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ABSTRACT 

We report the iAMOEBA (“inexpensive AMOEBA”) classical polarizable water model. The 

iAMOEBA model uses a direct approximation to describe electronic polarizability, in which the 

induced dipoles are determined directly from the permanent multipole electric fields and do not 

interact with one another.  The direct approximation reduces the computational cost relative to a 

fully polarizable model such as AMOEBA.  The model is parameterized using ForceBalance, a 

systematic optimization method that simultaneously utilizes training data from experimental 

measurements and high-level ab initio calculations. We show that iAMOEBA is a highly 

accurate model for water in the solid, liquid, and gas phases, with the ability to fully capture the 

effects of electronic polarization and predict a comprehensive set of water properties beyond the 

training data set including the phase diagram. The increased accuracy of iAMOEBA over the 

fully polarizable AMOEBA model demonstrates ForceBalance as a method that allows the 

researcher to systematically improve empirical models by efficiently utilizing the available data. 

 

Keywords: Force field, force matching, AMOEBA, parameterization, optimization, polarizable 
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INTRODUCTION 

Water is a fascinating liquid that possesses many anomalous physical and chemical properties, 

including the temperature of maximum density, expansion on freezing, unusually large heat 

capacity, compressibility minimum, and unique solvation properties. The study of how the 

molecular interactions in water are related to its unique properties is a fundamental and important 

topic in physical chemistry.  A related essential question is how water interacts with solutes such 

as ions, organic molecules and proteins to form the foundation of biomolecular structure and 

function, including studies of how proteins fold,1-3 misfold,4-6 undergo conformational change,7-9 

and interact with their environments.10-14 For all of these reasons, the study of water interactions 

has been a highly active field for decades in experimental and theoretical chemistry.15 

The theoretical and computational modeling of water allows us to investigate water and 

aqueous solutions with precise spatial and temporal resolution, providing a helpful complement 

to experiment.  The application of these models has contributed to important progress in our 

understanding of pure water properties, such as the nature of the hydrogen bonding network and 

its structural organization,15-18 the transport of hydronium and hydroxide ions,19,20 the mechanism 

of freezing21 and the surface properties of ice,22 the geometries and binding energies of water 

clusters in the gas phase,23-26 and the dual phases of liquid water at extremely low 

temperatures.27-29 However, no current single model is able to capture the full complexity of 

water and its properties, due to the tradeoff between model complexity and the ability to sample 

the condensed phase. 

For example, some of the most widely used biomolecular force fields – including the popular 

AMBER30-33 and CHARMM models13,34 – are based on the three-site, pairwise-additive TIP3P 

water model35 developed for use with Monte Carlo simulations with finite-range cutoffs for 
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electrostatic interactions, nearly thirty years ago.  The computationally tractable TIP3P model 

allows for long simulation timescales to be reached that are important for extreme regions of 

water’s phase diagram, or solvation of large biomolecules, even though it was not parameterized 

for these types of simulations.  The TIP3P model was fitted to the experimental density and heat 

of vaporization at room temperature and 1 atm pressure, and its validation showed it could 

predict the isobaric heat capacity quite well at this temperature and pressure – to within 1 

J/g °C.36 However, this model often fails on properties outside the ambient conditions for which 

it was parameterized; for example, the TIP3P model yields a simulated freezing point value of -

91 °C, far below the experimental value of 0 °C, and incorrectly predicts the solid phase to be ice 

II rather than ordinary ice Ih.37-39 

The development of water models using only pairwise-additive interactions (such as TIP3P) 

has significantly benefited from more sophisticated treatments of long-ranged electrostatics, 

extending the experimental data sets used for parameterization, and adding more interaction sites.  

For example, the TIP4P/Ew40 and TIP4P/2005 models41 were developed for use with Ewald 

summation techniques and parameterized using the temperature dependence of the density and 

heat of vaporization.  These models provide agreement with a much broader range of 

experimental reference data outside of the parameterization data used in model refinement. 

There is also a more sophisticated class of water models that move beyond point charges and 

the pairwise additive approximation by including anisotropic electrostatic multipole interactions 

and N-body polarization. For example, polarizable models such as SWM-4DP42, TIP4P-FQ43, 

DPP223, TTM3-F44, and AMOEBA45,46 further improve on the description of many water 

properties, especially gas-phase properties and the dielectric constant – where additive force 

fields typically overestimate binding energies of gas-phase clusters and underestimate the 
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dielectric constant in order to capture a larger subset of condensed phase properties. Given the 

increase in model complexity, polarizable force fields are also more expensive to evaluate, often 

by a factor of 2-3 or greater. 

The parameterization and validation of a water model is typically both difficult and time-

consuming. Improved methods for building force fields are therefore desirable, for they can be 

used to improve models in a systematic and reproducible way, and potentially applied more 

generally for parameterizing models of other solutes such as drugs, ligands, proteins, lipids, or 

nucleic acids that are compatible with the water model. 

In this Article we report the parameterization and validation of a new classical, flexible, 

direct polarization water model that is a simplified version of the fully polarizable AMOEBA 

water model. The direct polarization method determines induced dipole moments directly, based 

only on the electric field due to static multipoles.47-50 The direct polarization approximation 

eliminates the need for an iterative solution to the self-consistent field in a fully interaction 

(mutual) model of polarization and reduces the computational cost; hence we refer to the new 

model as inexpensive AMOEBA or iAMOEBA.  However, neglecting mutual polarization 

results in a loss of ~20% of the polarization energy, and that must be recovered through 

optimization of the model parameters. 

Here we use the ForceBalance method51,52 for parameterizing the iAMOEBA model using a 

combination of experimental data and high-level ab initio calculations. We will describe our 

choice of reference data and provide a brief overview of the parameterization method. We 

demonstrate the accuracy of iAMOEBA using a published, comprehensive benchmark of water 

properties developed by Vega and coworkers36 that covers a wide range of phases and 

thermodynamic conditions going far beyond the parameterization data set.  We provide further 
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discussion on the generality of the parameterization approach explored here for iAMOEBA and 

its potential for force field development for other liquids, biomolecular solutes and other 

materials, or for potentials of arbitrary functional form. 

THEORY AND METHODS 

A. The iAMOEBA Model  

The iAMOEBA model described in this work is a direct polarization approximation of the 

AMOEBA water model developed by Ren and Ponder, and we refer the reader to Ref. 45 for a 

complete description of the mutually polarizable AMOEBA water model.  The iAMOEBA and 

AMOEBA functional form for water is briefly recapitulated here: 

 E = Ebond +Eangle +Ebθ +EvdW +Eele
perm +Eele

ind , (1)  

where the first three terms describe the short-range valence interactions (bond stretching, angle 

bending, Urey-Bradley bond-angle cross term), and the last three terms are the nonbonded van 

der Waals (vdW) and electrostatic contributions from permanent and induced dipoles.  More 

specifically, the nuclei are described using classical point particles and the molecular 

connectivity is fixed; the water molecule is allowed to undergo classical vibrations represented 

using anharmonic potential functions in the O-H bond length, the H-O-H angle, and the H-H 

distance (Urey-Bradley interaction).  The van der Waals interactions are described using a 

Halgren buffered 14-7 function that describes dispersion interactions at long range and exchange 

repulsion at short range. The permanent electrostatic interactions are represented as atomic 

multipole moments through the quadrupole, requiring the definition of a local coordinate system 

for each atom.   
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The main difference between the iAMOEBA and AMOEBA functional forms is that we 

evaluate only the direct polarization,47-49,53 and not the full self-consistent mutual polarization. In 

this approximation, the polarizable dipoles are induced solely by the electric fields from the 

permanent multipoles. The dipoles are given by: 

 µi,α
ind =αi Tα

ijM j
j{ }
∑
"

#
$
$

%

&
'
' for α =1,2,3  , (2)  

where αi is the atomic polarizability on site i, M j = qj,µ j,1,µ j,2µ j,3,...!" #$
T

contains the permanent 

multipole components on site j, and Tα
ij = Tα,Tα1,Tα 2,Tα3,...[ ]  is the interaction matrix element 

between site i and j following Stone’s notation.54 This stands in contrast to the expression for full 

self-consistent polarizability: 

 µi,α
ind =αi Tα

ijM j
j{ }
∑ + Tαβ

i "j µ "j β
ind

"j{ }
∑

#

$
%
%

&

'
(
( for α,β =1,2,3  , (3)  

where the additional term Tαβ
i !j µ !j β

ind

!j{ }
∑ represents the electric fields from all other induced dipoles, 

and the index !j  runs over all atomic sites not including i  itself. The full expressions for the T 

matrix elements are the same as Equations 2-5 in Ref. 45.   

Within the framework of the many-body expansion, direct polarization gives rise to at most 

three-body terms in which a polarizable site couples with the permanent moments of two other 

sites.  For example, in a direct polarization interaction between an inducible dipole and two 

permanent multipoles, the induced dipole moment and the direct polarization energy are given 

by: 
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µ1,α
ind =α1 Tα

12M2 +Tα
13M3( ) for α =1,2,3

Edirect =
1
2
µ1
ind ⋅M2 +µ1

ind ⋅M3( )

=
1
2
α1 M2Tα

12M2 +M3Tα
12M3 +M3Tα

12M2 +M2Tα
12M3( )

α=1

3

∑
 , 

(4)  

where µ1
ind is the induced dipole on site 1 with polarizabilityα1 , and Tα

12M2 and Tα
13M3 represent 

the electric fields from the permanent multipoles on sites 2 and 3.  The first and second terms in 

Edirect  are two-body terms, whereas the third and fourth terms are three-body terms representing 

the influence of M3  on the interaction between µ1
ind  and M2  (and vice versa).  The extension to 

systems containing more than three particles is straightforward and gives rise to more three-body 

terms involving one induced dipole and two permanent multipoles.  By contrast, the mutual 

scheme in AMOEBA represents the full N-body polarization interaction, in which the 

polarizable dipoles further induce one another and must be converged self-consistently. Direct 

polarization provides a model that still captures much of the polarization effects important in the 

condensed phase at greatly reduced computational cost, as the iterative evaluation of electrostatic 

energies to achieve self-consistency in polarizable dipoles is avoided entirely.  Furthermore, the 

resulting model no longer requires a convergence tolerance, eliminating the possibility that 

incompletely converged dipoles might result in nonconservative forces.   

By way of the direct polarization, the iAMOEBA model speeds up the calculation of energies 

and gradients by a factor of 1.5 to 6 over the mutual AMOEBA model.  These estimates were 

derived from benchmark calculations using the TINKER and OpenMM software packages (see 

Supporting Table S2); the precise value depends on the system and simulation settings, notably 

the self-consistent convergence tolerance for the AMOEBA induced dipoles.  Furthermore, the 

use of extended Lagrangian formalisms55-58 is known to greatly reduce the computational cost of 
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mutual polarization methods, but it requires a careful choice of the fictitious mass parameter for 

the electronic degrees of freedom59-61; we did not consider the impact of these methods in these 

timing comparisons.  

The more important scientific question is how effectively we can recapture the physical 

interactions using the approximate polarizable form.   In order to address this question, we must 

reoptimize the 19 independent parameters of the iAMOEBA model:  five due to intramolecular 

vibrations, two for van der Waals interactions, nine for permanent multipoles, and three for 

electronic polarization. This requires a discussion of the reference data set and the optimization 

method used to parameterize the model.   

B. Reference Data 

A significant challenge for model parameterization and validation is the choice of suitable 

reference data, which can be both experimental and theoretical in origin.  For water we are 

fortunate that both experimental and theoretical reference data are plentiful,62,63 although this is 

often not the case for less studied materials and compounds.  In this work, we apply a systematic 

optimization method (ForceBalance)51,52, which allows us to efficiently utilize combinations of 

experimental and theoretical data.  Here we describe the different types of data used to 

parameterize iAMOEBA, which we summarize in Table 1. Due to the large size of the data set, 

the complete reference dataset is provided electronically.64 
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Reference Data Scaling Factor 

Density ρ 2 kg m-3 

Heat of Vaporization ΔHvap 5 kJ mol-1 

Thermal Expansion Coefficient α 10-4 K-1 

Isothermal Compresibility κT 10-5 bar-1 

Isobaric Heat Capacity cP 2 kg mol-1 K-1 

Dielectric Constant ε(0) 2 

Gas Phase Dipole 0.2 Debye 

Gas Phase Quadrupole 1.0 Debye Å 

Gas Phase Vibrational Modes 30 cm-1 
Water Dimer 

CCSD(T)/CBS Binding Energy, RMSD 
1.0 kcal mol-1,  

0.1 Å 
21 Small Gas Phase Clusters (size 3-6) 
CCSD(T)/CBS Binding Energy, RMSD 

10.0 kcal mol-1,  
2.0 Å 

18 Large Gas Phase Clusters (size 8-20) 
MP2/CBS Binding Energy, RMSD 

100.0 kcal mol-1,  
2.0 Å 

42,000 MP2/aug-cc-pVTZ 
Potential Energies and Atomistic Forces stdev(EQM), RMS(|FQM|) 

 

Table 1.  Data references for parameterization of iAMOEBA (full tables online, Ref. 64.)  

Orange: Condensed phase experimental data, 249 – 373 K (1 atm), 1 – 8000 bar (298 K).  

Green: Gas phase experimental data.  Blue: Theoretical reference data.  The scaling factors for 

potential energies and atomistic forces are given by the standard deviation of the potential 

energies and the RMS norm of the forces in the ab initio reference calculations.  The objective 

function is a scaled sum of squared differences between the simulation results and the reference 

data; the scaling factors (equivalent to inverse weights) are given in the right column. 

Experimental measurements.  The dominant paradigm in water model development is to fit the 

parameters to reproduce a set of experimentally measured condensed phase properties. Generally 

speaking, a diverse data set over a wide range of thermodynamic conditions improves the 

domain of applicability of the model, but it also increases the practical difficulty of the 

optimization problem. In this work, we extend the parameterization data sets used in past studies 
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to include six key experimental properties over a wide range of thermodynamic conditions: 

density, heat of vaporization, thermal expansion coefficient, isothermal compressibility, isobaric 

heat capacity, and dielectric constant.  These properties are evaluated at 32 temperatures 

spanning a range of 249.15 – 373.15 K at atmospheric pressure, and 10 pressures from 1 – 8000 

bar at 298.15 K (Supporting Table S4).  Our liquid simulations for the heat of vaporization were 

performed at atmospheric pressure rather than the vapor pressure, which introduces a negligible 

correction term at the temperature range studied. We also include experimentally known 

properties of the water monomer in the gas phase, in particular its dipole moment, quadrupole 

moment and vibrational frequencies.  All of the experimental reference data, along with the 

theoretical reference data, is summarized in Table 1; the complete experimental data is provided 

in Supporting Tables S3 and S4, as well as on the Web.64 

Theoretical reference data.  In addition to experimental data, highly detailed theoretical 

calculations also provide valuable reference data for model development. Methods following this 

approach include potential fitting,65-67 force matching,51,68-70 and relative entropy71,72 methods, 

and they have found widespread success in building both atomistic and mesoscale (coarse 

grained) models.  The general goal is to reproduce the accuracy of the highly detailed reference 

levels of theory with a comparatively simple and inexpensive classical model. Quantum 

chemistry methods such as Møller-Plesset perturbation theory,73 coupled-cluster theory73 and 

density functional theory74 are examples of reference theories used to develop atomistic models; 

they are impractical for many condensed-phase applications due to their high cost but provide 

valuable information on the electronic potential energy surface for smaller systems such as water 

clusters.   
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In this work, the theoretical reference data includes energies and gradients calculated at the 

dual basis RI-MP275-77/heavy-aug-cc-pVTZ78 level of theory for over 42,000 cluster geometries 

extracted randomly from simulations of liquid water. These geometries are taken from 

condensed-phase simulations performed using the AMOEBA model at a temperatures ranging 

from 249.15 – 373.15 K and including cluster sizes ranging from 2 – 22 to minimize finite size 

effects. The calculations were performed using Q-Chem 4.0;79 the RI approximation and the 

dual-basis approximation used their respective auxiliary basis sets corresponding to heavy-aug-

cc-pVTZ as implemented in Q-Chem. We also include the optimal geometries and binding 

energies of 40 small water clusters ranging from 2 to 20 molecules.  We have used the highest 

available level of theory for each cluster, with some of the largest calculations taken from 

literature benchmarks,80-85 and include multiple key geometries for the dimer, hexamer, and 

larger clusters where available. Most of the reference calculations of the binding energy allow 

the cluster and monomer geometries to fully relax, so our calculations using the model follow the 

same approach; we include the RMSD of the minimized cluster into the objective function in 

order to ensure that the iAMOEBA model provides energy-minimized clusters with the correct 

geometry.  We also include ten dimer poses (the “Smith” dimer set)23 where the geometries are 

not relaxed, and only the interaction energies enter into the objective function.  All of the data 

used in the parameterization of iAMOEBA is available on the Web.64 

C. Optimization 

Least squares optimization of force fields first began with the Consistent Force Field proposed 

by Lifson and Warshel in the 1960s.86 Hagler and coworkers first proposed removal of hydrogen 

vdW sites in order to improve the description of hydrogen bonding.87 Other early efforts 

extended formal least squares optimization through use of ab initio calculations88 and application 
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to bulk phase crystal modeling.89 The AMOEBA water model was parameterized by hand to fit 

results from ab initio calculations on gas phase clusters. 

ForceBalance51,52 (Figure 1) extends this prior work in several directions, including the 

ability to use a much larger and more diverse data set which includes experimental liquid phase 

measurements and ab initio calculations.  Here we use ForceBalance to optimize the iAMOEBA 

parameters. The overall objective function is expressed as a weighted sum of squared residuals 

over the experimental and theoretical target data sets (weights and data types in Table 1).  The 

exact gradient and approximate Hessian matrix of the objective function is derived from the first 

derivatives of the properties using the Gauss-Newton approximation.  The Levenberg-Marquardt 

algorithm90,91 with an adaptive trust radius92,93 is used to perform an iterative minimization of the 

nonlinear least squares objective function.  

	
  

Figure 1. ForceBalance procedure.  The calculation begins with an initial set of parameters 

(lower left), which is used to generate a force field and perform simulations.  The objective 
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function is a weighted sum of squared differences between the simulation results and the 

reference data, plus a regularization term that prevents overfitting.  The optimization method 

updates the parameters in order to minimize the objective function. 

There are significant challenges involved in using such a large experimental reference data 

set in an optimization scheme, because many of these properties are difficult to simulate to 

convergence for a single set of parameters, let alone fit via a parameter optimization method.  

Furthermore, computer simulations of condensed-phase properties suffer from statistical errors, 

and the errors are compounded when estimating the dependence of a particular property on the 

force field parameters.  These difficulties can relegate the researcher to performing manual 

parameter searches guided by insight and evaluating models by inspection, which gives force 

field model parameterization some of its reputation as an onerous task or “black art”.   

ForceBalance attempts to address these challenges in optimizing parameters to fit complex 

condensed phase properties.  A key aspect of this approach is that we calculate analytic 

derivatives of the simulated properties with respect to the force field parameters using a new 

fluctuation formula similar to Hamiltonian Gibbs-Duhem integration.41 In the past, these 

derivatives have been evaluated by running multiple simulations with different parameter 

values,40,41 but statistical error in finite difference gradients from independent simulations is a 

major problem.  Here we recognize our properties of interest originate from averages and 

fluctuations in the isothermal-isobaric (NPT) ensemble.  For instance, the ensemble average of a 

generic observable A that does not depend explicitly on the force field parameters (for example, 

the density or an order parameter) can be expressed as follows: 
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A

λ
=

1
Q λ( )

A r,V( )exp −β E r,V; λ( )+PV( )( )d∫ rdV

Q λ( ) = exp −β E r,V; λ( )+PV( )( )d∫ rdV
,

 

(5)  

where A is the observable, r a given molecular configuration in a periodic simulation cell, λ the 

force field parameter, E the potential energy, β ≡ kBT( )−1 the inverse temperature, kB the 

Boltzmann constant, T the temperature, P the pressure, V the volume, Q the isothermal-isobaric 

partition function, and the angle brackets with a λ subscript represent an ensemble average in the 

thermodynamic ensemble of the force field parameterized by λ.  In practice, this integral is 

evaluated numerically using molecular dynamics or Monte Carlo simulation in the NPT 

ensemble. 

Since the expression for A depends on λ only through the potential energy E, we can 

differentiate Equation 5 and obtain the analytic derivative (Equation 6): 

 

d
dλ

A
λ
=

1
Q λ( )

A r,V( )exp −β E r,V; λ( )+PV( )( ) −β dE r,V( )
dλ

"

#
$

%

&
'd∫ rdV

−
1

Q λ( )2
dQ
dλ

A r,V( )exp −β E r,V; λ( )+PV( )( )d∫ rdV

= −β A dE
dλ λ

− A
λ

dE
dλ λ

"

#
$

%

&
'

 

(6)  

In practice these calculations require the potential energy derivative, which we evaluate by post-

processing the simulation trajectory.  This equation may be directly applied to obtain derivatives 

of ensemble-averaged observables that don’t contain explicit force field parameter dependence, 

such as the density ρ.   

By contrast, the derivative of the enthalpy contains an extra partial derivative term, 

because the potential energy appears in the integrand:  
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d
dλ

H =
dE
dλ

−β H dE
dλ

− H dE
dλ

"

#
$

%

&
'

, 
(7)  

where for brevity we shall assume an implicit λ subscript for all quantities in all subsequent 

angle brackets.  The derivative of the heat of vaporization ΔHvap is given by subtracting the 

formulas for the liquid phase and gas phase enthalpies:  

 

  

d
dλ

ΔHvap =
d
dλ

E g +P Vg( )− 1Nl

E l +P Vl( )
#

$
%

&

'
(

=
dE g

dλ
−β Eg

dE g

dλ
− Eg

dE g

dλ

)

*
+

,

-
.−

1
Nl

dE l

dλ
+
β
Nl

Eg

dE g

dλ
− Eg

dE g

dλ

)

*
+

,

-
. , 

(8)  

where H ≡ E +PV is the enthalpy and the subscripts g and l denote the gas and liquid phases.  

Here, we have invoked the ideal gas law so that the molecular volume of water vapor does not 

appear in the expression. 

We note the derivative of an ensemble average property resembles a fluctuation property or 

second-order correlation function; the above equation is derived in a similar manner to the 

fluctuation formulas for second-order thermodynamic properties like the thermal expansion 

coefficient, isothermal compressibility, etc.  The derivative of nearly any ensemble average 

property can be evaluated in this fashion, and we also have derived formulas for differentiating 

fluctuation properties.  For example, the derivatives of the thermodynamic fluctuation formulas 

for the thermal expansion coefficient α, isothermal compressibility κT, isobaric heat capacity cP, 

and dielectric constant ε(0) resemble third-order fluctuations (Equations 9-12): 
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d
dλ

α =
1

kBT
2
d
dλ

HV − H V
V

"

#
$$

%

&
''

=
1

kBT
2

−β
HV dE

dλ
V − HV V dE

dλ
V 2

+
V dE
dλ
V

−
dE
dλ

+β H dE
dλ

− H dE
dλ

"

#
$

%

&
'

(

)

*
*
*
*
*
*
*

+

,

-
-
-
-
-
-
-, 

(9)   

 

d
dλ

κT = β
d
dλ

V 2 − V 2

V

"

#

$
$

%

&

'
'

= β 2
V 2 V dE

dλ
− V V 2 dE

dλ
V 2 + V dE

dλ
− V dE

dλ

"

#

$
$
$
$

%

&

'
'
'
'

, 

(10)  

 

d
dλ

cP =
1

NkBT
d
dλ

H 2 − H 2( )

=
1

NkBT

2 H dE
dλ

− H dE
dλ

"

#
$

%

&
'−β H 2 dE

dλ
− H 2 dE

dλ
"

#
$

%

&
'

+2β H H dE
dλ

− H dE
dλ

"

#
$

%

&
'

(

)

*
*
*
*

+

,

-
-
-
-

, 

(11)  
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d
dλ

ε 0( ) =
d
dλ

1+ 4π
3kBT

M 2

V

!

"
#
#

$

%
&
&

=
4π

3kBT V

Mi
dMi

dλ
− Mi

dMi

dλ

−β Mi
2 dE
dλ

− Mi
2 dE

dλ
− 2 Mi Mi

dE
dλ

+ 2 Mi
2 dE
dλ

!

"
#

$

%
&

!

"

#
#
#
#

$
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&
&
&
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∑

−β
M 2

V
V dE
dλ

− V dE
dλ

!

"
#

$

%
&

*

+

,
,
,
,
,
,
,
,

-
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/
/
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/
/
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. 

(12)  

Here, M is the total dipole moment of the simulation cell, and the summation goes over the three 

Cartesian axes.  We remark that although we have avoided the issues associated with finite-

difference derivatives from independent simulations, the derivative of an ensemble average 

property is intrinsically more difficult to estimate precisely since it manifests as a fluctuation 

property, and the derivative of a fluctuation property manifests as a third-order fluctuation.   

Finally, the different kinds of experimental and theoretical reference data used for 

parameterization have different physical units, so they require rescaling factors and weights in 

order to incorporate all data into an optimization scheme that minimizes a single objective 

function.  The rescaling factor for each property is based on its intrinsic size and uncertainty 

from the simulation, and it is equal to the inverse weight of that property in the objective 

function.  The values of the rescaling factors are given in Table 1. 

Regularization.  Although we included an unprecedented amount of reference data into our 

optimization, there is still the danger of overfitting.  This arises because all of the simulated 

quantities emerge from the interactions in the model, which can easily have linear dependencies.  

Overfitting is treated by regularization, in which parameter values are penalized if they stray too 

far from their original values.  Penalty functions have a natural interpretation in Bayesian 

statistics because they correspond to the negative logarithm of a prior distribution, analogous to 
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how a potential energy function is the negative logarithm of a Boltzmann distribution.94 For 

example, a harmonic penalty function corresponds to a Gaussian prior distribution:   

P λ( )∝ e
−λ

2

α2 ↔ R λ( ) = λ
2

α 2 ,

 

(13)  

where P λ( ) represents the prior probability distribution of the parameter λ , andR λ( )  is the 

harmonic penalty function. The width of the prior distribution α  (and corresponding inverse 

squared strength of the penalty function) represents our expectation of possible parameter values 

before introducing the parameterization data. The regularized objective function then 

corresponds to the posterior distribution.   

The regularized optimization is more accurately described as performing maximum a 

posteriori estimation, instead of a formally Bayesian method which samples from the posterior 

distribution. Another important difference is that the “empirical Bayesian” methods treat the 

weights for reference data and the prior widths as nuisance parameters and samples over them, 

whereas we chose the weights and prior widths in this work by examining the physical scale and 

variability of each quantity.  The reason for our approach is twofold.  Given the high complexity 

of evaluating the objective function, a derivative-based optimization with predetermined weights 

and prior widths was the only feasible option with the current method and available resources.  

Furthermore, we found that perturbing the weights and prior widths by large amounts (~50%) 

had minor effects on the behavior of the final model, but the same could not be said for 

perturbing force field parameters by a similar amount.  In summary, the regularized optimization 

alleviates the task of manually selecting the highly sensitive force field parameters, but still 

requires the researcher to qualitatively specify the problem using his/her physical knowledge. 
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Our optimization was regularized using a Gaussian prior specified in Table 2.  This 

corresponds to a parabolic penalty function in parameter space centered at the original 

AMOEBA parameter values with the chosen force constants.  Since the various iAMOEBA 

parameters have different physical meanings (e.g. vdW well depth, O-H bond length), each 

parameter type was assigned its own prior width.  We performed the optimization by first fitting 

only the theoretical data, because this was computationally less expensive.  We then included the 

condensed phase properties and optimized the full objective function until fluctuations from 

numerical noise prevented further improvement.  The full optimization converged to within the 

statistical error after about 10 nonlinear iterations, though we performed several optimizations 

with different choices of weights for the reference data and prior widths before arriving at the 

final answer.   

In order to perform the simulations of condensed phase properties, ForceBalance interfaces 

with existing simulation software.  To meet the high requirements for accuracy in the simulated 

properties, we used a combination of powerful and complementary methods in simulation 

software and distributed computing.  The condensed phase simulations in the optimization used 

OpenMM 5.1,95-97 a GPU-accelerated molecular dynamics software package with an extensively 

validated implementation of AMOEBA, which provides a speedup of an order of magnitude over 

the reference implementation in TINKER 6.1.98 At each optimization step, the set of 42 

simulations at different phase points (32 temperatures at 1.0 atm pressure plus 10 pressures at 

298.15 K temperature, given in the Supporting Information), is performed simultaneously on 

multiple GPU clusters; the Work Queue library99-101 allows ForceBalance to act as a distributed 

computing server and coordinate many OpenMM simulations running on multiple compute 

nodes in different physical locations.  Finally, the data from the finished simulations was 
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analyzed using the multistate Bennett acceptance ratio estimator (MBAR),102,103 which allows 

each simulation to contribute to the estimated property of the each other simulation. This 

combination of methods allowed us to optimize the condensed phase properties very accurately. 

Due to the non-overlapping features of the simulation codes, we combined OpenMM 5.1 and 

TINKER 6.1 during the optimization to evaluate quantities for comparison with the ab initio and 

gas phase reference data, using OpenMM to evaluate the potential energies and forces, and 

TINKER to evaluate the binding energies and monomer properties.  ForceBalance51, TINKER98, 

OpenMM97, and Work Queue101 are freely available on the Web. 

Parameter Name Units AMOEBA iAMOEBA Prior Width 
O-­‐H	
  Equilibrium	
  Bond	
  Length	
   Å	
   0.9572	
   0.9584	
   0.1	
  
O-­‐H	
  Bond	
  Force	
  Constant	
   kcal/mol/Å2	
   529.6	
   557.63	
   50	
  
H-­‐O-­‐H	
  Equilibrium	
  Angle	
   Degree	
   108.5	
   106.48	
   5	
  
H-­‐O-­‐H	
  Angle	
  Force	
  Constant	
   kcal/mol/Å2	
   34.05	
   49.90	
   40	
  
H-­‐H	
  Urey-­‐Bradley	
  Length	
   Å	
   1.5537	
   1.5357	
   N/Aa	
  
H-­‐H	
  Urey-­‐Bradley	
  Force	
  Constant	
   kcal/mol/Å2	
   38.25	
   -­‐10.31	
   25	
  
Oxygen	
  vdW	
  Sigma	
   Å	
   3.405	
   3.6453	
   0.3	
  
Oxygen	
  vdW	
  Epsilon	
   kcal/mol	
   0.11	
   0.19682	
   0.1	
  
Hydrogen	
  vdW	
  Sigma	
   Å	
   2.655	
   0	
   N/Ab	
  
Hydrogen	
  vdW	
  Epsilon	
   kcal/mol	
   0.0135	
   0	
   N/Ab	
  
Hydrogen	
  vdW	
  Reduction	
  Factor	
   None	
   0.91	
   0	
   N/Ab	
  
Oxygen	
  Charge	
   e	
   -­‐0.51966	
   -­‐0.59402	
   0.4	
  
Oxygen	
  Dipole	
  Z-­‐component	
   e	
  bohr	
   0.14279	
   0.08848	
   0.1	
  
Oxygen	
  Quadrupole	
  XX-­‐component	
   e	
  bohr2	
   0.37928	
   0.22618	
   0.2	
  
Oxygen	
  Quadrupole	
  YY-­‐component	
   e	
  bohr2	
   -­‐0.41809	
   -­‐0.32244	
   0.2	
  
Oxygen	
  Quadrupole	
  ZZ-­‐component	
   e	
  bohr2	
   0.03881	
   0.09626	
   0.2	
  
Hydrogen	
  Charge	
   e	
   0.25983	
   0.29701	
   0.4	
  
Hydrogen	
  Dipole	
  X-­‐component	
   e	
  bohr	
   -­‐0.03859	
   -­‐0.09391	
   0.1	
  
Hydrogen	
  Dipole	
  Z-­‐component	
   e	
  bohr	
   -­‐0.05818	
   -­‐0.12560	
   0.1	
  
Hydrogen	
  Quadrupole	
  XX-­‐component	
   e	
  bohr2	
   -­‐0.03673	
   0.18754	
   0.2	
  
Hydrogen	
  Quadrupole	
  YY-­‐component	
   e	
  bohr2	
   -­‐0.10739	
   0.02174	
   0.2	
  
Hydrogen	
  Quadrupole	
  XZ-­‐component	
   e	
  bohr2	
   -­‐0.00203	
   -­‐0.03635	
   0.2	
  
Hydrogen	
  Quadrupole	
  ZZ-­‐component	
   e	
  bohr2	
   0.14412	
   -­‐0.20928	
   0.2	
  
Oxygen	
  Polarizability	
   Å3	
   0.837	
   0.80636	
  

0.1/0.2c	
  
Hydrogen	
  Polarizability	
   Å3	
   0.496	
   0.50484	
  
Polarization	
  Damping	
  Factor	
   Å-­‐1	
   0.39	
   0.23616	
   0.2	
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Table 2.  Potential parameters for AMOEBA (Ref. 45) and iAMOEBA (this work).  The prior 

widths are used in regularization.  a The Urey-Bradley equilibrium length is determined from the 

O-H bond length and H-O-H angle parameters using the law of cosines.  b iAMOEBA does not 

contain hydrogen vdW interactions.  c The polarizability parameters were optimized in terms of 

their sum (αO + 2αH, prior width 0.1 Å3) and their ratio (αO/αH, prior width 0.2). 

RESULTS 

A. iAMOEBA Parameters 

Table 2 provides the optimized parameters for the iAMOEBA water model. Parameter files in 

the TINKER and OpenMM formats are provided on the Web.64 The Gaussian prior widths in 

Table 2 are given to ForceBalance as inputs for the optimization, and they enter into the 

objective function as harmonic restraints in the parameter space.  Our choices for the prior 

widths represent our expectations (from experience and physical intuition) that the parameters 

should not deviate from the initial AMOEBA values by more than these amounts, though 

ultimately the deviation in the parameter is also strongly affected by its importance in 

minimizing the objective function. 

The first six rows contain the intramolecular parameters for iAMOEBA.  The equilibrium 

bond length is essentially unchanged from the initial AMOEBA value.  The force constants are 

changed more significantly; the original AMOEBA model reverses the symmetric and 

antisymmetric vibrational frequency order, and the iAMOEBA parameters restore the correct 

order (Supporting Table S3).  The equilibrium HOH angle parameter is reduced by 2 degrees, 

which gives energies and atomistic forces in better agreement with ab initio calculations 

(Supporting Table S5); however, as with all flexible models that lack intramolecular charge 
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transfer, the angle contracts in the liquid phase relative to the gas phase value, in contrast to 

experimental measurements which indicate an expansion of the angle.104,105 The liquid phase 

angle of iAMOEBA at room temperature and atmospheric pressure is 103° (standard error < 1°), 

which is smaller than the value of 105-106° inferred from experiment106 and ab initio molecular 

dynamics simulation.107 The rationale for choosing an artificially large angle parameter of 108.5° 

in the original AMOEBA model was to reproduce the correct angle in the liquid phase, which 

aided in reproducing experimental liquid properties such as the dielectric constant; however, as 

we will see, iAMOEBA is able to accurately predict a broad range of condensed phase properties 

despite having a reduced bond angle value in the liquid phase. 

The next two rows contain the vdW parameters, followed by twelve rows containing the 

permanent multipole parameters (only nine of which are independent, due to the constraint of 

charge neutrality and use of traceless quadrupoles).  iAMOEBA has a larger vdW radius and 

well depth compared to AMOEBA, which is largely due to the vdW interaction sites being 

removed from hydrogen (see the section on liquid structure for more details).  The next twelve 

rows contain the permanent electrostatic parameters. The charges are increased in magnitude 

compared to AMOEBA, but the deviations in the higher-order electrostatic parameters show no 

clear pattern. The hydrogen quadrupole parameters have the most significant deviations with 

three out of four parameters changing sign from the initial AMOEBA values; this is probably 

related to alterations in the hydrogen interactions due to removing the vdW interactions, and/or 

the reduced angle in the condensed phase.  Despite the large changes from the AMOEBA 

parameters, the iAMOEBA model gives very good agreement with the molecular multipole 

moments at the gas phase optimal geometry (Supporting Table S3). 
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The polarizability parameters are perhaps the most interesting due to the direct polarization 

approximation. Direct polarization implies that atomic polarizabilities are additive (i.e. the 

molecular polarizability is equal to the sum of the atomic polarizabilities) and isotropic unless 

atomic polarizability tensors are used.	
  While the atomic polarizabilities are additive with respect 

to an externally applied electric field, polarization effects become nonadditive for multipole 

interactions at short range due to iAMOEBA’s use of Thole damping. If the AMOEBA 

parameters were used to initialize the iAMOEBA parameterization, the initial molecular 

polarizability of iAMOEBA water would be 1.83 Å3.  Thus, we rescaled our initial parameters to 

80.4% of the AMOEBA values, such that their sum was equal to the molecular polarizability of 

the AMOEBA model (1.47 Å3).  The optimization increased the polarizability parameters, 

resulting in a final value of 1.82 Å3, an increase of 23%.  This is in agreement with our intuition 

that the iAMOEBA model should have a higher molecular polarizability than the AMOEBA 

model, because the entire electronic polarization must come from the permanent multipoles 

without any further mutual induction.  To compensate for this stronger response, the Thole 

damping factor is significantly reduced from the value used by AMOEBA, resulting in increased 

damping at short range. 

B. Quality of Fit to Parameterization Data 

In this section we analyze the quality of fit that the iAMOEBA model obtains for the 

parameterization data listed in Table 1.  Figure 2 shows the iAMOEBA, AMOEBA, and 

experimental density as a function of temperature over the temperature range 245 – 373 K at 

atmospheric pressure.  The AMOEBA water model was only fit to the density and heat of 

vaporization at 25 ºC, but yields a temperature of maximum density (TMD) of 20 ± 2 ºC, with 

the overall temperature dependence being approximately correct (blue line).  If we use a direct 
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polarization model with the AMOEBA parameters (i.e. turning off the mutual polarization), the 

result is qualitatively incorrect (dashed green line); the density decreases monotonically with 

temperature and the heat of vaporization is 5 kJ/mol too low (Supporting Figure S1).  Optimizing 

the parameters of the direct polarization iAMOEBA model using ForceBalance (solid green line) 

gives a TMD of 4 ± 2 ºC that is closer to experiment compared to the original AMOEBA model, 

and the accuracy of the simulated density agrees with experiment to within 0.3 % over the entire 

temperature range.  Numerical values are given in Table 3.  

Property Experiment % tol. TIP3P TIP4P/2005 AMOEBA iAMOEBA 
      Quantity Score Quantity Score Quantity Score Quantity Score 

Enthalpy of phase change / kcal mol-1 
ΔHmelt 1.44 5 0.3 0 1.16 6 *   1.19 7 
ΔHvap 10.52 2.5 10.05 8 11.99 4 10.48 10 10.94 8 
Critical point properties 
Tc/K 647.1 2.5 578 6 640 10 581 (2) 6 622 8 
ρc/g cm-3 0.322 2.5 0.272 4 0.337 8 0.334 9 0.333 9 
pc/bar 220.64 5 126 1 146 3 183 7 201 8 
Surface tension / mN m-1 
σ300K 71.73 2.5 52.3 0 69.3 9 64 (4) 6 68.3 (11) 8 
σ450K 42.88 2.5 24.7 0 41.8 9 32 (2) 0 38.4 (7) 6 
Melting properties 
Tm/K 273.15 2.5 146 0 252 7 *   261 (2) 8 
ρliq/g cm-3 0.999 0.5 1.017 6 0.993 9 *   0.999 10 
ρsolid/g cm-3 0.917 0.5 0.947 3 0.921 9 *   0.929 7 
dp/dT (bar K-1) -137 5 -66 0 -135 10 *   -141 10 
Orthobaric densities and temperature of maximum density (TMD) 
TMD/K 277 2.5 182 0 278 10 292 (2) 8 277 (1) 10 
ρ298K/g cm-3 0.997 0.5 0.98 7 0.993 9 1.000 9 0.997 10 
ρ400K/g cm-3 0.9375 0.5 0.868 0 0.93 8 0.928 8 0.934 9 
ρ450K/g cm-3 0.8903 0.5 0.791 0 0.879 7 0.858 3 0.883 8 
Isothermal compressibility / 10-6 bar-1 
κT [1 bar; 298 K] 45.3 5 57.4 5 46 10 66 (1) 1 41.1 (4) 8 
κT [1 bar; 360 K] 47 5 79.2 0 50.9 8 65 (1) 2 45.4 (4) 9 
Gas properties 
pv [350K] (bar) 0.417 5 0.56 3 0.13 0 0.43 (5) 9 0.39 (5) 9 
pv [450K] (bar) 9.32 5 11.72 5 4.46 0 17.3 (1) 0 9.8 (1) 9 
B2 [450K] (cm3 mol-1) -238 5 -476 0 -635 0 -214 8 -269 7 
Heat capacity at constant pressure / cal mol-1 K-1 
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Property Experiment % tol. TIP3P TIP4P/2005 AMOEBA iAMOEBA 
Cp [liq 298 K; 1 bar] 18 5 18.74 9 21.1 7 21.3 6 18.5 (2) 9 
Cp [ice 250 K; 1 bar] 8.3 5 * 0 14 0 9.4 (7) 7 8.5 (1) 10 
Static dielectric constant 
ε [liq; 298 K] 78.5 5 94 6 58 5 81.4 (14) 9 80.7 (11) 9 
ε [Ih; 240 K] 107 5 19 0 53 0 *   96 (3) 8 
Ratio 1.36 5 0.2 0 0.91 3 *   1.19 (4) 8 
Tm-TMD-Tc ratios 
Tm[Ih]/Tc 0.422 5 0.253 2 0.394 9 *   0.416 10 
TMD/Tc 0.428 5 0.315 5 0.434 10 0.503 6 0.445 9 
TMD-Tm (K) 3.85 5 36 4 26 6 *   18 7 
Densities of ice polymorphs / g cm-3 
ρ[Ih 250 K; 1 bar] 0.92 0.5 * 0 0.921 10 0.894 4 0.930 8 
ρ[II 123 K; 1 bar] 1.19 0.5 1.219 5 1.199 8 1.211 6 1.180 8 
ρ[V 223 K; 5.3 kbar] 1.283 0.5 * 0 1.272 8 1.277 9 1.263 7 
ρ[VI 225 K; 11 kbar] 1.373 0.5 1.366 9 1.38 9 1.384 8 1.364 9 
EOS high pressure 
ρ[373 K; 10 kbar] 1.201 0.5 1.211 8 1.204 10 1.246 3 1.189 8 
ρ[373 K; 20 kbar] 1.322 0.5 1.34 7 1.321 10 1.373 2 1.303 7 
Self-diffusion coefficient / cm2 s-1 
ln D278K -11.24 0.5 -10.2 0 -11.27 9 -11.68 2 -11.15 8 
ln D298K -10.68 0.5 -9.81 0 -10.79 8 -10.82 7 -10.58 8 
ln D318K -10.24 0.5 -9.67 0 -10.39 7 -10.45 6 -10.19 9 
Ea/kJ mol-1 18.4 5 9.7 1 16.2 8 19.6 9 18.8 10 
Shear viscosity / mPa s 
η[1 bar; 298 K] 0.896 5 0.321 0 0.855 9 1.08 (5) 6 0.85 (2) 9 
η[1 bar; 373 K] 0.284 5 0.165 2 0.289 10 0.25 (2) 8 0.28 (2) 10 
Orientational relaxation time / ps 
τ2

HH[1 bar; 298 K] 2.36 5 0.8 0 2.3 9 1.94 (2) 6 2.41 10 
Structure 
χ2(F(Q)) 0 5 * 4 8.5 8 *   *   
χ2(overall) 0 5 * 4 14.8 7 *   *   
Phase diagram N/A N/A   2   8       8 
Overall score (out of 10)   2.6   7.1   5.9   8.4 

 

Table 3.  Experimental and simulation data from different water models.  TIP3P and 

TIP4P/2005 data and percent tolerances for determining the numerical score (% tol. column) 

are reproduced from Ref. 39.  All AMOEBA properties (except for melting properties) and 

iAMOEBA properties are calculated in this work.  Cells with a green background indicate 

properties that are part of the parameterization data set; the green cells are excluded when 



	
  

	
   27	
  

calculating the average score for iAMOEBA.  The liquid structure was not included in the score; 

see instead Figure 4.  The phase diagram is scored qualitatively following Ref. 39. 

 

	
  

Figure 2.  Density of liquid water over the temperature range 249 – 373 K at atmospheric 

pressure.  The AMOEBA model from 2003 (blue line) uses mutual polarization.  The direct 

polarization model gives a qualitatively incorrect result if the AMOEBA parameters are used 

(AMOEBA direct, dashed green line).  Optimizing the parameters of the direct polarization 

model leads to iAMOEBA (solid green line), which reproduces the experimental density and 

TMD for the whole temperature range.  Error bars represent one standard error. 

We also used the second-order thermodynamic properties of water to parameterize 

iAMOEBA, which include the thermal expansion coefficient, isothermal compressibility, 

isobaric heat capacity and dielectric constant.  Their temperature dependence is shown in 

Supporting Figures S2-S5.  At 25 ºC the simulated values for second-order properties agree with 
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experiment to within 10%, but the deviations become slightly more significant at the temperature 

extremes.  The isothermal compressibility is too low across the entire temperature range, which 

we were not able to improve further.  We discovered an error in the calculation of the isobaric 

heat capacity during the optimization, so that the experimental heat capacity was not effectively 

targeted; after correcting the error, the simulated heat capacity is provided in Figure S4, and is on 

average slightly higher than experiment (by 0.3 – 0.6 kcal/mol) with the qualitatively correct 

temperature trend. 

Figure 3 illustrates the quality of fit for the ab initio data for a representative water cluster 

from the liquid; the quality of fit for all ab initio potential energies and forces is given in 

Supporting Table S5. The MP2 and iAMOEBA forces are shown using blue and gold vectors, 

respectively.  The strongest components of the force are often in the intramolecular degrees of 

freedom, which reflects the fact that forces tend to be stronger along degrees of freedom with 

higher force constants.  This demonstrates the importance of explicitly looking at intermolecular 

forces, which we have done here by equally partitioning the force contribution into an atomistic, 

net force, and net torque component following Ref. 68. 
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Figure 3.  Illustration of iAMOEBA fit to theoretical data. The atomistic forces from the QM 

reference method (blue) and iAMOEBA model (yellow) are shown for a representative 

configuration of a water 7-mer extracted from the liquid.  The relative RMS force error is 24% 

over all configurations. Inset: Scatter plot of cluster relative potential energies. Blue color 

indicates a higher density of points; diagonal line indicates zero error. 

Looking at all 2400 clusters for a specific cluster size (7-mers), the RMS error in relative 

potential energies (Figure 3 inset) is 4.6 kJ/mol, or 16% (standard error <1%) in comparison to 

the standard deviation of the reference potential energies (29.2 kJ/mol).  The RMS error of the 

iAMOEBA atomistic forces relative to the MP2 values is 22 kJ/mol/Å, or 26% (standard error 

<1%) in comparison to the standard deviation of the reference atomistic forces (83 kJ/mol/Å).  

The errors in the intermolecular forces and torques are 9.4 kJ/mol/Å and 6.4 kJ/mol/rad, 

respectively, or 32% (standard error <1%) in comparison to the standard deviation of the 

reference net forces and torques (29 kJ/mol/Å and 20 kJ/mol/rad).  By comparison, the 

AMOEBA model has atomistic / net force / net torque errors of 37% / 31% / 23%, and the 
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flexible TIP3P model has much larger errors of 43% / 61% / 66%.  This comparison indicates 

that polarizable force fields may be more appropriate for describing intermolecular interactions, 

since the pairwise-additive force fields are mainly designed to recapitulate bulk properties. The 

AMOEBA and iAMOEBA models perform comparably at predicting the intermolecular forces 

from this data set; although AMOEBA performs slightly better for torques, the force errors of 

24-37% for both models are still somewhat large. We remark that it is possible to match the ab 

initio forces to 10-15% error if we had solely focused on force matching without any other 

reference data, but this could worsen the overall accuracy of the model for describing the 

condensed phase properties of water (see Discussion section). 

Supporting Figures S6-S7 shows the quality of fit for the binding energies of geometry-

optimized clusters on a linear and log scale.  iAMOEBA finds a 5.09 kcal/mol binding energy for 

the dimer, while AMOEBA yields 4.98 kcal/mol relative to the experimental value of 4.99 

kcal/mol. For larger clusters, iAMOEBA systematically underestimates the binding energies, 

slightly more than AMOEBA.  This indicates that mutual polarization likely plays an important 

role in obtaining a size-consistent description of cluster binding energies.  We remark that 

AMOEBA does a very good job at predicting the ab initio binding energies for all of the clusters, 

despite having been parameterized using only a subset of the dimer and hexamer conformations.  

iAMOEBA and AMOEBA are both able to accurately reproduce the optimal structures of the 

water clusters; the RMSDs to the reference QM-optimized structures are below 0.15 Å for all of 

the clusters in the parameterization data set; in particular, the RMSD of the iAMOEBA-

minimized water dimer is 0.043 Å.  The O-O distance of the water dimer is 2.836 Å in 

iAMOEBA, which is shorter than the values of 2.912 Å and 2.892 Å from the QM-optimized 

structure and AMOEBA.  The flap angle between the O-O vector and the H-O-H bisector vector 
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of the acceptor molecule is 54.9 degrees from iAMOEBA, compared to 55.2 degrees from the 

QM-optimized structure and 57.2 degrees from AMOEBA. 

While it is possible to obtain a more precise fit to the ab initio data, the utility of this data set 

is to ensure that the potential energy surface is qualitatively correct; the main goal is to 

accurately reproduce the experimental condensed phase properties.  We return to this 

parameterization decision in the Discussion section. 

 Property Experiment AMOEBA SWM4-NDP TTM3-F GCPM SWM6 BK3 iAMOEBA 
ρ / g cm-3 0.997 1.000 0.994 (2) 0.994 1.007 0.996 (2) 0.9974 (2) 0.997 
ΔHvap  / kcal mol-1 10.52 10.48 10.44 11.4 11.30 10.52 10.94 10.94 
α / 10-4 K-1 2.56 1.9 (6)     4.2   3.01 (8) 2.5 (1) 
κT / 10-6 bar-1 45.3 66 (1)         44.4 (7) 41.1 (4) 
Cp / cal mol-1 K-1 18.0 21.3 (5)     22.5   22.0 (2) 18.5 (2) 
ε(0) 78.5 81.4 (14) 78.0 (14) 67.7 84 78.1 (28) 79 (3) 80.7 (11) 
D0 / 10-5 cm2 s-1 2.29 2.0 2.85 (28) 2.37 2.26 2.14 (19) 2.28 (4) 2.54 (2) 
η / mPa s 0.896 1.08 (5) 0.66 (9)     0.87 (12) 0.95 (1) 0.85 (2) 
TMD / K 277 292 (2) < 220   255 235 275 (3) 277 (1) 
Tm / K 273.15   < 120 248 (2)     250 (3) 261 (2) 

Tc / K 647.1 581 (2) 576   642   629 (5) 622 
 

Table 4.  Properties of water calculated using several polarizable models and compared to 

experimental measurements.  Liquid bulk properties are measured at 298 K, 1 bar; TMD and Tm 

are measured at 1 bar, and Tc is determined for the critical pressure of the model.  Numbers in 

parentheses indicate one standard error in terms of the least significant digit, where available.  

AMOEBA and iAMOEBA properties were calculated in this work; standard errors are given in 

parentheses, except when the standard error is smaller than the number of significant figures 

given.  SWM4-DP and SWM6 properties are from Reference 108, except for the melting point37 

and critical point109 of SWM4-DP.  TTM3-F properties are from References 44,110,111.  GCPM 

properties are from References 112,113.  BK3 properties are from Reference 112. 
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C. Model Testing and Validation 

The predictive power of the iAMOEBA model is tested using properties outside of the fitting set 

(Table 3, uncolored cells).  All validation properties were computed using the TINKER 6.1 

molecular dynamics software,98 which provides a reference implementation of iAMOEBA. Here 

we include a comprehensive test set of properties taken from Ref. 36, which provides a scoring 

system on a ten-point scale derived from the accuracy of the model prediction relative to 

specified tolerance thresholds.  The properties include thermodynamic and kinetic properties at a 

wide range of conditions, most of which are outside our parameterization data set; they cover the 

solid, liquid, and gas phases of water, focusing mainly on the liquid but also emphasizing 

reproducibility of the ice phases.  The average of all property scores gives an overall score of the 

model from 0 – 10, which gives a general sense of the water model quality at a glance.	
   	
  To 

ensure a fair comparison, our average score excludes all properties that were used in the 

parameterization (highlighted in green in Table 3).  We calculated an overall score of 8.4 out of 

10 for iAMOEBA because of its excellent agreement for all of the tested properties.  

Furthermore, the liquid properties calculated using iAMOEBA compare favorably with a 

collection of well-established42,44,113 and newly developed108,112 polarizable water models in the 

literature (Table 4).  The favorable comparison of iAMOEBA to existing water models with full 

self-consistent polarization gives credence to the idea that the direct polarization approximation 

may effectively capture polarization effects in water.  

Liquid phase thermodynamic properties. These properties include the density, thermal expansion 

coefficient, isothermal compressibility, and isobaric heat capacity; they are so categorized by 

their derivation from the thermodynamic ensemble as equilibrium averages and fluctuations from 

equilibrium.  We expect iAMOEBA to reproduce these properties reasonably well because they 
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were already included as part of the parameterization data set (though not at the same 

thermodynamic conditions).  The density of liquid iAMOEBA water agrees with experiment to 

within 0.1% for thermodynamic conditions ranging from 249.15 – 373.15 K and up to 1 kbar.  

Small deviations of up to one percent are observed at very high temperatures (450 K) and 

pressures (10 kbar). The heat of vaporization is 10.94(1) kcal mol-1 at 298.15 K, which is higher 

than the experimental value of 10.52 kcal mol-1; the temperature trend also has a larger slope 

compared to experiment. This insufficiency is due to well-known quantum nuclear effects on the 

heat capacity of the high-frequency vibrational modes, since at lower temperatures the faster 

vibrational degrees of freedom are frozen out.   

The fluctuation properties also show good trends with experiment though they are less 

accurate, similar to what we found for the parameterization data set for these same properties.  

The isothermal compressibility is 10% too low at 298 K, and the error increases with lower 

temperatures; there exists a shallow minimum in the compressibility at 301 – 317 K, which is 

near the experimental value of 319 K.  The simulated isobaric heat capacity agrees well with 

experiment at 298 K after including a quantum correction for the high frequency vibrational 

modes (see Supporting Table S4).   

Liquid phase kinetic properties.  Kinetic properties constitute an important test for iAMOEBA, 

particularly because no kinetic properties were included in the parameterization data set. We 

calculated the self-diffusion constant corrected for finite size effects,114 the shear viscosity, and 

the orientational relaxation time at different temperatures. The self-diffusion constant for 

iAMOEBA at 298 K, 1 atm is 2.54(2) x 10-9 m2 s-1 (experiment: 2.30 x 10-9 m2 s-1) and the 

temperature trend shows excellent agreement with experiment as shown by the activation energy 
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from the Arrhenius rate law (Supporting Figure S8).  The shear viscosity and orientational 

relaxation times also show very good agreement with experiment. 

The infrared (IR) spectrum of water contains a wealth of information on the kinetic 

properties.  In Figure 4, we show the calculated IR spectrum from iAMOEBA and the 

experimental IR spectrum on an arbitrary intensity scale.  We also included the predictions from 

the TTM3-F model,44 which was parameterized to reproduce the IR spectrum of water, and the 

flexible SPC/Fw model.115 The spectra were generated by applying the quantum harmonic 

approximation to the Fourier-transformed dipole autocorrelation function of a classical MD 

trajectory.  The peaks around 3500 cm-1 and 1650 cm-1 correspond to vibrations of the O-H bond 

and the H-O-H angle, respectively; both TTM3-F and iAMOEBA predict the correct frequency 

shift from the gas phase values, but iAMOEBA and SPC/Fw do not predict the correct relative 

intensities.  This is almost certainly due to the absence of intramolecular charge transfer116 (also 

known as charge flux53,117) in the functional forms of iAMOEBA and SPC/Fw, which is required 

for a proper description of the dipole moment surface and which is included in the TTM3-F 

model. iAMOEBA and SPC/Fw both predict a slight splitting of the 3500 cm-1 peak 

corresponding to the symmetric and antisymmetric stretch frequencies; we postulate that 

including intramolecular charge transfer terms would broaden these peaks and lead to better 

agreement with experiment.  Another promising route toward quantitative reproduction of the IR 

spectrum would be to account for nuclear quantum effects explicitly by reparameterizing the 

model for path integral molecular dynamics simulations.118,119 The peaks below 1000 cm-1 

correspond to librational and slower degrees of freedom.  Here, both iAMOEBA and TTM3-F 

present a low-frequency shoulder below 300 cm-1, whereas the SPC/Fw spectrum does not 
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present this feature; this is thought to be a characteristic of polarizable water models, but more 

analysis is needed in order to establish this link. 

	
  

Figure 4.  IR spectra of liquid water, measured using experiment and calculated using the 

SPC/Fw, TTM3-F, and iAMOEBA models.  Experimental and TTM3-F data taken from Ref. 120.  

Gray bars represent gas phase vibrational frequencies from experiment.  Inset: Magnification of 

the far IR region (< 1000 wavenumber). 

Liquid structure.  The partial radial distribution functions (RDFs) are an important indicator of 

liquid structure and connections to X-ray and neutron liquid diffraction.28,121-124 For water, the 

oxygen-oxygen RDF, gOO(r), is especially well captured in an X-ray scattering experiment due 

to oxygen’s high atomic number relative to hydrogen. Figure 5, left panel, shows the gOO(r) of 

water from iAMOEBA (green) along with experimentally derived RDFs from X-ray scattering 

data taken by Hura and coworkers at the Advanced Light Source121 (ALS, black) and more 

recently by Skinner and coworkers at the Advanced Photon Source125 (APS, orange). The 
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agreement with experiment is good to within the distribution of past experimental derivations 

from X-ray and neutron diffraction data (Supporting Figure S9).  The O-H and H-H RDFs are 

provided in Supporting Figures S10 and S11 and compared to experimentally derived gOH(r) 

and gHH(r) from neutron scattering data.123 Figure 5, right panel, compares the simulated X-ray 

scattering intensity from iAMOEBA and the experimental data from ALS and APS; the 

comparison is again favorable across all momentum transfer vectors, under assumptions of the 

electron density derived from the modified atomic form factors developed in Ref. 121.  Both 

real-space and momentum-space comparisons indicate that iAMOEBA reproduces the structure 

of water at room temperature very accurately.  Since we did not follow the exact procedure in 

Ref. 126 for quantifying the accuracy of the structure, this property was not included in the 

overall numerical score.   

 

Figure 5. O-O radial distribution function (left) and X-ray scattering intensity (right) from ALS 

X-ray data (Ref. 121, black), APS X-ray data (Ref. 125, orange), the final iAMOEBA model 

(green), and an intermediate version of the model with hydrogen vdW interaction sites (blue 
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dotted line). The model with hydrogen vdW interactions deviates significantly from experiment in 

the low-Q region of the intensity plot. 

During the optimization, we monitored the gOO(r) and X-ray intensity plot for agreement 

with experiment, though we did not explicitly include it in the optimization.  In an intermediate 

stage of the optimization, we found that our model was performing poorly for the liquid structure 

prediction (blue dotted line) with significant deficiencies in the low-Q region of the X-ray 

intensity plot.  After trying a number of modifications, we found that the agreement with 

experiment was completely recovered by eliminating the vdW interactions involving hydrogen; 

thus, the final iAMOEBA model has spherically symmetric vdW interactions centered on oxygen.  

Interestingly, while the choice of vdW functional form has a significant impact on the agreement 

with liquid structure, other properties were found to be in equally good agreement with 

experimental data whether hydrogen van der Waals interactions were included or not included.  

Vapor and critical properties.  The vapor and critical properties include the heat of vaporization, 

the vapor pressure, the surface tension, and the critical point; none of these properties were 

included in the optimization.  These properties are very important tests for a polarizable model 

because the dipole moment of water molecules differs significantly between the vapor and liquid 

phases.107,127,128 By contrast, nonpolarizable water models have a fixed molecular dipole moment 

that is parameterized to the liquid phase value in order to reasonably reproduce liquid properties.  

One consequence is that the fixed charge models overestimate the attraction between water 

molecules in the gas phase.  These errors are demonstrated by the second virial coefficient and 

the vapor pressure, where nonpolarizable models significantly underestimate the experimental 

value.   
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We calculated the second virial coefficient (Table 3) and the liquid-vapor coexistence line of 

iAMOEBA up to the critical point (Supporting Figures S12-S13).  The calculated critical 

properties are in good agreement with experiment; the critical temperature and pressure are 

underestimated by a few percent.  The vapor pressures and second virial coefficient also have 

good agreement with experiment.  The accuracy of iAMOEBA exceeds AMOEBA in the 

neighborhood of the critical point; this is because iAMOEBA was explicitly optimized to 

reproduce densities at higher temperatures.109 In general, the vapor and critical properties 

confirm that iAMOEBA with its direct polarization approximation is a highly viable model for 

water. 

Ice, melting properties and phase diagram.  The melting point of ordinary ice (ice Ih) in the 

iAMOEBA model is calculated using direct coexistence simulation38 to be 261 ± 2 K at 1 atm, 

12 degrees below the experimental value of 273.15 K (Figure 6).  The enthalpy of melting is 

about 15% lower than the experimental value.  The agreement with experiment is very good in 

the context of comparing with other models; however, there is a temperature gap of 16 K 

between the freezing point and the TMD (experimental gap 4K).  The overestimation of the 

TMD-Tm difference is a consistent trend across classical water models37-39 although promising 

results have been obtained using force-matching on configurations sampled from both water and 

ice.129 Since isotope effects are known to significantly affect the freezing point of water, it 

remains to be seen whether nuclear quantum effects can provide a further improved description 

of this important property. 
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Figure 6.  Determination of the iAMOEBA melting point by direct coexistence simulation.  The 

initial configuration contains equal parts ice Ih and liquid water.  Simulations run at 

temperatures below the freezing point of the model turned to ice (top), while simulations above 

the freezing point turned to liquid (bottom). 

Water also forms many high-density ice polymorphs at high pressure; they constitute an 

interesting test for iAMOEBA because we did not include any ice properties in the reference data.  

However, the diverse geometries of hydrogen bonding networks in different phases of ice show 

the versatility of water hydrogen bonding networks in different configurations, and we expect the 

ab initio calculations helped to serve as a guide in parameter space for describing these 

interactions correctly.  The tests focus on the stable, crystalline, proton-disordered ice 

polymorphs; this rules out metastable ice phases (IV, XII) and extremely high-pressure phases (> 

100 kbar) where the individual water molecules dissociate.  This leaves us with ices II, III, V, VI 
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and VII.  iAMOEBA generally predicts the densities of the ice phases to be in generally good 

agreement with experiment, although there is a small systematic underestimation of roughly 1%.   

Figure 7 shows the phase diagram of the iAMOEBA water model compared to experiment, 

which represents the first time the calculated phase diagram has been shown for any polarizable 

water model.  The phase diagram shows the phase with the lowest free energy at different 

thermodynamic conditions, with each line on the diagram indicating a coexistence line between 

two phases.  To calculate the phase diagram, we first determined the melting point of each phase 

of ice using direct coexistence simulations with the liquid39 (Supporting Figure S14). Following 

this, we numerically integrated the Clapeyron equation to provide the melting curves.36,38,130 Two 

melting curves meet at a triple point, from which we integrated the Clapeyron equation to obtain 

the solid-solid coexistence lines; we continued to propagate solid-solid coexistence lines from 

triple points and arrived at the phase diagram shown in Figure 7.  The qualitative structure of the 

phase diagram is correct, with ice phases Ih, II, III, V and VI all appearing in the correct relative 

positions.  This is a surprisingly difficult test for water models; to date, the only models that are 

known to reproduce the qualitative structure of the phase diagram are those that adopt the TIP4P 

functional form.  By contrast, the TIP3P and TIP5P models predict qualitatively incorrect phase 

diagrams, in which ordinary ice only exists under large tensions (negative pressures).38 In the 

low pressure region (< 2500 bar), our calculated phase diagram is quantitatively accurate; the 

melting point is consistently underestimated by 12-15 degrees, and the slope of the melting curve 

and the Ih-III transition pressure is correct to within 200 bar (10% of the total pressure).  

However, at higher pressures, the slopes of the melting curves are too high, and the solid-solid 

coexistence lines are also predicted to be too high.  Following the scoring system in Ref. 36, we 
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assigned 8 points out of 10 for the phase diagram, based on the observation that four phases of 

ice appeared in the correct relative positions.  

	
  

Figure 7.  Phase diagram of iAMOEBA water model compared to experiment (blue crosses).  

Experimental data adapted from Ref. 38. 

Dielectric properties.  The dielectric constant should be a property for which polarizable models 

perform well due to their focus on properly describing the molecular electrostatics. Our 

simulated value for the dielectric constant agrees with experiment with a value of 81 ± 1 at 298 

K (experiment: 78.3), and the trend is correct across the entire temperature range although we 

overestimate the experimental value by 2-3.  Polarizable models also allow us to calculate the 

dielectric constant of ice, where the water molecules are expected to have a larger dipole moment 

than the liquid.  We calculated the dielectric constant of ice Ih using the electrostatic switching 

method131 and found that iAMOEBA correctly predicts a higher dielectric constant in ice Ih 

compared to the liquid, although the ratio is a bit lower than the experimental value (Table 3); 
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this is where full mutual polarization may be important. Non-polarizable models, on the other 

hand, incorrectly predict the ratio to be less than one, largely due to their fixed dipole moment.38 

The gas phase dipole moment of the iAMOEBA water molecule is 1.86 D; the dipole 

increases to 2.78 D (standard error <0.01 D) in the liquid at 298 K with full width at half 

maximum (FWHM) of 0.25 D, and increases even further to 2.90 D in ice 240 K with a 

somewhat narrower FWHM (0.16 D). Although the molecular dipole moment in the condensed 

phase cannot be directly measured, literature estimates based on ab initio calculations107,128,132 

and experimental measurements127,133 suggest values of 2.3 – 3.1 D, indicating that the direct 

polarization approximation correctly describes the average dipole moment in the various phases.  

Moreover, the iAMOEBA liquid phase dipole moment agrees very closely with AMOEBA, 

which also predicts a value of 2.78 D (standard error <0.01 D); this hints that the agreement may 

go beyond simple coincidence, especially given the important relationships between the liquid 

phase dipole moment and other, experimentally observable liquid properties. 

DISCUSSION 

Water models can be derived from experimental data, ab initio quantum chemistry, or a 

combination of the two.  Since the condensed phase is an emergent property of the microscopic 

interactions, it is certainly desirable to derive a model entirely based on ab initio quantum 

chemistry, and indeed water models have been successfully developed following this 

approach.52,115,129,134 The main drawback is that agreement with experimental condensed phase 

values is not guaranteed due to assumptions in the functional form of the classical model, 

integrating the equations of motion using Newtonian dynamics, approximations in the reference 

ab initio theory, or incomplete sampling of the thermodynamic ensemble of either the model or 

the reference theory.135 In a compromise approach, the model parameters can be further modified 
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to match the experimental properties, but this must be done carefully in order to preserve 

agreement with the theoretical data, which may be representative of important molecular 

interactions when solutes are introduced.  By contrast, water models that are solely fitted to a 

subset of experimental properties can have significant predictive power, although most ab initio 

results are poorly predicted, some condensed phase properties are predicted more accurately than 

others, and the models can sometimes fail outside their parameterization range.  Here we 

addressed this challenge by including a wide range of experimental and ab initio reference data 

simultaneously using the ForceBalance method to optimize the iAMOEBA model.   

We validated the iAMOEBA model using a scoring scheme developed by Vega and 

coworkers that evaluates the predictive power of a model against an experimental data set that 

covers thermodynamic and kinetic data over much of water’s phase diagram.  iAMOEBA based 

on the direct polarization approximation receives an overall score of 8.4 out of 10 because of its 

excellent agreement for all of the tested properties.  We caution that a single numerical score is 

not sufficient to fully assess a model for a particular application; rather, the primary utility of the 

undertaking advocated in Ref. 36 is the wide range of properties investigated to provide a 

complete characterization of the iAMOEBA model. 

Fixed charge pairwise additive models such as TIP3P earned a score of 2.7 while 

TIP4P/2005 earned a score of 7.2.  TIP4P/2005, a model by Vega and coworkers using Ewald 

long-range electrostatics in similar fashion to the TIP4P-Ew model, achieves remarkable 

accuracy for many properties (e.g. the critical temperature) and sacrifices accuracy for other 

properties (e.g. the critical pressure).  One possible interpretation is that the properties for which 

TIP4P/2005 gives poor agreement are fundamental limitations of non-polarizable models.  

Therefore, properties that are thought to require an explicit polarization treatment would include 
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the dielectric constant of ice, the IR spectrum, the vapor pressure, and the critical pressure.  The 

iAMOEBA model in fact is qualitatively superior to the fixed charge models on these properties, 

showing the importance of polarization. 

While vapor properties are an important test of polarization effects where iAMOEBA 

performs well, these effects can have far-reaching implications beyond the gas phase.  For 

instance, water molecules in biological settings such as protein active sites, membrane channels, 

and the coordination spheres of ions experience significantly different electric fields compared to 

the bulk liquid.  While direct polarization clearly provides a better description compared to non-

polarizable models, its appropriateness for describing interactions with solute molecules, in 

particular ionic species, is an important open question; answering this question would require the 

development of force fields with direct and mutual polarization for these solute species with the 

parameterization conditions held constant. 

CONCLUSION 

In this work we presented the iAMOEBA polarizable water model, which uses the direct 

polarization approximation.  Compared to the AMOEBA model, iAMOEBA is simpler and 

computationally more efficient because it does not require a self-consistent solution for the 

induced dipoles.  We confirmed the viability of the direct polarization approximation and 

established iAMOEBA as a highly accurate model with broad predictive power and applicability.  

We used the ForceBalance method to optimize the parameters, which allowed us to utilize a 

diverse data set with elements from experimental measurements and high-level theoretical 

calculations.  The iAMOEBA model was tested against an extensive benchmark set of water 

properties and found to accurately describe many aspects of the vapor, liquid, and ice phases.   
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The improved accuracy of iAMOEBA over AMOEBA for many properties (Table 3) 

illustrates the advances in methodology and computation over the past ten years; ForceBalance 

allows us to systematically optimize many parameters using a much larger and more diverse set 

of gas and condensed phase properties compared to previous methods.  By combining GPU 

acceleration with distributed computing tools, we are able to perform simulations over a wide 

range of conditions rather than a single thermodynamic phase point.  In the future, we postulate 

that kinetic properties could be differentiated in our optimization framework using a path integral 

approach in a similar manner to how thermodynamic properties are differentiated through the use 

of configuration integrals.   

Our work has important implications for the fundamental understanding of molecular 

interactions in water and for the construction of molecular models in general.  By building 

realistic but approximate models, we learn about which microscopic interactions are truly 

important for describing the properties of interest, and which other neglected interactions (in this 

case mutual polarization) can be effectively captured by other terms.  For example, the main 

lesson from this work is that an appropriately parameterized direct polarization model is capable 

of capturing the effect of mutual polarization for a very wide range of water properties. Another 

major lesson is the role of model parameterization in establishing this understanding. For most 

practical problems it is impossible to explore the entire parameter space, so we can only provide 

a lower bound on the accuracy of the empirical model using the most accurate parameters we can 

find. Thus, the model must be parameterized carefully before drawing conclusions about the 

upper bound of its descriptive capability.  Thinking along these lines, the optimization approach 

outlined here can be easily applied to AMOEBA to further increase its accuracy for water 
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properties and explore the aspects of mutual polarization which cannot be recovered through the 

direct approximation. 

In terms of practical application, iAMOEBA is faster than AMOEBA (Supporting Table S2) 

and does not compromise on the accuracy of water properties. The behavior of water at 

interfaces and in confined spaces is a highly active area of research where iAMOEBA can 

generate quantitatively accurate predictions at a reduced computational cost. Furthermore, the 

iAMOEBA water model lays the groundwork for analogous inexpensive polarizable models for 

solutes and biomolecules; while iAMOEBA is still more expensive than simple fixed point 

charge models (roughly 3-6 times the computational cost of TIP3P), it represents a significant 

increase in efficiency over AMOEBA. The accuracy of a future iAMOEBA model for solutes 

remains to be seen, but the success of the present work is encouraging.  The possibility of 

developing a hybrid model using a combination of iAMOEBA water and mutually polarizable 

solutes is also promising, since most of the computational cost in typical biomolecular 

simulations comes from the solvent degrees of freedom. 
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Phase diagram of water calculated using the iAMOEBA polarizable water model (upper left).  In 

this work, ForceBalance (top left corner) is applied to systematically parameterize iAMOEBA 

using an extensive combination of theoretical and experimental data. 




