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Abstract: LuIII, a protoparvovirus pathogenic to rodents, replicates in human mitotic cells, making
it applicable for use to kill cancer cells. This virus group includes H-1 parvovirus (H-1PV) and
minute virus of mice (MVM). However, LuIII displays enhanced oncolysis compared to H-1PV
and MVM, a phenotype mapped to the major capsid viral protein 2 (VP2). This suggests that
within LuIII VP2 are determinants for improved tumor lysis. To investigate this, the structure of the
LuIII virus-like-particle was determined using single particle cryo-electron microscopy and image
reconstruction to 3.17 Å resolution, and compared to the H-1PV and MVM structures. The LuIII
VP2 structure, ordered from residue 37 to 587 (C-terminal), had the conserved VP topology and
capsid morphology previously reported for other protoparvoviruses. This includes a core β-barrel
and α-helix A, a depression at the icosahedral 2-fold and surrounding the 5-fold axes, and a single
protrusion at the 3-fold axes. Comparative analysis identified surface loop differences among LuIII,
H-1PV, and MVM at or close to the capsid 2- and 5-fold symmetry axes, and the shoulder of the 3-fold
protrusions. The 2-fold differences cluster near the previously identified MVM sialic acid receptor
binding pocket, and revealed potential determinants of protoparvovirus tumor tropism.

Keywords: cryo-electron microscopy; oncolytic virotherapy; Parvoviridae; structural virology

1. Introduction

An increasing number of oncolytic viruses debulk tumors, often with a higher therapeutic index
than conventional treatments [1–3]. October 2015 marked an important milestone with the first
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commercial virotherapy, talimogene laherparepvec (T-VEC), approved for cancer treatment in the
United States and Europe [4]. Members of the rodent protoparvovirus I species, including LuIII, H-1
parvovirus (H-1PV), and minute virus of mice (MVM), are utilized as replication-competent vectors
to target cancer [5,6]. All three viruses are pathogenic to rodents, and selectively replicate in and kill
human cancer cells [7–9]. Importantly, a Phase I/IIa clinical trial has extended these observations to
patients in which H-1PV was used to treat recurrent glioblastoma multiforme tumors [10–12].

LuIII, along with H-1PV, and MVM, belong to the Parvoviridae. These viruses package linear
ssDNA genomes of ~5 kb into non-enveloped capsids of ~260 Å in diameter [13]. The rodent
protoparvoviruses share the same genome structure of two open reading frames, non-structural
(NS), and capsid (CAP). NS encodes for three non-capsid proteins (NS1/2 and SAT), while CAP
encodes two capsid viral proteins (VPs, VP1 and VP2). Both ends of the viral genome are capped
by palindromic sequences responsible for initiating transcription and packaging viral genomes into
preassembled capsids [14,15]. The viruses enter cells via receptor-mediated endocytosis, and are
trafficked to the nucleus for progeny production. Parvoviruses rely on the host cellular machinery
for DNA replication, but lack the accessory proteins required to push cells into the S-phase of the cell
cycle [16]. For the rodent parvoviruses, NS1 regulates the viral replication required for tumor cell
lysis, and is activated by host cell factors upregulated in actively dividing, dysregulated cancer cells.
The result is an S-phase dependent inherently oncoselective virus that can spread from cell to cell
throughout a tumor, but otherwise does not infect non-cancerous human cells [10,17,18].

The T = 1 icosahedral parvovirus capsids consist of 60 VPs, with the protoparvoviruses assembled
from VP1 and VP2 in a 1:10 ratio. The overlapping VP1 and VP2 sequences share a common C-terminus,
with the unique VP1 N-terminus (VP1u) carrying a phospholipase A2 (PLA2) domain [19]. This enzyme
is an absolute requirement for parvovirus infection. Upon cell entry, particles containing viral genomes
are proteolytically cleaved at the VP2 N-terminus to produce VP3 that becomes the major capsid protein
with the capsids now assembled from VP1:VP2:VP3 in a 1:1:10 ratio [20–23]. Understanding capsid
structure as it relates to critical stages in the viral life cycle can drive improvements in vector
development. LuIII kills transformed cell types that are either completely resistant, or less easily
infected and lysed by H-1PV and MVM. Studies in two different tumor models have correlated
this LuIII phenotype to VP2 [7,24,25]. Studies of H-1PV and other rodent protoparvoviruses also
support a tumor tropism determinant within this protein [26]. VP2 forms virus-like-particles (VLPs)
for members of the protoparvoviruses that are otherwise antigenically and structurally equivalent
to VP1/2/3 genome packaging capsids [27–29]. This thus provides a reagent for characterizing the
tropism determinants for these viruses.

The structures of H-1PV and MVM are available [28,30]. To enable comparative analysis
for identifying the VP2 determinant of selective tumor tropism by the protoparvoviruses,
the structure of LuIII VP2 VLPs was determined by cryo-electron microscopy and 3D image
reconstruction (cryo-reconstruction) to 3.17 Å resolution. At this resolution, the VP2 amino acid
side-chain conformations were unambiguously assigned into the cryo-reconstructed density map,
from N-terminal residue 37 to the last C-terminal residue 587 (VP2 numbering). This stretch of amino
acids is comparable to those ordered in the H-1PV and MVM crystal structures. The VP2 structure
topology conserved the core secondary structure elements reported for other parvoviruses and the
single 3-fold protrusion capsid morphology of other non-human protoparvoviruses. A comparison of
the LuIII VP2 and capsid structures to H-1PV and MVM identified common features within the core
regions, and differences on the capsid surface, localized at or close to the icosahedral 2-fold axes, the top
of the 3-fold protrusion, and the channel at the 5-fold axes and its surrounding depression. The 2-fold
structural differences cluster around the previously reported MVM sialic acid receptor-binding site,
while the 3-fold differences map to an MVM antigenic epitope. Furthermore, sequence and structural
features unique to LuIII surround the MVM sialic acid binding site utilized for recognition of the
sialylated sLeX glycan motif, Neu5Acα2-3Galβ1-4(Fucα1-3)-GlcNAc, abundant on tumor cell surfaces.
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Thus, this comparative analysis identified loci specific to the rodent parvoviruses that represent
“hot spots” of capsid diversity, and potential determinants of tumor tropism and lytic function.

2. Materials and Methods

2.1. LuIII VLP Expression and Purification

LuIII VLPs were produced using the baculovirus/Spodoptera frugiperda (Sf9) cell expression system,
as previously reported for other parvoviruses (e.g., [27,31]). A recombinant baculovirus encoding
the VP2 of LuIII was generated using the Bac-to-Bac system, per the manufacturer’s instructions
(Invitrogen, Carlsbad, CA, USA). This recombinant virus was used to infect Sf9 cells at a multiplicity of
infection of 5. For purification, cells harvested 5–7 days post infection were pelleted and resuspended
into 25 mM Tris-HCl, 500 mM NaCl, 0.2% Triton X-100, 8 mM CaCl2, 2 mM MgCl2, at pH 8.0 (Buffer A).
The resuspended cells were subjected to three freeze/thaw cycles, and purified by sucrose cushion.
The supernatant from the harvested cells was precipitated with the addition of PEG8000 (10% w/v) and
500 mM NaCl, stirring overnight at 4 ◦C, followed by centrifugation at 9000 rpm on a Beckman Coulter
JA-10 rotor for 1.5 h at 4 ◦C. The resulting pellet was resuspended into Buffer A and combined with
the resuspended cell pellet sample. All samples were treated with 100 U/mL Benzonase (Millipore,
Burlington, MA, USA) for 30 min at 37 ◦C, and subjected to ultracentrifugation through a 20% sucrose
cushion at 45,000 rpm on a Beckman Coulter 70Ti rotor for 3 h at 4 ◦C. The resulting pellet was
resuspended in the same buffer as above, supplemented with 1 mM EDTA, and further purified using
a step gradient containing 5–35% sucrose centrifuged at 35,000 rpm on an SW41Ti Beckman Coulter
rotor for 3 h at 4 ◦C. Fractions collected from the 25–35% sucrose regions were dialyzed into 10 mM
Tris-HCl, 500 mM NaCl, 8 mM CaCl2, 2 mM MgCl2, at pH 7.5 (Buffer B). To achieve the desired
concentration for cryo-electron microscopy (cryo-EM) data collection, dialyzed sample was pelleted
by ultracentrifugation at 50,000 rpm on a SW55Ti rotor (Beckman Coulter, Brea, CA, USA) for 1 h at
4 ◦C and resuspended in Buffer B to a final concentration of 0.75 mg/mL. To assess sample purity,
VLPs were analyzed by 10% Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
stained with GelCode™ Blue (ThermoScientific, Waltham, MA, USA).

2.2. Sample Preparation and Cryo-Preservation

To confirm LuIII VLP integrity, the sample was visualized by transmission electron microscopy
(EM). Five microliters of purified VLPs at 0.1 mg/mL were applied to a glow discharged 400-mesh
carbon-coated copper grid (Electron Microscopy Sciences, Hatfield, PA, USA) for 2 min, and blotted
with filter paper to remove excess liquid (Whatman No. 5, GE Healthcare Life Sciences, Marlborough,
MA, USA). The grid was washed 3× by floating on deionized water, blotted, stained with 2% uranyl
acetate for 30 s, and blotted again prior to visualization. The negatively stained sample was viewed
using the Tecnai Spirit microscope (FEI, Hillsboro, OR, USA) operated at 120 V, and images were
recorded at a magnification of 42,000× on a 16-megapixel charge-coupled device camera (Gatan,
Inc., Pleasanton, CA, USA). Following the confirmation that the VLPs were intact, 3 µL aliquots of
sample were pipetted onto glow-discharged copper grids containing 2 nm carbon support over holes
(Quantifoil R 2/4 200 mesh, Electron Microscopy Sciences). The grids were blotted and the sample
vitrified using a Vitrobot Mark 4 (FEI) operated at 95% humidity and 4 ◦C.

2.3. Cryo-EM Data Collection

Prior to cryo-EM data collection on a high-end microscope, a cryo-preserved LuIII grid was
screened in-house to confirm optimal sample quality and ice thickness on a Tecnai G2 F20-TWIN
microscope operated under low-dose conditions (200 kV, ~20 e−/Å2), with images collected on a
Gatan UltraScan 4000 CCD camera (Gatan, Inc., Pleasanton, CA, USA). The dataset utilized for the
LuIII structure determination was collected using the Leginon application on a Titan Krios electron
microscope (FEI) operated at 300 kV [32]. A nominal magnification of 130,000× and a pixel size of 1.1 Å
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was used. The microscope was equipped with a Gatan post-column imaging filter (GIF) utilizing a slit
width of 20 eV. Movies were recorded on a Gatan K2 Summit direct electron detection camera operating
under counting mode and an accumulated dose of 75 e− per Å2 fractionated into movie stacks of
50 frames per micrograph (see Table 1). This data set was collected as part of the NIH “West/Midwest
Consortium for High-Resolution Cryo Electron Microscopy” project.

Table 1. Data collection, image pre-processing, and PHENIX refinement.

Parameter LuIII

Total No. of micrographs 722
Defocus range (µm) 0.04–4.39

Electron dose (e−/Å2) 75
No. of frames/micrograph 50

Pixel size (Å/pixel) 1.064
Starting No. of particles 20,142

No. of particles used for final map 18,134
Inverse B-factor used for final map (Å2) 50

Resolution of final map (Å) 3.17

Residue range 37–587
Map CC 0.88

RMSD (Å)
Bonds 0.0
Angles 0.8

All-atom clash score 11.8

Ramachandran Plot (%)
Favored 97.8
Allowed 2.0
Outliers 0.2

Rotamer outliers (%) 0.2
No. of Cβ deviations 0.0

2.4. Movie and Image Preprocessing, and 3D Map Reconstruction

To correct for beam induced motion, the movie frames were aligned using the MotionCor2
application [33]. The dose-weighted images averaged from all 50 frames were used for contrast transfer
function (CTF) estimation using the CTFFIND4 application [34]. Particle selection was conducted
using the automated particle picking option (M) within the AUTOPP subroutine in the AUTO3DEM
application [35]. Particle pre-processing to normalize and apodize the particle images also utilized the
AUTOPP subroutine (options F and O) of AUTO3DEM [35]. The structure determination utilized the
gold standard protocol in AUTO3DEM [35]. A low resolution (30 Å) initial model was generated from
100 particle images using the ab initio model generating subroutine within AUTO3DEM, while applying
icosahedral symmetry. This model was used to search the origins and orientations of the entire particle
data set followed by cycles of origin and orientation refinement, solvent flattening, and CTF refinement.
To minimize the effect of radiation damage on the particle images that could have occurred during data
collection, the movie frames were re-aligned while truncating the number of frames to include 2 to 30
only. The particle origin and orientation information from the CTF refinement output were applied to
the truncated frame particle images, and used for another several rounds of origin and orientation
refinement, followed by B-factor (temperature factor) correction within AUTO3DEM. Different B-factor
values, 1/50, 1/80, 1/100, 1/150 and 1/200, were applied to the final map, and visually inspected
in the Coot and Chimera programs [36,37]. The B-factor 1/50 corrected map was selected for model
building, because it showed the most ordered amino acid side chains, with the minimal amount of
background noise. However, the 1/100 and 1/150 B-factor corrected maps were utilized for model
building of highly flexible surface loops. The resolution of the reconstruction was estimated to be
3.17 Å based on a Fourier Shell Correlation (FSC) of 0.143.
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2.5. Model Building and Structure Refinement

A homology model of LuIII VP2 was generated using the SWISS Model online server (https:
//www.swissmodel.expasy.org/) from the LuIII VP2 sequence (NCBI accession # P36310.2) and the
Protein Data Bank (PDB) coordinates of MVM (PDB ID: 1z14) as a template [28,38,39]. The VP2
monomer model was used to generate an all-atom 60mer using the online VIPERdb Oligomer
Generator for a T = 1 capsid by icosahedral matrix multiplication (http://viperdb.scripps.edu) [40].
The 60mer was docked into the cryo-reconstructed map using the “Fit-in-map” function in the Chimera
program [37]. Prior to this fitting, the density map was converted from the Purdue Image Format
(PIF) to an XPlor format using the “e2proc3D.py” subroutine in EMAN2 [41]. Following the fitting,
the map was converted to a CCP4 format using the MAPMAN application and resized to a 1.064
voxel size to optimize the correlation coefficient between map and model [42]. A reference VP2
monomer was extracted from the fitted 60mer and the side-chains were adjusted, guided by the LuIII
cryo-reconstructed map, by manual building and the real-space-refinement subroutine in the Coot
program [36]. Residues 37–587 of VP2 were built into the B-factor corrected maps at a sigma (σ)
threshold of >1.0.

The VP2 model was used to generate a full 60mer capsid using the NCS extension in Coot.
The capsid was refined with an inverse 50 Å2 B-factor corrected map utilizing the rigid body, real space,
and B-factor refinement subroutines in the Phenix application [43]. The refinement steps were
alternated with model visualization and adjustment in Coot to maintain model geometry as well as
rotamer and Ramachandran constraints [36]. The correlation coefficient (CC) and root mean square
deviations (RMSD) from ideal bond lengths and angles, as reported in Table 1, were analyzed by the
Phenix and Molprobity programs [43,44]. All secondary structure elements were assigned based on
phi and psi angles (in Molprobity and Coot) and visual inspection of hydrogen bond distances in
Coot [36,44].

2.6. Structure Comparison

The available Protoparvovirus VP2 3D structures were compared by secondary structure matching
(SSM) in PDBeFOLD [45]. LuIII was superposed onto H-1PV, MVM, canine parvovirus (CPV), feline
panleukopenia virus (FPV), and porcine parvovirus (PPV) by pairwise residue alignment (PDB IDs:
4g0r, 1z14, 2cas, 1c8f, and 1k3v, respectively) [28,30,46–48]. However, SSM does not report a Cα

deviation value for non-overlapping atoms. Thus, in cases where an amino acid is offset in aligned
structure (i.e., due to insertion or deletion of a residue) the distance measurement tool in the Coot
program [36] was used to determine a distance to the nearest Cα atom. Variable regions (VRs) among
the Protoparvovirus were assigned as previously defined, two or more adjacent residues with Cα atom
distances of ≥2.0 Å between the superposed structures [30]. The viral capsid surface topologies were
also compared among the rodent protoparvoviruses. VIPERdb [40] 60mers, built from the H-1PV
and MVM VP2 structure coordinate files (PDB ID: 4g0r and 1z14 ), were each docked into the LuIII
cryo-reconstructed map using the “Fit-in-map” function in the Chimera program [37], and used to
generate molecular surface maps (molmaps) filtered to 3.17 Å resolution. These H-1PV and MVM
molmaps were compared to the LuIII cryo-reconstructed map by visual inspection in the Chimera
program [37].

2.7. Figures

Figures 2–5 were prepared using the Chimera program [37]. Two-dimensional (2D) Roadmap
(asymmetric unit surface) projections (Figures 6 and 7) were generated by the RIVEM program [49].

https://www.swissmodel.expasy.org/
https://www.swissmodel.expasy.org/
http://viperdb.scripps.edu
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2.8. Accession Numbers

The cryo-EM reconstructed map and capsid atomic model have been deposited with accession
numbers EMD-7071 and 6B9Q, respectively, in the Electron Microscopy Data Bank (EMDB) and
the PDB.

3. Results and Discussion

3.1. Cryo-EM and 3D Image Reconstruction Provides Atomic Resolution Information for LuIII VP2

The capsid structure of LuIII was determined by cryo-reconstruction to 3.17 Å (FSC 0.143)
resolution from 18,134 out of 20,142 particle images extracted from 722 micrographs collected for
purified VLPs (Figure 1, Table 1). The truncation of initial and latter movie frames moderately
improved the map resolution from 3.23 to 3.18 Å, and a reconstruction with 90% of the data set further
increased the resolution to 3.16 Å. Inverse B-factor correction resulted in the 3.17 Å resolution map
with improved amino acid side-chain density. The cryo-reconstructed map was interpretable for LuIII
VP2 N-terminal residue 37 to the last C-terminal residue 587 (Table 1). Density within the VP2 core
was interpretable at a σ threshold of 6, while the surface loops were ordered at thresholds of 2 to 4 σ.
Example side-chains built into the cryo-reconstructed density are shown in Figure 2. The resolution
of the map enabled accurate assignment of ~97% of the 551 residues built for VP2. The final capsid
model was refined with a correlation coefficient of 0.88 into the cryo-reconstructed density and the
VP2 exhibiting good geometry and Ramachandran statistics (Table 1).
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Figure 1. LuIII sample and data quality. (A) SDS-PAGE of purified VLPs. The VP2 is ~65 kDa in size;
(B) negative stain EM of purified VLPs (42,000×, Scale bar = 100 nm); (C) representative micrograph
from cryo-EM data collection, not visualized to scale; (D) FSC plot for the final iteration of 3D map
reconstruction (red line indicates the 0.143 threshold utilized to estimate resolution).
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Figure 2. Representative density from the LuIII cryo-reconstruction. (A) Region from the βB strand
located in the capsid core; (B) solvent exposed loop (394–401) on the capsid surface. Map density is
in gray mesh (at σ = 1.0) and the LuIII model is in cyan. Residues are as labeled with atoms colored
C = cyan, N = blue, O = red, S = yellow.

As previously reported for Parvoviridae VP crystal structures, the first 37 N-terminal residues of
VP2 were disordered [28,30,46–48]. Density is visible for the main-chain of 2–4 additional residues at
the N-terminus at ≤0.8 σ threshold, but they extend in three different directions. Lack of continuous
density in the different paths precluded model building. One conformation extends towards the base
of the channel at the icosahedral 5-fold symmetry axis of the capsid, suggesting a possible VP1u
externalization path in VP1 containing capsids. LuIII residue 37 is contained within a glycine-rich
VP1/VP2/VP3 overlapping region, predicted to allow conformational flexibility that enables VP1u
repositioning for externalization for PLA2 function [50]. Thus, the lack of N-terminal ordering is
predicted to be due to flexibility, intrinsic disorder, or adoption of alternative conformations by all
three overlapping VPs in capsids assembled from VP1, VP2, and VP3.

A second region of less ordered density occurred at residues 159–164 that form the apex of the
β-ribbon, forming the 5-fold channel via interaction with four symmetry related β-ribbons (Figure 3A).
However, the main-chain of these six residues were traceable at 1σ. Analogous residues are reported
to have high thermal motion (B-factor) or are disordered in other Parvoviridae structures, including for
H-1PV and MVM [28,30,46–48]. Flexibility or disorder of the loop residues forming the apex of the
5-fold channel would enable one of its proposed functions, the portal for externalization of VP1u for
PLA2 function.
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interaction of VP surface loops around icosahedral symmetry axes (Figure 3A,B). Five interacting β-
ribbons within the DE loop of related VP2 monomers form open channels at each icosahedral 5-fold 
symmetry axis surrounded by a depression. At the 3-fold symmetry axes, surface protrusions 
assemble by interacting GH loop residues. Narrow depressions occur along 2-fold symmetry axes. 

Figure 3. LuIII structure. (A) A VP2 monomer, 60 copies of which form the viral capsid. A cartoon
is shown overlaid on a transparent surface representation. The jellyroll motif (blue), α-A helix (red),
intervening loops (cyan), and short β-strands (gray) are shown. Arrows indicate anti-parallel β-strands
with directionality from N- to C-terminus. N = N-terminus (VP2 37) and C = C-terminus (VP2 587).
The approximate 2-fold, 3-fold, and 5-fold icosahedral axes are indicated as a filled oval, triangle,
and pentagon, respectively; (B) surface image of the LuIII cryo-reconstructed map (at σ = 1) radially
colored from the capsid center (see color key for distance in Å). The viral asymmetric unit is depicted in
the black triangle with white outline. The icosahedral axes are indicated as in (A); (C) radially colored
central section of the cryo-reconstructed map (at σ = 1). The color key is as in (B).

3.2. LuIII Conserves General Parvoviral Structural Features

The LuIII VP2 monomer structure contains the core secondary structure elements reported
for other Parvoviridae structures, with nine β-strands (βA-βI) and an α-helix (α-A) (Figure 3A).
The conserved jellyroll motif contains eight antiparallel β-strands that form two β-sheets (β-BIDG
and β-CHEF). Each BIDG β-strand is on average 11 amino acids long, while the β-strands forming
CHEF are comparatively shorter with an average of 4 amino acids per strand (Table 2). This results in
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a jellyroll that is orientated with its open end furthest from the 5-fold axes. Other components of the
viral core pack tightly around this motif. Preceding β-BIDG is a short β-A strand that is antiparallel
to β-B, and positioned on the small arm connecting β-C to β-D is the α-A helix. The core β-strand
and helical regions are connected by loop regions that form the viral surface (named by their position
between jellyroll β-strands, for example, the GH loop connects β-strands G and H). A number of
short, 2–5 residue long, antiparallel β-strands are interspersed within these connecting loops (Table 2,
Figure 3A).

Table 2. Secondary Structure Assignments for LuIII VP2.

Capsid Core Non-Core β-Strands

Residue Range * Secondary Structure Residue Range # VP Location

125–133 α-A 82–86 within BC loop
51–54 β-A 105–109 within BC loop

211–213 within EF loop
61–74 β-B

521–535 β-I 156–158 within DE loop
137–147 β-D 165–167 within DE loop
268–272 β-G

374–378 within GH loop
112–115 β-C 393–396 within GH loop
496–500 β-H
176–179 β-E 345–346 within GH loop
255–258 β-F 353–354 within GH loop

* Residues in core secondary structure elements (as labeled); # β-strand residues in non-core VP2 regions.

The LuIII capsid is ~280 Å in diameter from 3-fold to 3-fold, similar to previous reports for H-1PV
and MVM (Figure 3B,C) [28,30]. The morphology of the parvovirus capsid arises from the interaction
of VP surface loops around icosahedral symmetry axes (Figure 3A,B). Five interacting β-ribbons
within the DE loop of related VP2 monomers form open channels at each icosahedral 5-fold symmetry
axis surrounded by a depression. At the 3-fold symmetry axes, surface protrusions assemble by
interacting GH loop residues. Narrow depressions occur along 2-fold symmetry axes. These features
are conserved in all protoparvovirus structures determined to date and the 2- and 5-fold features are
conserved in all parvovirus capsids. The 3-fold protrusions of parvoviruses vary between a single
structure, as observed for the animal protoparvoviruses, or three protrusions surrounding a depression
at the 3-fold symmetry axes [51].

3.3. Variable Regions Confer Rodent Parvovirus Specific Surface Topologies

Previous comparison of protoparvovirus surface loops have reported “hot spots” of sequence and
structural variation, variable regions (VRs), defined as regions with two or more contiguous residues
with Cα distances >2.0 Å between the superposed VP structures [28,30,46–48]. Secondary structure
matching (SSM) used to compare LuIII to the MVM, H-1PV, CPV, FPV, and PPV VP2 structures
confirmed the positions of the 10 common VRs for LuIII (Table 3, Figure 4). Compared to each
protoparvovirus, the largest LuIII structural variations occur within VR1, VR0, VR5, and VR8 with
MVM, H-1PV, CPV/FPV, and PPV, respectively. Overall, the LuIII VP2 is structurally most similar
to MVM, closely followed by H-1PV, and is most different from PPV in agreement with amino acid
sequence identities (Table 3). Importantly, each VR is located on a surface loop, consistent with
structure and antigenic distinction because of sequence diversity within these regions. Predictively,
cell attachment and antibody recognition functions utilize residues within the VRs [52–60].
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Variable regions create local morphological differences on the LuIII, H-1PV, and MVM capsid 
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22 Å wider than H-1PV and MVM, respectively (Figure 5), resulting from multiple subtle side-chain 

Figure 4. VP2 structural alignment of the protoparvoviruses. (A) Superposition of protoparvovirus
VP2 structures (shown in cartoon without secondary structures assigned) with variable regions (VRs)
labeled; (B) superposition of rodent protoparvovirus VP2 structures with VRs labeled; (C) LuIII VP2
residues 386–394 of VR6 within the cryo-reconstructed map highlighting ability to distinguish surface
loop conformations between the rodent parvoviruses at the resolution of the map. Map density is
shown in gray mesh at threshold of σ = 1.0; (D) close-up of VRs with the largest differences between
the rodent protoparvoviruses. In A LuIII is in cyan, H-1PV in orange, MVM in blue, CPV in green,
FPV in yellow, and PPV in pink; in B-C LuIII is in cyan, H-1PV in orange, and MVM in blue. In A and
B, the approximate icosahedral 2-fold, 3-fold and 5-fold symmetry axes are indicated as filled oval,
triangle, and pentagon, respectively.
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Table 3. Superposition Comparison of LuIII to other Protoparvoviruses.

VR Residue Range RMSD (Å)

LuIII LuIII VP2 MVM H–1 CPV FPV PPV
VR0 90(90–91)91 0.3–0.8 3.5–5.7 0.4–1.8 0.4–1.1 0.7–1.8
VR0 92(none)94 0.6–1.2 0.6–1.1 1.3–1.9 1.0–1.6 2.1–2.7
VR1 159(159–162)162 2.0–7.3 1.4–2.4 1.8–3.5 2.5–3.4 1.6–3.8
VR2 227(227–230)230 0.8–3.1 2.1–3.5 1.7–1.8 0.6–3.0 1.5–2.2
VR2 232(232–233)235 0.3–2.8 0.5–1.2 2.0–3.0 1.9–3.2 0.4–1.2
VR2 237(none)241 0.3–1.0 0.2–0.7 1.8–3.2 1.7–3.1 2.0–5.0
VR3 296(296–297)298 0.7–2.7 0.5–0.8 * 1.4–3.3 1.7–3.8 2.2–4.1
VR3 302(none)303 0.1–0.2 0.4 1.5–4.5 1.5–4.5 3.2–5.7

VR4a 310(none)312 0.5–0.6 0.3–0.5 2.5–3.4 1.7–2.4 0.5–1.2
VR4a 320(320)322 0.5–2.8 1.0–1.9 2.3–2.8 1.7–2.4 1.3–3.9
VR5 359(none)367 0.3–1.2 0.2–1.6 2.0–6.8 0.9–6.0 0.6–1.6
VR5 370(none)371 0.4–1.2 0.4–0.6 3.5–3.7 0.1–1.0 0.8–1.0
VR6 386(390–391)392 0.7–4.7 0.6–3.2 2.7–4.6 0.9–4.5 1.3–3.5

VR4b 419(none)420 0.5–0.8 1.1–1.3 2.0–2.6 1.9–2.3 1.0–1.5
VR7 511(511)512 0.8–0.9 1.9–2.0 1.8–2.8 2.2 1.4–1.5
VR8 553(553–557)559 0.3–2.6 0.3–4.4 3.3–5.8 3.3–5.8 3.1–6.1

Overall RMSD (LuIII) # 0.7 0.7 1 1 1
% VP2 Identity (LuIII) $ 73 70 53 52 52

RMSD = root mean squared deviation for Cα distances compared to LuIII for superposed protoparvovirus VP2
structures, the two highest RMSD values within each column are in bold; Residue Range = The range of LuIII
residues within previously defined VRs. The VRs contain >2.0 Å Cα distances for 2 or more adjacent amino acids
between superposed protoparvovirus structures; (parenthesis) = residues with Cα deviation >2.0 Å among the rodent
protoparvoviruses, * indicates Cα distances of <2.0 Å in either H-1PV or MVM for residues within the parenthesis;
# and $ = Overall RMSD and % identity compared to LuIII VP2, respectively.

Variable regions create local morphological differences on the LuIII, H-1PV, and MVM capsid
with the most pronounced being at the 2-fold axes. In LuIII, this depression is 4–7 Å deeper, and
15–22 Å wider than H-1PV and MVM, respectively (Figure 5), resulting from multiple subtle side-chain
differences within residues in VR5, VR6, and VR8. The wall that borders this 2-fold depression
(which separates it from the depression surrounding the 5-fold axis), referred to as the 2/5-fold wall,
exhibits differences due to the clustering of VR3 andVR6. At the 3-fold axis, the single “windmill”
shaped protrusion is the same height in all three viruses, but is narrower in LuIII compared to H-1PV
and MVM, and has the same curvature for LuIII and H-1PV (Figure 5). Differences in regions of
VR0, VR2, VR3, VR4a, and VR4b contribute to this feature. At the 5-fold region, the depression
appears wider in LuIII, due to a difference in the HI loop (VR7) residues that line the floor of the
depression, and differential positioning of the apex of the DE loop (VR1) results in a 5-fold channel
that is more open at the apex for LuIII (Figure 5). The HI loop is reported to play a role in genome
packaging for the dependoparvoviruses [61], while the channel is reported to play a role in VP1u
externalization for its PLA2 function, and serves as a portal for genome packaging and uncoating for
all parvoviruses [50,62,63].
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3.4. Variable Regions Confer Tumor Tropism and Cell Killing Efficiency 

Previous comparative tissue tropism studies for two strains of MVM, the prototype (MVMp) 
and immunosuppressive (MVMi) strains, showed that restriction occurs post cell binding and entry, 
but prior to genome transcription and replication [64,65], and similar observations have been made 
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Figure 5. Comparison of surface topology among the rodent protoparvoviruses. Radially colored
surface images for the rodent protoparvoviruses (see color key in Å), with close ups of the icosahedral
5-fold, 2-fold, and 3-fold symmetry axes at the top, middle, and bottom, respectively. A 90◦ rotation is
also shown for the 3-fold protrusions. LuIII has an open 5-fold channel surrounded by a depression
that is wider, an expanded 2-fold depression, and less pronounced 3f protrusion. The LuIII structure
was compared to molecular maps of H-1PV (PDB ID: 4g0r) and MVM (PDB ID: 1z14) docked into the
cryo-reconstructed LuIII density map, and filtered to 3.17 Å resolution.

3.4. Variable Regions Confer Tumor Tropism and Cell Killing Efficiency

Previous comparative tissue tropism studies for two strains of MVM, the prototype (MVMp)
and immunosuppressive (MVMi) strains, showed that restriction occurs post cell binding and entry,
but prior to genome transcription and replication [64,65], and similar observations have been made
for LuIII [7,24]. However, capsid surface residues dictate MVM and H-1PV cellular entry and tissue
tropism [55,57,66]. Recognition of glycans containing terminal sialic acid (SIA) is proposed to play a
role in MVM tumor tropism by capsid surface residues that bind to the sLeX motif upregulated in tumor
cells [29,67]. Thus, to locate potential surface residues involved in tumor tropism for the three rodent
parvoviruses, VRs that differ the least among them, ≤2.0 Å in Cα position and conserved amino acid
sequences, compared to CPV, FPV, and PPV, were identified. Variable regions 5 (VP2 residues 359–367)
and VR4b (VP2 residues 419 and 420) satisfy the VR criteria in both H-1PV and MVM. A VP2 sequence
alignment indicates that regions of sequence identity are scattered throughout the surface of the capsid,
but mostly absent at the 3-fold protrusions (Figure 6). Significantly, residues in VR5 and VR4b are
structurally adjacent (Figure 7), and flank the depression at the 2-fold axis where residues forming a SIA
glycan receptor attachment pocket in H-1PV and MVM have been reported [57,66]. This includes I362
(equivalent to I362/I368 in MVMp/H-1PV) and H368 (equivalent to K368/H374 in MVMp/H-1PV),
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confirmed to dictate SIA binding by H-1PV and MVM [57,66,67], and tissue tropism for MVM [55,68].
Thus, these two VRs, located in structurally “conserved” regions of the capsid, along with conserved
residues in the depression at the 2-fold axis of the capsid that dictate SIA recognition (delineated in
purple, Figures 6 and 7), likely dictate ability to recognize the sLeX motif to confer tumor tropism.
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Figure 6. Distribution of amino acid sequence identity for the rodent protoparvoviruses. 2D projection
roadmap of the LuIII capsid surface showing the viral asymmetric unit (black triangle). Colors are as
indicated.VP2 positions containing an amino acid that is unique to LuIII are in cyan. Residues identical
between: MVM and LuIII (blue), H-1PV and LuIII (orange), or conserved among all three viruses
(gray). The remaining residues in white are identical between H-1PV and MVM only. The sialic acid
binding site identified for MVM and predicted for H-1PV is delineated in purple (see bold outline).
Important surface exposed residues within VR5 and VR4b are delineated in black. Icosahedral axes are
indicated by the filled oval (2-fold), triangle (3-fold), and pentagon (5-fold).

Towards delineating the VP2 determinant of the difference in tumor cell killing efficiency by the
rodent protoparvoviruses, the remaining VRs with regions of Cα distances ≥2.0 Å were compared to
identify those that vary the most in LuIII. As shown in Table 3, the entire stretch of VR residues were
very similar when the rodent viruses alone are compared, but sub-regions within these are disparate
(differ by >2.0 Å, see residues in parenthesis in Table 3, Figure 4). This analysis and superposition of the
VP2 structures identified unique LuIII VP2 topology within VR1 (159–162), VR4a (320), VR6 (390, 391),
VR7 (511), and VR8 (553–557) (Table 3, Figure 7). Residues in VR8 contribute to the unique 2-fold
depression topology of LuIII surrounding the SIA binding pocket of MVM, and the predicted SIA
pocket for H-1PV described above. Equivalent residues within or adjacent to these VRs dictate MVM
tissue tropism, including Q320 (VR4a), which is structurally equivalent to G/E321 for MVM [28,69–71].
Residues in VR6 and VR7 form the wall between the depressions at the 2- and 5-fold axes (2/5-fold
wall). A role for residues in the 2/5-fold wall in receptor attachment has been described for CPV [58–60].
Importantly, a role for 2-fold residues in altering capsid trafficking and transcription has been described
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for dependoparvoviruses [72,73]. Thus, the hypothesis is that the 2-fold and its surrounding residues
control rodent protoparvovirus tumor tropism, as well as cell killing efficiency. These residues could
cause infectivity differences by altering post-entry events preceding initial cellular receptor attachment,
including endo/lysosomal trafficking and genome transcription and/or replication to determine virus
specific phenotypes. A role for residues at or surrounding the 5-fold axes (VR1 (DE loop) and VR7
(HI loop)) in tropism determination has not been reported. However, the differences at the 5-fold
channel may contribute to a difference in the efficiency of VP1u externalization and PLA2 function
between the viruses. For example, the wider LuIII 5-fold channel may facilitate faster exit from the
endo/lysosomal pathway. Overall, this comparative analysis thus identifies residues surrounding
the icosahedral 2- and 5-fold axes as potential contributors to rodent protoparvovirus cell killing
properties, and specific residues (Figure 7) that can be tested to pinpoint LuIII’s enhanced tumor cell
killing phenotype.Viruses 2017, 9, 321 13 of 18 

 

 
Figure 7. Structural conservation among the rodent protoparvoviruses. 2D projection roadmap of the 
LuIII capsid surface showing the viral asymmetric unit (black triangle). Colors are as indicated in the 
panel at the bottom. For VP2 positions in cyan, the LuIII Cα backbone deviates from MVM and H-
1PV by more than 2.0 Å. Within the “shared” positions, the Cα distances between superposed VP2 
structures vary by less 2.0 Å (see blue for MVM/LuIII or orange for H-1PV/LuIII). Residues in white 
are structurally conserved among all three viruses. The sialic acid binding site identified for MVM 
and predicted for H-1PV is delineated in purple. Important surface exposed residues within VR5 and 
VR4b are delineated in black. Icosahedral axes are indicated by the filled oval (2-fold), triangle (3-
fold), and pentagon (5-fold). 

Towards delineating the VP2 determinant of the difference in tumor cell killing efficiency by the 
rodent protoparvoviruses, the remaining VRs with regions of Cα distances ≥2.0 Å were compared to 
identify those that vary the most in LuIII. As shown in Table 3, the entire stretch of VR residues were 
very similar when the rodent viruses alone are compared, but sub-regions within these are disparate 
(differ by >2.0 Å, see residues in parenthesis in Table 3, Figure 4). This analysis and superposition of 
the VP2 structures identified unique LuIII VP2 topology within VR1 (159–162), VR4a (320), VR6 (390, 
391), VR7 (511), and VR8 (553–557) (Table 3, Figure 7). Residues in VR8 contribute to the unique 2-
fold depression topology of LuIII surrounding the SIA binding pocket of MVM, and the predicted 
SIA pocket for H-1PV described above. Equivalent residues within or adjacent to these VRs dictate 
MVM tissue tropism, including Q320 (VR4a), which is structurally equivalent to G/E321 for MVM 
[28,69–71]. Residues in VR6 and VR7 form the wall between the depressions at the 2- and 5-fold axes 
(2/5-fold wall). A role for residues in the 2/5-fold wall in receptor attachment has been described for 
CPV [58–60]. Importantly, a role for 2-fold residues in altering capsid trafficking and transcription 

Figure 7. Structural conservation among the rodent protoparvoviruses. 2D projection roadmap of the
LuIII capsid surface showing the viral asymmetric unit (black triangle). Colors are as indicated in
the panel at the bottom. For VP2 positions in cyan, the LuIII Cα backbone deviates from MVM and
H-1PV by more than 2.0 Å. Within the “shared” positions, the Cα distances between superposed VP2
structures vary by less 2.0 Å (see blue for MVM/LuIII or orange for H-1PV/LuIII). Residues in white
are structurally conserved among all three viruses. The sialic acid binding site identified for MVM
and predicted for H-1PV is delineated in purple. Important surface exposed residues within VR5 and
VR4b are delineated in black. Icosahedral axes are indicated by the filled oval (2-fold), triangle (3-fold),
and pentagon (5-fold).
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4. Conclusions

The structure of LuIII has been determined to atomic resolution, using cryo-reconstruction to
enable visualization of the individual VP2 amino acids. Comparisons of protoparvoviruses revealed
conserved VP and capsid features at the family and genus levels as well as features specific to LuIII.
This includes a wider and deeper 2-fold depression, a narrower 3-fold protrusion, and an open 5-fold
channel. Importantly, the capsid surface acts as the first point of contact between incoming virion
and cancer cells, thus directing tumor tropism. For the oncolytic rodent parvoviruses, conservation
of otherwise structurally diverse VRs surrounding the depression at the 2-fold axis is observed.
This 2-fold region, utilized for sialylated glycan interaction by MVM, including an sLeX tumor marker
motif, is predicted to serve the same role for LuIII and H-1PV. The observation of unique sequences
and structure that flank this binding site serves as a potential explanation for observed differences in
tumor cell killing for LuIII. Five-fold region differences may serve to alter the VP1u externalization
phenotype that could also control infectivity rates. Future studies will probe the exact role of the VP2
sequences identified in glycan usage and tumor cell killing towards improvements in tumor targeting.
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