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ABSTRACT: We present a method to compute the many-body real-time Green’s
function using an adaptive variational quantum dynamics simulation approach. The
real-time Green’s function involves the time evolution of a quantum state with one
additional electron with respect to the ground state wave function that is first
expressed as a linear−linear combination of state vectors. The real-time evolution and
the Green’s function are obtained by combining the dynamics of the individual state
vectors in a linear combination. The use of the adaptive protocol enables us to
generate compact ansatzes on-the-fly while running the simulation. In order to
improve the convergence of spectral features, Pade ́ approximants are applied to obtain
the Fourier transform of the Green’s function. We demonstrate the evaluation of the
Green’s function on an IBM Q quantum computer. As a part of our error mitigation
strategy, we develop a resolution-enhancing method that we successfully apply on the
noisy data from the real-quantum hardware.

1. INTRODUCTION
The potential of quantum computers to solve scientific
problems is many-fold.1−8 However, the state-of-the art
quantum computers are still quite noisy,9 and it is an
important research question to find ways to perform
meaningful scientific calculations using them. Such interests
have given rise to variational algorithms to study energy
eigenstates and dynamics of spin and Fermionic systems.10−16

Looking beyond the evaluation of energy eigenstates,
dynamical properties of electronic matter at low temperatures
are of immediate interest to the scientific community.
Electrons at low temperature experience strong Coulombic
repulsion between one another, which poses a big challenge for
computing their physical and chemical properties.17−21 Green’s
function (GF) methods are a systematic way to study the such
material properties. Despite the elegant power of the GF to
efficiently predict a variety of electronic properties of materials,
evaluating them exactly is equivalent to solving the full many-
body problem which is impractical on even the largest
supercomputers.22 In this work we explore a way to use
quantum computers to overcome this challenge by computing
a real-time GF using variational methods.
For the fault-tolerant quantum computers, direct computa-

tion of the GF in the frequency domain has been proposed
using a preconditioned linear system method,23 the quantum
Lanczos recursion method by exploiting a continued fractional
representation of the Greens’s function,24 the Gaussian integral
transformation,25 and a linear combination of unitaries.26

These methods, although showing advantage in the fault-
tolerant regime, are not quite suitable for near-term

applications. Most of the recent work on noisy intermediate-
scale quantum (NISQ) simulation of the many-body GF is in
the time domain via Hamiltonian simulation.27−30 Efficient
Hamiltonian simulation can be done by doing Trotter
decomposition of the time evolution operator. However,
Trotter-based methods suffer from accumulating circuit depth
with time and thus quickly become impractical for NISQ
devices. Variational and other linear-algebra-based decom-
positions have been proposed to alleviate this issue. These
approaches include simplification of time evolution unitary
operation by applying Cartan decomposition,28 coupled cluster
Green’s function method,29 and variational methods in real
time27,31 or in the frequency domain.32 In spite of being
variational, most of these methods still suffer from either large
circuit depths or an ambiguity of a suitable ansatz. Adaptive
approaches are known to provide scalable and compact
ansatzes compared to fixed forms of ansatzes.33,34 In this
work, by adopting the adaptive approach we obtain more
compact and lower depth ansatzes lowering the depth of the
quantum circuit.
Hamiltonian simulation to evaluate the real-time GF

requires time evolution of a quantum state with an electron
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added to its ground state wave function. In other words, one
needs a quantum state that requires application of a Fermion
creation operator on the ground state to start with. When
converted to spin operators, the creation operator is a linear
combination of Pauli terms that should be applied to the
prepared ground state. To prepare such a quantum state in the
quantum computer is nontrivial. Time evolution of the this
state has been done using McLachlan’s variational method for
real-time dynamics27,31 using variational Hamiltonian ansatz
(VHA).35,36 Accuracy of the variational solution is systemati-
cally increased by increasing the number of layers or depths of
the ansatz. However, this poses a challenge for the near-term
device since many numbers of layers are needed to reach the
desired accuracy. Moreover, there exists ambiguity over how
many numbers of layers should be used. As a result, the
method may become highly nonscalable as can be seen for
larger size calculations in previous works.27,31

Since we are interested in the time evolution of the state, we
avoid the additional electron state preparation by expressing it
as a linear combination of state vectors and apply McLachlan’s
variational method for real-time dynamics. The rest of the
paper is organized as follows. We first present a brief overview
of Green’s function in correlated electronic systems and then
present our modified McLachlan’s equation used to simulate
real-time dynamics. We then discuss our adaptive strategy and
present our preliminary ideal state vector results for the N = 4
Hubbard model followed by an estimation of resources and
error complexity. Finally, we present results of a hardware run
to demonstrate the applicability of the method on NISQ
devices.

2. METHOD
Green’s Function Overview. Given a time-independent

Hamiltonian , the time evolution of the annihilation
operator for a single particle quantum state p is given by

=c t c( ) e ep
i t

p
i t . With a ground state |ψ0⟩ and energy E0,

the retarded GF of the system can be then written in terms of
the G> and G< Green’s functions as19
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In the context of many-body physics, one is also interested
in the Fourier transform of the Green’s function
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where ω is the frequency and ζ is a small positive number used
as a damping factor to make the Fourier integral convergent.
We will compare our results for the Fourier transform of our
real-time data with this formula.

Algorithm. To obtain G>(t) in a near-term device, we first

time evolve the state |ψq⟩ = cq†|ψ0⟩ to get | = |t( ) eq i t q

and then find its overlap with the state |ψp⟩ = cp†|ψ0⟩. G<(t) can
be obtained similarly by starting from cq|ψ0⟩. A conventional
VQE12 or its adaptive version37 can be used to prepare a
variational state representing |ψ0⟩. Using the fact that the
creation and annihilation operators can be expressed in terms
of a sum of Pauli words using Jordan Wigner transformation,
i.e, cq = ∑αηα

(q)Pα, where ηα
(q) are complex numbers and Pα are

Pauli words, we can write down the initial state for our
variational simulation |ψq⟩ as a linear combination of multiple
quantum states, each of which we denote as branches, i.e.

| = |Pq q( )
0

(5)

where Pα|ψ0⟩ is a branch state.
To simulate the dynamics of |ψq⟩, for each branch state in

|ψq⟩ using variational methods, we will use the recently
developed adaptive variational approach (AVQDS) .33 Our
aim is to build an ansatz |Ψ[θ(t)]⟩, which is parametrized by a
real time-dependent variational parameter vector θ(t), such
that it represents |ψq(t)⟩ up to a given accuracy. At any instant
of time the ansatz can be written as

| [ ] = |
=

e
N

i A q

1 (6)

where the Aμ are Pauli words. The variational form of eq 6 will

accurately simulate the unitary evolution |e i t q by time
evolving each of the branch states. It is important to point out
one key difference of our approach to that described in ref 27.

In their work, the time evolution operators (e )i t for |ψ0⟩ and
Pα|ψ0⟩ are approximated by the same unitary using VHA. In
our case, we approximate the time evolution operator by a
unitary ( ) for the full n + 1-electronic state |ψq⟩ using an
adaptive protocol.
When using the variational method for a dynamics

simulation, for a system described by a quantum state |Ψ⟩
evolving under a Hamiltonian , the time evolution of density
matrix ρ = |Ψ⟩⟨Ψ| is given according to the von Neumann
equation

= [ ]
t

d
d (7)

with [ ] = [ ]i , . In the McLachlan’s variational
quantum simulation approach, the squared distance between
the variationally evolving state and the exact propagating state
is minimized. It is also called the McLachlan’s distance, which
is defined as
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= + [ [ ] ]
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Here [ ]†Tr is the Fröbenius norm of the matrix ρ.
The matrix M is real symmetric with elements defined as

= [ ]| | [ ]
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The vector V is given by
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where [ ]| | [ ] and

[ [ ] ] = = [ ]Tr 2( ) 2var2 2 2 (11)

which describes the energy variance of in the variational
state |Ψ[θ]⟩. The minimization of the cost function in eq 8

with respect to { }t

d

d
leads to the following equation of

motion for the variational parameters:

=M
t

V
d
d (12)

and the minimum value of the McLachlan’s distance is given
by

= [ ]L V M V2var2

,

1

(13)

With the initial state for time evolution as eq 5, elements of M
and V can be written as a linear combination of terms that
mixes the branch states during time evolution
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,
k k. Similarly, the expectation value of

any observable can be calculated as
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N N

,

( ) ( )
0 1, 1, 0

Note that each of the branch states is evolved by the same
unitary at every time step. All of the above quantities can be
measured in a quantum device using a Hadamard test type

circuit or a linear combination of unitaries (LCU) to
reconstruct the elements of M and V.33,38 We will provide a
detailed discussion and complexity analysis in a later section.
Under the adaptive scheme, McLachlan’s distance L2 is

computed for a series of new variational ansatzes. Each new
ansatz is composed of a product of | =e i A

0 and the existing
ansatz. The operator A is chosen from a preconstructed
(fixed) operator pool of size Nop in such a way that gives the
lowest L2. Given an existing ansatz with Np parameters, as each
operator is added to it, the dimension of θ increases from Np to
Np + 1. Accordingly, the matrix M (eq 9) increases from Nθ ×
Np to (Np + 1) × (Np + 1) and that of the vector V (eq 10)
increases from Np to Np + 1. In this way, the ansatz is
dynamically expanded by including additional operators to
maintain the McLachlan distance below a certain threshold
Lcut.
The differential equation of motion (eq 12) is then

numerically integrated to obtain the dynamics at each time
step.

= M V t1 (14)

With δt as the time step size, the global truncation error over
the total simulation period scales linearly with δt. The error
from numerical integration can be lowered by choosing a
smaller step size (δt). In this work we have used the Euler
method, although alternative approaches using Runge−Kutta
can also be used.39

It is important to emphasize here that, except for the
measurement of M and V, all the other calculations in our
computation are done using a classical processor. When we
measure M and V from the quantum processor, there may be
shot noise which can cause a high condition number and
inconsistency in measured M. Reference 40 has shown that the
error in δθ increases proportionally with M−2. The presence of
shot noise inM exacerbates the error. To deal with these issues
of large condition number, we can avoid matrix inversion while
solving eq 12 by minimizing the cost function and disregarding
very small singular values. This approach can help reduce the
irregularities caused by shot noise. We do this by avoiding
solving the equation of motion, eq 12, and using optimization

of the cost function M V
t

1
2

d
d

2
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Finally, for the Green’s function, we first measure
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Clearly, from eq 2, a product of ieiE t0 and G̃(t) will give us
G>. An exactly similar strategy can be followed to compute G<.
The term | |P P( )0 0 can be measured using a standard
Hadamard test-like circuit or its variants41 or the Hadamard
overlap test shown in Appendix A.

Pade ́ Approximation. One drawback of a real-time
approach for finding frequency domain observables is long
simulation times (T) required for a converged spectrum. As
the system size grows bigger, the proximity of the density of
states makes it harder to resolve the spectral without longer
simulations due to the Fourier uncertainty principle.
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By making use of Pade ́ approximants, we may decrease the
simulation time and accelerate the convergence of the Fourier
transform of the time-dependent GF. The method has been
successfully applied to accelerate the computation of broad-
band absorption spectra in quantum chemistry.42 The method
of Pade ́ approximants equates the initial power series of

=G G t z( ) ( )R
t

R
k

k
k

(expressed in its discrete form with
time step δt) to a ratio of power series expansions

=G
a z

b z
( )R t k

k

t k
k

k

k (16)

where tk = kδt, and =z (e )k i t k. The coefficients ak and bk

can be obtained by solving =G t z( )t
R

k
k a z

b zk

tk k
k

tk k
k .
42 The

expression of GR(ω) as a rational function allows for its
evaluation at arbitrary spectral resolution, in contrast to the
f ixed spectral resolution yielded by the fast Fourier transform
(FFT). This phenomena can also be thought of as an
extrapolation of GR(t) sampled on [0, T] to t → ∞. Naturally,
the validity of this approximation depends on the spectral
modes which are sufficiently sampled during the simulation
time interval. We discuss simulation parameter selection in
Appendix C.

3. RESULTS
We have applied our method to evaluate the GF for the one-
dimensional Hubbard model with open boundary conditions

= + +†t c c U n n

n

( h.c.)
i j

i j
j

j j

j
j

,
, ,

,
,

(17)

To preserve particle−hole symmetry, we choose μ = U/2. The
value of the hopping parameter t is chosen to be unity. The
Hamiltonian is mapped to qubits using Jordan Wigner
transformation. Throughout the rest of the paper, we consider
the Hubbard model at half-filling with total spin and its “z”
component (Sz) to be zero, i.e, the number of electrons the
same as the number of lattice sites, and N↑ = N↓ and open
boundary conditions.

Ground State Preparation. The ground state |ψ0⟩ is
prepared using the adaptive variational imaginary time
evolution (AVQITE) approach.34 The method is based on
McLachlan’s variational principle applied to imaginary time
evolution of variational wave functions. The variational
parameters evolve deterministically according to equations of
motions that minimize the difference to the exact imaginary
time evolution, which is quantified by the McLachlan distance.
Rather than working with a fixed variational ansatz, where the
McLachlan distance is constrained by the quality of the ansatz,
the AVQITE method iteratively expands the ansatz along the
dynamical path to keep the McLachlan distance below a
chosen threshold. We denote time along the imaginary axis by
τ. In our calculation, we have chosen the threshold to be 1.0−4

and a time step size 0.01 such that after k time steps τ = kΔτ.
The operator pool in any adaptive method plays a crucial role.
In our AVQITE method, we have used a qubit adapt pool
proposed by Tang et al. .43 Under this scheme, the pool
operators are defined as

=

=

T

T

ip
i
p

p i

ijpq
ij
pq

p q i j

1

2
(18)

where σp can be Xp and an odd number of Yp’s only. We use
the individual terms from eq 18 as the operators in our pool.
While there are multiple choices of operator pools, variational
ansatzes generated with qubit adapt pools are much
shallower.34 Despite the fact that utilizing a qubit adapt pool
results in an increased number of terms in the operator pool,
which subsequently requires more measurements to perform
the adaptive procedure, the primary limitation of NISQ devices
is the circuit depth. Therefore, the focus of this work is
primarily on minimizing the circuit depth rather than the
number of measurements required.
Our imaginary time evolution starts at τ = 0 from a product

state with the upspin electrons and the downspin electrons
being segregated at the left and the right segment of the lattice,
respectively. For a four-site model, such an arrangement would
look like |↑↑↓↓⟩. A sample result for the ground state
calculation is shown in Figure 1, for the N = 4 site Hubbard
model with four electrons. The time evolution τ conserves Sz
and the total number of electrons. In Figure 1a, AVQITE

Figure 1. Ground state preparation and real (imaginary) part of the retarded GF for the N = 4 Hubbard model. (a) Ground state energy
convergence as a function of time τ along the imaginary axis, at half-filling for U = 8.0. (b) Ground state infidelity is defined as 1 −
|⟨Ψ(θ(τ))|Ψexact⟩|2. (c) and (d) Real and imaginary parts of the time-dependent retarded GF for U = 4.0 and U = 8.0. Exact results are shown in
black curves.
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(shown in the blue curve) converges to the ground state after τ
= 8 with an infidelity lower than 10−4. We define the infidelity
as 1 − |⟨Ψ(θ(τ))|Ψexact⟩|2, where |Ψexact⟩ is the ground state
from exact diagonalization.
Alternatively, variational ways can be adopted to prepare

cq†|ψ0⟩ following a method originally proposed to simulate
generalized time evolution44 or the method described in ref 45
by starting from a state with n + 1 particles. Following ref 44,
the algorithm is based on converting the static algebraic
problem into a dynamical process, evolving the initial vector
|ψ0⟩ to the target state cq†|ψ0⟩. The evolution path is via a linear
extrapolation, | = + |t t T t T( ) (( / ) (1 / ) ) 0 , where

†cq and is the identity. According to ref 45 , cq†|ψ0⟩ is
constructed by optimizing an ansatz with n + 1 particles. The
main idea of this work is approximating the time evolution
operator e−iHt by a unitary for the state |ψq⟩; hence, as long
as the initial state is |ψq⟩, the circuit depth for should remain
the same as presented in this work. However, variationally
preparing |ψq⟩ will require another set of unitary operations,
which could increase the circuit depth.

Real-Time Simulation. Using the ground state of the
Hamiltonian obtained from AVQITE, we now simulate the
dynamics of |ψq⟩ using AVQDS. For implementation in the
real device, the system Hamiltonian and the Fermionic
creation and annihilation operators cq†, cq are expressed as a
linear combination of Pauli terms using Jordan−Wigner
transformation. Like any other adaptive methods, the choice
of an operator pool plays a crucial role here. In our current
work we use the so-called Hamiltonian pool along with the
additional terms in the Fermionic creation and annihilation
operators.33 Since the time evolution of |ψq⟩ is nothing but the
Hamiltonian simulation of a quantum state, the natural choice
is the so-called Hamiltonian pool.33 In a Hamiltonian pool, the
system Hamiltonian is first transformed to a qubit
representation for calculations on QPU. The operator pool
{ }A is constructed from only those Pauli terms that appear in
the system Hamiltonian in the qubit representation. In order to
incorporate one additional electron in |ψq⟩, we include
additional terms arising out of the qubit representation of cq†.
Similar to the qubit adapt pool for imaginary time evolution,
such breakdown of the Hamiltonian into Pauli terms is able to
generate low-depth circuits. Since cq† is generally the sum of a
unitary and an antiunitary term, the size of the operator pool is
increased by a factor of two; hence, the operator pool roughly
scales as the number of terms in the Hamiltonian.
The GF can be computed for different pairs of sites within a

lattice. For a more compact representation, we present our
results in momentum space using a linear combination of all
pairs of real-space GF

= ·G
N

G
1

ek
R

p q
pq
R ik p q

,
,

,
( )

(19)

where k is the momentum and p, q are lattice site indices. The
results for ideal noiseless real-time evolution of the imaginary
part of Gk = 0

R for U = 4 and 8 are shown in Figure 1c and d. The
threshold of the McLachlan distance depends on multiple
factors, such as the initial state, the Hamiltonian, and the
choice of the operator pool. Depending on the initial state, the
operators in the pool are not sufficient to the lower
McLachlan’s distance beyond a certain limit. This may lead
to a slightly different Lcut2 for the different initial states. In order

to obtain an estimate of Lcut2 in the beginning, we run the
adaptive procedure only once starting from no parameters in
the ansatz and check the value of the lowest L2 distance given
by eq 13. We set this value as our Lcut2 for the rest of the
calculation. We provide the value of Lcut2 for different pairs of
sites in Table 1.

We run our simulation for a total time of T = 10 with δt =
0.01. The black dashed lines show the exact result, and the
cyan and orange represent the variational results for the
imaginary and the real part of the Green’s function,
respectively. The figure readily shows that the exact and the
variational results are a very good match.
Next, using the real-time data, we find an approximate

Fourier transform of the real-time data using the Pade ́
approximation. The imaginary part of the Fourier transform
of GR is also called the spectral function = { }A G( ) Im R1 .
We show plots of A(ω)k=0 in Figure 2a and b for U = 4 and 8,
respectively. The blue and black curves represent the AVQDS
and the exact calculations. Since the time series is not
convergent, one needs to add a small damping factor to obtain
a converged Fourier transform. We have used a damping of ζ =
0.5 for each of the plots in Figure 2a and b. The results clearly
shows an excellent match of our method with the exact results
from eq 4. The real advantage of using the Pade ́ approximation
is that, in order to obtain a convergent Fourier transform, we
need a real-time simulation for a total time that is an order of
magnitude smaller than the existing calculations in the current
literature.27,28,45

Resource Estimation and Complexity Analysis. We
provide a resource estimate of our described method in this
section. We assume Jordan Wigner (JW) transformation of the
Fermionic operators to provide the estimate. Under the JW
scheme, ci† and cj† will have two Pauli terms each. If there are
NH number of terms in the qubit-transformed Hamiltonian, the
Hamiltonian operator pool will contain NH + 4 number of
terms. The additional four terms arise from the qubitized
version of ci† and cj†. In the case of the diagonal terms of the
GF, the operator pool size will be NH + 2. The leftmost column
in Figure 3a shows the quantities that are required to measure
the time evolution, which will be combined to calculate M and
V in eq 12. To measure each term, the number of circuits
required with an ansatz with Np parameters is given in the right
column. Combining all of them, the algorithm requires 4(Np

2 +
2Np + 2NpNH + NH

2 ) circuits to be run for each time step.
There will be an additional circuit run of 8(NH + 4)NH in the
case in which the method enters the adaptive procedure.
Once the variational parameters for each time step are

obtained, separate circuits could be run to measure the GF.
Since our method has found the unitary that represents the
time evolution of |ψq⟩, we just need to run four circuits to
measure the real and imaginary parts of Gpq

> (t) at each time
step. In other words, we need to run a circuit to measure

| |P P( )0 0 for each term in eq 15. In this work, since we
are dealing with a particle−hole symmetric Hamiltonian, the

Table 1. Lcut2 for N = 4 Calculation for a Given U and a Pair
of Lattice Points (p, q)

U; (p, q) (0, 0) (0, 1) (0, 2) (0, 3) (1, 1) (1, 2)

4.0 10−3 10−3 10−3 10−3 5 × 10−2 5 × 10−2

8.0 10−3 10−3 10−3 10−3 6 × 10−2 6 × 10−2
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time-reversed partner Gpq
< (t) will be just a complex conjugate

of Gpq
> (t). Use of such symmetries makes the additional

dynamics simulation of Gpq
> (t) redundant.

In order to estimate an upper bound for the number of
CNOT gates (NX) required at each time step, we first estimate
the number of CNOTs in the ansatz. Since the ansatz consists

Figure 2. Spectral function Hubbard model at half-filling for N = 4, U = 4.0, and U = 8.0 (a and b). The blue curves are obtained by applying the
Pade ́ approximation to the real-time evolution data. Exact results are computed using eq 4 and are shown in black. The spectral function is obtained
by Fourier transforming the data in Figure 1c and d. Panels c and d shows the upper bound of the number of CNOTs needed to simulate the real-
time GF for U = 4 and 8.

Figure 3. Resource estimation and error analysis of AVQDS for Green’s function evaluation. NH and Np are the number of terms in the qubit-
transformed Hamiltonian and the number of parameters in the ansatz, respectively. (a) Number of measurements required to evaluate each term in
the dynamics. (b) Flowchart of the dynamical simulation. The operator pool will contain NH + 2 number of terms. (c) Error (Δ) for unitary
generation in the ansatz vs time for different sets of lattice sites (p, q) for the N = 4, U = 4 Hubbard model. Each of the real-space GFs is finally
combined to get Gk.
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of unitaries of the form e i Pl, where Pl is a Pauli word of length
l, the number of CNOTs in the unitaries is given by ∑l2(Pl −
1). To implement a controlled unitary, we need two additional
CNOTs from an ancilla qubit. Therefore, for an ansatz with Np
parameters, the total number of CNOTs is given by NX =
∑l2(Pl − 1) + 2Np. Figure 2c and d shows the upper bound of
the number of CNOT gates needed to compute the real-space
pairwise GF for U = 4 and 8, respectively.
In order to estimate error due to AVQDS and compare it

with Trotter-like methods, we first consider the error due to
approximating the time evolution by the series of unitaries. To
quantify these errors, we calculate = |e i t at
every time step, where approximates is a unitary in either
variational or Trotter-like methods. We show in Figure 3c the
variation of Δ for our variational and Trotter approach using
the red and black curve, respectively. The error Δ arises from
the approximation adopted in the respective methods when no
external noise is present and an infinite number of measure-
ments is assumed. Figure 3c shows that the variational errors
are of the order (Δ ∼ 4 × 10−4). Considering this negligible
amount of error, the saving in terms of the number of unitaries
using AVQDS is huge. To see this, consider the number of
unitaries required for Trotter-based methods that scales as

N N t2 ( )H H
4 5 3/2

1/2 .46 For the case of the N = 4 site Hubbard
model (8 − qubit), the number of unitaries required for
Trotterization with the above Δ and NH = 17 would be ∼3 ×
107.
We also benchmark our method against VHA presented in

ref 27. For N = 2, U = 4 Hubbard model, our method saturates
at Np = 4 parameters in the ansatz {Y2Z3Y4, Z3Z4, Y2Z3Y4,
Z3Z4} requiring 12 CNOTs only for the unitary. According to
ref 47, the number of CNOTs for a single layer of VHA for the
Hubbard model scales as 8N3/2 + N − 4 N1/2. N = 2 with 8
layers and N = 4 with 16 layers of VHA27 will, therefore,
require about 150 two-qubit gates and 960 gates, respectively.
Both these numbers are much larger than our upper bound of
CNOTs for N = 2 and 8, as can be seen from Figure 2c and d.
It is also worth noting that VHA with 16 layers for the N = 4
case does not show satisfactory accuracy for long-time
simulation. Clearly, AVQDS is much more efficient than the
Trotter-based method and more resource efficient than VHA.
A recent work31 has deployed symmetries within the VHA

scheme to calculate a GF that has reduced the circuit depth.
Their strategy might by combined with our adaptive method to
reduce the cost of the adaptive procedure and thereby reduce
the multiqubit gate count.

4. HARDWARE RESULTS
In order to demonstrate our algorithm in a near-term quantum
computer, we store the classically computed parameters of the
time evolution on a disk and use them to compute the GF at
the respective time step. This amounts to running the circuits
for eq 15 in IBM’s 27-qubit processor ibmq_kolkata
based on the Falcon architecture. To run the algorithms
successfully, careful compilation of the prepared circuit based
on the selected quantum device is required, and error
mitigation strategies need to be applied to get reliable results.

Circuit Generation. Multiple circuits were generated with
the Qiskit transpiler. The transpiler stochastically adds swap
gates to the circuit and therefore produces multiple circuits
with variable numbers of CNOTs. We choose the circuit that
has the lowest number of CNOTs. Using these circuits as a
base, we compile the best circuit with an open source toolkit,
the Berkeley Quantum Synthesis Toolkit (BQSKit).48 BQSKit
combines state-of-the-art partitioning, synthesis, and instantia-
tion algorithms to compile circuits and was able to reduce the
number of CNOTs by 30−40 percent. Finally, we use the
standard tools in Qiskit to add dynamical decoupling by
implementing periodic sequences of gates, which is intended to
average out unwanted system−environment couplings of the
idle qubits.49

Error Mitigation and Postprocessing. Readout or
measurement error mitigation was done on IBM Quantum
systems in a scalable manner using the matrix-free measure-
ment mitigation (M3) package.50,51 M3 works in a reduced
subspace defined by the noisy input bitstrings that are to be
corrected. We have used this package to apply readout error
mitigation.
A peak-sharpening algorithm52 was applied as a postprocess-

ing error mitigation approach. The approach builds on the
observation that the histogram of the bitstrings of the noisy
data is flatter than the noise-free data. Clearly, a sharper
distribution of the bitstrings will lead to a better estimate of the
observables. To this end, the peak-sharpening algorithm
applied to the bitstring data artificially improves the apparent

Figure 4. Device simulation run of the dynamics of Green’s function (a−d) before (brown) and after (gold) applying resolution enhancement. The
teal curve (final error-mitigated data) is obtained by applying noise filtering of the “gold” data. The experiments are run on ibmq_kolkata with
100 000 shots. Panel (e) shows the Pade ́ approximation applied to the error-mitigated data. Teal and orange are for k = 0 and π, respectively. The
exact results are shown in dashed curves for comparison. The model chosen is the N = 2, U = 4 Hubbard model.
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resolution of the peaks.52 Details about the method are
provided in Appendix B. Application of this method
significantly improves our results.

Results. We run our simulation for four qubits (that is, the
N = 2, U = 4 Hubbard model). The results are shown in Figure
4. In order to generate the data in Figure 4a−d, we run two
sets of experiments to compute G00

> (t) and G01
> (t). The “less

than” GFs are obtained from the “greater than” by exploiting
the particle−hole symmetry = [ ]*< >G G( ). We then combine
them to obtain retarded GFs in momentum space using eq 1
and eq 19. In Figure 4a−d we present the real and imaginary
parts of the GR(ω) for momentum k ∈ {0, π}. The exact time
evolution data is shown in the black dashed curve. The original
noisy data is plotted in brown. It already has error-suppression
effects (described earlier) applied to the circuits. As a
postprocessing step, we apply the resolution enhancement
method on the brown data to obtain the gold data. Although
wiggly, the “golden” curve fluctuates around the exact results.
So we apply an additional Savitzky−Golay filter on the data to
obtain a smoother curve that is shown in teal.
The spectral function is calculated from the time evolution

data using the Pade ́ approximation. The plot is shown in
Figure 4e. The exact A(ω) is shown in black, and the device
results are shown in teal. Reference 31 uses prior knowledge of
exact results53 to estimate the total simulation time (T). On
the other hand, ref 27 has shown that much longer T is
required to get a good estimate of the Fourier data. Use of the
Pade ́ approximation avoids the ambiguity of the magnitude of
T and enables us to obtain reliable Fourier-transformed data
using a much smaller simulation time.

5. SUMMARY
Using a combination of McLachlan’s variational principle for
quantum dynamics and an adaptive strategy, we have shown a
method for calculating a many-body Green’s function in a
near-term quantum computer. The real-time Green’s function
is transformed into Fourier space by the use of the Pade ́
approximation. The use of the approximation helps avoiding
long-time dynamics simulation. Our method requires an
accurate estimate of the ground state energy E0. For example,
E0 can be accurately estimated from any other state preparation
methods (phase estimation, imaginary time evolution). We
have applied the method to compute Green’s function for the
1-D Hubbard model at half-filling. Our result shows a good
match with the exact results. By using classically precomputed
parameters, we compute the real-time Green’s function for a
two-site Hubbard in a real quantum computer and apply
multiple error suppression and error mitigation strategies that
give satisfactory results.
Our method can be extended to compute Green’s function

for other quantum-chemical systems and the two-particle
Green’s function to compute response functions. The key
advantage of using an adaptive approach like AVQDS is they
can generate much smaller and compact ansatzes with an
optimal number of parameters compared to other variational
and Trotter-based methods. AVQDS has shown “saturation”-
like behavior in terms of the parameters (and CNOT) in other
calculations.33,54 The saturation of the number of parameters
(and the number of CNOTs) is a feature of adaptive methods
and can be exploited for a diverse class of physical systems.
The error mitigation strategy presented in this paper is novel
and can be applied as a new postprocessing scheme to other

measurements in the NISQ devices. We will investigate this
method more in our future research for error mitigation
schemes. The experimental data shows the potential of the
quantum computers for nontrivial scientific applications and
would encourage further investigation of correlated many-body
systems in quantum computers.

■ APPENDIX A
In order to measure | |P P( )0 0 , let us consider the
transformation of |ψ0⟩ ⊗ |0⟩ in the following circuit

| | | | + |

| | + | |

| | + | |

| | + | |

[ + | |

+ | | ]
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The probability of measuring the qubit 0 to be in state |0⟩ and |
1⟩ is

= | | + | |p P P
1
2

( )0 0 0 0 2 1 0 (20)

= | | | |p P P
1
2

( )1 0 0 0 2 1 0 (21)

Hence the desired expectation value is

{ | | } =P P p pRe 0 2 1 0 0 1 (22)

■ APPENDIX B
Our resolution enhancement based noise reduction approach
primarily assumes that the bitstring data generated in a noisy
experiment loosely follow the ideal probability distribution of
the bitstrings. In other words, noise and measurement errors
lead to a flatter histogram but retain the true behavior of the
histogram. In order to approach the ideal bitstring distribution,
we make use of resolution enhancement measures commonly
used in image processing.52

Calling yj the frequency of the noisy data of the jth bitstring,
resolution-enhanced frequency is obtained using rj = yj−k2yj″,
where rj is the reformed frequency and yj″ is the second
derivative of the noisy data w.r.t the decimal representation of
the bitstrings. The parameter k2 can be modified to tune the
resolution of the final data.
The weighting factor k2 can be chosen based on what gives

the best trade-off between resolution enhancement, signal-to-
noise degradation, and baseline flatness. The optimum choice
depends upon the width, shape, and digitization interval of the
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bitstrings. After obtaining rj we identify the bitstrings nearest to
the peaks from the resolution-enhanced data. We then switch
back to the binary representation of the bitstrings and replace
the yj’s by the rj’s.
In order to avoid the ambiguity of the optimal value of k2,

we iterate over several values of k2 and calculate the probability
p0 of the ancilla qubit for each of them. We continue iterating
until p0 converges with a certain threshold ϵ. In other words, if
p0(k2(j)) is the probability at the jth iteration, we first calculate
the average of p0(k2(j)) over the previous j values of k2. Thus, we
may define

=
=

k
j

p kp ( )
1

( )j

l

j
l

0 2
( )

1
0 2

( )

(23)

We stop the loop if | | <+k kp p( ) ( )j j
0 02

( 1)
2
( ) . For our

calculation we chose ϵ ∼ 10−4 and varied k2 in the range [0,
4] in steps of 0.1. To understand the effect of the method, we
show the results in Figure 5, where the original noisy data
(after applying Fermion number conservation) is shown in the
left panel and the right panel shows the data after the
resolution enhancement is applied. It can be clearly seen that
the histogram in the right panel has sharper peaks.

■ APPENDIX C
The ability of the Pade ́ approximation to produce a faithful
representation of the Fourier transformation depends the
sampling rate of important spectral modes of a particular time
signal. As high-frequency modes are more often sampled than
low-frequency modes in any particular time interval, their
spectral convergence is rapid and practically limited primarily
by the Nyquist frequency determined by the time step. This
phenomenon has been demonstrated on a number of occasions
in the simulation of X-ray absorption spectra for molecular
systems.55−57 For low-frequency modes, a sufficient T must be
chosen to ensure that the desired spectral components are
sufficiently sampled. This latter challenge is highly problem
dependent and depends on the spectral characteristics of H. In
cases where an insufficient T is chosen, the Pade ́ approx-
imation will contain both physical and unphysical peaks, the
latter of which may be understood as a sinc-convolution of the
physical signal arising from early truncation of the GR(t). The

presence of these peaks is known to disappear rapidly with
growing T,42 and they are thus identifiable through simple
convergence analysis on the resulting GR(ω) at several values
of T.
In this section, we show how unphysical peaks in the Pade ́

approximation can vanish by running longer time simulation
for the dynamics studied in this work. In Figure 6, we show a

plot for A(ω) calculated for three different T. The results are
for the N = 2 Hubbard model with U = 4.0, and A(ω) has been
obtained from G00(t). In Figure 6a, it can be seen that as we
increase T from 0.05 to 10.0, the variational results (blue
curve) start matching well with the exact results (shown in
black). For better clarity, in Figure 6b, we plot the error Δ =

Figure 5. Histogram of bitstrings of noisy simulation (a) before and (b) after applying resolution enhancement.

Figure 6. (a) Spectral function vs frequency for different simulation
runtime T, for the N = 2 Hubbard model. (b) Difference (Δ) between
the exact and approximate spectral functions for the corresponding
data in plot (a). Δ becomes smaller as we move from T = 0.05 (aqua)
to T = 10 (blue curve).
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Aexact(ω) − Avariational
Pade (ω) for different T. Clearly, Δ becomes

lower for larger T making the results more reliable.
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