observation system (Bakwin et al. 1995).

The aforementioned components of the CO2 observation network do not offer a compre-
hensive picture of the vertical or meridional distribution of CO2 in the global atmosphere,
but aircraft campaigns have been carried out to elucidate the structure of CO2 abundance in
these dimensions. For example, the HIAPER Pole-to-Pole Observation (HIPPO) program
provides aircraft-based vertical profiles of CO2 along transects from near the north pole to
67°S (Wofsy 2011). HIPPO observations provide detailed three-dimensional pictures of CO2

in the global atmosphere for specific time periods in certain seasons. They can be used to
validate transport models and satellite data for the particular time periods of the campaigns,
but they do not provide continuous observation of atmospheric CO2.



2

In the past ∼15 years, global observations of atmospheric CO2 have become available
from satellite-borne instruments. These space-based instruments measure radiances emitted
from Earth (either thermal emission or solar backscatter) and derive either partial column
or total column CO2 abundances (i.e., XCO2) from these radiances. Instruments measuring
thermal emission include the Atmospheric Infrared Sounder (AIRS, Chahine et al. (2005)),
the Thermal Emission Spectrometer (TES, Kulawik et al. (2010)), and the Infrared Atmo-
spheric Sounder Interferometer (IASI, Liuzzi et al. (2016)), while instruments measuring
solar backscatter include the SCanning Imaging Absorption SpectroMeter for Atmospheric
CHartography (SCIAMACHY, Buchwitz et al. (2005)), the Greenhouse gases Observing
SATellite (GOSAT, Kuze et al. (2016)), and the Orbiting Carbon Observatory 2 (OCO-2,
Eldering et al. (2017a)).

Thermal emission instruments are sensitive to CO2 in the middle-upper troposphere
whereas solar backscatter instruments have nearly-uniform sensitivity to the full atmospheric
column. All of these instruments are on satellites with a polar orbit, so they observe a given
location at most once per day if they rely on solar backscatter, or once per day and once
per night if they rely on thermal emission. To provide a more complete picture of CO2

evolution throughout a given day, NASA has plans to deploy a carbon-observing instrument
aboard a geosynchronous satellite (GeoCARB, Polonsky et al. (2014)), which would provide
continuous observations of a fixed quadrant of the globe. Also proposed is the Active Sensing
of CO2 Emissions over Nights, Days and Seasons (ASCENDS) instrument, which would
measure CO2 in the same bands as the solar backscatter instruments, but by providing a
light source, could do so during nighttime hours (Kawa et al. 2010).

This work studies the utility of observations from OCO-2, which was launched in July
2014 (Eldering et al. 2017a). This instrument is the first NASA mission with the primary
objective of understanding the carbon cycle (Crisp et al. 2004). The high precision (< 0.3% of
the measured XCO2), small footprint (1.25 km x 2.4 km), and sheer number (43,000 to 79,000
high-quality, cloud-free soundings per day) of measurements from OCO-2 are unprecedented
among the previous components of the CO2 observing network.

Since its launch, OCO-2 has provided observations to inform several impactful studies.
Chatterjee et al. (2017) found that the strong El Niño of 2015-16 contributed a net positive
source of CO2 to the atmosphere, through decreased carbon uptake in the pan-tropical
terrestrial biosphere and increased biomass burning in Indonesia and Southwest Asia, but
one that was reduced by a decreased tropical Pacific source in the early stages of the event.
OCO-2 provided the dense observations of CO2 required to observe in detail the timing and
location of these carbon source anomalies.

Liu et al. (2017a) further probed the response of the terrestrial biosphere to the large
El Niño event, focusing on the tropical land. The authors combined the newly available
XCO2 observations from OCO-2, more XCO2 observations from GOSAT, carbon monoxide
observations from Measurements of Pollution in the Troposphere (MOPITT), and solar-
induced chlorophyll fluorescence (SIF) from GOSAT with physical models using the Carbon
Monitoring System Flux inversion system, to understand how and why carbon uptake in the
three tropical continents (Asia, Africa, and South America) changed during the El Niño.
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They found that each tropical continent contributed to the anomalous carbon source, but
for different reasons. In South America, forests were less productive, resulting in reduced
carbon uptake. In Asia, large fires increased carbon release. In Africa, enhanced respiration
increased carbon release.

In addition to providing insight into the natural processes controlling the global carbon
cycle, OCO-2 data has been used to understand and constrain anthropogenic emissions.
Hakkarainen et al. (2016) demonstrated the ability of anomalies in OCO-2 XCO2 observa-
tions to reveal emission hot spots throughout the globe. Nassar et al. (2017) showed that
emissions from individual power plants can be determined with 1%-17% uncertainty when
fitting OCO-2 observations to plume model simulations. Schwandner et al. (2017) showed
that, in addition to detecting CO2 outgassing from multiple volcanoes, OCO-2 observes the
urban enhancement of CO2 over the Los Angeles basin.

In the Liu et al. (2017a) study, the authors used data assimilation, which is the mathemat-
ical practice that seeks to optimally combine a forecast model with incomplete observations.
In the case of Liu et al. (2017a), the observations are satellite observations of trace gases and
the model is an Earth System model with coupled ocean, land, and atmospheric components.
Data assimilation is used routinely for example in weather forecasting, to determine the best
initial conditions for the forecasting model, or in creating an atmospheric reanalysis, where
an optimal state estimate is the end goal. In the carbon cycle community, data assimilation
which aims to estimate time-evolving three-dimensional atmospheric CO2 fields is usually
referred to as a state estimation, whereas when data assimilation is used to estimate the
CO2 surface flux forcing, it is called a surface flux inversion.

In weather forecasting and carbon cycle science (especially when assimilating satellite
observations), the size of the problem and number of observations to assimilate are large, so
the dominant techniques are sequential ensemble methods such as the ensemble Kalman filter
(EnKF, Evensen (2003)), and variational methods such as 4D-Var (Courtier et al. 1992). A
comparison between an ensemble Kalman filter and 4D-Var for CO2 data assimilation shows
that the two methods yield consistent fluxes across broad regions (Liu et al. 2016). The
EnKF provides a measure of uncertainty (the spread in the ensemble) which variational
methods do not easily provide. The EnKF is more easily parallelizable and computationally
efficient than 4D-Var, which requires an adjoint model.

In Chapters 2 and 3 of this dissertation, we perform ensemble data assimilation using
the ensemble adjustment Kalman filter (EAKF, Anderson (2001)) algorithm from the Data
Assimilation Research Testbed (DART) toolbox (Anderson et al. 2009). DART has been
tested for a variety of applications including model bias detection, chemical data assimilation,
and production of a decades-long climate reanalysis (Raeder et al. 2012). DART’s modular
interface allows its users to easily add new observation types, test various filter, inflation,
and localization choices, and its diagnostic tools allow for streamlined analysis. DART’s
ensemble filters are “upwardly mobile”: the forecast model can be easily replaced with a
later version or a different numerical model, since they do not require the derivation of
the adjoint of the forecast model. Additionally, DART algorithms scale well on parallel
computers (Anderson et al. 2009, 2013), which is of crucial importance when applied to
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global-scale, large state vector problems. The particular filter we employ in Chapters 2 and
3, the EAKF, is shown to outperform the traditional EnKF in certain applications and most
notably for small ensembles (Anderson 2001).

CO2 surface flux inversions aim to estimate CO2 uptake and emission patterns by combin-
ing prior knowledge of these patterns with observed CO2 atmospheric abundance and tracer
transport models. These inversions are analogous to data assimilation as described above,
except that they estimate the surface flux forcing instead of (or in addition to) estimating
the concentration of CO2 in the atmosphere. An early example of a surface flux inversion is
Tans et al. (1990), where in situ CO2 observations from several stations and partial pressure
observations of CO2 at the ocean surface are compared to modeled CO2 fields from a general
circulation model to identify a northern hemispheric land sink. A modern example of a
surface flux inversion is CarbonTracker (CT) (Peters et al. 2005, 2007). CT takes advantage
of a greatly expanded observation network compared to Tans et al. (1990). It uses an EnKF
to optimize a set a multipliers corresponding to 135 regions of the globe. These multipliers
adjust prior fluxes to match CO2 observations from the global surface in situ CO2 network
over a 12-week observation window. Several other recent inversions have been performed
using 4D-Var (e.g. Deng et al. (2014)).

Since satellite observations of CO2 have become available, surface flux inversions have
also been performed using this data. For example, global surface fluxes have been estimated
using data from TES (Nassar et al. (2011)) and GOSAT (Basu et al. (2013); Houweling et al.
(2015)) data. These satellite products suffer from biases (e.g., Chevallier (2015); Eldering
et al. (2017b)) which propagate into flux estimates. In an attempt to quantify and under-
stand biases in satellite data, the Total Carbon Column Observation Network (TCCON,
Wunch et al. (2011)) was created. TCCON instruments are well-calibrated terrestrially-
based analogs to instruments like OCO-2. Data from TCCON instruments has also been
used in surface flux inversions (Chevallier et al. 2011).

The works that this dissertation most directly builds upon are those which use the Lo-
cal Ensemble Transform Kalman Filter (LETKF) for simultaneous assimilation of weather
and CO2 observations (Liu et al. 2011, 2012). In these studies, the online assimilation of
meteorological observations into the atmospheric ensemble provides a better representation
of mixing than other studies which use a single representation of meteorology from a reanal-
ysis product or from a transport model, as demonstrated in Liu et al. (2011). Liu et al.
(2012) showed that in their data assimilation system, assimilating AIRS XCO2 in addition
to weather observations significantly improved the accuracy of CO2 reanalysis fields when
compared with non-assimilated CO2 vertical profiles from aircraft. Kang et al. (2011) and
Kang et al. (2012) extended the data assimilation system to include CO2 surface flux in the
state vector, thus performing a CO2 surface flux inversion in addition to an estimation of
the atmospheric state. Kang et al. (2012) demonstrated that estimating the surface flux
in this way is possible under idealized conditions, and Kang et al. (2011) outlined which
observations should impact the CO2 state in order to best estimate the surface fluxes in the
idealized system.

In Chapter 2 of this dissertation, we present a compromise between the state estimation
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in Liu et al. (2012) and the surface flux inversion in Kang et al. (2011, 2012) in that surface
fluxes are not included in the state vector, but information about the surface fluxes is derived
from diagnostics provided by the assimilation system and the adjustments it makes to the
CO2 mixing ratio and other meteorological state variables. In Chapter 3, we examine how we
can use our carbon-weather data assimilation system to understand how CO2 observations
could potentially improve weather forecasts. In Chapter 4, we use the CO2-weather reanalysis
created by Liu et al. (2012) to derive global monthly CO2 surface flux estimates in an offline
manner.



6

Chapter 2

A carbon-weather data assimilation
system for CO2 emissions verification at
the national scale

Abstract. We present a series of Observing System Simulation Experiments (OSSEs)
assessing the ability of a carbon-weather data assimilation system to detect underreporting
of CO2 emissions at the scale of a large country. We use the ensemble adjustment Kalman
filter (EAKF) from the Data Assimilation Research Testbed (DART) to assimilate synthetic
observations of total-column CO2 at the locations of (1) the Orbiting Carbon Observatory
2 (OCO-2) soundings and (2) a hypothetical observing system which observes globally at
1pm local time each day. This data is assimilated into the Community Atmosphere Model
(CAM 5.0 FV), with a prognostic carbon cycle forced by CarbonTracker CO2 surface fluxes
for land, ocean, and fossil fuel sources. The fossil fuel CO2 emissions are modified to have a
-50% bias over China, but the OCO-2 observations are pulled from a model run where this
bias is not present. We test whether the data assimilation system can detect the imposed
bias by examining the near-surface innovation in CO2 mass in a method similar to the mass-
balance inversion. We find that with the hypothetical observation strategy, we can recover
half of the imposed bias, and that the ensemble mean of the near-surface CO2 tracks the
truth during the daytime, but underestimates the truth during the unconstrained nighttime
hours over the region of the imposed bias. For the OCO-2 strategy, we detect a signal at
the location of the imposed bias that is obscured by problems such as observation coverage,
which we discuss in detail. We discuss potential additions to the observing system which
could optimize the detection of biased emissions with our data assimilation system.

2.1 Introduction
In the global carbon budget, the annual increase in atmospheric CO2 and global an-

nual emission from fossil fuel (FF) combustion are the two most robust terms. Together,
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they bracket estimates of the net land and ocean sinks. National CO2 emissions from fos-
sil fuel combustion are estimated from self-reported inventories of fossil fuel production or
consumption, to which fuel-specific or activity-specific emission coefficients have been ap-
plied. Andres et al. (2014) put an uncertainty of 8.4% (2-σ) on global total FF emissions.
In the US, estimates by the Energy Information Administration (EIA) (http://eia.gov) and
EPA (https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-
1990-2013) differ by ∼2%.

Regional and local emissions have greater uncertainties than the global estimates, as self-
reporting is not comprehensive. Furthermore, downscaling emission statistics for geo-political
units to create gridded datasets necessarily involves proxies, assumptions, and models. The
widely-used Carbon Dioxide Information Analysis Center (CDIAC) database apportions na-
tional, state, and provincial emissions according to population density (Andres et al. 2014).
The Open-Data Inventory of Anthropogenic CO2 (ODIAC) emission database includes point
sources, and information from the Defense Meteorological Satellite Program observations of
nightlights (Oda and Maksyutov 2011), while the Emission Database for Global Atmospheric
Research (EDGAR, Olivier et al. (1996)) and the Fossil Fuel Data Assimilation System ver-
sion 2 (FFDAScv) utilize updated data on population density, point sources and nightlights
(Olivier et al. 2005; Asefi-Najafabady et al. 2014). Large differences exist between the
ODIAC and “Miller” FF emission data sets used in CarbonTracker (Peters et al. 2007). The
“Miller” dataset apportions global total emissions from CDIAC according to EDGAR’s grid-
ding (CT2015, https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2015/). Both have
national emissions scaled to the same CDIAC values. A difference of 100 gC/m2/yr in a
single gridbox translates into >20 ppm column-averaged CO2 (XCO2) before advection.

The uncertainties in the national FF CO2 emission estimates are illustrated by three re-
cent studies of China. Guan et al. (2012) found that China’s annual FF emission estimated
by totaling provincial inventories is higher than that from national reports by as much as
0.38 PgC (1.4 gigatonnes CO2) for 2010. They aver that the “bottom-up” national statistics
capture mainly large-scale power production and consumption, but miss local and regional
emissions. Figure 2.1 shows China’s fossil fuel emissions as estimated by different organi-
zations. The difference between the provincial total and the widely-used CDIAC estimates
amounts to 0.3 PgC/yr for 2010. In contrast, a follow-on study Liu et al. (2015) obtains
much lower emissions, ∼14% (0.35 PgC) lower than EDGAR estimates for 2013. They re-
examined the carbon content, heat content, and oxidation states of the different fuels, and
found that the emission coefficients of Chinese coal are ∼40% lower than the values recom-
mended by the IPCC. 0.35 PgC/yr is approximately double the estimated carbon sink in
forests in China (Pan et al. 2011). If 0.3 PgC were evenly distributed in the atmosphere over
China (area = 9.4x106 km2), that translates to a column-average difference of 5 ppm. For
2014, IEA estimated a 1.5% reduction in China’s FF emissions while BP estimates a 0.9%
increase over the previous year (Korsbakken et al. 2016).

“Top-down” approaches for inferring CO2 sources and sinks from the spatial and tem-
poral variations in the abundance of CO2 in the atmosphere are useful for cross-checking
“bottom-up” estimates such as described above. The realism of surface fluxes inferred from
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Figure 2.1 : Estimates of fossil fuel CO2 emissions from China by different approaches or organiza-
tions (adapted from Table 2 of Guan et al. (2012))
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atmospheric CO2 observations is thus contingent on the realism of atmospheric transport and
mixing. Most inversion or data assimilation studies utilize atmospheric circulation statistics
from a general circulation model or from a meteorological reanalysis product. While reanal-
ysis represents the optimal estimation of the atmospheric circulation based on the available
observations and the weather forecast or atmospheric circulation model, the verisimilitude of
the product depends on the observations used and the model itself. For example, Trenberth
and Fasullo (2013) show that globally-averaged net radiation at the top of the atmosphere
estimated by several reanalysis products can differ from actual values by as much as 10
W/m2 and fail to capture the signatures of a quiet sun or the eruption of Mount Pinatubo.
This has consequences for transport and CO2 fluxes.

Indeed, disparate surface CO2 fluxes are inferred from different transport models with
different meteorology, or from different meteorology in a single transport model (Gurney et al.
2003; Baker et al. 2004; Chevallier et al. 2010; Houweling et al. 2010). Underestimation of
inter-hemispheric transport (e.g. Denning et al. (1999)) and/or underestimation of vertical
mixing in northern mid-latitudes (e.g. Stephens et al. (2007)) in an atmospheric circulation
model would lead to an overestimate of the northern hemisphere CO2 sink. Furthermore, not
often considered are inherent uncertainties in the reanalysis product, such as large spread in
meteorological fields in stormy regions (e.g. Kalnay (2003)) where intense turbulence and
mixing deliver surface CO2 aloft to the regions of fast winds, leading to large spreads in CO2

fields, especially aloft.
The Orbiting Carbon Observatory 2 (OCO-2), launched into orbit in July of 2014, pro-

vides unprecedented observations of the column mixing ratio of CO2 (XCO2) in the atmo-
sphere (Eldering et al. 2017a). One stated goal of satellite CO2 observations is climate treaty
verification (National Research Council 2010). This study is a first attempt to assess the
feasibility of satellite CO2 observations to detect biases in national-scale CO2 emissions when
realistic transport uncertainties are included. We present a series of observation system sim-
ulation experiments (OSSEs) as a proof of concept for a carbon-weather data assimilation
(DA) system to be used to detect biases in national-scale CO2 emissions reports. Uncertain-
ties in land fluxes, which are much greater than those of fossil fuel emissions, are beyond the
scope of this first study that includes transport uncertainties.

A central aspect of the DA system in this study is the simultaneous assimilation of
weather and CO2 observations into a single global carbon-climate model. The state vector
thus includes meteorologic variables in addition to CO2 at each model gridbox. The obser-
vation operator, or forward operator (H), that transforms the background state variables
to observation space is generally simple selection and interpolation of model forecasts to
the location and time of the observations. The assimilation window is six hours, meaning
that every six hours, the Ensemble Adjustment Kalman Filter (EAKF) seeks the “analysis”,
or optimal fit between the observations and the transformed (by H) model forecasts. The
dynamic modelM, the carbon-weather model CAM5, then uses the meteorological and CO2

analyses as its initial condition, and forecasts the ensemble of the state vector for the next
six hours using the prior prescribed surface fluxes. The outcome is a reanalysis product of
the atmospheric state, including CO2. From the ensemble of 4D states of the atmosphere,
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potential corrections to the prior surface fluxes are estimated a posteriori via mass balance.
Uncertainties in these surface flux corrections can then be assessed against contemporaneous
uncertainties in the meteorology.

The carbon-weather DA system in this study follows from Liu et al. (2012) and Kang
et al. (2011), which have meteorology and CO2 in the state vector. Liu et al. (2012) first
demonstrated a similar DA system’s ability to simultaneously assimilate raw weather ob-
servations and upper-tropospheric CO2 from the Atmospheric Infrared Sounder (AIRS). In
doing so, the authors found that assimilating AIRS CO2 in addition to weather observations
markedly improved the accuracy of CO2 reanalysis fields when compared with aircraft pro-
files which were not assimilated. Kang et al. (2011) and Kang et al. (2012) extended the
DA system to include CO2 surface flux in the state vector, and as such performed a flux
inversion in addition to a state estimation. Kang et al. (2012) demonstrated that estimating
the surface flux in this way is possible under idealized conditions, and Kang et al. (2011)
outlined the “variable localization” schemes which are best able to estimate the surface flux
in the system. This current study serves as a compromise between a state estimation and a
full surface flux inversion in that the surface fluxes are not included in the state vector, but
information about the surface fluxes is derived from diagnostics provided by the assimilation
system and the adjustments it makes to the CO2 mixing ratio and other meteorological state
variables.

The DA system presented here is different from the CarbonTracker (CT) family of CO2

DA systems (Peters et al. 2005, 2007; Feng et al. 2009), even though they are also focused
on flux inference. The state variables in CarbonTracker are λi, multipliers associated with
N weekly surface fluxes for each of 135 regions spanning the globe. The forward operator
(H) is the tracer transport model TM5 which ties atmospheric CO2 to the N weeks of CO2

surface flux analysis. CO2 transport in TM5 uses a single realization of ECMWF (ERA-
interim) winds and, starting with the CT2013 product, applies a “convective flux fix” by using
convective fluxes directly from the ERA-interim parent model. The Square Root Ensemble
Kalman Filter then compares the CO2 forecast and the observations for the last of the N
weeks and updates the N weekly surface fluxes for the regions. Lacking a dynamical model
M to advance the state vector λi by a week, Peters et al. (2005, 2007) assumed persistence,
or M = I. In the 2017 version of CarbonTracker, N is 12, and M averages λi over three
time steps to advance the state vector by two weeks.

The simultaneous assimilation of weather observations into the same global atmospheric
model yields the best approximation to the true atmospheric circulation that is consistent
with the CO2 observations, within the construct of the atmospheric model. The ensemble
approach provides not only estimates of the uncertainties in the meteorological and CO2

fields, but also maintains the nonlinearities contained in the climate model, especially those
associated with convection (Liu et al. 2011). It also avoids the incompatibility between the
mean reanalysis fields and the mixing representation.

The paper is organized as follows. Section 2.2 describes in detail the model, observations,
data assimilation, and inversion methods used for this study. Section 2.3 presents results
from the OSSEs. Final conclusions and some discussion on optimizing our carbon observing
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system can be found in Section 2.4.

2.2 Methods
Here we present the formulation of the global carbon-climate model (Section 2.2.1) into

which standard weather and satellite CO2 observations are assimilated using DART (Sec-
tion 2.2.2). We also describe our mass-balance method for detecting emissions bias in Sec-
tion 2.2.3.

In each OSSE, “truth” is represented by a single integration of the carbon-climate model
that uses fossil fuel, land, and ocean CO2 fluxes from CarbonTracker (version 2015). To
produce the “analysis”, i.e. the ensemble of optimized atmospheric states, an ensemble of 30
model forecasts of weather and CO2 are merged, every six hours, with the observations using
DART. The spread among the ensemble members captures the uncertainties in meteorology
and CO2.

Three experiments are carried out, each with the FF emissions from China biased low by
50%. All three experiments sample weather observations from the “truth” run according to
times and locations of the observations (Section 2.2.4). They also sample column-averaged
CO2 (XCO2) from the “truth” run in a manner that reflects one of two satellite observation
strategies. Experiment Ideal uses simulated XCO2 observations from a hypothetical satel-
lite which observes globally each day at 1pm local time. This is similar, for example, to
the observation strategy used by the TROPOspheric Monitoring Instrument (TROPOMI)
(Borsdorff et al. 2018), which measures a number of trace gases but not CO2. Similar global
daily coverage could also be achieved with a constellation ∼8 of OCO-2-like instruments.
Experiments October and November sample XCO2 observations according to the OCO-2
orbit, which has an equatorial overpass time of 1:30pm local time. Experiments October
and November differ in the time of year they simulate and hence the northernmost extent
of XCO2 observation availability. Prior to imposing the emission bias, each experiment
requires an ensemble spin-up, during which time the spread among the ensemble of atmo-
spheric states is developed. This is described in section 2.2.7 and section 2.2.8. Following
the ensemble spin-ups, the emission biases are imposed, and the experiments are integrated
for two (October, November experiments), or four (Ideal experiment) weeks.

2.2.1 The Dynamic Model M: CESM-CAM with CO2 cycle

Our carbon-weather data assimilation system has two central components: the carbon-
climate model and the data assimilation (DA) system. The carbon-climate model is the
Community Earth System Model (CESM 1.2.1) from the National Center for Atmospheric
Research (NCAR). This model couples many Earth system components including atmo-
sphere, land, ocean, ice, and biogeochemistry. For this work, we use the component set
AMIP_CAM5_CLM40% CN_CICE% PRES_DOCN% DOM_RTM_SGLC_SWAV. This
is essentially the same setup as in Raeder et al. (2012) except that we have allowed the carbon
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cycle to be prognostic.
The atmospheric model used is the Community Atmosphere Model (CAM) 5.0FV (Neale

et al. 2012) with a prognostic carbon cycle, a horizontal resolution of 2.5° longitude x 1.9°
latitude, and 30 levels in the vertical. Although our CESM component set calculates land
and ocean carbon fluxes interactively (as a function of the model’s climate), we prescribe
the surface CO2 fluxes in the OSSEs to be the monthly fluxes from CarbonTracker 2015
(Peters et al. 2007). These CO2 fluxes from the terrestrial biosphere (including fire), from
the ocean, and from fossil fuel emissions together satisfy the global carbon budget for 2015,
and are used separately as forcing for their respective tracers (Cland, Cocean, and Cfossil) in
the atmosphere. In addition to these three tracers, CAM5.0FV transports a fourth tracer,
Ctotal, forced by the sum of the fluxes. The fluxes are linearly interpolated from their monthly
values to the model time resolution of six hours, so no diurnal cycle is included in our CO2

surface flux model.

2.2.2 Data Assimilation Research Testbed (DART)

Ensemble data assimilation is used to best estimate the atmospheric state given our
observations, model forecasts, and their relative uncertainties. For this study we use the
ensemble adjustment Kalman filter (EAKF) in NCAR’s Data Assimilation Research Testbed
(DART) (Anderson et al. 2009). DART is a robust platform that has been used with CAM
for creation of a reanalysis product of atmospheric circulation (Raeder et al. 2012), and with
CAM-Chem for numerous trace gas studies (e.g. Barré et al. (2015); Liu et al. (2017b)).

We will first describe the mathematical procedure followed by this algorithm (“Filter
Description” section) before providing the particular implementation choices for the filter
(“Filter Implementation” section) that were used in this work.

Filter Description

The EAKF adjusts model forecasts to account for observations, taking into account
uncertainties in both observations and forecasts. This section follows notation similar to that
of Barré et al. (2015) to describe the mathematical functioning of the EAKF. A particular
ensemble member is denoted with subscript k, model space variables are represented by x
(where x is one of the variables in the model state vector ~x = [u, v, T , P , q, tracers]), and
observation space variables are represented by y. For y, subscript o refers to observations and
subscript m refers to model forecast quantities that have been transformed to observation
space for comparison.

An assimilation cycle starts with a six-hour model (CAM) advance of each of our K
ensemble members. This produces an ensemble forecast of the model state, which can be
thought of as the prior or background forecast to be updated by the filter. We denote this
background ensemble with superscript f , so the background forecast of ensemble member k
is xfk .

Prior to transforming these forecasts to observation space, we perform adaptive inflation
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as in Raeder et al. (2012) and Barré et al. (2015). An inflation factor λ, which varies in
space, time, and variable, is applied to the model forecasts according to the equation:

xfk =
√
λ(xfk − x

f ) + xf (2.1)

This step helps prevent filter divergence by increasing the spread (σfm) among the forecast
ensemble members. For a detailed description of the adaptive inflation employed here, we
refer the reader to Anderson (2009).

Each forecast xfk is then transformed from model space to observation space using a
forward operator H (the observation operator), yielding yfm,k – our expected observations
given the model forecasts:

yfm,k = H(xfk) (2.2)

Here the subscript m denotes that these are observation-like quantities calculated from the
forecast model. Each observation type has its own forward operator. In the simplest case,
a near-surface temperature “observation” is calculated from the model state by interpolat-
ing surrounding grid box temperature values to the location of the observation. For more
information on our XCO2 forward operators, see section 2.2.5.

Using all yfm,k we can calculate the ensemble mean ( yfm ) and “spread” (σfm), i.e. the
standard deviation, among ensemble members of the forecast in observation space.

Following the inflation step, DART’s EAKF calculates the analysis yam,k by adjusting
each background forecast yfm,k as described in Anderson (2003). The analysis is given by :

yam,k =

√
σ2
o

σ2
o + (σfm)2

(yfm,k − y
f
m) +

yfm
(σf

m)2
+ y0

σ2
o

1

(σf
m)2

+ 1
σ2
o

(2.3)

This procedure results in an ensemble mean, yam, which is closer to the observation yo
and a reduced ensemble spread (σam). The observation space increment is then given by:

∆ym,k = yam,k − y
f
m,k (2.4)

This increment in model space is then calculated as:

∆xk = α
cov(xf , yfm)

(σfm)2
∆ym,k (2.5)

Here the increment ∆xk is proportional to the observation increment (∆ym,k) times the
covariance of xf and yfm across the ensemble (cov(xf , yfm)) divided by the variance across
model forecasts ( (σfm)2 ). The factor α is applied to localize the covariance in space. This
factor allows us to minimize sampling error by allowing observations to update the model
state (via increments ∆xk) less and less as the distance between the model state location
and the observation location increases.

Our chosen α is the fifth-order polynomial Gaspari-Cohn (GC) correlation function (Gas-
pari and Cohn 1999), which limits the impact of an observation to a volume centered on the
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observation. The GC function is a compactly-supported approximation of a Gaussian with
a maximum value of 1 at the location of the observation. The rate at which the function
falls off in distance is set by a half-width parameter, which is half the distance at which
the GC value goes to 0. For all meteorological observations used in these experiments, we
choose a horizontal half-width of 0.2 radians (∼1200 km) and a vertical half-width of 400
hPa, following examples of successful assimilations of Raeder et al. (2012) and Barré et al.
(2015). For the total column CO2 observations (XCO2), we also use a 0.2 radian half-width
for the horizontal correlation function, but we do not localize in the vertical as some do
when assimilating total-column trace gas observations (e.g. as Barré et al. (2015) do with
CO). Barré et al. (2015) chose to perform vertical localization of MOPPITT and IASI CO
observations by maximizing the impact of observations on the state at the averaging kernel’s
peak value. For OCO-2 soundings, the averaging kernel is much flatter than the CO obser-
vations used in this study, so a similar approach to vertical localization in our case is less
straightforward.

The model space increments (Eq. 2.5, also called the innovation) are added to the model
forecasts to give analyses xam,k (also called posterior states):

xam,k = xfm,k + ∆xm,k (2.6)

The analyses xam,k then become the initial conditions for the next assimilation window.

Filter implementation

We emphasize that we assimilate meteorological observations simultaneously with CO2

observations, and that these meteorological observations impact the CO2 tracers in our state
vector. This is unique to our system, compared to other carbon data assimilation and
inversion systems. The assimilation of weather observations yields the best approximation
to the true atmospheric circulation that is contemporaneous with the CO2 observations.

Our state vector is ~x = [u, v, P , T , q, Cfossil, Ctotal], where u and v are horizontal wind
fields, P is surface pressure, T is temperature, q is specific humidity, Cfossil is the mixing
ratio for the fossil fuel CO2 tracer, and Ctotal is the mixing ratio for the combined CO2 tracers
(Cland + Cocean + Cfossil). The assimilation window is six hours for all state variables.

We use a small ensemble size of 30. This choice was made considering the tradeoff between
optimal filter behavior and computational cost. We also note that Anderson (2001) shows
that the EAKF outperforms the traditional ensemble Kalman filter for small ensembles, and
that other trace gas assimilation experiments have yielded good results using an ensemble
size of 20 or 30 (e.g. Barré et al. (2015); Liu et al. (2017b)).

Our choice of an ensemble method allows us to retain nonlinearities contained in the
climate model, especially convection, as demonstrated by Liu et al. (2011). It also avoids
the incompatibility between the mean reanalysis fields and the mixing representation. The
ensemble grants us a measure of uncertainty in our weather fields for every six-hour forecast.
In Figure 2.2 we show the spread (σfm) among forecasted meteorological state variables for
the assimilation window at the beginning of the October experiment.
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Figure 2.2 : Snapshots of the spreads (σfm) among our ensemble of forecasts for state variables at
the start of the October experiment (after spinning up the ensemble). From top to bottom, we show
spreads in: winds u and v (in meters per second), temperature T (in °C), specific humidity q (in
10−4 x kg H2O/kg total air), and the concentration of CO2 Ctotal (in ppm), all at 3 different model
levels (844 hPa, 469 hPa, and 212 hPa). The bottom panel shows the spread in surface pressure P
(in Pascals).
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2.2.3 Innovation approach for emissions bias detection

To estimate any bias in emissions, we examine the innovation in CO2 mass for the lower
portion of the atmospheric column that is sensitive to the surface flux forcing. This cal-
culation comes after the experiments are run. In other words, rather than update the flux
iteratively online, by including it in the state vector, we examine how the CO2 mass was up-
dated by the observations, and see whether this update (i.e., the innovation), when summed
in time over the duration of each experiment, resembles our imposed bias over the same
period. If we were to add back this innovation to our surface flux forcing, re-run the assimi-
lation, and repeat this process iteratively until the innovation stabilizes at a small value, this
approach would be analogous to the mass-balance inversion / data assimilation approach
employed by Dargaville and Simmonds (2013).

We first note that equation 2.6 can be rearranged such that we can calculate the innova-
tion ∆xk from the model forecast and analysis:

∆xk = xak − x
f
k (2.7)

Here, and in the following derivations, we drop the m subscripts for brevity since we only
work in model space in this section.

For a given state variable x, the corresponding ensemble mean innovation (∆x) and
spread in innovation (σ∆x) are then:

∆x = xa − xf (2.8)

σ∆x =

√
(σax)

2 + (σfx)2 (2.9)

Here, and throughout this section, we combine spreads from the analysis and forecast vari-
ables assuming they are uncorrelated, random errors. Of interest for the calculation of CO2

mass innovation are the state variables Cfossil, P , and q, each of which has its own ensemble
mean (Cfossil, P , q) and spread (σCfossil

, σP , σq). For brevity, in the remainder of this section
we drop the fossil subscript from Cfossil.

We aim to convert ∆C in each grid box and each vertical level from its model mass
fraction units (kgCO2/kg dry air) to mass flux units (kgCO2/m2/s), then integrate in the
vertical the layers that are sensitive to surface fluxes. We call the resulting derived quantity
the mean flux innovation (∆Φ):

∆Φ = Φ
a − Φ

f (2.10)

We define an intermediate quantity A as the mass of total air per area in each atmospheric
level (with units kg air/m2). A is derived from P and the parameters (hyai, hybi, and P0)
that define CAM5’s hybrid sigma coordinates. The ensemble mean (A) and spread (σA)
are given in equations 2.11 and 2.12, respectively. At this point, we drop superscripts a
and f and note that each derived quantity leading up to Φ

a and Φ
f is calculated separately

using the ensemble mean and/or spread of either the analysis or forecast state variables. For
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clarity, we also include the indices for the various dimensions (longitudinal i, latitudinal j,
vertical l, and time n) in parentheses following nonscalar quantities.

A(i, j, l, n) =
1

g
[hyai(l + 1)− hyai(l)] ∗ P0 +

1

g
[hybi(l + 1)− hybi(l)] ∗ P (i, j, n) (2.11)

σA(i, j, l, n) =
1

g
[hybi(l + 1)− hybi(l)] ∗ σP (i, j, n) (2.12)

Here g is the gravitational constant (9.8 m/s2) and P0 is the reference pressure in Pascals.
C (units kgCO2/kg dry air) is then converted to c (units kgCO2/m2) using q (kgH2O /kg

air), and A (kg air /m2) in equation 2.13.

c(i, j, l, n) = C(i, j, l, n) ∗ (1− q(i, j, l, n)) ∗ A(i, j, l, n) (2.13)

The spread about c is calculated using the ensemble mean quantity c and ensemble
spreads σC , σq, and σA in the following manner:

σc(i, j, l, n) = c(i, j, l, n)

√(
σC(i, j, l, n)

C(i, j, l, n)

)2

+

(
σq(i, j, l, n)

q(i, j, l, n)

)2

+

(
σA(i, j, l, n)

A(i, j, l, n)

)2

(2.14)

We sum over CAM5’s bottom 12 layers, from the surface to about 525 hPa, to get Φ
a

and Φ
f , and their corresponding spreads:

Φ(i, j, n) =
1

∆t

12∑
l=1

c(i, j, l, n) (2.15)

σΦ(i, j, n) =
1

∆t

√√√√ 12∑
l=1

σc(i, j, l, n)2 (2.16)

Here ∆t is six hours, expressed in seconds, so that units for Φ and σΦ are kgCO2/m2/s (the
same units as the surface flux forcing). The choice of including up to 525 hPa is discussed
further in the results section (section 2.3). Combining equations 2.10 and 2.13 gives us a
mean flux innovation (∆Φ) for each six-hour assimilation window and each grid box. The
spread (∆σΦ) about the mean innovation is then calculated as:

σ∆Φ(i, j, n) =

√
(σΦ(i, j, n)a)2 + (σΦ(i, j, n)f )2 (2.17)

We integrate ∆Φ over the multi-week time period of the experiments, to get a cumulative
mean flux innovation, Σ∆Φ:

Σ∆Φ =

∫ tfinal

t0

∆Φdt (2.18)
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Σ∆Φ is then the quantity that is compared to the imposed bias summed over the exper-
imental period. Its spread, σΣ∆Φ, is calculated by summing σ∆Φ in quadrature, from the
start of the experiment to the final time step of the experiment (Tfinal):

σΣ∆Φ(i, j) =

√√√√Tfinal∑
n=1

(σ∆Φ(i, j, n))2 (2.19)

This spread in the cumulative mean flux innovation can be used to determine the significance
of the Σ∆Φ signals.

2.2.4 The Observations

XCO2 : Realistic OCO-2 super-obs

We sample total column CO2 from the “true” atmosphere at the locations of OCO-
2 10-second (∼67.5 km along-track) grouped observations or “super-obs.” These grouped
observations were developed by David Baker for an OCO-2 flux intercomparison project
among inverse modeling groups. The intent behind this data product is to transform the
OCO-2 XCO2 observations from their dense coverage and small footprints to a scale that is
closer to that of the transport models employed by the various flux inversion teams. These
transport models, like our atmospheric model, use grid boxes more than 100 km in the
horizontal, such that dozens of CO2 soundings are retrieved in each box.

These super-obs use only “good” quality observations, as determined by both the xco2
quality flag provided with the OCO-2 Level 2 data and the xco2 warn level. They exclude
observations with an xco2 quality flag value of 1, and xco2 warn level value of more than
18. They also exclude data with land water indicator = 2 (“inland water”) and land water
indicator = 3 (“mixed land/ water scenes”). The observation coverage for the two experiments
that use this data (October and November) can be seen in Figure 2.3.

Here we give a step-by-step guide on how the super-obs were computed, since this com-
putation was used to calculate the uncertainties we use in our experiments, as well as the
averaging kernels and pressure levels used in our OCO-2 XCO2 forward operator. In this
section we use the following notation: XCO2 is the pressure-weighted dry air CO2 mixing
ratio column average. σXCO2

is the uncertainty in XCO2 . a is the averaging kernel vector
associated with the retrieval of XCO2 . v is any of the parameters associated with the XCO2

retrieval, such as surface albedo or aerosol optical depth. J is the number of XCO2 retrievals
that go into the 1-second averages. K is the number of XCO2 retrievals that go into the
10-second averages.

The super-obs are developed in two steps. They are first grouped across 1-second spans,
then these grouped observations are grouped across 10-second spans. In this way, if many
observations are located close to one another (e.g. within 1 second of one another), they will
not disproportionately impact the 10-second super-ob or the model state upon assimilation.
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Figure 2.3 : OCO-2 super-ob counts falling during the October (upper panel) and November (lower
panel) experiments.
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The observations themselves, and their uncertainties, are averaged across these scales.
In the first step, up to 24 measurements j in each 1-second span k are averaged, assuming
their errors are completely correlated:

vk = σ+2
Σ1s

J∑
j=1

σ−2
j vj (2.20)

X ′CO2k
= σ+2

Σ1s

J∑
j=1

σ−2
j X ′CO2j

(2.21)

ak = σ+2
Σ1s

J∑
j=1

σ−2
j aj (2.22)

σ−2
Σ1s

=
J∑
j=1

σ−2
j (2.23)

Here σj is the uncertainty in XCO2 as calculated by the retrieval algorithm and given in the
daily OCO-2 Lite files.

The 1-second measurement’s uncertainty σk is then calculated as follows:

σ−2
k =

1

J
σ−2

Σ1s
=

1

J

J∑
j=1

σ−2
j (2.24)

In this way, the uncertainty is an average of the uncertainties in the group rather than one
that decreases by a factor of 1/

√
J .

There is then also a spread for the parameters v in this group, which can be calculated
with:

σ2
v = (

J∑
j=1

v2
j −

1

J
[
J∑
j=1

vj]
2)/(J − 1) (2.25)

Similarly, the spread among XCO2 retrievals in the 1-second span is:

σ2
s = (

J∑
j=1

XCO2j
2 − 1

J
[
J∑
j=1

XCO2j
]2)/(J − 1) (2.26)

Next, the 1-second span quantities are grouped along 10-second spans. Here K, the
number of 1-second values going into the 10-second super-ob, will be ≤ 10. In this procedure,
the 1-second scale quantities are weighted by the inverse of their uncertainty, squared. This
uncertainty is either σk (the average reported uncertainty) or, if this value is smaller than
σspread (the spread in the XCO2 retrievals that comprise the 1-second observation), σspread is
used in the weighting. This rule is expressed as:

σ2
Σk

= max(σ2
k, σ

2
spread) (2.27)
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Here σspread is a version of σs that takes into account the case where only one observation
goes into the 1-second super-ob in the following way:

σ2
spread = max(σ2

s , ε
2
base/N) (2.28)

Here N is the number of retrievals that went into the 1-second super-ob and the base
errors (εbase) are:

εbase = 0.8 ppm over land (2.29)
= 0.5 ppm over ocean (2.30)

The 10-second super-obs are then calculated across the K 1-second super-obs in the
following way, with these σ2

Σk
quantities as weights.

v10s = σ+2
Σ10s

K∑
k=1

σ−2
Σk
vk (2.31)

X ′CO210s
= σ+2

Σ10s

K∑
k=1

σ−2
Σk
X ′CO2k

(2.32)

a10s = σ+2
Σ10s

K∑
k=1

σ−2
Σk
ak (2.33)

σ−2
Σ10s

=
K∑
k=1

σ−2
Σk

(2.34)

σΣ10s is then used to calculate σmeas, the average 10-second measurement uncertainty:

σ−2
meas =

1

K
σ−2

Σ10s
=

1

K

K∑
k=1

σ−2
Σk

(2.35)

We note again that this is an average of the uncertainties, rather than an uncertainty calcu-
lated by summing information, so σ is not reduced by a factor of 1

K
.

The groups who are involved in the inversion intercomparison project additionally add a
model error σmodel to σmeas to get an increased XCO2 error for their experiments:

σ2
10s = σ2

meas + σ2
model (2.36)

In our experiments, we do not include this model error term and instead specify the mea-
surement error variance for XCO2 as σ2

meas from equation 2.35. These numbers likely under-
estimate the true error of the observations, but they are used as a conservative lower limit
on our confidence in the measurements.
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Our forward operator uses several quantities in addition to the XCO2 values and XCO2

error variances. These include the averaging kernels (10-second version calculated by equa-
tion 2.33), the pressure levels, a priori CO2 profile, and the a priori XCO2 used by the
retrieval algorithm (all represented by equation 2.31).

XCO2 : Idealized observations

In addition to the realistic OCO-2-like sampling strategy, we employ a more idealized
strategy where XCO2 is sampled daily at every grid box in our model at 1pm local time. For
these observations, we uniformly set the observation error variance to 1 ppm. The nominal
goal for the OCO-2 mission was for the uncertainty in the observations to be less than ∼0.3%
(1 ppm) on regional scales (Crisp et al. 2004). Thus, estimating error variances as 1 ppm for
our hypothetical instrument is a simplistic but not unrealistic choice.

Meteorological observations

To best constrain the CO2 transport, we assimilate standard weather observations along-
side XCO2. Previous work has shown that simultaneously assimilating weather observations
and CO2 observations yields more realistic convective transport than when reanalysis winds
are employed (Liu et al. 2011).

Like the OCO-2 observations, the meteorological “observations” are sampled from the
“truth” run at the times and locations of real observations. The observations used for this
sampling include a suite of wind, temperature, and humidity observations from aircraft,
radiosonde, and satellite instruments. The full types of observations are enumerated in
Table 2.1, along with their uncertainties. Example observation coverage for some of these
types is shown in Figure 2.4.

2.2.5 Forward operator H
For each observation type that we assimilate, a unique forward operator is used to trans-

late state variables into observation space. The forward operators for the meteorological
observations for the most part involve interpolating model state variables to the location of
the observations, so here we focus on the XCO2 operators, which differ between the Ideal
experiment and the October/November experiments.

For the “idealized” XCO2 observations, we use a simplified forward operator that assumes
a flat averaging kernel (i.e. that the instrument is equally sensitive to changes in CO2 at any
pressure level). Hence ymodel is a pressure-weighted sum of the model CO2:

ymodel = 106 · µdryair
µCO2

·
∫
cmodeldpdry∫

(1− qmodel)dp
(2.37)

Here µdryair and µCO2 are the molar masses of dry air and CO2, pdry is the partial pressure of
dry air, and qmodel is the model’s specific humidity. The observation error variance for these
idealized observations is set to 1 ppm for each of the observations.
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Figure 2.4 : Counts of available observations for some representative observation types during a
2-day period at the start of the October experiment (10/22 through 10/24). ACARS temperature
(upper left), Satellite U wind (upper right), land surface altimeter (lower left), and radiosonde
specific humidity (lower right) are shown. Wind, temperature, and humidity observation counts
include available observations at several atmospheric levels.
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Table 2.1 : Observation types with average counts and errors for each (in a 28-day period)
Type # available (28-day period) Average σo a

Idealized Total Column CO2 232110 1.00 ppm
OCO-2 Total Column CO2 11016 0.66 ppm
ACARS Horizontal Wind 7364982 3.54 ms−1

ACARS Temperature 7362018 1.00 °C
ACARS U Wind Component 7492721 2.50 ms−1

ACARS V Wind Component 7527163 2.50 ms−1

Aircraft Horizontal Wind 1485596 4.37 ms−1

Aircraft Temperature 1566633 1.12 °C
Aircraft U Wind Component 1543762 3.09 ms−1

Aircraft V Wind Component 1556722 3.09 ms−1

GPSRO Refractivity 1711165 0.95 b

Radiosonde Specific Humidity 519558 1.39 g kg−1

Radiosonde Temperature 822747 0.95 °C
Radiosonde U Wind Component 830221 2.21 ms−1

Radiosonde V Wind Component 835455 2.21 ms−1

Satellite U Wind Component 2309786 4.66 ms−1

Satellite V Wind Component 2336576 4.66 ms−1

a i.e., the square root of the observation error variance, averaged globally.
b GPSRO (fractional refractivity) is unitless.
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The realistic super-obs use the averaging kernel (a), and auxiliary variables such as cprior
from the actual OCO-2 observations, summarized over 10-second periods as described in
2.2.4. The modeled XCO2 (ymodel) is calculated as:

ymodel = yprior + a(106 · µdryair
µCO2

· cmodel − cprior) (2.38)

Here, cprior is the prior CO2 profile used by the OCO-2 retrieval algorithm. This profile is on
a different vertical grid than CAM’s CO2 profile, cmodel. So, in addition to being interpolated
in the horizontal to the location of the OCO-2 sounding, the model’s CO2 is interpolated
from the model vertical grid to that of the OCO-2 profile. Oftentimes, the lowest level or
two in the OCO-2 profile is lower than the bottom level of the CAM profile. In this case,
cmodel at that level is set to be equal to cprior of that level. yprior is the prior XCO2 used by
the retrieval algorithm. a is the averaging kernel for the particular super-ob.

2.2.6 CO2 surface flux forcing

The model CESM-CAM5.0FV is forced at the surface by the fluxes calculated by the Car-
bonTracker 2015 (CT2015, https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2015/)
system (Peters et al. 2007), regridded from CarbonTracker’s 1° x 1° grid to CESM’s 1.9° x
2.5° grid. The forcing for the natural land carbon flux (“SFCO2_LND” in CESM) is the
sum of CarbonTracker’s “bio” (terrestrial biosphere) and “fire” (fire emissions) fluxes.

The fossil fuel surface forcing differs between the “true” and “false” model runs in our
OSSEs. The true run’s fossil fuel CO2 tracer is forced with the fossil fuel emissions used by
CT2015. The “false” run is forced with these emissions to which a bias of -50% is imposed
over China. The imposed bias is shown in Figure 2.5.

In each OSSE, the Cfossil tracer is forced with an ensemble of emissions whose mean
is centered around the CT2015 FF emissions, and whose spread, representing a realistic
uncertainty in those forcings, is created using Evensen’s method for creating pseudorandom
fields (Evensen (2003), Appendix E). In creating these fields, we use a decorrelation length
scale of 400 km, a value similar to others used in the literature for the fossil fuel emission field
(e.g. Basu et al. (2013)). The method creates fields with zero mean and unitary variance.
We scale the fields so that their global standard deviation is close to the error reported by
the Global Carbon Project for the fossil fuel fraction (Le Quéré et al. 2016). The spread in
the emissions field of the 30 ensemble members is shown in Figure 2.5 alongside the ensemble
mean.

This OSSE is our first attempt to assess the ability this DA system, along with satellite
CO2 observations, to detect bias in reported FF emissions, given uncertainties in the obser-
vations and in atmospheric advection and mixing. To set up the “best case” scenario, we
do not include any uncertainties to the CT2015 land and ocean fluxes, even as we recognize
that uncertainties in the land fluxes especially are greater than those in the FF fluxes.
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Figure 2.5 : Imposed bias in fossil fuel CO2 emissions for the false ensemble mean, in 10−8 x
kgCO2/m2/sec (upper panel). Ensemble spread in the fossil emissions, also in 10−8 x kgCO2/m2/sec
(lower panel).
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2.2.7 Initial Conditions and Initial Ensembles

The single realization of the “truth” run provides the fields from which observations
are sampled, and against which the analysis results are compared. The “truth” run starts
from a single initial CO2 and meteorological state for a 3-year integration of CAM5. The
meteorological initial conditions are the mean fields from January 2010 of the 2000-2010
DART/CAM reanalysis described in Raeder et al. (2012). For CO2, the 3D fields used as
initial conditions in Liu et al. (2012) (i.e., from 0000 UT on 1 January 2003) are interpolated
from the CAM3.5 3D grid onto the CAM5 3D grid. The CO2 fields in this integration of
CAM5 are forced at the surface with emissions from CT2015 (with emissions from land,
fires, ocean, and fossil fuels). At the end of three years, the interhemispheric CO2 gradient
is stable from month to month.

In addition to the initial condition for the three year spin-up, there are two steps in the
DA experiments and hence two more sets of conditions which could be referred to as “initial
conditions” in these experiments. First, there is the single initial state which is perturbed to
start the spin-up integration, thus generating a “spun-up” ensemble of states. The spun-up
ensemble of states are then initial conditions for the experiment, when the bias in fossil fuel
emissions is imposed. We will refer to the single initial state as the initial conditions, and
the spun-up initial ensemble for the various experiments as the initial ensembles.

The spin-up period for our experiments starts on October 8 2015. To create the initial
conditions for the spin-up, we start with the atmospheric state on October 14 of the final
year of the “truth” run, so that the initial conditions are slightly different from the data to be
assimilated. This atmospheric state is replicated to create an ensemble with 30 members. To
each ensemble member a different random perturbation (sampled from a normal distribution
with a standard deviation of 0.1°C) is added to the temperature field, just for the first six-
hour model integration of the 30 ensemble members. This perturbation propagates to the
other state vector fields as observations are assimilated and as the integration moves forward
in time. The ensemble is forced with the same land and ocean CO2 fluxes used in the “truth”
run, and its fossil fuel CO2 uses an ensemble of forcings whose mean is the same as the fossil
fuel forcing from the “truth” run. The formation of this FF flux ensemble is described in
more detail in section 2.2.6.

During the spin-up, we start to assimilate XCO2 and meteorological observations from
the “truth” run into the ensemble. Figure 2.6 shows the behavior of the ensemble for a
few observation types for the OCO-2 sampling strategy and Ideal observational strategy.
After ∼six days for meteorological observations (and slightly longer for XCO2 in the Ideal
case), we have an ensemble of atmospheric states with enough spread to ingest most of the
observations fed to it. We note that the spread in the Cfossil and Ctotal tracer distributions
are influenced both by the spread in CO2 FF surface flux forcing and by the propagation of
the initial temperature perturbations. The behavior of the system in observations space is
further discussed in section 2.2.8.
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2.2.8 Observation space diagnostics of the spin-up

To gauge the health of the spin-up, we examine three diagnostic quantities in obser-
vation space: the “total spread,” the root-mean-square error (RMSE), and the number of
observations assimilated.

The total spread is the square root of the sum of the ensemble variance (either (σfm)2

or (σam)2) and the observation error variance (σ2
o), for the available observations in a given

region and assimilation window. The ensemble variance provides an estimate of (prior or
posterior) model uncertainty, while the observation error variance is the uncertainty in the
observation.

RMSE is the root-mean-squared difference between observed values yo (from the truth
run) and the ensemble mean model-derived observation (ym), again for the available obser-
vations in a given region and assimilation window. It can be calculated using ym from the
forecasts or the analyses. A healthy assimilation will give RMSE values that are similar to
the total spread. The number of available observations which are actually assimilated into
the system increases when the magnitude of the ensemble variance relative to the observation
error variance increases. A smoothly operating assimilation will ingest most of the available
observations, but may reject a few that exceed the outlier threshold.

Each of these diagnostic quantities is visualized in Figure 2.6 for the duration of our
two distinct ensemble spin-ups (for the October/November experiments and for the Ideal
experiment), for both weather and XCO2 observation types, using the simulated observations
available in the Northern Hemisphere. The weather observation types shown correspond
to locations of radiosonde measurements of westerly wind at 850 hPa, and aircraft-based
measurements of temperature at 700 hPa, while the XCO2 observation types correspond
to either OCO-2 super-obs (October/November spin-up) or idealized, global daily coverage
XCO2 (Ideal spin-up).

The RMSE and total spread for the simulated weather observations show similar behavior
throughout the two spin-ups, which is expected since the same weather observations are
assimilated in the two experiments. For both the temperature and wind observation types,
the RMSE is initially much larger than the total spread, as the initial conditions for the
ensemble spin-up is deliberately chosen to be different from the observed state from the
“truth” run on that day. As more observations are assimilated, the modeled values approach
the true observed values, decreasing the RMSE to a value that is close to the total spread.

The rightmost bottom panel of Figure 2.6 shows the metrics for OCO-2 XCO2 during
the spin-up for the October/November experiments. This is a less canonical story, as im-
mediately most of the available observations are assimilated rather than the ramping-up as
is seen for the wind observations. This indicates that the available ensemble mean XCO2

and the true XCO2 are initially similar enough that most of the available observations are
not rejected by the outlier threshold filter. The RMSE for the OCO-2 XCO2 becomes un-
stable a few days into the spin-up, indicating that the spread in Ctotal has increased, with
contributions from both the spread in the ensemble surface flux forcing and the spread in
transport.
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Figure 2.6 : Observation space diagnostics for the ensemble spin-up period for the Ideal experiment
(top row) and for the October/November experiment (bottom row), corresponding to observation
types radiosonde horizontal wind at 850 hPa (left column), aircraft temperature at 700 hPa (middle
column), and XCO2 (right column). Observation statistics are aggregated across the Northern
Hemisphere for each six-hour assimilation window. The diagnostics are: the total spread (red),
the RMSE (green), the number of observations assimilated (purple x), and the number of possible
observations (gray circles). In the bottom row, a gold vertical line indicates the end of the spin-up
for the October experiment, while the November spin-up continues after this line and ends at the
edge of the graphs. RMSE and spread units are ms−1, °C, and ppm for wind, temperature, and
XCO2, respectively. The RMSE and total spread time series includes alternating forecast- and
analysis-based values.
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By 10/22, when the October experiment begins, the assimilation is stable compared to
the earlier unstable period, but we see that it settles further as we reach the November
experiment’s start date (11/04). We note that between October 27, 2015 and October 29,
2015, the software which operates the OCO-2 instrument and spacecraft were being updated
and tested, so no OCO-2 observations are available during this time. The instability at the
10/22 start of the October experiment is demonstrated more clearly by the snapshots of the
state-space bias that are displayed in Figure 2.12 and discussed in section 2.3.3. Starting the
October experiment before the total spread and RMSE of XCO2 have stabilized has some
consequences which we discuss in section 2.3.3.

The upper right panel of Figure 2.6 shows the metrics for the XCO2 observations in the
Ideal case. With much greater observational coverage, the ramping-up of the number of
available observations assimilated is similar to that in the weather observation metric time
series. Additionally, the RMSE for the idealized XCO2 follows the total spread closely, as
soon as 10/23, just shortly after the weather metrics have stabilized.

2.3 OSSE Results
Here we present the results from the three OSSEs. Table 2.3 summarizes the differences

among the three experiments. In the Ideal experiment, we assimilate simulated XCO2

from every 2.5° x 1.9° model grid box at 1pm local time each day, whereas in the October
and November experiments, we assimilate simulated XCO2 that assumes realistic OCO-2
coverage and observation strategy. All three experiments assimilate the same simulated
weather observations. We reiterate that “simulated” here indicates that the observations are
pulled from the truth integration’s atmospheric state, at the time and location of real (or
hypothetical, in the case of the Ideal experiment’s XCO2 only) observations. We define the
start of each experiment as the time after the ensemble is spun-up, when we impose the
biased FF emissions.

2.3.1 State Space Diagnostics

To test the effectiveness of our DA system, we examine whether the ensemble members
bracket the true state, both in places with unbiased emissions (e.g. Los Angles, Figure 2.7)
and in the region of imposed bias (e.g. Beijing, Figure 2.8).

For Los Angeles, a city removed but downwind of our imposed bias, the ensemble of near-
surface CO2 tracks the truth well in all 3 experiments (Figure 2.7). In the middle panel
of this figure, we see that in the October experiment, the ensemble mean CO2 starts out at
a significantly lower concentration than the true concentration. This is another indication
that the ensemble needed to spin-up for a few more days.

Figure 2.8 shows the time series of near-surface CO2 for the grid box that contains Beijing.
We find that here, where biased emissions are imposed, the ensemble mean in all three
experiments generally underestimates the true atmospheric state. This underestimation is
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Figure 2.7 : Time evolution of Cfossil in the bottom model level (∼992 hPa) for the grid box contain-
ing Los Angeles. Ensemble members (gray), ensemble mean (red), and true state (blue) are shown
for the Ideal (top panel), October (middle panel), and November (bottom panel) experiments,
starting at the time at which low-biased fossil fuel emissions are imposed over China.
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Figure 2.8 : Time evolution of Cfossil in the bottom model level (∼992 hPa) for the grid box
containing Beijing. Ensemble members (gray), ensemble mean (red), and true state (blue) are shown
for the Ideal (top panel), October (middle panel), and November (bottom panel) experiments,
starting at the time at which low-biased fossil fuel emissions are imposed over China.
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Table 2.2 : Description of Data Assimilation experiments.

Run
Name

Spin-upa
Duration Startb End Averaging

Kernel
XCO2

Coverage

October 14 days 10-22 11-07 OCO-2-like Realisticc
November 28 days 11-04 11-18 OCO-2-like Realistic
Ideal 28 days 11-04 11-30 Pure Pressure Weighted Idealizedd

Note. — aThe spin-ups are initialized with the same ensemble of atmospheric
states of October 8. During the spin-up, “true” FF fluxes are used as forcing and
the full suite of simulated observations, including XCO2 and weather observa-
tions, are assimilated. bThe start and end date listed here denote the boundaries
of the period during which false FF fluxes are used as forcing. In the text,
this period when false emissions are imposed is referred to as the “experiment”
period. c“Realistic” XCO2 coverage here indicates that observations are sampled
according to the locations of actual good quality OCO-2 soundings, aggregated to
10-second super-observations. d“Idealized” XCO2 coverage indicates that XCO2

is sampled at every 1.9° x 2.5° model grid box at 13:00 local time every day.

especially pronounced when the near-surface CO2 is at its maximum: at nighttime when the
boundary layer is shallow and when there are no XCO2 observations. These factors combine
to give the poor nighttime estimation of near-surface CO2 concentrations over the biased
region.

Of the three experiments, the Ideal experiment performs best in terms of the ensemble
mean and spread approaching the true atmospheric state. In this case, when we have the
most observations, around midday when the boundary layer is at its maximum extent, the
ensemble mean tracks the truth almost perfectly.

2.3.2 Cumulative Innovation in CO2 Mass

In all three experiments, we find positive Σ∆Φ (cumulative innovation in CO2 mass, cf
Equation 2.18), over the region of imposed bias. The Ideal experiment gives the clearest,
strongest signal in innovation, indicating that observation coverage is key to detecting the
biased emission signal.

There is an optimal amount of the atmosphere that should be included when calculating
Σ∆Φ, as is indicated by Figure 2.9, which shows the percent bias retrieved as a function
of the amount of atmosphere included in the calculation. The percent of the bias detected
increases rapidly as we add more of the atmosphere up to ∼900 hPa. The percent then
flattens out after about 650 hPa. At 525 hPa, the experiment recovers 54.6 +/- 3.8 % of
the imposed bias. After 525 hPa, including more levels does not add more than 0.1% to the
percent retrieved, but the uncertainty in the percent retrieved continues to increase. Thus,
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Figure 2.9 : For the Ideal experiment, the percent of the time-summed imposed bias detected by
the observing system, as a function of the amount of the atmospheric column included in calculating
the cumulative innovation in Cfossil mass (Σ∆Φ). The solid line is the percent retrieved and the
dashed lines are the spread in that percent.

Figure 2.10 shows the innovation up to 525 hPa rather than for the full column or for the
near-surface atmosphere alone. We suspect that we detect only about half of the imposed
bias because of the lack of nighttime observations to update the CO2 state throughout the
night.

The cumulative flux innovation, Σ∆Φ, for the Ideal experiment (up to 525 hPa), along
with its spread, is shown in Figure 2.10 in the middle panels. Here Σ∆Φ is time-averaged
for a quantitative comparison with the imposed bias in surface flux forcing, which is shown
in the top panel. We see that the grid boxes where we find large positive Σ∆Φ correspond
overwhelmingly with the grid boxes with large imposed emissions biases. In the bottom
panel of this figure, we show Σ∆Φ aggregated over six regions. The regions correspond in
latitudinal extent to the latitudinal boundaries of China (18°N to 53°N), and in longitude
they constitute 60-degree bands, with the 75°E-135°E closely approximating the width of
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China.
The cumulative flux innovation results for the October and November experiments are

shown in Figure 2.11. The third row in this figure shows that, when aggregated to 60-
degree longitude bins, positive innovation is present over the region that includes China
(75°E-135°E) in both experiments.

As is expected from the relative sparsity of observations, the innovation in the October
experiment is smaller than the innovation in the Ideal experiment (by a factor of 3). Ad-
ditionally, there are false signals in several regions where the innovation is of comparable
magnitude to the China signal. Most notably, off the east coast of the United States there
is a significant positive innovation signal, and in the mid-Pacific between 25°N and 55°N
there is positive innovation surrounded by some negative innovation patches. Both of these
overlap with regions of large atmospheric instability (storminess), as indicated by their cor-
responding spreads in surface pressure (bottom row of Figure 2.11). In the October case,
they also correspond to the imperfect/unstable conditions at the end of the spin-up before
the imposition of the biased emissions, as we discuss further in section 2.3.3. As seen in the
state space diagnostics and observation space diagnostics, the ensemble spread was still large
and the ensemble mean CO2 differed significantly from the true state in many areas at the
start of the October experiment.

In the November experiment, the ensemble spread at the end of the longer spin-up
period is smaller than that in the October experiment. The most dominant signal in CO2

innovation is over the biased region, without significant false positive innovations over the
Pacific and Atlantic oceans or elsewhere. However, this signal is even weaker compared to the
October experiment and to the imposed bias. We hypothesize that this is due to the sparser
observation coverage in November as compared to October, in the Northern Hemisphere
winter and especially over China (Figure 2.3).

2.3.3 Contributions to weak innovation signals in October and Novem-
ber experiments

Observation Coverage

Dense observation coverage of CO2 is clearly key to the ability to detect and estimate
biased fossil fuel emissions in our DA system. Our most successful experiment also has the
densest and most comprehensive observation coverage of the three experiments. We detect
a much weaker signal related to the biased emissions in the November experiment as com-
pared to the October experiment, which we hypothesize is mostly due to sparser observation
coverage, especially over China, in the November experiment. Maps of the respective obser-
vation counts are seen in Figure 2.3. Since OCO-2 measures reflected sunlight, its coverage
suffers in high northern latitudes in boreal winter.

In the Ideal experiment with daily global coverage (at 1PM local time), there is still no
nighttime coverage, and thus no updating of the CO2 fields overnight. Hence, in this current
setup, it is unavoidable that emission bias is underestimated in the OSSE.
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Figure 2.10 : The average imposed bias [Truth - Ensemble Mean] in Cfossil forcing (topmost panel)
for the time period spanning the Ideal experiment. The mean (second panel) and spread (third
panel) in the cumulative flux innovation (Σ∆Φ) up to 525 hPa in the Ideal experiment, time-averaged
for an equal comparison with the imposed bias. Σ∆Φ aggregated across 60° longitude groups (lower
panel). Each group includes latitudinal range 18°N-53°N, the range of China.
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Figure 2.11 : For the October (left column) and November (right column) experiments, Mean (top
row) and Spread (second row) in the cumulative flux innovation (Σ∆Φ) up to 525 hPa, in Tg C.
Σ∆Φ aggregated across 60° longitude groups, in Tg C (third row), with 1-σ error bars. Average
ensemble spread in the surface pressure for the same time period (bottom row), in Pascals. The six
regions in the bar graphs in the third row are limited in their latitude by the northern and southern
boundaries of China (18°N-53°N) in addition to being limited in their longitude by the indicated
boundaries. In the top two rows, Σ∆Φ has been multiplied by the area of each grid box.
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Initial Ensembles

An initial ensemble which was not fully spun-up at the time of the imposition of the
false emissions likely contributed to the false positives in innovation seen in the October
experiment. The spin-up periods for the October and November experiments began from
the same initial state (October 8), but differ in the length of the spin-up period.

Figure 2.12 shows the difference between the true CO2 and the ensemble mean CO2 at
the end of the spin-up and the start of each DA experiment. At the start of the October
experiment, there are regions where the ensemble mean state is very different from the true
state. It is clear in Figure 2.12 that false positive signals in the October experiment in the
Gulf Stream region and in the Pacific coincide with places where the initial ensemble is biased
low compared to the true state (especially in the 993 hPa and 860 hPa levels). With a longer
ensemble spin-up for the November case, these large biases are removed as the ensemble has
further equilibrated around the true state.

Correlations with meteorological variables

Some of the false signals in our experiments could also be due to our variable localization
scheme. In Liu et al. (2011), weather observations did not directly impact CO2 fields,
but they indirectly updated CO2 through transport (i.e., wind fields u and v are updated
via weather observations and these updates propagate through transport as expressed by
the continuity equation). In this work, the CO2 fields are impacted in this way, but they
are additionally directly impacted by the weather observations. Kang et al. (2011) found
that, in terms of constraining surface fluxes, having u and v observations directly influence
CO2 concentrations in the model state slightly outperformed the case where CO2 was only
impacted indirectly as in Liu et al. (2011).

In our setup however, we employ a variable localization scheme like the “L-mult” scheme
in Kang et al. (2011), where all meteorological state variables can statistically impact the
CO2 tracers and vice versa. In Kang et al. (2011), the “L-mult” scheme performed more
poorly than those where only winds (u and v) impacted CO2 but temperature, specific
humidity and surface pressure did not. The investigation of a variable localization scheme
where only some of the meteorological observations impact CO2 is beyond the scope of this
study. We hypothesize that the effect of different variable localization schemes would be
more pronounced in the October and November experiments, since weather observations
have greater impact on the CO2 analyses when there are more abundant lapses in XCO2

coverage.

2.4 Discussion and Conclusions
This study presents an OSSE that assesses the feasibility of a mass-balance approach

for anthropogenic trace-gas emissions validation and bias detection in the presence of me-
teorological uncertainties. The carbon-weather data assimilation system forecasts CO2 and
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Figure 2.12 : [Ensemble Mean Cfossil - True Cfossil] in the initial condition for the October (left
panel) and November (right panel) DA experiments, for 4 different pressure levels. Units are ppm.
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weather using the NCAR carbon-climate model CAM5.0 every six hours, and the EAKF
in DART determines the “analysis”, i.e. optimal fit between the forecast and the CO2 and
meteorological observations within the six-hour assimilation window. The observations are
taken from a “truth” run, with CAM5.0 forced by surface CO2 fluxes from CarbonTracker.
The DA system generates both the mean and spread in CO2 and meteorological analyses.

In three experiments, fossil fuel emissions from China were biased low by 50%. The
cumulative CO2 flux mismatch is approximated by the innovation in the CO2 mass, i.e. the
additional CO2 required to match the XCO2 observations. In this prototype study of a “best
case scenario”, we have assumed known land and ocean sinks. China was chosen as the focus
study area because of its large size and because uncertainties in its emissions have been the
subject of multiple studies. The 50% bias is unrealistically large, and was chosen in this first
study to explore the DA methodology and the observing strategy necessary to detect such a
large signal given the noise from inherent meteorological uncertainties.

The results demonstrate the potential of the DA system, with column CO2 mixing ratios,
such as from OCO-2, to qualitatively detect and attribute the imposed bias in the experiment.
However, OCO-2 overpass provides daytime observations at any location only every 16 days,
and it takes 8 days for the majority of 2° x 2° model grid boxes to be observed. OCO-2 also
lacks observations during low sun conditions. As a result, estimates of flux biases are about
1/6 the imposed bias in the October experiment, with uncertainties that are comparable to
the retrieved signal. The estimates are even lower in the November experiment because of
less dense observation coverage over the biased region.

Results from the Ideal experiment show that a CO2 observing strategy that samples
globally on a daily basis, for example in a similar way to the TROPOMI instrument or with a
constellation of several OCO-2-like instruments, and that provides high-latitude observations
during boreal autumn and winter, would improve retrieval of the flux bias. Nonetheless, the
flux bias retrieval in this idealized case is only half (55 ± 4 %) of the imposed emission bias.

Figure 2.13 shows that the low bias in the near-surface Cfossil analysis field in Beijing
in the Ideal experiment is minimized in the early afternoon, when there are observations of
XCO2, but it increases throughout the late afternoon and evening. Observations throughout
all of the daylight hours, such as would be available from a carbon observatory aboard
a geostationary satellite (e.g. GEOCARB), would help to constrain the CO2 during the
morning and evening. Such a satellite, combined with an observing system like our idealized
system, and an active lidar instrument that observes column or near-surface CO2 at night,
could provide the critical data to constrain the magnitudes of CO2 emissions with much
greater accuracy in the particular DA system and setup described here. If we were to use a
fixed lag smoother which allows our daytime observations to impact the state of the previous
night, we could potentially detect more of the nighttime bias without introducing nighttime
observations. However, this approach would require us to rely more heavily on models for
diurnal variations in CO2. Ideally, we would have enough observations to directly constrain
CO2 during both the day and night, and we could retain the current approach.

Improvements in emission detection also require advances in the DA methodology. This
OSSE assumes a perfect model. In the spin-up period when the weather pseudo-observations
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Figure 2.13 : Bias in Cfossil (analysis) at 993 hPa (i.e. Ensemble Mean Cfossil - True Cfossil) for
the grid box containing Beijing, for the Ideal experiment. The horizontal axis shows each day of
the experiment, starting at the point at which we introduce low-biased emissions over China. The
vertical axis represents the local time of day (for Beijing, UTC - 8 hours) for each of the days. Color
is the bias in ppm.
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are sampled from the “truth” run, there are still discrepancies between the mean analyzed cir-
culation fields and the “true” atmospheric state. These discrepancies stem from uncertainties
assigned to the pseudo-observations, incomplete observational coverage, and inherent nonlin-
earities in the circulation, especially those associated with convective mixing and transport.
In turn, they contribute to errors in the spin-up CO2 fields even when the ensemble mean
of the CO2 forcings is prescribed to be true. Hence these errors in both CO2 and circulation
fields at the end of the spin-ups, such as for the October experiment, propagate onto the
ensuing data assimilation integration and result in emission innovations that are artifacts of
the spun-up state.

Here, we are able to assess the error in circulation and CO2 fields at the end of the spin-up
because “truth” is generated from a single integration of the carbon-weather model forced
by “known” surface CO2 fluxes. In a real application, we do not know the true state of the
atmosphere. However, as emission detection would not likely be done in real time, the success
of the daily weather forecast during spin-up could be ascertained and the DA experiments
could be started when RMSEs of the meteorological forecasts are at a minimum. Also, new
research could explore a long observation window that includes “future” observations in the
estimation of the current state as proposed by Liu et al. (2017c) (which would require an
ensemble smoother).

The ability to quantify meteorological uncertainties in flux estimation is a major ad-
vantage of the CAM-DART system which assimilates simultaneously weather observations
together with the CO2 observations. As winds, specific humidity, and surface pressure di-
rectly impact the advection and mixing of CO2 as well as the estimation of column-integrated
CO2 mass, the simultaneous assimilation propagates unavoidable uncertainties in the weather
variables to the CO2 field, thus permitting the attribution of uncertainties in CO2 analysis
and inferred fluxes to transport uncertainties. As would be expected from numerical weather
prediction, convective storms are associated with large spreads in surface pressure. Our re-
sults show that when storm tracks traverse high emission areas, large spreads in atmospheric
CO2 follow.

Emission detection in our DA system could be improved if we were to include additional
tracer variables, such as C-13, C-14, carbon monoxide and solar-induced fluorescence, which
would add constraints on terrestrial sources and sinks at continental and global scales (e.g.
van der Velde et al. (2018)). Additionally, the emission hotspots derived from OCO-2 ob-
servations by Hakkarainen et al. (2016) could potentially be used in high-resolution regional
carbon-weather data assimilation models to infer FF emission magnitudes.
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Chapter 3

Can OCO-2 observations improve
weather forecasts?

Abstract. In this chapter we explore whether observations from the Orbiting Carbon
Observatory 2 (OCO-2) can improve the forecasting capabilities of numerical weather pre-
diction (NWP) models. We present results from two different observing system simulation
experiments (OSSEs): the TPW experiment and the XCO2/Met experiment. In both exper-
iments, the “observations” are simulated observations which are pulled from a free-running
integration of the Community Atmospheric Model (CAM5 FV), i.e. the “truth” run, and we
use the Ensemble Adjustment Kalman Filter (EAKF) from the Data Assimilation Research
Testbed (DART) to optimally fuse these observations with an ensemble of model forecasts
from CAM5. In the TPW experiment, we examine the potential utility of OCO-2’s ancillary
data product, the total precipitable water (TPW), which is estimated alongside XCO2 by
OCO-2’s retrieval algorithm. We assimilate OCO-2 TPW observations and find that these
observations impact all meteorological state variables, indicating that they could be useful
additions to NWP machinery. In the XCO2/Met experiment, the “Met” run serves as a
control run, in which we assimilate a suite of meteorological observations into CAM5 with
a prognostic carbon cycle. Then the “XCO2” run is identical to the Met run except that in
addition to weather observations we assimilate OCO-2 XCO2 soundings. We test whether
the addition of the OCO-2 XCO2 observations improves forecasting of meteorological state
variables in a significant way. To do this, we compare the root meet square error of the
state variables between the two assimilation runs. We examine forecast errors at global and
regional scales, and find forecast improvement especially in the southern extratropics, in all
meteorological fields except humidity.

3.1 Introduction
Accurate weather forecasts are vital to society: by alerting communities of imminent

severe weather, they save lives. They also provide crucial information for individuals, com-
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munities, and industries such as the agricultural and recreational industries, to plan their
time and prepare for the elements. In surveying Americans regarding their perception and
use of weather forecasts, Lazo et al. (2009) found that the typical adult in America checks
weather forecasts 115 times per month. The authors of that study determined that the
monetary benefit of weather forecasts in the United States is 31.5 billion USD annually, a
return on investment of over 500% compared to the annual cost of U.S. public and private
meteorology centers. Any methodological or observational improvement in forecast accuracy
is hence of undeniable societal benefit.

One element which has led to significant forecast improvement since 1999 is the assimila-
tion of satellite-based observations (Simmons and Hollingsworth 2002). Starting in 1999, raw
microwave radiances from the TIROS Operational Vertical Sounder (TOVS and ATOVS),
humidity retrievals from the Special Sensor Microwave Imager (SSM/I), and marine surface
wind information from scatterometers on the Earth Resources Satellites (ERS), began to
be assimilated by weather centers (ECMWF, the Met Office, and NCEP). These observa-
tions, and others that followed, have the most impact in the Southern Hemisphere, which
is largely unconstrained by terrestrially-based observation types, and is largely covered in
ocean (where, for example, ATOVS and SSM/I provide their best information).

It should be noted however that none of the satellite-based wind retrievals are direct
measurements of wind speed. One method for deriving wind speed is to track clouds in
successive images from a geostationary satellite such as one of the Geostationary Operational
Environmental Satellite (GOES) instruments, assuming each cloud is a passive tracer (e.g.
as described in Tomassini et al. (1999)). The height of the cloud motion vector is calculated
by combining the infrared brightness temperature with a model forecast temperature profile.
Cloud tracking is typically done in infrared images, but images in the visible spectrum can be
used to track low-level cumulus clouds over oceans and water vapor bands can be used to track
upper-level moisture patterns in clear sky conditions. Another method is to estimate ocean
surface winds with a scatterometer. For example, the Advanced Scatterometer (ASCAT)
wind product uses radar to measure backscatter to determine wind speed and direction over
the ocean surface, employing the scatterometer aboard the EUMETSAT satellites. Taken
together, these observations of wind provide some information but by no means provide a
perfect picture of winds over the ocean. Thus, the Southern Hemisphere oceans remain an
area where more observation availability could improve weather forecasts.

There is some evidence that assimilating remotely-sensed trace gas abundance observa-
tions could improve weather forecasts. Semane et al. (2009) show that assimilating ozone
in a global model can improve wind forecasts via correlation between ozone and transport.
In addition to constraining wind fields, assimilating ozone has been found to improve other
meteorological fields. Coopmann et al. (2018) demonstrate that assimilating ozone-sensitive
channels from the Infrared Atmospheric Sounding Interferometer (IASI) into a chemical
transport model can simultaneously improve temperature, humidity, and ozone analyses.

The Orbiting Carbon Observatory 2 (OCO-2) is a relatively new instrument, launched
in July 2014, which provides 43,000 to 79,000 high-quality, cloud-free measurements of total
column CO2 (XCO2) each day (Eldering et al. (2017a)), many of which are over regions
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with otherwise sparse observational constraints such as the Southern Hemisphere oceans.
Assimilating column abundances of CO2 into a model which includes CO2 composition in
addition to standard meteorological variables could lead to weather forecast improvement,
providing an added value from a satellite whose primary mission is to constrain CO2 sources
and sinks at regional scales.

In addition to providing observations of XCO2, the OCO-2 retrieval algorithm provides
an ancillary data product which estimates the total-column water vapor, i.e. the total pre-
cipitable water (TPW) in the atmospheric column (O’Dell et al. 2012). Nelson et al. (2016)
found that OCO-2’s reported TPW measurements compare favorably to highly accurate
validation data from microwave radiometers and ground-based Global Positioning System
(GPS) stations. The authors concluded that the accuracy of these OCO-2 TPW measure-
ments was high enough that they could be a useful addition to the suite of observations
ingested by NWP centers.

To probe the potential utility of OCO-2 TPW for NWP improvement beyond the findings
of Nelson et al. (2016), we perform an observing system simulation experiment (OSSE), the
“TPW experiment,” which explores how meteorological state variables are impacted when the
atmospheric state is constrained solely by OCO-2 TPW pseudo-observations. Here “pseudo-
observation” indicates that the TPW observations we assimilate are derived from a free-
running integration of our dynamic model which represents the “true” atmospheric state. For
this experiment, we analyze how the TPW observations impact our various meteorological
state variables. Methods specific to the TPW experiment are presented in section 3.2.1, with
results in section 3.3.1.

In addition to the TPW experiment, we perform another OSSE which examines the po-
tential utility of OCO-2 XCO2 in informing NWP. This “XCO2/Met” experiment is a twin
experiment comparing two model runs. The first run is the “Met” run, which assimilates a
suite of weather observations from radiosonde, surface, aircraft, and satellite instruments.
The second run, the “XCO2” run, assimilates OCO-2 XCO2 observations in addition to these
weather observations. In this experiment, our dynamic model also includes a prognostic
carbon cycle so that CO2 abundance can be part of the state vector. Again, both the mete-
orological and XCO2 observations are harvested from a “truth” integration of our dynamic
model. Knowing the true atmospheric state allows us to diagnose forecast errors in state
space at every model grid box throughout the globe. The XCO2/Met experiment is more
complex than the TPW experiment in that its control run includes assimilation of many
weather pseudo-observations so that we can test how forecast accuracy is impacted when
adding a new observation type to a set of observations that is close to the typical set of ob-
servations used by NWP centers. We present methods specific to the XCO2/Met experiment
in section 3.2.2 and results in section 3.3.2.
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Table 3.1 : Description of model runs used for the TPW experiment and the XCO2/Met experiment.

Run
Name Dates OCO-2

XCO2?
Weather? OCO-2

TPW?
State
Vector

Model
Resolution

TPW 12/01–12/05 no no yes [u, v, T,Q, Ps] 1° x 1°
XCO2 10/22–11/07 yes yes no [u, v, T,Q, Ps, Ctotal, Cfossil] 1.9° x 2.5°
Met 10/22–11/07 no yes no [u, v, T,Q, Ps, Ctotal, Cfossil] 1.9° x 2.5°

Note. — The XCO2 and Met runs are used for the XCO2/Met twin experiment whereas the TPW run is
used for the TPW experiment. Columns with headers like “OCO-2 XCO2?” indicate whether that particular
observation type is assimilated.

3.2 Methods
Several of the methods in this chapter are analogous to those outlined in Chapter 2 of this

dissertation, but we will rehash them briefly here. The atmospheric model employed for all
experiments in this chapter is the Community Atmospheric Model 5.0 with a finite volume
dynamical core (CAM5 FV, Neale et al. (2012)) and standard climate forcings. Observations
are harvested from a “truth” integration of CAM5 corresponding to the observation locations
and errors of real weather observations (and, in the XCO2 run or the TPW run, OCO-2 super-
observations or thinned observations). An ensemble adjustment Kalman filter (EAKF) from
the Data Assimilation Research Testbed (DART, Anderson et al. (2009)) is used to find an
optimal fit between the observations and CAM5’s atmospheric state.

Both experiments in this chapter use DART/CAM as described above, and they employ
30 ensemble members and an assimilation window of 6 hours. Additionally, they use the same
localization function and parameters. To restrict the impact of observations in space, we
apply the Gaspari-Cohn localization function to the model space increments, as described in
Chapter 2. For the half-width parameter, we select 0.2 radians (∼1200 km) in the horizontal
and 400 hPa in the vertical (for all observation types except for XCO2). In addition to
spatial localization, the model runs employ the same variable localization, in which all state
vector components are allowed to be impacted by observations of any type.

The model run associated with the impact of OCO-2 TPW observations on weather fore-
casting ability is called the “TPW” run, and particulars for the corresponding experiment are
described in section 3.2.1. The two runs which are performed for the XCO2/Met experiment,
which tests the impact of OCO-2 XCO2 on weather forecast accuracy, are called “XCO2” and
“Met.” The methods associated with this experiment are given in section 3.2.2.

The differences among the three runs are highlighted in Table 3.2. The three runs differ
in that the TPW run only assimilates OCO-2 TPW (no other weather observations, and
no XCO2 observations), and the TPW experiment’s atmospheric model is run at a higher
spatial resolution than the XCO2/Met experiment runs. Additionally, the TPW experiment
does not include CO2 tracers Cfossil and Ctotal in its state vector.
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3.2.1 Methods Specific to the TPW Experiment

In this experiment, we use CAM5 FV with a 1° x 1° resolution. We include 30 ensemble
members, and integrate the experiment for 18 6-hour time steps. Perfect TPW observations
are harvested from a free-running CAM integration at the observation locations of OCO-2
corresponding to December 1-5, 2014. Observations are thinned to just one observation per
model grid box, chosen randomly from the observations falling within these grid boxes.

The TPW forward operator is used to derive pseudo-observations from state variables Q
and Ps. This operator integrates the mass of water in the atmospheric column and converts
to units of centimeters H2O as follows:

TPW = 100 ∗ 1

g · ρH2O

∫
Qdp (3.1)

where Q is specific humidity (with units kgH2O/kg air), p is the partial pressure of air
(derived from Ps), g is the gravitational constant (9.8 m/s2), and ρH2O is the density of
water vapor in air (1000 kg/m3).

Observation error for the TPW pseudo-observations is derived from real uncertainties
from the OCO-2 product. In the OCO-2 Level 2 standard files, TPW (in centimeters H2O)
can be calculated with:

TPWOCO =
1

10
∗ µH2O

ρH2O · a
∗ TCH2O (3.2)

where µH2O is the molar mass of water (18.016 g/mol), a is Avogadro’s number (6.0221413
x 1023 molecules/mole), and TCH2O is the value called retrieved h2o column in the OCO-
2 Level 2 standard files’ RetrievalResults group, in units molecules H2O/m2. Then, the
uncertainty in that field is calculated by multiplying it by a scale factor:

εTPW = S ∗ TPWOCO (3.3)

Here S is the field called h2o scale factor uncert in the OCO-2 Level 2 Standard product.
In this study, we derive εTPW from an early version of the OCO-2 data, version 6r. In later
versions of the data, analogous fields are directly provided in the daily “Lite” files (with field
names tcwv and tcwv uncertainty, in units kgH2O/m2. )

3.2.2 Methods Specific to the XCO2/Met Experiment

In this experiment, we test whether the addition of OCO-2 XCO2 to a traditional suite
of NWP observations has any significant effect on weather forecast accuracy. The “XCO2”
run here is identical to the “October” experiment from Chapter 2 of this dissertation. The
“Met” run is identical to the XCO2 run, except that no XCO2 observations are assimilated.
The full period of comparison between the Met and XCO2 runs spans from October 22 2015
to November 8 2015. However, as discussed in Chapter 2, the XCO2 run’s ensemble was not
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fully spun up by October 22. Thus for most comparisons in this chapter, we examine the
weeklong period starting November 1 2015.

In both experiments, a full suite of meteorological observations is assimilated. In addi-
tion to measurements of winds, humidity, and temperature from radiosonde, from aircraft,
and from the Aircraft Communications Addressing and Reporting System (ACARS), we
assimilate satellite-based drift wind measurements and land- and marine-based altimetry
measurements. As in Raeder et al. (2012), we assimilate COSMIC GPS Radio Occultation
(GPS RO, Anthes et al. (2008)) refractivity measurements. Raeder et al. (2012) showed that
these GPS RO measurements, when added to NCEP-NCAR reanalysis observations, reduce
the error of temperature forecasts compared to radiosonde temperature observations in both
hemispheres, and most significantly in the Southern Hemisphere extratropics. These obser-
vations should also impact pressure and humidity, since they measure refractivity, which is
a function of pressure and water vapor pressure in addition to temperature. From Anthes
et al. (2008), the equation governing refractivity (N) is:

N = 77.6
P

T
+ 3.73× 105 e

T 2
− 4.03× 107ne

f 2
(3.4)

where P is pressure in hPa, e is water vapor pressure in hPa, T is temperature in K, ne is
electron density in number of electrons per cubic meter, and f is the frequency of the GPS
carrier signal in Hz.

Observation counts for these various observation types, for a 48-hour period in the XCO2

run can be seen in Figure 3.1. For brevity, this figure shows the global coverage for a rep-
resentative observation for ACARS, aircraft, radiosonde, and satellite winds, but we should
note that in each of these cases more than just the observation depicted is assimilated. As-
similated ACARS observations and aircraft observations include u and v wind in addition to
temperature. Assimilated radiosonde observations include winds and temperature in addi-
tion to specific humidity, and assimilated satellite winds included both u and v components.
Seven of the eight panels in this figure (all except the final panel, OCO-2 XCO2) give counts
of observations assimilated that apply to both the Met and XCO2 runs.

We note here that the observation counts for the OCO-2 XCO2 are fewer than the ex-
pected raw counts from the instrument for two reasons. First, they are so-called “super-
observations” – observations which have been scaled up from OCO-2’s footprint (1.29 km
x 2.25 km at nadir, Crisp et al. (2004)) to a scale more congruous with typical global cir-
culation model resolution. The strategy for creating these super-observations can be found
in Chapter 2 of this dissertation. Secondly, the observations that enter the bins for the
super-observations are screened for quality: only those soundings marked “good” quality in
the OCO-2 Lite data product are included, and only those with ‘warn level” less than 19 are
included.

The state vectors in these model runs include winds (u and v), surface pressure (Ps),
humidity (Q), and CO2 tracers Cfossil and Ctotal. These tracers are informed by prescribed
surface fluxes of CO2 corresponding to CarbonTracker’s 2015 product (Peters et al. (2007),
https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2015/), interpolated from monthly
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Figure 3.1 : Observation counts for eight observation types, for a 48-hour period (0300UTC Novem-
ber 1 through 0300UTC November 3) in the XCO2 run. From upper left to lower right, observation
counts for: ACARS temperature, Aircraft temperature, land surface altimeter, marine surface spe-
cific humidity, radiosonde specific humidity, satellite horizontal (u) wind, GPS RO refractivity, and
OCO-2 total column CO2. Note that in the Met run, all observation types except OCO-2 XCO2

are assimilated, and have identical coverage to those reported here.
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to 6-hourly fluxes. Ctotal in this case is the sum of CO2 tracers from fossil fuel emissions,
natural terrestrial land processes (including forest fires), and natural ocean processes. Cfossil
is then the tracer forced by fossil fuel emission alone.

3.3 Results

3.3.1 Results from the TPW experiment

In a data assimilation experiment, one way to test whether the experiment is working
properly is to examine the innovation for a single time step. The innovation of a given
state variable is the difference between the posterior and prior values for that variable. If
the innovation is non-zero, that means the observations are having some influence on the
forecasts.

Maps of the innovation for each state variable demonstrate where adjustments were made
to the state to bring it closer to the observed variable. In Figure 3.2, we see that the OCO-2
TPW observations adjusted the forecast for all state vector fields (u, v, Q, T , Ps). This
indicates that the OCO-2 TPW observations could be useful in informing not only the
humidity field, but also in informing the wind, temperature, and surface pressure fields, thus
likely improving weather forecasts for multiple fields. The signs of these innovations follow
what is expected from atmospheric physics. Where the innovation in humidity is negative,
surface pressure is also adjusted to be lower, since there is less mass in the overlying column.
Examining the gradient in surface pressure innovation in the middle right panel of Figure 3.2,
we see that where the innovation in the zonal component of the surface pressure gradient
is positive, the innovation in meridional wind (v, in the upper right panel) is also positive,
which follows our expectation for geostrophic wind:

fvg = −1

ρ

∂p

∂x
(3.5)

where f is the Coriolis parameter, vg is the meridional component of geostrophic wind, ρ is
the density of air, and ∂p

∂x
is the zonal pressure gradient.

We see that the innovation’s footprint for all fields is clearly related to the quadrant of
the globe that is observed by OCO-2 during the 6-hour assimilation window, as innovation
is non-zero in this quadrant but essentially zero elsewhere. The largest innovation is in the
Southern Ocean, which has unstable weather (storms) and strong winds.

We can also examine how closely the ensemble forecasts track the true atmospheric state
when they are constrained by the OCO-2 TPW observations alone. In Figure 3.3, we see the
time evolution of the ensemble forecasts and true state at 70°W, 29.7°S at (the west coast
of Chile), at the 525 hPa level. For the duration of this experiment, the ensemble forecasts
bracket the truth for all state variables.
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U	(m/s)	 V	(m/s)	
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Q	(kg	H2O	/	kg	air)	

TPW	Experiment,	Innovation	for	13th	assimilation	cycle		

Figure 3.2 : Innovation in the ensemble mean (Posterior Mean - Prior Mean) for the five state
variables in the TPW experiment, resulting from the 13th assimilation cycle. All variables shown
are at the 525 hPa level, except surface pressure.
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Figure 3.3 : In the TPW experiment, the time evolution at a single point (70°W, 29.7°S, 525 hPa)
for all state variable forecasts for all ensemble members (gray), the ensemble mean (red), and the
true values (blue) taken from the “truth” free run of CAM.



3.3. RESULTS 53

3.3.2 Results from the XCO2/Met Experiment

In this section we compare the forecast performance in the “XCO2” and “Met” runs
by examining the state-space root-mean-square error (RMSE) for the atmospheric state
variables. Each variable x(i, j, k, l) in the state vector (−→x = [u, v, T, Ps,Q,Cfossil, Ctotal])
varies in three-dimensional space and in time, so the RMSE can be aggregated across a
region, a portion of the atmospheric column, or a time period. Here i is the longitudinal
index, j is the latitudinal index, k is the vertical index, and l is the time index.

To calculate the RMSE global map for a portion of the atmosphere ranging from pressure
level kbottom to ktop for a time period beginning at linitial and ending at lfinal, we use:

RMSE(i, j) =

√∑ktop
k=kbottom

∑lfinal

l=linitial
(x̂(i, j, k, l)− x(i, j, k, l))2

(ktop − kbottom + 1)(lfinal − linitial + 1)
(3.6)

Similarly, to calculate the RMSE time series for each pressure level, for a region spanning in
latitude from iwest to ieast and from jsouth to jnorth, we use:

RMSE(k, l) =

√∑ieast
i=iwest

∑jnorth

j=jsouth
(x̂(i, j, k, l)− x(i, j, k, l))2

(ieast − iwest + 1)(jnorth − jsouth + 1)
(3.7)

Finally, to calculate a single RMSE value for each level, for a given region and time period,
we use:

RMSE(k) =

√ ∑ieast
i=iwest

∑jnorth

j=jsouth

∑lfinal

l=linitial
(x̂(i, j, k, l)− x(i, j, k, l))2

(ieast − iwest + 1)(jnorth − jsouth + 1)(lfinal − linitial + 1)
(3.8)

In the three equations above, x̂ is a forecast of a particular state variable (i.e., the mean of
the prior ensemble), and x is the true value of that variable, taken from the truth integration
from which the pseudo-observations for the assimilation runs are harvested. RMSEMet and
RMSEXCO2 are calculated using the forecasts (x̂) from the Met and XCO2 runs, respectively.
In this chapter, all RMS errors presented use forecasts (i.e., the prior state) rather than the
analysis (i.e., the posterior state). This gives us a measure of error for a weather forecast at
the 6-hour time horizon.

The time evolution of RMSE (RMSE(k, l)) for the southern extratropics (south of 20°S)
is shown in Figure 3.4 for the full comparison period (October 22 through November 8),
for each state variable and at several pressure levels. Here and in the rest of the figures in
this chapter, we have chosen to show only the total CO2 tracer (Ctotal) rather than both
Ctotal and Cfossil, as the two tracers have similar error statistics. We focus on the Southern
Hemisphere for two reasons. First, the experiment is performed in late boreal autumn, so
there are more OCO-2 observations available in the Southern Hemisphere than the Northern
Hemisphere. Second, the Northern Hemisphere CO2 surface flux forcing has a large bias in
its fossil fuel forcing (intentionally imposed as described in Chapter 2), which could cause
the XCO2 observations to be less effective in informing the weather state in that hemisphere.
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Figure 3.4 : RMSE time series for state variable forecasts at 4 representative pressure levels for the
XCO2 run (orange) and the Met run (blue), for the southern extratropics (south of 20°S). Vertical
black line indicates November 1, the period after which we determine that the RMSE has stabilized.
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Since Southern Hemisphere CO2 is decoupled from Northern Hemisphere sources at these
time scales, this bias should not impact our analysis of the Southern Hemisphere.

It is evident in Figure 3.4 that the ensemble has not stabilized by October 22, as the
RMSE for all state variables decreases steadily for the first week of the time period. RMSE
has stopped decreasing steadily starting November 1 for all meteorological variables, so this
is the time period used for the subsequent figures and discussions in this chapter. November
1 is indicated by the vertical bars in the various panels of Figure 3.4.

In Figure 3.4, we see lower RMSE for the XCO2 run (orange line) compared to the Met
run (blue line) for most time steps after November 1, for all meteorological state variables
except humidity, whose XCO2 RMSE time series follows a near-identical trajectory as the
Met RMSE time series. When an analogous figure is produced that includes all global
grid boxes, we see similar but muted error reduction for v wind at 526 hPa and 887 hPa,
T at 887 hPa, and surface pressure. Additionally, in the global figure, we see significant
improvement in CO2 forecasts, especially at the surface level. This is expected when the
Northern Hemisphere is included, since the CO2 fields are not directly constrained by XCO2

observations in the Met run, and thus the bias imposed in the Northern Hemisphere fossil
fuel CO2 forcing is largely uncorrected in the Met run.

We define the percent improvement in RMSE (PIRMSE) as:

PIRMSE = 100× RMSEMet −RMSEXCO2

RMSEMet

(3.9)

PIRMSE measures the percent reduction in RMS error when assimilating OCO-2 XCO2 in
addition to meteorological observations. PIRMSE as a function of vertical level for each state
variable is summarized in Figure 3.5. Time steps after the RMSE has stabilized (November 1
- November 8) are included in the calculations here, and we present results when we include
(1) all latitude bands (global), (2) latitudes north of 20°N (the northern extratropics), (3)
latitudes south of 20°S (the southern extratropics), and (4) latitudes between 55°S and 45°S
(the Southern Ocean).

Globally, the most obviously improved state variable is CO2, and we see that this is due
to significant improvement in the northern extratropics. This is expected because the Met
run includes the same bias in Cfossil forcing as does the XCO2 run, but the Met run’s CO2

tracers are not directly constrained by XCO2 measurements. In the Northern Hemisphere,
especially in the upper levels, adding XCO2 observations tends to increase RMS error (blue
boxes). The exception is for v wind between 993 hPa and 800 hPa, for temperature at 860
hPa, and for the 6 lowest pressure levels for all state variables except humidity. Some of the
Northern Hemisphere error increases could have been influenced by the biased Cfossil forcing.
In spite of this bias, we do see improvement in lower-level v wind. The strong meridional
CO2 gradient may have aided in improving meridional wind.

A fairer test of the impact of OCO-2 XCO2 observations on weather forecasts is to look at
the Southern Hemisphere extratropics, whose CO2 state variables are not yet (after 2 weeks)
affected by the false emissions over China. The bottom left panel of Figure 3.5 shows the
percent improvement in this region. Here we see that for most levels, forecasts of all mete-
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orological state variables except humidity are improved when OCO-2 XCO2 is assimilated.
The magnitude of error increases for Q are small in comparison to the improvements in u,
v, T , and Ps. When confining our scope to the region corresponding to the Southern Ocean
storm tracks (lower right panel in Figure 3.5), forecast improvement largely disappears, and
even reverses.

In Figure 3.6, we show maps of time-averaged absolute RMSE improvement (RMSEMet−
RMSEXCO2) for each state variable. For all variables except surface pressure, the bottom
12 levels (up to 525 hPa) are included in the RMSE calculation, since globally, that is
where the largest improvements are located. Overlain are contours indicating the number
of OCO-2 XCO2 observations available in the region. We see that there is some overlap
between forecast improvement and XCO2 observation density: for example, in the American
Southwest, a high density of OCO-2 soundings coincides with forecast improvement (red)
in all meteorological state variables. Another well-observed region in northern Africa shows
forecast improvement in most fields.

To serve as a measure of the significance of forecast improvement, we show in Table 3.3.2
the probability of improvement for each meteorological variable in the full globe (all lat-
itudes) and in the Southern Hemisphere extratropics (south of 20°S). This probability is
calculated as the number of improved grid boxes (where RMSEXCO2 < RMSEMet) divided
by the number of total grid boxes in the region. Similarly to in Figure 3.6, for all variables
but surface pressure we average RMSE over all atmospheric levels below 525 hPa. Other
than the global surface pressure field, all probabilities shown are significantly (at the 99.999
percent confidence level) greater than 0.5, which is the expectation for a random chance of
improvement/worsening of the forecast. Taken together with the results for the average per-
cent improvement for the same regions (Figure 3.5), we have strong confidence that addition
of XCO2 observations significantly improved forecasts globally and in particular in the south-
ern extratropics for both wind and temperature fields. The case for forecast improvement in
surface pressure and humidity fields is not as strong.

3.4 Discussion and Conclusions
The two experiments presented in this chapter both provide evidence that OCO-2 could

provide some useful observations to be added to the suite of observations ingested by national
weather centers. In the TPW experiment, where OCO-2 TPW is the only observation type
assimilated, the TPW observations impact all meteorological state vector fields, and the
ensemble of forecasts bracket the true atmospheric state in most places throughout the
globe. This experiment gives more weight to the claim by Nelson et al. (2016) that OCO-2
TPW observations could improve NWP performance.

Our TPW result could be further explored using a twin experiment similar to the
XCO2/Met experiment, in which a suite of satellite, radiosonde, and aircraft observations
of temperature, humidity, and winds typically used for NWP are assimilated in addition to
OCO-2 TPW. A control run would include the typical weather observations, but it would
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Figure 3.5 : Arrays summarizing forecast error reduction for each state variable, at each pressure
level, upon addition of XCO2 observations, expressed as percent improvement : PIRMSE = 100%×
[RMSEMet−RMSEXCO2]/RMSEMet. Regions shown are the full globe (upper left panel), north
of 20°N (upper right panel), south of 20°S (lower left panel), and 45°S - 55°S (lower right panel).
Positive (red) values indicate that adding XCO2 improved the forecast, while negative (blue) values
indicate that adding XCO2 observations worsened the forecast for that state variable. Only 11/01
- 11/08 time steps are included to avoid the spin-up period seen in Figure 3.4.
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Figure 3.6 : Forecast improvement, i.e. [RMSEMet −RMSEXCO2] (color), for all state variables.
For all variables except Ps, the improvement is vertically averaged up to 525hPa. Contours show
XCO2 observation counts ingested during the same period as the RMSE maps (Nov 1-8). Counts
are aggregated to 10° x 10° grid boxes. Contour levels are [8, 16, 24, 32, 48] observations per box (the
maximum count per box is 53). The map’s latitude range is set to the latitudinal extent of OCO-2
observations for this period. Positive (red) color indicates adding XCO2 improves the forecast.
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Table 3.2 : Probability that the given state variable is improved when XCO2 is assimilated.

Variable
P (improvement)

Globe
N = 13,824 ; E = 0.0188

P (improvement)
Southern extratropics
N = 5,184 ; E = 0.0307

U 0.5259 0.6032
V 0.5283 0.5847
T 0.5418 0.6009
Q 0.5250 0.5945
Ps 0.4921 0.5451

Note. — The probability is calculated as the number of improved grid boxes
(e.g., the number of red boxes in Figure 3.6) divided by the total number of
grid boxes (N) in the region. E is the error corresponding to the 99.999 percent
level of confidence (Z value = 4.4172). Probabilities greater than 0.5 ± E are
interpreted as being significant. The southern extratropics includes all areas
south of 20°S whereas the globe includes all model grid boxes.

exclude the OCO-2 TPW experiments. Of particular interest in such an experiment would be
typically poorly-observed regions such as the Southern Ocean. The experiment would differ
from the XCO2/Met experiment presented in that we would need to include other satellite-
based moisture observations which are typically used in NWP, to test whether OCO-2 TPW
provides unique information in addition to the complete set of available humidity observa-
tions.

We note that the OCO-2 retrieval algorithm also estimates the surface pressure of each
sounding by exploiting information in the O2 A band. O’Brien et al. (1998) found that
surface pressure derived from high-resolution A-band spectra yielded accuracies on the cusp
of the accuracy requirement for NWP surface pressure retrievals (an accuracy of ∼1 hPa or
0.1%). A systematic evaluation of the accuracy of OCO-2 surface pressure retrievals similar
to the TPW analysis performed by Nelson et al. (2016) should be a first step in determining
the utility of OCO-2 surface pressure retrievals for NWP. Following that, a simplified OSSE
such as the TPW experiment presented here, or a twin experiment such as the XCO2/Met
experiment, would give further insight into the usefulness of these measurements.

Results from the XCO2/Met experiment show that OCO-2 XCO2 has the potential to im-
prove weather forecasting abilities, especially in the v wind field and in otherwise observation-
poor areas. In the northern extratropics, in spite of a non-ideal fossil fuel boundary condition
for the Cfossil state, we see improvement in lower-level v wind. It is likely that the strong
meridional gradient in CO2 provided the v wind with useful informational constraints.

In the southern extratropics, we see marked forecast improvements (as measured by per-
cent improvement in RMSE, averaged over the region) for all meteorological fields, except
humidity, when XCO2 is assimilated. Skill in Southern Hemispheric weather forecasting has
improved significantly since forecast centers began assimilating satellite radiances (Simmons
and Hollingsworth (2002)), and in 2013, forecast skill for the Southern Hemisphere extra-
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Figure 3.7 : Upper panel: Counts of OCO-2 XCO2 high-quality super-obs available during the
period included in the RMSE maps (November 1 through November 8). Lower panel: The same
as the upper panel, but for the period when Southern Hemisphere observations reach the highest
latitudes, December 18-25. The count varies with insolation, cloud cover and OCO-2 operations.
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tropics nearly matched that of the Northern Hemisphere extratropics (Bauer et al. 2015).
Nonetheless, the fact remains that the Southern Hemisphere is more poorly-observed than
the Northern Hemisphere, in particular in its wind fields because satellites do not provide
direct wind observations.

This study indicates that adding OCO-2 measurements to an NWP framework might be a
worthwhile endeavor, especially in austral summer when the instrument provides its highest
density of observations to the Southern Hemisphere. We do not see as strong of a case if we
look only at the Southern Ocean storm track region (45°S-55°S, as per Brahmananda Rao
et al. (2003)). This is likely because, while some OCO-2 super-observations are present in
this experiment in this region of the Southern Hemisphere, the coverage is limited at these
high latitudes. In the upper panel of Figure 3.7 we see that south of 45°S there are very
few observations for the November 1-8 time period. We note that the improvement could
be larger in this region during the period encompassing winter solstice, when more high-
quality OCO-2 observations are available in high southern latitudes. As depicted in the
lower panel of Figure 3.7, more observations are available south of 45°S in a 7-day period
centered on winter solstice (December 18-25). The total number of good OCO-2 XCO2

super-observations south of 45°S in the winter solstice week is 594, compared to just 266 in
the November period for which we have presented RMSE improvement results.

Interestingly, the only meteorological variable that was not improved (as measured by the
average percent improvement in RMSE, Figure 3.5) on the globally-aggregated scale in the
XCO2/Met experiment was humidity (Q). One reason this may be the case is that humidity
is well-constrained in our experiments by abundant GPS radio occultation observations. As
seen in Figure 3.1, GPS RO observations blanket the entire globe, including the Southern
Hemisphere oceans, and as mentioned in Section 3.2.2, GPS RO measures refractivity, which
is a function of water vapor pressure. Refractivity is also a function of pressure and temper-
ature, so a lack of improvement in these fields would give weight to this hypothesis. While
surface pressure’s percent improvement was positive, the chance of improvement in surface
pressure for a grid box failed to exceed random chance (Table 3.3.2), indicating that surface
pressure, in addition to humidity, is not significantly improved on the global scale. However,
temperature forecasts were improved, and significantly more so than random chance, which
leads us to suspect that the abundance of GPS RO observations is not the primary reason
for lack of improvement in Q forecasts.

The lack of improvement in Q forecasts could also be due to the incongruity between
characteristic length scales of dynamics governingQ and CO2. In the XCO2/Met experiment,
we set the GC half-width (which governs the radius at which observations have impact on
the state) for all state variables to ∼1200 km, but a shorter half-width could be more optimal
for the Q field, since processes like precipitation occur over smaller areas. To test this theory
in the future, a series of assimilation runs analogous to the XCO2/Met runs would be carried
out, but in each pair, the GC half-width for Q would be varied, and the optimal half-width
would be determined. It could also be interesting to test different variable localization
schemes (for example, zeroing out the impact of XCO2 on Q).

Overall, this chapter demonstrates some promising results for satellite-based trace gas



3.4. DISCUSSION AND CONCLUSIONS 62

instruments such as OCO-2 to be used not just to understand atmospheric trace gas com-
position, but to potentially improve weather forecasting, providing even more value to the
public. Similar experiments could be performed using observations from the multitude of
other space-borne instruments which measure trace gases. Carbon monoxide retrievals from
IASI and MOPITT have been successfully assimilated alongside weather observations us-
ing DART and global climate and atmospheric chemistry model CAM-chem (Arellano et al.
2007; Barré et al. 2015; Gaubert et al. 2016). However, in all of these studies a variable local-
ization scheme was chosen such that CO observations would not influence the meteorological
state, so the potential impact of CO observations on weather forecasts was not analyzed or
discussed. Liu et al. (2017b) assimilated pseudo-observations of NO2 from a planned geo-
stationary instrument using DART and high-resolution regional weather-chemistry model
WRF-Chem. As in the CO studies, in this study NO2 observations were not able to impact
the meteorological state, but the authors noted that in future experiments they would allow
NO2 to statistically influence meteorological state variables, to test whether NO2 observa-
tions improve the meteorological analyses. NO2, which has a short atmospheric lifetime of
several hours, might be better-suited than CO2 to provide information on synoptic time-scale
processes.
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Chapter 4

Estimating net CO2 surface flux using a
vertically-integrated mass budget
method with a focus on the Amazon
carbon sink

Abstract. Here we calculate global CO2 surface fluxes in a novel way for the year 2003
using time-varying 3D-CO2 and meteorology reanalysis fields generated by Liu et al. (2012).
This data product was created by assimilating raw meteorological observations and At-
mospheric Infrared Sounder column-averaged dry-air CO2 mole fraction (AIRS-XCO2) ob-
servations using a Local Ensemble Transform Kalman Filter (LETKF) coupled with the
Community Atmospheric Model version 3.5 (CAM 3.5). We calculate surface fluxes as a
residual of the vertically-integrated CO2 tracer transport equation. We find that assimi-
lating AIRS-XCO2 has the most significant impact on the surface flux calculation in the
tropics, especially over the Amazon and in the tropical Pacific. We compare our posterior
flux estimates to those made by CarbonTracker (CT2017) and find general sign agreement
except in the Amazon region. Here we estimate a net annual sink of -0.26 PgC whereas
CarbonTracker estimates a net annual Amazonian source of about the same magnitude.

4.1 Introduction
Only about half of CO2 emissions from fossil fuels contribute to the concentration of

CO2 in the atmosphere (Le Quéré et al. 2009). The remainder is sequestered by carbon
sinks in the oceans and in the terrestrial biosphere. The spatial distribution of these sources
and sinks (CO2 surface fluxes) can be inferred using tracer-transport inversion, in which
observations of the concentration of CO2 in the atmosphere can be used to update the surface
flux forcing to best fit the observations. These inversion estimates are highly uncertain due
the confounding factors of sparse observation availability and imperfect representation of
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atmospheric transport. Thus, the relative sizes of carbon sinks and how they will respond to
a changing climate are unsettled issues. For example, the relative partitioning of northern
hemispheric carbon uptake between Eurasia and North America has historically been highly
uncertain (Bousquet et al. 2000). Estimates of tropical carbon uptake are especially difficult
due to scant observation coverage and strong convective mixing which dilutes the surface
flux signal throughout the troposphere.

We have developed a carbon-weather data assimilation system that produces 4D-CO2

reanalysis fields (Liu et al. 2012). In this system, Atmospheric Infrared Sounder (AIRS)
column-averaged dry-air CO2 mole fraction (XCO2) and raw meteorological observations
have been assimilated into a coupled carbon-climate model. A comparison of the resultant
4D-CO2 fields (1) when only meteorological observations were assimilated (the Met-run) and
(2) when both meteorology and AIRS-XCO2 were assimilated (the AIRS-run) shows that
the AIRS-run CO2 field is closer to unassimilated observations of vertical CO2 profiles from
aircraft than the Met-run CO2 field (Liu et al. 2012). Here we present an estimation of
CO2 surface fluxes calculated from these CO2 and wind fields. We focus our analysis on the
Amazon Basin region, where the idea of a dry season “green-up” has been discussed in Huete
et al. (2006) and Saleska et al. (2003).

4.2 Methods

4.2.1 Assimilation Experiments

The assimilation experiments are described in detail in Liu et al. (2012) and are summa-
rized here. AIRS-XCO2 and meteorological observations were assimilated using a 4-D Local
Ensemble Transform Kalman Filter (4D-LETKF, Hunt et al. (2004), Hunt et al. (2007))
coupled with the Community Atmospheric Model version 3.5 (CAM 3.5) for the year 2003,
using sea surface temperature forcing from 2003 and observations from 2003. In this study
we compare the case where only meteorological observations are assimilated (the Met-run)
with the case where both meteorology and AIRS-XCO2 are assimilated (the AIRS-run). Me-
teorological observations included the same raw observations used for NCEP-DOE reanalysis
2 product (Kanamitsu et al. 2002). Over 2000 AIRS-XCO2 and 106 meteorological observa-
tions were assimilated every six hours. During each assimilation cycle, the LETKF would
adjust the model forecasts of the “state vector” (which includes winds, surface pressure, tem-
perature, humidity, and CO2 mixing ratio) such that they were closer to contemporaneous
observations, taking into account the observation uncertainty and the uncertainty of the
model forecasts (represented by the “spread” in the 64 ensemble forecasts). The adjusted
forecasts are called the “analysis.”

To prevent the ensemble spread from becoming too small in observation-dense regions,
Liu et al. (2012) employed multiplicative inflation (following Anderson and Anderson (1999),
Li et al. (2009), and Miyoshi and Yamane (2007)) to the observation-space CO2 and weather
forecasts in both the AIRS-run and Met-run. For meteorological observations, they also
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applied additive inflation in an attempt to account for model error, as described in the
supplemental material of Liu et al. (2011). Both meteorological and AIRS XCO2 observations
were localized in the vertical and horizontal such that observations farther in distance from
an analysis grid box had less impact on the analysis (with observations 1500 km away
having zero impact on the analysis). Liu et al. (2012) also employed variable localization,
meaning that the meteorological components of the state vector were not updated by CO2

observations, and CO2 mixing ratios were not updated by meteorological observations.
For these experiments, CAM 3.5 was modified to allow the CO2 mass fraction to be trans-

ported as a passive tracer. CO2 surface flux was prescribed at the onset of each assimilation
period and combined fluxes from fossil fuel, terrestrial biosphere, and ocean. No forcing from
fires was included. The terrestrial biosphere surface flux changed every 6 hours, with zero
annual mean everywhere. Monthly mean values of terrestrial CO2 flux were from a climato-
logical run of Carnegie-Ames-Stanford Approach (CASA) biosphere model, while 6-hourly
fluxes were generated by scaling annually-balanced monthly mean flux with 6-hourly 2-meter
temperature from CAM 3.5. Fossil fuel surface flux was constant for each grid box, scaled
according to an emission map for 2003 with total global emission of 6.93 GtC/yr. Ocean
forcing was from Takahashi et al. (2002), a climatology based on ship-board observations over
multiple decades. As the land forcing for the AIRS- and Met-runs was annually-balanced,
a goal of the analysis presented here is to assess if the 2003 land flux anomalies can be
estimated when the model’s atmospheric CO2 abundance is informed by AIRS XCO2.

4.2.2 Surface Flux Calculation

Although CO2 surface flux was not included in the state vector in the data assimilation
experiments described above, it can be estimated from the analysis CO2 and meteorological
fields (from the AIRS and Met runs) in an offline manner. These analysis fields are Liu
et al. (2012)’s best estimate of the state of the atmosphere at the time resolution of the
assimilation window (every 6 hours).

The key to our surface flux estimation is the tracer conservation equation:

∂ρC

∂t
+ O · (−→u3ρC) = Φ + γ(ρC) (4.1)

Here ρ is air density, C is CO2 mass fraction, u3 is the three-dimensional velocity vector, Φ
is the CO2 surface flux, and γ represents subgrid scale turbulent mixing associated with dry
and moist convection.

Integrating Equation 4.1 in the vertical yields:

Φ =
∂〈ρC〉
∂t

+ O · 〈−→u2ρC〉 (4.2)

where u2 is the two-dimensional horizontal velocity vector. The CO2 surface flux can, in
principle, be estimated directly from equation 4.2, i.e. as the sum of the time change in
column CO2 mass and vertically-summed flux divergence.
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Monthly mean surface fluxes are calculated for each of the 64 ensemble members for
each month of the 2003 runs. The spread (σΦ) among the surface fluxes is estimated as the
standard deviation of the 64-member ensemble according to 4.3.

σΦ = { 1

K − 1

K∑
k=1

[Φk − Φ]2}
1
2 (4.3)

Here K is the number of ensemble members (64), and Φ is the mean surface flux among the
ensemble members:

Φ =
1

K

K∑
k=1

Φk (4.4)

Φ and σΦ can be calculated in this way from the 3-D CO2 posterior (i.e., analysis)
tracer and meteorological fields for either experiment from Liu et al. (2012). We denote
the monthly-mean surface flux estimated from AIRS-run fields as ΦAIRS, and surface flux
estimated from the Met-run as ΦMet. Correspondingly, we denote the spread in monthly
surface fluxes for the AIRS run with σΦ,AIRS and the spread in monthly surface fluxes for
the Met run with σΦ,Met.

The spread (σΦ) encompasses the distribution of possible wind and CO2 trajectories,
so can be thought of as a model or transport uncertainty. There are other errors in the
surface flux that arise from, for example, using 6-hourly fields (u3, ρ, and C) to compute flux
divergence rather than using their product calculated at the frequency of CAM’s physical
time step (every 30 minutes). We represent these methodological errors with εAIRS and εMet.
If our methodology were perfect, ΦMet would be identical to our surface flux forcing (ΦPrior),
since no CO2 observations were assimilated in the Met run, nor were CO2 tracers part of
the state vector. Differences between ΦMet and ΦPrior are thus related to the methodological
error εMet, hence:

ΦMet = ΦPrior + εMet (4.5)

In the absence of εAIRS, ΦAIRS represents CO2 surface fluxes for the year 2003, which
should equal the sum of the prior forcing (ΦPrior) and 2003 flux anomalies Φ′2003. As ΦPrior

includes 2003 fossil fuel emissions, but climatological ocean fluxes and annually balanced net
terrestrial fluxes, Φ′2003 should capture mostly 2003 land and ocean flux anomalies. Φ′2003

could also pick up on some fossil fuel signals that are misrepresented in ΦPrior (for example,
if fossil fuel emission differs greatly from month to month), however these signals will likely
be smaller than the flux anomalies in the ocean and terrestrial biosphere. Including the
methodological error term, ΦAIRS can be decomposed into these components:

ΦAIRS = ΦPrior + Φ′2003 + εAIRS (4.6)
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Since ensemble-mean meteorological fields in the AIRS and Met runs are nearly identical,
we can assume that εAIRS ∼ εMet, thus:

ΦAIRS ≈ ΦMet + Φ′2003 (4.7)

Rearranging equation 4.7, we see that the 2003 flux anomaly (Φ′2003) can be estimated by
subtracting ΦMet from ΦAIRS.

We also estimate the 2003 flux anomalies using an alternative estimate of global carbon
fluxes for 2003, that from CarbonTracker. CarbonTracker, an inversion system which is
constrained by the GLOBALVIEW network of surface flask observations of CO2, provides
posterior global carbon fluxes at the monthly resolution (Peters et al. (2005, 2007), with
updates documented at http://carbontracker.noaa.gov). By including the estimate from
CarbonTracker, we have two estimates for the 2003 global fluxes, one that is informed by
surface CO2 observations and one that is informed by AIRS mid-tropospheric CO2 observa-
tions. These two estimates for Φ′2003 are:

Φ′
AIRS
2003 ≈ ΦAIRS − ΦMet (4.8)

Φ′
CT
2003 ≈ ΦCT − ΦPrior (4.9)

Here ΦCT is the 2003 CO2 surface flux fields from the 2017 version of CarbonTracker
(CT2017), regridded from their native 1° x 1° grid to the same grid as ΦPrior, ΦMet, and
ΦAIRS (1.9° x 2.5°). ΦCT is the sum of ΦCTbio, ΦCTocean, ΦCTfossil, and ΦCTfire, where ΦCTbio

and ΦCTocean are CarbonTracker’s posterior estimate of 2003 fluxes from the terrestrial bio-
sphere and the oceans, respectively, and ΦCTfossil and ΦCTfire are their prescribed fossil fuel
flux and prescribed fire flux, respectively. Commonalities between the community estimate
(Φ′CT2003) and our estimate (Φ′AIRS2003 ) provide confidence in the correctness of both estimates,
whereas discrepancies between the two indicate either misattributions of carbon fluxes by
CT or by us.

We can also define a “posterior” monthly mean flux using the AIRS run fields and our
approach as:

ΦPosterior = ΦPrior + Φ′
AIRS
2003 (4.10)

ΦPosterior can then be compared directly to ΦCT . It follows that the posterior spread,
σPosterior, for each month is achieved by summing σΦ,AIRS and σΦ,Met in quadrature:

σPosterior =
√
σ2

Φ,Met + σ2
Φ,AIRS (4.11)
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Figure 4.1 : Annual CO2 surface fluxes for the year 2003, in kg CO2/m2/year. The upper left panel
shows the flux calculated using equation 4.2 from Met-run fields (ΦMet). The upper right panel
shows the same using AIRS-run fields (ΦAIRS). The lower left panel is the annual total flux from
CarbonTracker (ΦCT ), and the lower right panel is the annual flux used as forcing in both the Met-
and AIRS-runs (ΦPrior).

4.3 Results

4.3.1 Global fluxes

In Figure 4.1, we see the annual sum of mean fluxes (ΦMet and ΦAIRS) calculated with
Equation 4.2. For comparison, we show the annual fluxes for the same year from Carbon-
Tracker (ΦCT ) and the annual surface flux forcing used as a surface boundary condition in
the Met and AIRS runs (ΦPrior).

The surface flux forcing (ΦPrior, lower right of Figure 4.1) has an annually-balanced
terrestrial carbon cycle, so in this annually-summed representation, we do not see the imprint
of natural terrestrial land processes, but rather just the anthropogenic signal (e.g. the
sources over the Eastern United States, Europe, and Asia), and climatological ocean fluxes.
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CarbonTracker’s terrestrial carbon cycle is not annually-balanced, and for the year 2003,
ΦCT (lower left of Figure 4.1) shows a sink in the boreal forests, and a source in the Amazon.

Ocean fluxes are generally too small to be resolved in the figure’s lower two panels (ΦCT

and ΦPrior). One exception is the sink in the Arctic Ocean north of Scandinavia, which is
present in varying strength in both ΦCT and ΦPrior. There are some annual ocean source and
sink regions present in ΦCT but not the climatological ΦPrior and vice-versa. For example,
CarbonTracker has a sink southeast of Australia that is not resolved in ΦPrior, and ΦPrior

has a sink south of Iceland that is not resolved by the CarbonTracker ocean fluxes.
The calculated surface fluxes for both the Met- and AIRS-runs (ΦMet and ΦAIRS, upper

row of Figure 4.1) show similar spatial patterns to the prescribed prior flux and to Carbon-
Tracker. The fossil fuel sources and Scandinavian Arctic Ocean sink are both present in
annual ΦMet and ΦAIRS. ΦMet and ΦAIRS also differ from the lower two panels in a num-
ber of ways. They show much more activity over the oceans, and wavelike features near
large mountain ranges (South America, the American Rockies, and the Tibetan plateau).
These oscillatory features are likely model artifacts associated with steep gradients, so they
would be part of the methodological error terms, εMet and εAIRS. As expressed in equa-
tion 4.5, differences between ΦMet and ΦPrior (which should be identical) are attributed to
the methodological error terms εMet. These errors are related to shortcomings of the method-
ology such as the use of 6-hourly fields as discussed in section 4.4. The imprint of these errors
is visible in the ΦAIRS map as well. To separate the signal from the noise, we thus look at
the difference between ΦAIRS and ΦMet, assuming εMet ∼ εAIRS. In doing so, we subtract
most most methodological errors (common to both ΦAIRS and ΦMet) from ΦAIRS, and focus
on the signal related to assimilating AIRS CO2. This difference, Φ′AIRS2003 , is an estimate of
the 2003 carbon flux anomaly, as described in section 4.2.2.

We reiterate here that our prior forcing includes a climatological view of the ocean carbon
cycle, and an annually-balanced terrestrial carbon cycle. Thus, Φ′AIRS2003 should include in the
ocean any sources or sinks which are not part of the climatology, and over land, should
include any net land sources or sinks (for example, net sinks in forested regions). The CO2

annual flux from CarbonTracker (ΦCT ) also estimates the carbon sources and sinks which
are specific to 2003, so [ΦCT − ΦPrior] (i.e., Φ′CT2003) should share some gross features with
Φ′AIRS2003 .

Φ′AIRS2003 and Φ′CT2003 are shown in the top row of Figure 4.2. Our estimate (left panel), shares
some features with the CarbonTracker estimate (right panel). Both show regions of more
carbon outgassing (or less uptake) in the Southern Ocean in 2003 relative to the climatology.
They both have negative anomalies corresponding to the boreal forest land sink, and positive
anomalies in the Atlantic Ocean, extending from the east coast of North America and into
the Arctic.

They also differ in several regions. While Φ′CT2003 and Φ′AIRS2003 match signs in the region
east of the Amazon Basin (negative anomalies) and in the southern tip of South America
(positive anomalies), the Φ′AIRS2003 map shows large negative anomalies in the central and
western Amazon Basin and in the Pacific Ocean to the west of the Amazon, whereas the
same part of the Amazon in the Φ′CT2003 map is a positive anomaly, and the Pacific Ocean to
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its west is more neutral. This region is explored in more detail in section 4.3.2.
In Figure 4.2 we also show the annual spreads in ΦMet and ΦAIRS. We see in both cases

that the spread is minimized in the tropics, especially in the tropical oceans. This will
gives us more confidence in tropical signals (e.g., the Amazon signal) as compared to mid-
and high-latitude signals. The spread in ΦAIRS is spatially correlated with the number of
available AIRS XCO2 soundings, which are given in the form of monthly maps of observation
counts in Figure 4.3. In these observation count maps, we see that AIRS does not cover the
high latitudes of the Southern Hemisphere, which leads to a large spread in ΦAIRS south
of 55°S. Additionally, in all months, we see the densest AIRS observation coverage in the
tropical oceans. These regions correspond to minimized spread in ΦAIRS in Figure 4.2.

Generally, we regard Φ′CT2003 as the true anomaly that we hope to retrieve with our method-
ology. In the boreal forests, our methodology (Φ′AIRS2003 ) does not retrieve the full 2003 net
carbon sink that is seen in Φ′CT2003. This is due to poorer AIRS XCO2 availability in those
regions and due to the vertical sensitivity of the AIRS instrument to CO2. This sensitiv-
ity peaks in the mid- to upper-troposphere, as expressed by the averaging kernel curves in
Figure 4.4. In the mid- and high-latitude regions, CO2 at these pressure levels is advected
rapidly by westerlies, so signals that we detect are likely representative of flux anomalies in a
particular latitude band rather than flux anomalies of regions directly underlying the AIRS
XCO2 signals. Conversely, in the tropics, strong convective mixing allows surface flux infor-
mation to propagate into the free troposphere, where AIRS has strong sensitivity to changes
in CO2 abundance. The tropics are also a region where CarbonTracker’s observation network
suffers from observation paucity. The combination of CT observational sparseness, strong
convective mixing, and AIRS observation density leads us to believe that discrepancies be-
tween Φ′CT2003 and Φ′AIRS2003 in the tropics could be due to real signals that CarbonTracker does
not detect.

These signals are further explored at the monthly time scale in Figure 4.5. In this
case, for Φ′AIRS2003 anomalies, we display only the significant differences, where significance
is determined using a Z-test with a null hypothesis that ΦAIRS is within 1.96 x σΦ,Met of
ΦMet. As in Figure 4.2, we show the corresponding Φ′CT2003 for each month and look for
commonalities between the two. In general, we consider the right column (Φ′CT2003) as the
target flux anomaly signal that we hope to detect, and the actual signal detected is shown in
the left column (Φ′AIRS2003 ). In the tropics, however, we suspect that Φ′AIRS2003 signals could offer
some new information that Φ′CT2003 has missed. In several months, the anomaly maps agree
qualitatively on the ocean carbon cycle. For example, in August, both maps show negative
anomalies in the ocean from 20°S to the equator, and mostly positive anomalies south of the
negative anomalies. On land, commonalities include a positive anomaly in South Africa in
February and negative anomalies in the high latitudes of the Asian continent in February
and April.

Similarly to the annual map, we find the largest standout differences in the Amazon
region, and in the Pacific Ocean west of it. Negative anomalies in the Φ′AIRS2003 maps over the
Amazon region are prominent from June through October. In August, the Φ′CT2003 map shows
large negative anomalies near the Amazon, but they are located east and south of the Φ′AIRS2003
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Figure 4.2 : Difference in the annual CO2 surface flux calculated using the AIRS run fields relative
to the surface flux calculated using the Met run fields, [Φ′AIRS2003 = ΦAIRS−ΦMet] (upper left panel).
Difference in the annual CO2 surface flux from CarbonTracker relative to the surface flux used as
forcing in the Met and AIRS runs, [Φ′CT2003 = ΦCT − ΦPrior] (upper right panel). Spread in annual
ΦMet (lower left panel) and in ΦAIRS (lower right panel).
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Figure 4.3 : Monthly observation counts of available AIRS XCO2 soundings falling within grid boxes
of size 5° longitude x 3.75° latitude, for the year 2003.
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Figure 4.4 : The sensitivity of AIRS to CO2 changes as a function of atmospheric pressure, taken
from Engelen and McNally (2005). The sensitivity is the change in brightness temperature (dBT)
for a 1% change in CO2 mass mixing ratio. Each curve represents the sensitivity of one of the 18
spectral channels used to determine XCO2 from AIRS radiance observations.

anomalies, in the cerrado and agricultural region outside of the central Amazon Basin. In
February and August, Φ′AIRS2003 does not detect a signal directly where CarbonTracker finds its
large negative anomaly. The Amazon flux results are further elaborated upon in section 4.3.2.

The large negative anomaly in Φ′AIRS2003 over the ocean, downwind of the Amazon, persists
from April to August, but it is only present in Φ′CT2003 in April. This signal is one typically seen
at the early stages of a large El Niño event (e.g., the 2015 El Niño, Chatterjee et al. (2017)).
During an El Niño, anomalously warm water off the west coast of South America leads to
suppressed upwelling and CO2-depleted surface water, hence a negative signal (increased
carbon sink, or decreased source) is expected. However, in summer 2003, conditions were
normal in this region. The April signal which is present in both Φ′AIRS2003 and Φ′CT2003 could be
related to the slight El Niño conditions of late 2002 and early 2003. Nearly neutral conditions
were reached by April 2003 (Levinson and Waple 2004), so any signal after this month is
likely unrelated to the El Niño. Most likely, the large negative Φ′AIRS2003 in June and August
is related to an increased sink somewhere upwind of the signal, such as the Amazon. We
note here that this part of the Pacific is also a region of persistently high counts of AIRS
XCO2 soundings (as seen in Figure 4.3), so the AIRS run’s CO2 fields are expected to differ
significantly from the Met run’s in this region.

4.3.2 Amazon fluxes

Figure 4.6 shows our posterior CO2 surface flux (ΦPosterior, from Equation 4.10) for all
months for the Amazon region. It includes the prior flux forcing (ΦPrior) and CarbonTracker’s
flux (ΦCT ) for comparison. We see that for the most part all three products agree on the
sign of the fluxes throughout the months. In the early (wet season) months, the northern
Amazon is a source of carbon to the atmosphere, and the region south and east of the basin
is neutral or a sink. In the dry season months of July through September, the three agree
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Figure 4.5 : Difference in the monthly CO2 surface flux calculated using the AIRS run fields relative
to the surface flux calculated using the Met run fields, [Φ′AIRS2003 = ΦAIRS −ΦMet, our detected 2003
flux anomaly] (left column), for months February, April, June, August, and October. Difference in
the monthly CO2 surface flux from CarbonTracker relative to the surface flux used as forcing in the
Met and AIRS runs, [Φ′CT2003 = ΦCT −ΦPrior, the target 2003 flux anomaly] (right column), for the
same months. Left column anomaly maps only show significant differences (at the 95% confidence
level).
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that the north is now a sink and the shoulder region to the south and east is a source.
ΦCT and ΦPosterior disagree in several months in terms of source/sink magnitudes, however.
Our estimate has the central Amazon Basin region as a stronger sink than CarbonTracker’s
estimate.

The annual sum of these fluxes is shown in Figure 4.7, with a blue line marking the borders
of the Amazon Basin. In addition to the annually-summed ΦCT , we include the three non-
ocean carbon fluxes that contribute to ΦCT : the flux from the terrestrial biosphere (ΦCTbio),
the flux from fires (ΦCTfire) and the flux from fossil fuel combustion (ΦCTfossil). We see that
annually, much of the basin is a carbon source in ΦCT but it is almost exclusively a sink in
our ΦPosterior estimate. ΦPrior has an annually-balanced terrestrial carbon cycle, so its map
is not shown. The region outside of the basin, to its south and east, has similar annual flux
in both our estimate and in CarbonTracker’s estimate. Most of the brown, source regions
in either map fall within the “grass/shrub” ecoregion in CarbonTracker’s methodology. The
sink just outside of the basin (around 310°E, 5°S) is a tropical forest, the same ecoregion as
the central Amazon Basin.

Grid boxes that touch the border in Figure 4.7 are summed to produce Figure 4.8, which
shows the total annual carbon flux for the Amazon Basin for ΦPosterior, ΦPrior, ΦCT and ΦCT

components. We see that assimilating AIRS XCO2, and calculating ΦPosterior in using our
mass budget method, brings the prior estimate for the region from a net source (from fossil
fuel burning) to a net sink of about 0.26 PgC/year.

4.4 Discussion and Conclusions
Our results show that our carbon data assimilation system yields 4D-CO2 and wind fields

that allow for a realistic CO2 surface flux calculation when compared with CarbonTracker
fluxes. In most regions of the globe, our posterior flux estimates are closer to CarbonTracker
estimates than the prior forcing was, indicating that our methodology, and assimilating AIRS
XCO2, provides useful information which can be used to inform carbon budget estimates.
The most significant impact of AIRS XCO2 on the surface flux calculation is seen in the trop-
ics (especially the tropical oceans). Here, CO2 surface flux signals are diluted throughout the
troposphere by convective mixing, allowing AIRS to detect them with its mid-tropospheric
sensitivity. These regions are also where AIRS offers its densest CO2 soundings and where
the surface flask network used by CarbonTracker has few observations.

Our estimate differs from CarbonTracker in the Amazon Basin, indicating that in 2003
there could have been a stronger carbon sink here than the CarbonTracker machinery de-
rives. Here we estimate an annual sink of 0.26 ± 0.02 PgC/year (1-σ), while CarbonTracker
estimates that this region is a source region of about the same magnitude (0.25 PgC/year).
About a third of CT’s annual source here is from the terrestrial biosphere (0.08 PgC/year).
The data presented in Brienen et al. (2015) show that in 2003 the Amazon Basin’s biomass
change (carbon accumulation minus tree mortality) was a net sink, which is more aligned
with our results than with CarbonTracker’s.



4.4. DISCUSSION AND CONCLUSIONS 76

Figure 4.6 : Monthly mean CO2 surface fluxes for the year 2003 for the region containing the Amazon
Basin. Left column shows ΦPrior, middle column shows ΦPosterior, and right column shows ΦCT .
Flux units are 10−8 x kg CO2/m2/s.
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Figure 4.7 : Annual sum, in kgCO2/m2/year, of monthly fluxes from CarbonTracker (upper left),
and ΦPosterior (upper middle). Spread in annual ΦPosterior (upper right). The bottom row breaks
the CT flux down into its three contributing sectors: the terrestrial biosphere (left), fires (middle),
and fossil fuel (right).
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Figure 4.8 : Annual carbon fluxes, in petagrams carbon, for the year 2003 for the Amazon Basin
region marked in Figure 4.7. Prior is ΦPrior, Posterior is ΦPosterior, CT total is ΦCT . Also shown are
the contributions from individual sectors in the CarbonTracker product: the terrestrial biosphere
(CT bio), fires (CT fire), and fossil fuel combustion (CT fossil). Error bars on Posterior correspond
to the ensemble spread (σPosterior).
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Our posterior flux in the Amazon shows the strongest carbon uptake during dry season
months of July-October. In 2003, these dry-season months correspond to the period when
satellite-derived leaf area index (LAI) also peaked (Myneni et al. 2007). LAI is a proxy for
gross primary productivity (GPP), so only represents one component of carbon exchange in
the Amazon. Our results are aligned with either strong productivity, weak respiration, or a
combination of the two, for the Amazon during dry season months, and are thus consistent
with Myneni et al. (2007). They are also consistent with the idea of a “green-up” in the
Amazon during the dry season, as discussed in several previous studies (Saleska et al. 2003;
Huete et al. 2006).

The methodology used here is imperfect for a few reasons. First, AIRS is not sensitive to
near-surface CO2 except in the tropics, so most of our significant signals are in the tropics,
and we miss information about the midlatitudes and boreal forests. This could be improved
if we were to use observations from a satellite which is sensitive to surface CO2, for example
the Orbiting Carbon Observatory 2 (OCO-2) or the Greenhouse Gases Observing Satellite
(GOSAT).

Additionally, there are some issues related to the data assimilation framework itself.
Because we are using a finite-volume dynamical core, mass conservation is assured (Lin and
Rood 1996). However, data assimilation causes air mass to be created and destroyed. On the
global scale in our experiments, this is not an issue, since in our assimilation experiments,
global dry air mass averaged over two weeks is conserved, with a variability of 2 x 1013 kg
around a mean of 5.1 x 1018 kg air, i.e. 0.0004 %. On the scale of individual grid boxes,
however, deviations from mass conservation could lead to artifacts in our calculated surface
fluxes.

As mentioned previously, there are issues with using 6-hourly meteorological fields to
estimate grid-box-level fluxes using equation 4.2. The nonlinear product in our calculations
(O · 〈−→u2ρC〉) uses the analysis smoothed to the 6-hour time window, but the meteorological
fields in CAM are updated at every internal physical time step, which is of order minutes.
The use of these fields smoothed or filtered over a 3- or 6-hour assimilation window appears
to work well in stratospheric assimilation (Pawson et al. 2007), but is less effective when the
state vector fields have diurnal variations. The use of instantaneous analysis output every 3
or 6 hours to calculate the products introduces aliasing problems (Waugh et al. 1997), even
when the assimilation window is reduced to 1 hour: the product of the mean does not equal
the mean of the product. This causes errors to propagate to our fluxes.

To remedy this last issue, in future experiments we can modify the CAM code to keep
track of the cumulative O ·(−→u3ρC) throughout the 6-hour assimilation window. This cumula-
tive sum can then be integrated in the vertical (using equation 4.2) to yield a more accurate
Φ for that time step. CO2 and wind fields in each 6-hourly assimilation window would be
initialized with updated states (i.e., states that were adjusted by the LETKF at the end of
the previous window), then at the end of the window, a surface flux (Φ) would be calculated
which is consistent with those wind and CO2 fields. This methodology should yield similar
results to the innovation approach outlined in Chapter 2 of this dissertation. In future work,
these two approaches (the vertically-integrated mass budget approach and the innovation
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approach) should be compared using the same observations, model, and data assimilation
methodology.
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