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ABSTRACT OF THE DISSERTATION

Perturbative Structure in Entanglement, Gauge Theory, and Holography

by

Allic Vijai Sivaramakrishnan

Doctor of Philosophy in Physics

University of California, Los Angeles, 2017

Professor Per J. Kraus, Chair

We explore aspects of perturbative quantum field theory towards the goal of illuminating

features of quantum gravity. In Chapter 1, we begin with the color-kinematic duality, a

surprising relationship between gauge theoretic and kinematic properties of scattering am-

plitudes that, via the double-copy property, leads to a deep connection between gauge theory

and gravity. We investigate the relationship between the color-kinematic duality and am-

plitude relations in ABJM theory and find that the duality is satisfied eight points without

associated amplitude relations present in all other known instances of the duality.

In Chapter 2, we derive a basic consistency check for AdS3/CFT2, a tractable example

of the well-known AdS/CFT duality. We show that, under certain mild assumptions on the

light spectrum of the CFT, CFT correlators of light operators match those computed in AdS

perturbatively in 1/N : in a black hole background for high temperatures, and in thermal

AdS for low temperatures.

Next we turn to entanglement entropy, an information-theoretic quantity that in the CFT

may encode dual AdS geometry. Time-dependent entanglement entropy has been studied for

generic excited states. However, localized unitary operators in particular are in correspon-

dence with Hamiltonian perturbations, and are basic building blocks of local excitations. In

Chapter 3, we detail these operators’ locality properties as well as the differences between

ii



excited states created by Hermitian operators and those created with localized unitary op-

erators.

In Chapter 4, we initiate the perturbative exploration of entanglement entropy with a

time-dependent Hamiltonian, computing past first order in perturbation theory. We find a

universal structure of entanglement propagation: interactions entangle unentangled excita-

tions according to entanglement diagrams that track the flow of entanglement. We provide

diagrammatic tools to simplify computations of loop entanglement diagrams.
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Chapter 1

Color-Kinematic Duality in ABJM

Theory Without Amplitude Relations

We explicitly show that the Bern-Carrasco-Johansson color-kinematic duality holds at tree

level through at least eight points in Aharony-Bergman-Jafferis-Maldacena theory with gauge

group SU(N) x SU(N). At six points we give the explicit form of numerators in terms of ampli-

tudes, displaying the generalized gauge freedom that leads to amplitude relations. However,

at eight points no amplitude relations follow from the duality, so the diagram numerators are

fixed unique functions of partial amplitudes. We provide the explicit amplitude-numerator

decomposition and the numerator relations for eight-point amplitudes.

1.1 Introduction

Studies of scattering amplitudes have uncovered important insights into gauge and gravity

theories. In particular, Bern, Carrasco, and Johansson (BCJ) found a surprising duality

between the color factors and kinematic numerator factors that comprise diagrams in Yang-

Mills theory [5]. The color-kinematic duality implies nontrivial amplitude relations. These

amplitude relations have been studied in both field theory and string theory [6–8]. The color-

kinematic duality appears to extend to loop level, as confirmed in a variety of examples with
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varying levels of supersymmetry [9–13]. While there has been some progress in understanding

the origin of the duality from a Lagrangian vantage point [14–16], further work is needed.

The color-kinematic duality reveals new structures in gravity through a surprisingly sim-

ple gauge-gravity correspondence. Kinematic numerators satisfying the color-kinematic du-

ality provide the link: by replacing color factors with numerators that satisfy the duality,

gauge-theory amplitudes are converted into gravity amplitudes [5, 9], revealing a double-

copy structure of gravity. A connection between gravity and Yang-Mills theory has long

been known at tree level from the Kawai-Lewellen-Tye relations [17], but the double-copy

property of gravity reveals a more extensive correspondence, one that appears to extend to

loop level. This property has advanced the study of supergravity’s properties, especially

in uncovering unexpected ultraviolet cancellations at high loop orders [18–21]. More gener-

ally, the double-copy relation allows us to directly study the effects of any newly uncovered

properties of gauge-theory amplitudes on corresponding gravity amplitudes.

In Yang-Mills theory, BCJ amplitude relations come from a residual generalized gauge

freedom present in kinematic numerators even after imposing that the duality between color

and kinematics is manifest [5,8,22–24]. There have also been string-theory studies to investi-

gate the residual gauge invariance in the duality between color and kinematics in Yang-Mills

theory [6, 7]. While there has been progress in understanding the underlying structure be-

hind the duality and the residual gauge invariance [15, 25], further clarification is needed.

To gain additional insight, it is important to study a wide variety of cases where the duality

holds.

In particular, the color-kinematic duality has been found in three-dimensional Chern-

Simons-matter theories: the N = 8 Bagger-Lambert-Gustavsson (BLG) theory and the

N = 6 Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [26, 27]. BLG theory turns

out to be a special case of ABJM theory. These cases are quite interesting because a Lie

three-algebra, not a Lie two-algebra, defines the gauge structure of these theories. These

Chern-Simons-matter theories would appear to have rather different properties than gauge
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theory. The color-kinematic duality is governed by gauge-group relations, so the presence of

the duality in ABJM-type theories shows that the duality is more general than previously

appreciated.

We address the color-kinematic duality in ABJM theory. The first nontrivial example

of the duality in this theory was first given in ref. [26]: the six-point all-scalar amplitude.

While this manuscript was in preparation, ref. [28] noted briefly that the duality holds up

to ten points, but surprisingly found no BCJ amplitude relations at eight points or higher.

Details and explicit expressions for the eight-point computation were not provided.

In this note, we provide details and explicit expressions of the eight-point computation,

and we independently confirm the surprising result that the color-kinematic duality holds at

eight points without BCJ amplitude relations. Demonstrating that there are no BCJ ampli-

tude relations is non-trivial, and has significant implications for the color-kinematic duality.

In all previously known gauge-theory examples, enforcing the color-kinematic duality has

produced BCJ amplitude relations, and the two are therefore often considered synonymous.

Our result confirms that, on the contrary, the two can be independent properties of scatter-

ing amplitudes. The eight-point process is the simplest example in which the color-kinematic

duality holds without the residual freedom that produces BCJ amplitude relations, warrant-

ing a detailed study. To this end, we provide the explicit numerator decomposition of the

eight-point amplitudes as well as the BCJ numerator relations.

Another curious feature that may be connected is that at lower points, the double-copy

property holds [26, 27], but starting at eight points it does not [28]: applying the double-

copy procedure to the eight-point kinematic numerators does not produce the appropriate

gravity numerators. The eight-point ABJM amplitude is the only known instance in which

the color-kinematic duality holds but the double-copy property fails. Examining the eight-

point amplitudes in some detail may therefore further illuminate the connection between the

color-kinematic duality and the double-copy property.

In this note, we start by presenting relatively explicit forms of the six point numerators

3



in ABJM theory that satisfy the duality between color and kinematics. This has not been

given previously and is the first nontrivial case where the duality holds. (At four points

the duality is trivial and for odd points the amplitudes vanish.) We then confirm that the

duality between color and kinematics holds at eight points for bosonic external states, but

does not generate BCJ amplitude relations. In an ancillary online file [29], we present a set

of independent eight-point amplitudes in terms of numerators, and the numerator relations

implied by the color-kinematic duality.

This note is organized as follows. In Sec. 2, we review the necessary background. Sec.

2.1 describes the color-kinematic duality in Yang-Mills theory. Then, in Sec. 2.2 we explain

the construction of partial amplitudes and how the color-kinematic duality leaves behind

a residual freedom that gives rise to BCJ amplitude relations. Sec. 2.3 presents relevant

properties of the three-algebra formulation of ABJM theory. Sec. 3 contains our results:

demonstration of the color-kinematic duality through eight points. In Sec. 3.1, we show the

trivial case: four points. We demonstrate the first non-trivial case – six points – and present

numerator solutions in terms of amplitudes in Sec. 3.2. In Sec. 3.3 we detail the eight-point

case. We explain how to construct the eight-point partial amplitudes from numerators,

and confirm that the color-kinematic duality is satisfied but does not imply BCJ amplitude

relations. In Sec. 4 we discuss the implications of the eight-point result and future directions.

1.2 Review

1.2.1 The color-kinematic duality in Yang-Mills theory

In Yang-Mills theory, tree amplitudes can in general be written as

A(1, 2, . . . , n) =
∑
i

cini∏
αi
sαi

, (1.2.1)
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= −
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cu cs ct

Figure 1.1: Diagrammatic representation of the Jacobi relation.

where the sum runs over diagrams with only cubic vertices. In general, any terms not of

this form can be put into this form by multiplying and dividing by appropriate propagators.

Here, ci are products of structure constants and we suppress the coupling constant and

helicity labels. The ni are kinematic numerators: functions of momenta and polarization

vectors. Each color factor ci is in one-to-one correspondence with a diagram with a specific

propagator structure. The sαi in the denominator are the Feynman propagators for the i-th

diagram, where sαi are the kinematic invariants of the scattering process.

The ci are not an independent set and are related by Jacobi identities, as shown in

fig. 1.1. BCJ proposed the color-kinematics duality, wherein the numerators ni obey the

same relations and symmetries under relabelling [5]. For instance,

c1 = c2 + c3 ⇒ n1 = n2 + n3. (1.2.2)

c1 → −c1 ⇒ n1 → −n1. (1.2.3)

BCJ also noted that replacing ci with ni that satisfy the duality in (1.2.1) gives the scattering

amplitude M(1, 2, . . . , n) in gravity. This connection between gravity and gauge theory is

known as the double-copy property of gravity. At tree level, these properties have been

proven in various ways [8, 14, 30]. The color-kinematic duality is a basic property of gauge

and gravity theories that deserves further study, especially to understand the underlying
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symmetry.

1.2.2 Amplitude relations from the color-kinematic duality in Yang-

Mills theory

The simplicity of the color-kinematic duality and double-copy property suggests a novel

principle in gauge theories and gravity. Here, we review how amplitude relations follow from

the color-kinematic duality in Yang-Mills theory. We also note that such amplitude relations

arise from string theory [7, 25]. The color-kinematic duality has also been directly studied

in string theory [6].

In Yang-Mills theory, we can write the color-decomposition in (1.2.1) in terms of color-

ordered amplitudes and traces over gauge-group generators. At tree level, this trace decom-

position is [31]

A(1, 2, . . . , n) =
∑

σ∈Sn/Zn

Tr(T σ1T σ2 . . . T σn)A(σ1, σ2, . . . σn), (1.2.4)

where Sn/Zn is all leg orderings unrelated by cyclic permutation. The color-ordered ampli-

tudes are in terms of numerators divided by propagators, as in (1.2.1). These amplitudes

obey symmetry properties. They are invariant under cyclic permutations of indices. They

have symmetry under reversal: A(1, 2, . . . , n) = (−1)nA(n, . . . , 2, 1). These amplitudes obey

the photon-decoupling identity:

∑
σ∈cyclic

A(1, σ(2, 3, . . . , n)) = 0, (1.2.5)

and more generally the Kleiss-Kuijf (KK) relations [32].

A(1, {α} , n, {β}) = (−1)nβ
∑

{σ}i∈OP ({α},{βT })

A(1, {σ}i , n). (1.2.6)
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= + −

a

c̄

b ḡ

f

d̄ a a a

c̄ c̄ c̄

d̄ d̄ d̄

f f f

b b bḡ ḡ ḡ

Figure 1.2: Diagrammatic representation of the generalized Jacobi relation.

Here, OP ({α} ,
{
βT
}

) is the set of permutations which preserve the order of each set. The

set
{
βT
}

is {β} but with reversed ordering. Using these identities, we can choose a set of

(n− 2)! color-ordered amplitudes as a KK-independent basis.

In eq. (1.2.1) the tree amplitudes are written in terms of numerators. The duality between

color and kinematics immediately implies that we can write the amplitude in terms of the

same number of numerators as independent color factors. In principle, the (n−2)! amplitudes

and (n − 2)! numerators in this basis could uniquely specify each other. However, it turns

out that the numerators are not unique – they can be shifted by kinematic functions in

such a way that the basis amplitudes remain unchanged. See refs. [5, 6, 14] for details. This

freedom is a residual generalized gauge freedom, or “residual freedom”. In other words, the

(n− 2)! equations for the basis amplitudes in terms of basis numerators are non-invertible.

Only (n − 3)! of the (n − 2)! numerators are independent, resulting in (n − 2)! − (n − 3)!

amplitude relations, known as BCJ amplitude relations.

1.2.3 The three-algebra formulation of ABJM theory

We will consider ABJM theory, a theory of M2 branes [33]. This theory admits a natural Lie

three-algebra formulation analogous to the Lie two-algebra defining the gauge symmetry of

Yang-Mills theory. ABJM theory is a Chern-Simons-matter gauge theory with gauge-group

SU(N)×SU(N). Matter fields are bi-fundamental, and map between the two gauge groups:

they are written in terms of group elements (T a)bc̄ : V1 → V2 where V1 and V2 are the vector

spaces of group elements from the first and second SU(N) groups. Indices are barred to
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distinguish between the two vector spaces. The index a is an adjoint index, while indices

b, c̄ are fundamental and anti-fundamental. We do not use different notation for adjoint and

(anti-)fundamental indices as we often show only the adjoint indices. The reader should

keep in mind that multiplication of group elements involves contracting fundamental and

anti-fundamental indices. The group elements T a are related by a triple product:

[T a, T b; T̄ c̄] = fabc̄dT
d, [T a, T b; T̄ c̄] = T aT̄ c̄T b − T bT̄ c̄T a. (1.2.7)

Indices are raised and lowered with the metric Tr(T aT̄ b̄) = hab̄. The unbarred and barred

indices are antisymmetric amongst each other separately, but not together: they are adjoint

indices in two different gauge groups. For example, fabc̄d̄ = −f bac̄d̄ = f bad̄c̄. One can write

facb̄d̄ or fab̄cd̄ as they are the same. The structure constants obey a generalized four-term

Jacobi relation illustrated in fig. 1.2:

fabc̄ef
efḡ

d = fafḡef
ebc̄

d + f bfḡef
aec̄

d − fēf ḡc̄fabēd. (1.2.8)

ABJM amplitudes are only nonzero for even numbers of external particles due to the theory’s

bi-fundamental nature.

The color-ordering and numerator decomposition of ABJM amplitudes proceed along the

same lines as in Yang-Mills theory. The ABJM numerator decomposition takes the same

form (1.2.1), but the color factors are now products of the four-index structure constants

and the sum runs over diagrams with only quartic vertices. Unlike in Yang-Mills theory,

generic numerators in the three-algebra formulation of ABJM theory are non-local. The

structure constant has four indices, but the matter is coupled to the gauge field by a cubic

interaction. The propagators in the color-kinematic decomposition of ABJM amplitudes

(1.2.1) specify a graph with four-point interactions, and so some of the propagators that

specify three-point interactions must be absorbed into the numerator. The color factors

in the numerator decomposition can be expanded into the trace over strings of generators,
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schematically Tr(T aT̄ b̄ . . .), by using the following identities:

fabc̄d̄ = Tr([T aT̄ c̄T b − T bT̄ c̄T a]T̄ d̄), (1.2.9)

(T a)ij̄ (T̄ b̄)m̄n hab̄ = δm̄j̄ δin. (1.2.10)

The numerator decomposition can therefore be converted into a sum over color-ordered

amplitudes, just as in Yang-Mills theory. Color-ordered 2m-point amplitudes are defined by

A(1̄, 2, 3̄, . . . , 2m− 1, 2m) =
∑

σ∈S′2m/Z2m

Tr(T̄ σ̄1T σ2T̄ σ̄3 . . . T̄ σ̄2m−1T σ2m)

×A(σ̄1, σ2, σ̄3, . . . , σ̄2m−1σ2m). (1.2.11)

The set S ′2m/Z2m is all orderings that have alternating barred and unbarred legs and are

unrelated by cyclic permutation. The color-ordered amplitudes can be written in terms of

numerators. One color factor is the sum of different trace-strings with different signs, and

these signs determine the relative signs of the numerators in the color-ordered amplitudes.

For example, consider a color factor ci ≡ f 132̄4̄ = Tr([T 1T̄ 2̄T 3− T 3T̄ 2̄T 1]T̄ 4̄). The associated

numerator ni will enter A(12̄34̄) and A(32̄14̄), but with opposite signs. The color-ordered

ABJM amplitudes have symmetries similar to those of Yang-Mills amplitudes upon inversion

and cyclic permutation. For amplitudes with external bosonic states

A2m(1̄, 2, 3̄, . . . , 2m− 1, 2m) = A2m(3̄, 4, . . . , 2m− 1, 2m, 1̄, 2), (1.2.12)

A2m(1̄, 2, 3̄, . . . , 2m− 1, 2m) = (−1)2m−1A(1̄, 2m, 2m− 1, . . . , 3̄, 2). (1.2.13)

The amplitudes obey KK-type identities, though these identities are not entirely understood

beyond six points [28]. Such identities are linear relations between amplitudes with integer

coefficients, just as in Yang-Mills theory. In the following, we sometimes denote barred and

unbarred indices by even and odd particle labels. We do not need to keep track of ordering

9



between the two types of indices. For a more detailed review of ABJM theory’s three-algebra

formulation, see refs. [28, 34].

1.3 The color-kinematic duality in ABJM theory

Evidence for the color-kinematic duality in ABJM theory was recently found in tree-level

scattering amplitudes [26]. Testing the duality in ABJM theory proceeds just as in Yang-

Mills theory: requiring the numerators satisfy the duality between kinematics and color

generates BCJ amplitude identities, which can be verified by using the explicit amplitudes.

Details of how to calculate the explicit amplitudes, as well as some lower-point examples,

are described in ref. [35].

We describe the color-kinematic duality at four, six, and eight points. The color-kinematic

duality is trivially satisfied at four points. At six and eight points, we consider amplitudes

with bosonic external states. The six-point case is the first non-trivial instance of the duality

[28]. Next, we explicitly demonstrate the duality for six points as a warmup to our work at

eight points. Duality-satisfying six-point numerators in terms of amplitudes are provided, as

these do not appear elsewhere in the literature. At eight points, we show how to construct the

amplitudes in terms of numerators. Numerical analysis shows that the numerators satisfy the

color-kinematic duality but do not have any residual freedom – they are uniquely specified by

amplitudes. We give explicit expressions for the generalized Jacobi identities the numerators

satisfy and the eight-point amplitudes in terms of numerators in the attached files online [29].

All our analysis is for three dimensional on-shell momenta, consistent with the space-time

dimension of the theory. As ref. [27] found, implications of the color-kinematic duality change

when these conditions are relaxed: when momenta are off-shell or taken in more than three

dimensions, the freedom that produces the BCJ amplitude relation at six points is no longer

present.
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1.3.1 Four points

a b̄

cd̄
fab̄cd̄

Figure 1.3: The four-point diagram with its associated color factor. This diagram is the elementary
vertex of ABJM theory in the three-algebra formulation.

In the three-algebra formulation of ABJM theory, the vertex associated with fab̄cd̄ comes

from a four-point diagram, illustrated in fig. 1.3, with a non-local numerator. At four points,

there is only one independent color-ordered amplitude after accounting for amplitude symme-

tries. When assembling the indices on a structure constant, one must choose a convention:

whether to begin with an unbarred or barred index, and whether to move clockwise or

counter-clockwise. We chose to begin from an unbarred index and move clockwise in the

diagram. We also use the convention that all momenta are incoming. With these conventions

the four-point superamplitude is [35]

A(1, 2̄, 3, 4̄) =
δ(3)(P )δ(6)(Q)

〈14〉 〈34〉 fa1ā2a3ā4 . (1.3.1)

The delta functions conserve momentum Pαβ =
∑

i p
αβ
i and supermomentum QαI =

∑
i q
αI
i .

As we have N = 6 real supercharges, these can be grouped into 3 complex Grassmann-valued

spinors. We have qαIi = λαi η
I for the i-th particle. The label I is the index for the SO(6)

R-symmetry, and α labels the supercharge number, running from one to three [34, 35]. The

amplitude is written using spinor-helicity formalism (see e.g. [31]).
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1.3.2 Six points

a

b̄

c d̄

e

f̄
fab̄cgf

gd̄ef̄

Figure 1.4: The six-point diagram with its associated color factor. This diagram does not have
left-right reflection symmetry.

At six points, the color-kinematic duality holds [26, 27]. We present explicit formulas

showing how it holds. The six-point color factors are products of two structure constants,

and obey the generalized Jacobi identity (1.2.8). The full amplitude has nine independent

channels:

A(1, 2, 3, 4, 5, 6) =
c1n1

s123

+
c2n2

s156

+
c3n3

s126

+
c4n4

s134

+
c5n5

s125

+
c6n6

s124

+
c7n7

s136

+
c8n8

s145

+
c9n9

s146

. (1.3.2)

The kinematic invariants are sijk = (pi + pj + pk)
2. The pole structure specifies the diagram,

and so fixes the color factor up to an overall sign:

c1 = f 123
af

a456, c2 = f 561
af

a234, c3 = f 345
af

a612,

c4 = f 134
af

a562, c5 = f 521
af

a436, c6 = f 365
af

a124,

c7 = f 163
af

a254, c8 = f 541
af

a632, c9 = f 325
af

a416. (1.3.3)

There are five amplitudes independent under the KK-type relations. We choose the following
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amplitudes as our basis amplitudes:

A(1, 2, 3, 4, 5, 6) =
n1

s123

+
n2

s156

+
n3

s126

, A(1, 4, 3, 6, 5, 2) =
n4

s134

+
n5

s125

+
n6

s124

,

A(1, 6, 3, 2, 5, 4) =
n7

s136

+
n8

s145

+
n9

s146

, A(1, 4, 3, 2, 5, 6) = − n4

s134

− n2

s156

− n9

s146

,

A(1, 6, 3, 4, 5, 2) = − n7

s136

− n5

s125

− n3

s126

. (1.3.4)

The relative sign of each numerator is conveniently determined by switching to the trace

expansion of its color factor. Next, we require that the numerators satisfy the duality

between color and kinematics. Each numerator must obey the same identities as its sibling

color factor:

n5 = −n2 + n3 + n4, n6 = n1 − n2 + n4,

n8 = n1 − n3 + n7, n9 = n2 − n3 + n7.

We can choose {n1, n2, n3, n4, n7} as a basis independent under the color-kinematic dual-

ity. There are now five independent numerators, the same number as the KK-independent

amplitudes. Our set of KK-independent amplitudes are now

A(1, 2, 3, 4, 5, 6) ≡ A1 =
n1

s123

+
n2

s156

+
n3

s126

A(1, 4, 3, 6, 5, 2) ≡ A2 =
n4

s134

+
−n2 + n3 + n4

s125

+
n1 − n2 + n4

s124

A(1, 6, 3, 2, 5, 4) ≡ A3 =
n7

s136

+
n1 − n3 + n7

s145

+
n2 − n3 + n7

s146

A(1, 4, 3, 2, 5, 6) ≡ A4 = − n4

s134

− n2

s156

− n2 − n3 + n7

s146

A(1, 6, 3, 4, 5, 2) ≡ A5 = − n7

s136

− −n2 + n3 + n4

s125

− n3

s126

. (1.3.5)

We can solve for the numerators one by one and find that one numerator drops out of

our equations. To be concrete, we begin by solving for n1: choosing one of the amplitude-
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numerator equations above and solving for n1 in terms of an amplitude and the remaining

numerators, we substitute this expression for n1 into the remaining amplitude equations.

The equations now relate the five amplitudes to four numerators. We solve for n2 and n3

in the same way, leaving two equations that relate the five amplitudes to n4 and n7. When

solving for n4 in one equation and substituting the result into the remaining equation, we

find that n7 drops out. What remains is an equation relating the five amplitudes – this is

the BCJ amplitude relation. One of the five numerators is arbitrary. In other words, the

coefficient matrix of the numerators in the amplitude equations has rank four, while there

are five numerators. This is similar to the situation in Yang-Mills theory [5].

We may therefore choose one numerator to have an arbitrary value. As the remaining

numerators depend on this numerator, the remaining numerators depend on our choice.

A convenient choice is to simply set n7 to zero and solve for the remaining numerators

in terms of amplitudes. Imposing three-dimensional momentum conservation produces a

lengthy expression, so we display the solution using the original kinematic invariants:

n1 = s123

(
A1 +

A

s234

+
E

D

(
1

s345

− B

C

1

s234

))
, n2 = −A+

BE

CD
,

n4 = s134

(
−A4 +

(
A− BE

CD

)(
1

s234

+
1

s235

)
− E

D

1

s235

)
, n3 = −E

D
. (1.3.6)
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The quantities A,B,C,D,E have been defined for convenience and are

A =
− A3

s123
+ A1

s236

1
s123s235

− 1
s234s236

B =−
1

s235
+ 1

s236

s123

− 1

s236s345

C =
1

s123s235

− 1

s234s236

D =−B

−−
(

1
s234

+ 1
s235

)(
− 1
s134
− 1

s346
− 1

s356

)
+

1
s346

+ 1
s356

s134

s123

− 1

s134s234s356


+ C

−− 1
s134s346

+
− 1
s134
− 1
s346
− 1
s356

s235

s123

− 1

s134s345s356


E = C

− A2

s134
− A4

(
− 1
s134
− 1

s346
− 1

s356

)
s123

+
A1

s134s356

+ A

−
(

1
s234

+ 1
s235

)(
− 1
s134
− 1

s346
− 1

s356

)
+

1
s346

+ 1
s356

s134

s123

+
1

s134s234s356


 . (1.3.7)

We now substitute the solutions for n1, n2, n3, n4 into the expression for A5 in (1.3.5).

Since n7 drops out, it leaves behind a single nontrivial BCJ amplitude relation between the

five partial amplitudes. We have confirmed that this relation holds numerically in the actual

amplitudes by plugging in explicit values for the amplitudes, which were obtained in ref. [35].

The six-point case is discussed further in ref. [28], which gives the BCJ amplitude relation

and checks it for the superamplitude. While in Yang-Mills theory the freedom to adjust

numerators may be used to keep the color-kinematic numerators local, in the three-algebra

formulation of ABJM theory numerators are inherently non-local. The freedom to adjust n7

cannot be used to make the remaining numerators local functions.
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f ab̄c
mf

md̄nh̄f g ef̄
n f ab̄c

mf
mn̄gh̄fn̄

d̄ef̄

a

b̄

c d̄ e

f̄

gh̄ a

b̄

c d̄

e

f̄gh̄

Figure 1.5: The two diagrams that contribute numerators to the ABJM color-stripped amplitude.

The left diagram has a color factor of the form fab̄cmf
md̄nh̄fg ef̄

n . The external indices in the middle
are both barred or, for a different leg ordering than shown above, both unbarred. The right diagram
has a color factor of the form fab̄cmf

mn̄gh̄fn̄
d̄ef̄ . One middle index is barred while the other is not.

1.3.3 Eight points

The eight-point case proceeds in the same fashion as the six-point case. The two distinct

diagrams that contribute are shown in fig. 1.5. For clarity, we provide one color-stripped

amplitude from which all others are obtained by relabelling. In this amplitude, we label

each numerator by the color factor it is associated with, suppressing the summed indices on

the structure constants. For example, we denote the numerator associated with the color

factor f 12̄3
af

a4̄8̄bf 57 6̄
b as n123,48,576. In assigning the color-factors, we use the convention that

the summed indices of the color factors are as close together as possible, and the right-

most structure constant has an index which is higher than the left-most structure constant’s

indices. We suppress the bars and take odd and even labels to correspond to the barred and
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unbarred indices separately. The color-stripped amplitude then is

A(1, 2, 3, 4, 5, 6, 7, 8) =− n132,48,576

s123s567

− n354,62,718

s345s781

+
n324,51,768

s234s678

+
n546,73,182

s456s812

− n132,78,546

s123s456

− n354,12,768

s345s678

− n576,34,182

s567s812

− n718,56,324

s781s234

+
n576,18,324

s567s234

+
n718,32,546

s781s456

+
n132,54,768

s123s678

+
n354,76,182

s345s812

. (1.3.8)

All other color-stripped eight-point amplitudes can be obtained from this expression by re-

labelling. The signs of each numerator depends on the trace string’s contribution to each

color factor, similar to the Yang-Mills case [5]. The eight-point amplitude has 216 different

color factors, and therefore 216 corresponding numerators. We have checked that our nu-

merator representation of the color-stripped amplitudes obey the correct cyclic permutation

properties and KK-type identities as listed in ref. [28]. We repeat these symmetries below,

using the bar-unbar notation for clarity. The symmetries are

Cyclic shift by 2m: A(12̄34̄56̄78̄) = A(78̄12̄34̄56̄), (1.3.9)

Reversal: A(12̄34̄56̄78̄) = −A(18̄76̄54̄32̄), (1.3.10)

where m is an arbitrary integer. An example of an eight-point KK-type identity satisfied by

our amplitudes is

− A(12345876)− A(14325876) + A(16385274) + A(16385472)

+ A(16783254) + A(12763854) + A(14763852) + A(16783452)

+ A(16723854) + A(16743852) + A(16327854) + A(16347852)

+ A(16387254) + A(16387452) + A(14367852) + A(12367854) = 0. (1.3.11)

There are 57 amplitudes independent under the KK-type identities. We call these the KK

amplitudes. The basis was chosen by eliminating all linear dependence between amplitudes
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written in terms of numerators. As in Yang-Mills theory, we know the resulting linear ampli-

tude relations are not BCJ amplitude relations, because no generalized Jacobi relations have

been used. Eliminating the linear dependence between amplitudes in this step corresponds

to exhausting the KK-type amplitude relations. No closed form for the KK-type identities

have been found, but the number of basis amplitudes agrees with the result in ref. [28]. We

choose a set of KK amplitudes and present a sample below. The full set of equations is

contained in an attached file online [29].

A(12345876) =− n1

s123s876

− n2

s123s587

− n7

s123s458

+
n28

s587s612

− n30

s458s612

− n36

s345s612

− n136

s458s761

− n139

s345s761

+
n144

s234s761

+
n163

s234s876

+
n164

s234s587

+
n208

s345s876

,

A(12365478) =
n5

s123s478

− n8

s123s547

+
n9

s123s654

+
n48

s547s812

− n49

s654s812

− n51

s365s812

+
n154

s654s781

− n155

s365s781

+
n160

s236s781

− n171

s236s478

+
n173

s236s547

− n212

s365s478

,

A(12365874) =
n2

s123s587

− n3

s123s658

− n5

s123s874

+
n11

s412s587

− n12

s412s658

− n18

s365s412

− n100

s658s741

− n103

s365s741

+
n107

s236s741

+
n170

s236s587

+
n171

s236s874

+
n212

s365s874

.

The four-term generalized Jacobi relations the numerators must satisfy according to the

color-kinematic duality are also listed in an attached file online. These relations are solved,

and all numerators are specified by the 57 basis numerators. After imposing the Jacobi

relations, the 57 amplitude equations are expressed in terms of the 57 basis numerators.

Here, the number of KK amplitudes and numerators independent under the generalized

Jacobi relations are the same, just as in Yang-Mills theory. However, the surprise here is

that these equations turn out to be invertible. Solving the system analytically is difficult, but

it is straightforward to check invertibility numerically by using explicit values for the three-

dimensional momentum that obey momentum conservation. In other words, the numerators

have no residual freedom: each numerator is uniquely specified as a function of gauge-

invariant amplitudes. Without residual freedom, the eight-point amplitudes have no BCJ
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amplitude relations. The lack of BCJ amplitude relations is a surprising result.

At eight points, the color-kinematic duality is automatically satisfied. Through the nu-

merator decomposition the amplitudes obey the KK-type identities manifestly, and unlike

in Yang-Mills theory, there are no BCJ amplitudes relations to check.

1.4 Discussion

We have examined bosonic amplitudes through eight points in ABJM theory and found

that the duality between color and kinematics holds, but at eight points attendant BCJ

amplitude relations are not present. The color-kinematic duality specifies the eight-point

numerators as unique functions of gauge-invariant partial amplitudes. We also have given

explicit expressions necessary for analysis of ABJM amplitudes that do not appear in the

literature. At six points, we have solved for a basis of color-kinematic numerators in terms

of amplitudes. At eight points, we presented a set of amplitudes independent under the

Kleiss-Kuijf relations in terms of numerators, as well as the relations the numerators satisfy

according to the color-kinematic duality. The full eight-point expressions can be found in an

ancillary online file [29].

The eight-point amplitude-numerator decomposition we provided can be used to study

possible relations between ABJM amplitudes, or equivalently between ABJM numerators

[28]. A recent twistor string construction for ABJM theory may also provide insight [36].

BLG theory is a special case of ABJM theory, and possesses the color-kinematic duality,

residual freedom, and the double-copy property [28]. The mapping between BLG and ABJM

amplitudes is straightforward at four and six points, but is not fully understood at eight

points [28] and needs further investigation. While in ABJM theory the double-copy pro-

cedure leads to supergravity amplitudes at lower points, at eight points the double-copy

property fails [28]. One might suspect that there is a connection between the simultane-

ous disappearances of the double-copy property and residual freedom. Further study of the

eight point ABJM amplitudes may provide insight into the double-copy property through
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side-by-side comparison with BLG amplitudes.

Using the data we have provided, further analysis of the eight-point ABJM amplitudes

may provide important clues about the color-kinematic duality, residual freedom, and the

double-copy property. The presence of the color-kinematic duality in ABJM theory without

associated BCJ amplitude relations emphasizes the basic role numerators play in the duality

compared to the amplitude relations. The eight-point ABJM amplitudes are the lowest-

point amplitudes that allow the color-kinematic duality without possessing residual freedom

to rearrange the numerators or yielding gravity amplitudes via the double-copy property.

These amplitudes therefore provide an interesting avenue for further understanding the role

of these properties in the duality between color and kinematics.
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Chapter 2

Black holes from CFT: Universality of

correlators at large c

Two-dimensional conformal field theories at large central charge and with a sufficiently sparse

spectrum of light states have been shown to exhibit universal thermodynamics [37]. This

thermodynamics matches that of AdS3 gravity, with a Hawking-Page transition between

thermal AdS and the BTZ black hole. We extend these results to correlation functions of

light operators. Upon making some additional assumptions, such as large c factorization of

correlators, we establish that the thermal AdS and BTZ solutions emerge as the universal

backgrounds for the computation of correlators. In particular, Witten diagrams computed

on these backgrounds yield the CFT correlators, order by order in a large c expansion, with

exponentially small corrections. In pure CFT terms, our result is that thermal correlators

of light operators are determined entirely by light spectrum data. Our analysis is based on

the constraints of modular invariance applied to the torus two-point function.

2.1 Introduction

In classical physics, black holes have a clear meaning as representing the inevitable endpoint

of the gravitational collapse of suitably dense configurations of matter. In the quantum
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world, by contrast, the precise status of black hole solutions is a far more subtle question

that continues to provoke debate; see e.g. [38]. A basic question is whether standard black

hole geometries, realized in the quantum theory as coherent states of the gravitational field,

are in some sense close to the actual solutions resulting from the collapse of matter in a

particular microstate, or instead, do the actual solutions look dramatically different, with

the usual black hole only arising as an effective description after some sort of coarse graining?

Some version of the latter scenario seems nearly inescapable if one demands that black hole

evaporation be described by a unitary S-matrix governed by more-or-less ordinary laws of

physics (no macroscopic violations of locality, etc.) [39,40].

The AdS/CFT correspondence offers a framework to address such questions without re-

sorting to ad hoc speculations. In this paper we consider observables that are under good

theoretical control, namely boundary correlation functions of low dimension operators com-

puted in the thermal ensemble. We pose the question: under what conditions are such

correlation functions, at sufficiently high temperature, accurately computed by Witten dia-

grams in the standard black hole geometry?

We work in the context of the AdS3/CFT2 correspondence, which provides several techni-

cal advantages while retaining the essential physical elements present in higher dimensional

examples. Our guiding philosophy is that we wish to deduce the emergence of black hole

physics while only making well-motivated assumptions about the CFT in the low energy

and low temperature regime. The key feature that allows us to proceed in this manner is

modular invariance of the CFT partition function and correlators. A number of other works

have used modular invariance to probe the AdS/CFT correspondence, for example [41–49].

Our basic result can be stated as follows. Under some mild assumptions corresponding to

what one thinks of as a good holographic CFT at low energies, high temperature correla-

tion functions computed at large central charge are indeed given, order by order in bulk

perturbation theory, by Witten diagrams computed in the Euclidean BTZ geometry, with
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deviations being exponentially small in the central charge.1 To see a breakdown of the black

hole geometry at the level of thermal correlators one therefore needs to either examine these

exponentially small terms, or consider kinematical configurations, such as large Lorentzian

time separations, that take one outside our assumptions.

Our work is the natural extension of the work of Hartman, Keller, and Stoica (HKS) [37].

HKS assumed a sufficiently sparse spectrum of states at energies below the black hole thresh-

old, and then used modular invariance to deduce that at large c the thermal free energy

matches that of thermal AdS and BTZ in the low and high temperature regimes respec-

tively. We will assume the same sparseness conditions as HKS, and in addition make some

assumptions about the strength of couplings in the low energy theory. These assumptions

are described in more detail in the next section. We make reference to light (L), medium

(M), and heavy (H) operators,2 according to the value of their conformal dimension ∆.3

Light operators obey ∆ < ∆c, where ∆c is held fixed as c→∞. Medium operators lie in the

range ∆c < ∆ < c/12, where the upper limit is the black hole threshold. Heavy operators

obey ∆ > c/12, and create black hole microstates. Our approach is to compute a quan-

tity defined with respect to a given ∆c, perform an asymptotic expansion in 1/c, and then

send ∆c → ∞. We make the usual holographic CFT assumption of large c factorization,

which is the statement that correlators of light operators admit an asymptotic expansion

in powers of 1/
√
c, and that the spectrum of such operators organizes into single-trace and

multi-trace operators (a nice, general discussion may be found in [50]). Our next assumption

concerns the growth of light correlators computed in medium energy states; we assume that

such correlators grow at most polynomially in the medium energy dimension, which, as we

discuss, is the natural expectation. This assumption is necessary to ensure that correlators

of light operators computed at low temperature receive negligible contributions from states

of energy ∆ ∼ c, which would represent a breakdown of low energy effective field theory.

1In this work we only consider one-point and two-point correlators, but we expect our results to extend
to higher point correlators.

2Note that our usage of light, medium, and heavy differs from that of HKS.
3∆ = h+ h is the total scaling dimension.
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Finally we make a technical assumption regarding the expansion of low temperature thermal

correlators.

We then proceed to study the implications of modular invariance on one-point and two-

point thermal correlators. The one-point function is not so easy to study in isolation, because

when expanded as a sum over states the terms in the sum have no definite sign, making it

hard to deduce bounds. So we instead focus first on the two-point function, which does

admit an expansion in terms of positive quantities, and then later circle back to the one-

point function using these results. As already stated, our main result is that in the high

temperature regime, T > 1/2π, these correlators, to all orders in the 1/
√
c expansion,

are computed from Witten diagrams in the Euclidean BTZ geometry. Thermal one-point

functions have a typical size of 1/
√
c. From the bulk point of view, this is the statement

that scalar fields vanish in the classical limit, which we can think of as a version of a no-

hair theorem derived from CFT considerations. Of course, such a result is not surprising

given that HKS already established that the thermodynamics of the CFT is in universal

agreement with the hairless BTZ solution. We should also emphasize that this version of the

no-hair statement concerns solutions that dominate in the canonical ensemble; it allows for

the existence of novel solutions that dominate at fixed energy rather than fixed temperature.

The rest of this paper is organized as follows. In section 2, we review the HKS argument

that we extend to prove our main result. In section 3 we state and motivate the assumptions

necessary for our argument. In section 4, we use the modular bootstrap to prove one of

our main results: under our assumptions, thermal two-point functions of light operators are

determined by the light sector of the theory to all orders in an asymptotic expansion in

1/
√
c. In section 5, we show that our two-point function result implies that thermal one-

point functions of light operators are also determined by the light sector in the same way.

We conclude with a brief discussion of possible extensions of this work. Appendix A contains

certain calculational details that we omitted in section 4.
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2.2 Review of the HKS argument

In this section we review results from ref. [37] for the partition function of a 1+1-dimensional

large-c CFT living on a circle. We first divide the spectrum into light (L) and heavy (H)

states,

L = {E ≤ ε} , H = {E > ε} . (2.2.1)

However, we bring to the reader’s attention that in all other parts of this paper we use a

different definition of “light” (as in the introduction); in this section only we are adopting

the terminology in HKS. Energy is related to scaling dimension as

E = ∆− c

12
. (2.2.2)

The L,H contributions to the partition function are

ZL =
∑
L

e−βE, ZH =
∑
H

e−βE, (2.2.3)

where β is the inverse temperature and the sum is over all states in the relevant range.

HKS use modular invariance to show that at large c a theory with a sufficiently sparse light

spectrum obeys logZ ≈ logZL ≈ βc/12 at temperature β > 2π. The precise meaning of ≈

will become apparent.

The L,H contributions to the modular-transformed partition function (β → β′ = 4π2/β)

are denoted

Z ′L =
∑
L

e−β
′E, Z ′H =

∑
H

e−β
′E. (2.2.4)

Modular invariance implies

ZL − Z ′L = Z ′H − ZH . (2.2.5)

What ZL gains under modular transformation, ZH loses.

Assume β > 2π. We want a bound on ZH = Z ′H −ZL +Z ′L relative to ZL. Because every
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term in the partition function sum is positive, ZH can be bounded in terms of Z ′H ,

ZH =
∑
H

e(β′−β)Ee−β
′E ≤ e(β′−β)εZ ′H . (2.2.6)

This implies a bound on ZH − Z ′H ,

ZH − Z ′H ≤ Z ′H(e(β′−β)ε − 1). (2.2.7)

We can now use modular invariance (2.2.5) to exchange ZH − Z ′H for Z ′L − ZL to obtain a

bound on Z ′H in terms of ZL,

Z ′H ≤ (1− e(β′−β)ε)−1(ZL − Z ′L) ≤ (1− e(β′−β)ε)−1ZL. (2.2.8)

According to (2.2.6) this bound translates into a bound on ZH in terms of ZL.

ZH ≤
e(β′−β)ε

1− e(β′−β)ε
ZL. (2.2.9)

It follows that

lnZL ≤ lnZ = ln(ZL + ZH) ≤ lnZL − ln(1− e(β′−β)ε). (2.2.10)

Using modular invariance, one obtains a similar expression for β < 2π. So far, everything

holds for an arbitrary compact, unitary, CFT.

We now consider a family of CFTs with a large c limit. Taking ε to be independent of c,

we then have that at large c,

logZ =

 logZL +O(c0), β > 2π,

logZ ′L +O(c0), β < 2π .
(2.2.11)
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Next, it’s easy to see that logZL = βc/12 + O(c0) provided that the following sparseness

condition is obeyed,

ρ(E) . e2π(E+ c
12

) = e2π∆ E ≤ ε, (2.2.12)

where . is defined in footnote 4. We will have more to say about this assumption in the

next section. Under this assumption we then have

logZ =

 βc/12 +O(c0), β > 2π,

β′c/12 +O(c0), β < 2π .
(2.2.13)

This result for the partition function implies a Cardy density of states for E > c/12,

ρ(E) ≈ e2π
√

c
3
E, E > c/12, (2.2.14)

where the smooth function ρ(E) is obtained by averaging the microscopic density of states

over a small energy window.

ρ(E) is non-universal for 0 < E < c/12. However, the assumption (2.2.12) implies

log ρ(E) ≤ πc/6 + 2πE in this range, and at large c. These states never dominate in the

canonical ensemble.

The main takeaway message is that the sparseness assumption together with modular

invariance at large c implies a universal result for the leading behavior (in c) of the canonical

partition function, and this result furthermore matches the partition function obtained from

AdS3 gravity in the classical limit.

2.3 Assumptions

In this section we lay out the precise assumptions that will be invoked in our correlation

function analysis, and discuss the motivation for these assumptions, which come from ex-

pectations about which properties we expect of a CFT with a “good” holographic dual. In
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stating our assumptions we are thinking in terms of a family or sequence of CFTs such that

we can take c→∞ within this space of CFTs. Each member of the family is assumed to be

a compact, unitary, CFT.

In the following, light, medium, and heavy operators are defined as having scaling di-

mensions:

L = {0 ≤ ∆ ≤ ∆c} , M = {∆c < ∆ ≤ c

12
+ ε} , H = {∆ >

c

12
+ ε} . (2.3.1)

Here ε is held fixed as c→∞. The cutoff ∆c is taken to infinity after performing the large-c

expansion.

Assumption 1: Sparse spectrum

This condition is widely discussed in the AdS/CFT literature, e.g. [50,51], and a specific

version of it was noted in the last section. At the crudest level, we should demand that as

c → ∞ the number of local operators with dimension below any fixed value should remain

finite. A diverging number of operators could invalidate the usual loop expansion in the bulk:

a growing number of light fields running in loops could make loop diagrams compete with

or dominate over tree diagrams. HKS assume a specific version of this statement, namely

that the density of operators at dimension ∆ should obey4

ρ(∆) . e2π∆ , ∆ ≤ c

12
+ ε̃ . (2.3.2)

The quantity ε̃ is eventually taken to zero; we distinguish it from the quantity ε introduced

below, which remains finite at large c.

As reviewed in the previous section, HKS showed that their sparseness assumption on

4Following HKS, the inequality ex . ey means that limx/y ≤ 1. So, for example, the right hand side of
the inequality in (2.3.2) could be multiplied by a polynomial in ∆.
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the light spectrum implied that

ρ(∆) . e2π∆ , ∆ ≤ c

6
, (2.3.3)

as well as

ρ(∆) ≈ e2π
√

c
3

(∆− c
12

) , ∆ >
c

6
. (2.3.4)

The density of states (2.3.4) coincides with Cardy’s formula, but now in a different regime

of validity, since the derivation of Cardy’s formula is only valid for ∆� c at fixed c.

The results of HKS can also be stated in terms of the partition function as,

Z(β) ≈

 e
βc
12 , β > 2π

e
π2c
3β , β < 2π .

(2.3.5)

These partition functions coincide with those of thermal AdS or BTZ solutions in the bulk.

We should note that the sparseness condition (2.3.2) is rather mild, allowing in particular

for a stringy growth of states.

Assumption 2: Factorization of light correlators

We now make a standard assumption that corresponds to having a weakly coupled low

energy field theory in the bulk. Let {Oi} be a collection of operators whose dimensions are

all bounded in the large c limit. We assume the asymptotic expansion5

〈0|O1(x1) . . . On(xn)|0〉 ∼
∞∑
k=0

1

ck/2
G(k)
n (xi) , c→∞ . (2.3.6)

We also assume that the light operator spectrum can be organized into single-trace and multi-

trace operators. Namely, we have a collection of single-trace operators whose connected k > 2

point functions amongst each other vanish in the large c limit. Then we have multi-trace

operators whose dimension in the large c limit equals the sum of dimensions of their single-

5We assume that operators are normalized such that their two-point functions have unit coefficient.
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trace constituents, and whose correlators in the large c limit are obtained in terms of their

constituents by Wick contractions.

The objects G
(k)
n (xi) computed for single-trace operators are what one computes in the

bulk via Witten diagrams in AdS, order by order in the bulk loop expansion. Following [51],

we expect that there is a one-to-one correspondence between such CFT correlators that obey

crossing constraints and those obtained from theories in AdS. Note though that since the

sparseness condition allows for the bulk theory to be stringy in nature, when we refer to

“Witten diagrams” we are not demanding that the bulk theory necessarily be local with

higher derivative interaction terms suppressed at the AdS scale, rather we also admit the

case of bulk amplitudes computed from a worldsheet construction with string tension at

the AdS scale. The question of whether a more restrictive sparseness condition, along with

modular invariance, implies locality below the AdS scale is discussed in [52].

Assumption 3: Growth of light correlators in medium energy states

To state this assumption, we let {Oi} denote a collection of light operators, with ∆i < ∆c,

where the cutoff ∆c is held fixed as c→∞, and we let OA denote a medium operator, obeying

∆c < ∆A <
c

12
+ε. Our assumption is that for all sufficiently large ∆c and c, there exists some

number K and positive number p (which are allowed to depend on n and on the positions

xi) such that

|〈A|O1(x1) . . . On(xn)|A〉| < K(∆A)p . (2.3.7)

Essentially, we are allowing light correlators in medium states to grow with c as long as they

do so in a sub-exponential manner.

The bulk intuition behind this assumption is the following. We expect there to exist bulk

solutions with scalar fields taking macroscopic values, but which are not so heavy as to create

black holes. Finite gravitational back reaction allows for fields taking values φ ∼ √c, so that

the matter stress tensor behaves as Tµν ∼ c ∼ G−1
N . If now we compute the n-point function

of the CFT operator Oφ dual to the bulk field φ, we will obtain a result that behaves as cn/2.
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Our assumption allows for such behavior, but rules out a stronger exponential growth.

Assumption 4: Large c expansion of light thermal correlator

Finally we make what is, we believe, a rather mild assumption imposed purely on the

light operators, i.e. those with ∆ < ∆c as c → ∞. Working on the cylinder, we define the

light contribution to the thermal correlator as6

G
(L)
2 (φ, t; β) =

eβc/12

Z(β)

∑
L

e−β∆L〈L|O(φ, t)O(0, 0)|L〉 , ∆L,∆O < ∆c . (2.3.8)

For β > 2π, we perform an asymptotic expansion in 1/
√
c (as in Assumption 2), and then

take ∆c →∞ to obtain

G
(L)
2 (φ, t; β) =

∞∑
k=0

1

ck/2
G

(L,k)
2 (φ, t; β) . (2.3.9)

The nontrivial assumption here is the existence of the limit ∆c → ∞ for all the coef-

ficient functions G
(L,k)
2 (φ, t; β); in principle it is possible that the functions appearing in

the large c expansion grow with ∆c, as could potentially occur if the matrix elements

〈L|O(φ, t)O(0, 0)|L〉 are permitted to grow exponentially in ∆c for ∆L ∼ ∆c.

Given this assumption, the objects G
(L,k)
2 (φ, t; β) are what one obtains in the bulk com-

putation of the two-point correlator in thermal AdS from Witten diagrams. In such a

computation only light fields propagate in the bulk, with the contribution of virtual heavy

states assumed to be exponentially suppressed.

6We just consider the two-point function here, since that is all we will use, but the generalization is
obvious.
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2.4 Two-point function analysis

In this section we show that the Euclidean thermal two-point function of a light operator is

fixed by data about the light spectrum. Our result will be

〈O(φ, t)O(0, 0)〉β ≈


eβ

c
12

Z(β)

∑
A,B∈L e

−β∆Aet∆ABeiφJAB | 〈A|O|B〉 |2, β > 2π

eβ
′ c
12

Z(β)

(
2π
β

)2∆∑
A,B∈L e

−β′∆Ae
2πφ
β

∆ABei
2πt
β
JAB | 〈A|O|B〉 |2, β < 2π

(2.4.1)

where ≈ indicates equality up to corrections that are suppressed exponentially in ∆c, ε, or c.

The summation variables A and B run over a basis of light states with dimensions ∆A,∆B

and spins JA, JB. ∆AB stands for ∆A−∆B and similarly for JAB. All matrix elements lacking

a temperature-indicating subscript are to be evaluated on a cylinder (with circumference 2π)

and whenever the position of an operator O is left implicit it is to be understood as φ = 0,

t = 0.

The important point is that the right hand side of equation (2.4.1) depends only on the

dimensions and OPE coefficients of light operators.

The low temperature case of equation (2.4.1) will be established using the assumptions

of section 2.3 along with the constraint of modular covariance, which reads

〈O(φ, t)O(0, 0)〉β =

(
2π

β

)2∆ 〈
O(2π

β
t, 2π

β
φ)O(0, 0)

〉
β′
, β′ =

(2π)2

β
. (2.4.2)

With the low temperature result in hand, a final application of equation (2.4.2) immediately

yields the high temperature result.

The starting point of our analysis is the expression for the two-point function at any

temperature obtained from cutting the path integral along two time slices that separate the
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operators O and inserting complete sets of states A,B,

〈O(φ, t)O(0, 0)〉β =
eβc/12

Z(β)

∑
A

∑
B

e−β∆Aet∆ABeiφJAB | 〈A|O|B〉 |2 . (2.4.3)

The right hand side of equation (2.4.3) will sometimes be denoted G(φ, t; β) for brevity.

Given that each state A,B can be light, medium, or heavy, G(φ, t; β) has nine contri-

butions to consider. We will refer to these contributions as G(LL), G(LM), ... G(MH), G(HH),

where the first superscript refers to A and the second to B. We wish to prove the top case

of equation (2.4.1), which states that when β > 2π the function G is equal to G(LL) up to

exponentially small corrections from the other eight contributions. In subsection 2.4.1 we

argue from our assumptions that the seven contributions G(Mx), G(xM), G(LH), G(HL) are all

small, where x stands for L, M , or H. This leaves G(HH). We then present in subsection

2.4.4 an HKS-like argument that modular covariance demands G(HH) to be small.

2.4.1 Bounding the medium and off-diagonal contributions

In this subsection we use the assumptions about the light spectrum laid out in section 2.3

to argue that many of the contributions to equation (2.4.3) are small.

2.4.2 Medium contributions

The sum of the three quantities G(Mx) is given by

G(ML) +G(MM) +G(MH) =
eβc/12

Z(β)

∑
A∈M

e−β∆A 〈A|O(φ, t)O(0, 0)|A〉 (2.4.4)

where we used the fact that B runs over a complete set of states. Assumptions 1 and 3 above

bound the size of this sum as follows:

∣∣G(ML) +G(MM) +G(MH)
∣∣ ≤ eβc/12

Z(β)

∫ ∞
∆c

d∆ e(2π−β)∆K∆p . (2.4.5)
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The factor of e2π∆ comes from the upper bound on the density of states in assumption 1. The

upper limit of integration has been set to infinity rather than c/12 + ε, a valid step because

doing so only makes the inequality weaker. When β > 2π the integral is exponentially small

at large ∆c and we conclude that the three contributions7 G(Mx) are exponentially small in

∆c.

Exchanging A and B in equation (2.4.3) is equivalent to transforming (φ, t) to (−φ, β−t),

so we conclude that G(xM) is also small.

2.4.3 Heavy-light contributions

We now argue8 that the contributions G(LH), G(HL) are suppressed exponentially in c when

β > 2π. Because of the symmetry in A,B mentioned above, it is sufficient to focus on G(LH).

Setting φ = 0 for the moment, the contribution in question is

G(LH) =
eβc/12

Z(β)

∑
A∈L

∑
B∈H

e−β∆Ae(t−t0)∆ABet0∆AB |〈A|O|B〉|2 . (2.4.6)

A constant t0 in the range 0 < t0 < t has been introduced to be used in the next step.

Obviously the right hand side of equation (2.4.6) is independent of t0. The factor e(t−t0)∆AB

in the summand above is no larger than e(t−t0)(∆c−c/12), and since each term in the sum is

positive this implies

G(LH) ≤ e(t−t0)(∆c−c/12) e
βc/12

Z(β)

∑
A∈L

∑
B∈H

e−β∆Aet0∆AB |〈A|O|B〉|2 . (2.4.7)

7To proceed from smallness of the left hand side of (2.4.5) to smallness of the three terms individually,
we note that when φ = 0 each of the three terms is positive and that taking φ nonzero can only decrease
each term’s absolute value.

8A similar argument appears in [53]. Indeed, exponential suppression of G(LH) is a manifestation of their
result that the OPE converges exponentially fast.
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The inequality only weakens upon extending the sum over B ∈ H to a sum over all states:

G(LH) ≤ e(t−t0)(∆c−c/12) e
βc/12

Z(β)

∑
A∈L

e−β∆A 〈A|O(0, t0)O(0, 0)|A〉 . (2.4.8)

The first factor on the right hand side is exponentially small. Meanwhile, the rest of that

expression is zeroth-order in c by assumption 4. So equation (2.4.8) tells us the heavy-

light contribution is exponentially small in c relative to eβc/12. The extension to φ 6= 0

is immediate, because each term in equation (2.4.3) only decreases in absolute value upon

taking φ nonzero. We conclude that G(LH), G(HL) are suppressed exponentially in c.

2.4.4 Heavy-heavy bound from modular covariance

In this subsection, we use modular covariance to show that the contribution to equation

(2.4.3) from states A,B that are both heavy is suppressed, at β > 2π, relative to the full

sum. The argument, which parallels that of [37], is independent of any assumptions about

the CFT spectrum, OPE coefficients, or the size of the central charge. All we require is that

ε is large enough for the quantity

δ = ( β
2π

)2(∆+2)e−|β−β
′|ε (2.4.9)

to be small. We will find that G(HH) is suppressed relative to G by a factor of δ.

Modular covariance of equation (2.4.3) leads to an equivalent expression for the two-point

function:

〈O(φ, t)O(0, 0)〉β = (2π
β

)2∆ e
β′c/12

Z(β)

∑
A

∑
B

e−β
′∆Ae

β′
2π
φ∆ABe

2π
β
itJAB | 〈A|O|B〉 |2. (2.4.10)

We will call the right hand side of (2.4.10) G̃(φ, t; β) just as the right hand side of (2.4.3) was

called G(φ, t; β). The left hand sides of those equations are identical so of course G(φ, t; β) =

G̃(φ, t; β). This is the modular crossing equation. We will find that it puts nontrivial
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constraints on the matrix elements 〈A|O|B〉.

We now Fourier expand G(φ, t; β) and G̃(φ, t; β) as functions of φ and t.

G(φ, t; β) =
∞∑
n=0

∞∑
m=0

Gnm cos(nφ) cos(2πmt
β

) , (2.4.11a)

G̃(φ, t; β) =
∞∑
n=0

∞∑
m=0

G̃nm cos(nφ) cos(2πmt
β

) . (2.4.11b)

Again, the two functions are equal so Gnm = G̃nm. Only cosine modes appear because the

functions are even under the reflections φ→ 2π − φ and t→ β − t. Performing the Fourier

transforms term by term inside the sums (2.4.3), (2.4.10) yields

Gnm = 2β
eβc/12

Z(β)

∑
A,B

|JAB |=n

(
∆AB

(
e−β∆B − e−β∆A

)
β2∆2

AB + (2πm)2

)
| 〈A|O|B〉 |2 (2.4.12a)

G̃nm = 2β′
(

2π

β

)2∆
eβ
′c/12

Z(β)

∑
A,B

|JAB |=m

(
∆AB

(
e−β

′∆B − e−β′∆A
)

β′2∆2
AB + (2πn)2

)
| 〈A|O|B〉 |2 . (2.4.12b)

When ∆A = ∆B the summands of (2.4.12a), (2.4.12b) are to be defined via their limits as

∆A → ∆B, which are finite and nonnegative.

Note that the contribution from any pair of states A,B to either sum (2.4.12a), (2.4.12b)

is nonnegative. This fact is central to the argument below, which parallels the original one

applied by HKS to the partition function. We begin by separating out the heavy-heavy

contribution to each sum (2.4.3),(2.4.10):

G(φ, t; β) = G(L)(φ, t; β) +G(HH)(φ, t; β) (2.4.13a)

G̃(φ, t; β) = G̃(L)(φ, t; β) + G̃(HH)(φ, t; β) . (2.4.13b)

We define G(HH) to be the contribution to (2.4.3) from states A,B that are both heavy, as

above. Meanwhile G(L) is the contribution from all other pairs of states9. G̃(HH), G̃(L) are

9Note that G(L) is distinct from G(LL) (although the conclusion of subsection 2.4.1 is that these functions’
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defined in the same way.

The Fourier modes of G(HH), G̃(HH) are found by restricting sums (2.4.12) to heavy states:

G(HH)
nm = 4β

∑
A∈H

∑
B,∆B≥∆A
|JAB |=n

(1
2
)δAB

e−βEA

Z(β)

(
−∆AB

(
1− eβ∆AB

)
β2∆2

AB + (2πm)2

)
| 〈A|O|B〉 |2 (2.4.14a)

G̃(HH)
nm = 4β′(2π

β
)2∆

∑
A∈H

∑
B,∆B≥∆A
|JAB |=n

(1
2
)δAB

e−β
′EA

Z(β)

(
−∆AB

(
1− eβ′∆AB

)
β′2∆2

AB + (2πn)2

)
| 〈A|O|B〉 |2 .

(2.4.14b)

Above we used the symmetry in A,B of equations (2.4.12) to arrange for ∆A to be less than

or equal to ∆B inside the sum. For proper counting we introduced a factor of 2(1/2)δAB

which is 1 if A = B and 2 otherwise. (There is no loss of generality in assuming B runs over

the same basis as A.)

It’s important to keep in mind for what follows that β > 2π. Following HKS we note

that we can bound the Boltzmann factor in equation (2.4.14a) for G
(HH)
nm in the following

way

e−βEA = e−(β−β′)EAe−β
′EA ≤ e−(β−β′)εe−β

′EA . (2.4.15)

This is the step in which it is important that the lightest heavy state has energy ε larger

than zero. We then use the fact that every term in the sum G
(HH)
nm is positive to write

G(HH)
nm ≤ 4βe−(β−β′)ε

∑
A

heavy

∑
B,∆B≥∆A
|JAB |=n

(1
2
)δAB

e−β
′EA

Z(β)

(
−∆AB

(
1− eβ∆AB

)
β2∆2

AB + (2πn)2

)
| 〈A|O|B〉 |2 .

(2.4.16)

difference is small).
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The quantity in parentheses in (2.4.16) is bounded by

(
−∆AB

(
1− eβ∆AB

)
β2∆2

AB + (2πn)2

)
≤
(
β

β′

)(−∆AB

(
1− eβ′∆AB

)
β′2(∆2

AB + (2πn)2

)
. (2.4.17)

To check (2.4.17), first note that the denominator on the left is ≥ the one on the right. And

second note that the fraction (1− eβ∆AB)/(1− eβ′∆AB) is an increasing function of ∆AB < 0

and so is bounded from above by its limit as that difference goes to zero, which is β/β′.

From (2.4.17) it follows that

G(HH)
nm ≤ 4β2

β′
e−(β−β′)ε

∑
A∈H

∑
B,∆B≥∆A
|JAB |=n

(1
2
)δAB

e−β
′EA

Z(β)

(
−∆AB

(
1− eβ′∆AB

)
β′2∆2

AB + (2πn)2

)
| 〈A|O|B〉 |2.

(2.4.18)

We recognize the right hand side as proportional to G̃
(H)
mn and conclude that

G(HH)
nm ≤ δG̃(HH)

mn
(2.4.19)

with δ being the constant defined in equation (2.4.9).

Equation (2.4.19) is analogous to the starting point, equation (2.2.6), of HKS’s analy-

sis for the partition function: G(HH), G̃(HH) and δ play the roles of ZH , Z ′H and e(β′−β)ε,

respectively. From that starting point a clever modular invariance argument (reviewed in

section 2.2) showed that the heavy contribution to the low temperature partition function is

suppressed relative to the light contribution. In appendix 2.7 we apply the same argument

to the two-point function’s Fourier modes. The result is

G(HH)
nm ≤ δ

G
(L)
mn + δG

(L)
nm

1− δ2
. (2.4.20)

The right hand side of this result is suppressed by a factor of δ relative to G
(L)
mn and

G
(L)
nm, which are of order unity by the results of section 2.4.1. We conclude that G

(HH)
nm is
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suppressed by δ relative to unity. That this holds for every Fourier mode implies the function

G(HH)(φ, t; β) is itself suppressed by a factor of δ. That is, it is exponentially small in the

parameter ε.

2.4.5 Conclusion of this section

From the results of subsections 2.4.1 and 2.4.4, equation (2.4.1) is established. At β > 2π,

the right hand side of that equation is what one computes using Witten diagrams in thermal

AdS. To be precise, if one expands the right hand side in powers of 1√
c

and then takes the

limit ∆c → ∞ order-by-order one recovers the Witten diagram expansion in powers of 1√
c
.

At β < 2π the same conclusion holds with thermal AdS replaced by a BTZ black hole of the

appropriate temperature. This follows from the low temperature statement by bulk modular

invariance: The Euclidean BTZ black hole of inverse temperature β is isometric to thermal

AdS at inverse temperature β′, and the isometry involves exchanging the angular and time

coordinates as in equation (2.4.2).

2.5 One-point function

With our two-point function result in hand, we now turn to the one-point function. We first

derive an upper bound on the one-point function. We start with the decomposition of the

two-point function,

〈O(0, β/2)O(0, 0)〉β =
1

Z(β)

∑
A,B

e−
β
2

(EA+EB)|〈A|O|B〉|2 . (2.5.1)

The right hand side is bounded below by the contribution from A = B, hence

〈O(0, β/2)O(0, 0)〉β ≥
1

Z(β)

∑
A

e−βEA|〈A|O|A〉|2 . (2.5.2)

39



Now, using the elementary fact that x2 ≥ 2x− 1 for real x, we obtain

〈O(0, β/2)O(0, 0)〉β ≥
2

Z(β)

∑
A

e−βEA|〈A|O|A〉| − 1 . (2.5.3)

(2.5.3) implies a bound on the contribution to the one-point function from any collection of

states,

1

Z(β)

∑
A∈ψ

e−βEA|〈A|O|A〉| ≤ 1 + 〈O(0, β/2)O(0, 0)〉β
2

, (2.5.4)

where ψ denotes any subspace of the full Hilbert space. Since |〈O〉β| ≤ 1
Z(β)

∑
A e
−βEA|〈A|O|A〉|

we also deduce a bound on the full one-point function

|〈O〉β| ≤
1 + 〈O(0, β/2)O(0, 0)〉β

2
. (2.5.5)

These are exact bounds, valid in any theory for any temperature. For our purposes, the

main fact we will use is that since the two-point function is finite in the large c limit, the

same is true of the left hand side of (2.5.4).

We now show that for β > 2π the contributions to the one-point function from medium

and heavy states are exponentially suppressed compared to the light state contribution. For

the medium state contribution we proceed as in (2.4.5),

∣∣∣∣∣ 1

Z(β)

∑
A∈M

e−βEA〈A|O|A〉
∣∣∣∣∣ ≤ 1

Z(β)

∑
A∈M

e−βEA|〈A|O|A〉|

≤ e
βc
12

Z(β)

∫ ∞
∆c

d∆e(2π−β)∆K∆p . (2.5.6)

For β > 2π the last expression is exponentially small in ∆c. For the heavy contribution we
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note that

∣∣∣∣∣ 1

Z(β)

∑
A∈H

e−βEA〈A|O|A〉
∣∣∣∣∣ ≤ 1

Z(β)

∑
A∈H

e−βEA|〈A|O|A〉| (2.5.7)

together with (2.5.4) implies that the heavy contribution has a finite large c limit. In par-

ticular, this holds for any β sufficiently greater than 2π such that δ � 1. But then for any

larger β the right hand side is exponentially small in c, since Z(β)−1e−βEA is exponentially

small for all heavy states.

Since the medium and heavy state contributions are exponentially small, we conclude

that

〈O〉β ≈
1

Z(β)

∑
A∈L

e−βEA〈A|O|A〉 , β > 2π (2.5.8)

as desired. A modular transformation then gives the high temperature result,

〈O〉β ≈
(

2π

β

)∆
1

Z(β)

∑
A∈L

e−
4π2

β
EA〈A|O|A〉 , β < 2π (2.5.9)

Since the three-point coefficients 〈A|O|A〉 of single-trace operators fall off at least as fast as

1/
√
c according to Assumption 2, it follows that the generic one-point function of a single-

trace operator is O(1/
√
c). Double-trace operators can have O(1) expectation values, in

accord with (2.5.5).

In [45] it was pointed out that modular invariance implies that the one-point function in

the high temperature limit behaves as

〈O〉β ≈
(

2π

β

)∆
1

Z(β)
e−

4π2

β
Eχ〈χ|O|χ〉 , β → 0 , (2.5.10)

where |χ〉 denotes the lightest state such that 〈χ|O|χ〉 6= 0. This results holds for all c.

It was further noted that this asymptotic formula for the one-point function has a simple

41



bulk interpretation in terms of a χ particle winding around the BTZ horizon. What we

have shown here is that in a large c theory satisfying our assumptions, the analogous result

holds, except now we should sum over all light states winding around the horizon, including

multiparticle states. This then yields the one-point function for all β < 2π.

2.6 Discussion

We conclude with a few comments.

Our main CFT result is that, under our assumptions, one and two point correlators of

light fields at any temperature are determined entirely by light spectrum data. Translated

into bulk gravity language, the statement is that thermal AdS and the BTZ black hole

emerge as the universal backgrounds for the computation of thermal one and two-point

functions of light operators, and only the propagation of light fields on these backgrounds

need be considered. One obvious extension is to generalize to n-point functions of light

operators. We anticipate no fundamental obstacles here, although the analysis will become

more complicated.

Our result for the thermal two-point function assumes that the time separation is purely

Euclidean and is held fixed as c → ∞. Indeed, we expect our results to breakdown if we

instead allow for Lorentzian time separations that can grow with c, since in this case we would

otherwise violate bounds on the size of such correlators: perturbative Witten diagrams yield

a result that decays exponentially to zero at late times, whereas unitarity places a lower

bound on the long time average [54]. It would be interesting to explore in detail the regime

of validity of our results once we relax the conditions on the time arguments.

It may be instructive to compute correlators in symmetric product orbifold theories as an

explicit realization of our assumptions. Such theories are known [37] to saturate the density

of states allowed by the HKS analysis, and their correlators admit a 1/
√
c expansion. Of

course, such theories, being free, are far from having a bulk description in terms of Einstein

gravity (for example, they are not chaotic [55]), but this is the price paid for calculability on
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the CFT side. Some related computations were carried out in [56].

It would be very interesting if analogous statements to what we have shown here could

be established in higher dimensions. On general grounds we expect a similar result to hold,

but it is clear that new issues arise. Namely, modular invariance acts in a more complicated

way in higher dimensions, relating CFTs on distinct spaces to one another rather than just

changing the temperature [57–60]. The bulk analog of this statement is that the black hole

solution — AdS-Schwarzschild — is no longer locally AdS as for BTZ, but depends on the

details of the bulk theory, such as the presence of higher derivative terms and so on. The

story will thus necessarily be more intricate.

2.7 Appendix: Details of modular crossing analysis

In subsection 2.4.4 we showed that the heavy contributions to the Fourier modes of the

two-point function satisfy an inequality (2.4.19), which we repeat here for convenience:

G(HH)
nm ≤ δG̃(HH)

mn . (2.7.1)

The indices n,m are transposed between the left and right hand sides. To treat this com-

plication it is convenient to combine the above relation and its image under n ↔ m into a

single inequality:  G
(HH)
nm

G
(HH)
mn

 ≤
 0 δ

δ 0


 G̃

(HH)
nm

G̃
(HH)
mn

 . (2.7.2)

We use a vector inequality such as (2.7.2) to indicate that the comparison holds separately

for each component.

Our argument so far has not invoked modular invariance. That is, we have not yet used

the fact that G
(HH)
nm + G

(L)
nm = G̃

(HH)
nm + G̃

(L)
nm. We use it now. Since G̃

(L)
nm is nonnegative,

modular invariance implies G
(L)
nm ≥ G̃

(HH)
nm −G(HH)

nm , which in light of equation (2.7.2) implies
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 G
(L)
nm

G
(L)
mn

 ≥
 1 −δ

−δ 1


 G̃

(HH)
nm

G̃
(HH)
mn

 . (2.7.3)

One can multiply both sides of a strict vector inequality by a matrix as long as every element

of the matrix is nonnegative. In particular as long as |δ| < 1 we can multiplying both sides

of (2.7.3) by the inverse of the matrix on the right hand side. The result is

 G̃
(HH)
nm

G̃
(HH)
mn

 ≤ 1

1− δ2

 1 δ

δ 1


 G

(L)
nm

G
(L)
mn

 . (2.7.4)

Inequality (2.7.4) is the analog of (2.2.8) in the HKS argument. We now substitute (2.7.4)

into the right hand side of the original inequality (2.7.2), a valid step because the matrix

there has nonnegative elements, to get

 G
(HH)
nm

G
(HH)
mn

 ≤ δ

1− δ2

 δ 1

1 δ


 G

(L)
nm

G
(L)
mn

 . (2.7.5)

The above relation is analogous to (2.2.9) in the HKS argument. The upper component is

G(HH)
nm ≤ δ

G
(L)
mn + δG

(L)
nm

1− δ2
, (2.7.6)

which is equation (2.4.20).
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Chapter 3

Localized Excitations from Localized

Unitary Operators

Localized unitary operators are basic probes of locality and causality in quantum systems:

localized unitary operators create localized excitations in entangled states. Working with an

explicit form, we explore properties of these operators in quantum mechanics and quantum

field theory. We show that, unlike unitary operators, local non-unitary operators generically

create non-local excitations. We present a local picture for quantum systems in which local-

ized experimentalists can only act through localized Hamiltonian deformations, and therefore

localized unitary operators. We demonstrate that localized unitary operators model certain

quantum quenches exactly. We show how the Reeh-Schlieder theorem follows intuitively

from basic properties of entanglement, non-unitary operators, and the local picture. We

show that a recent quasi-particle picture for excited-state entanglement entropy in confor-

mal field theories is not universal for all local operators. We prove a causality relation for

entanglement entropy and connect our results to the AdS/CFT correspondence.
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3.1 Introduction

In this work, we study correlation functions in time-dependent states and in theories with

time-dependent Hamiltonians. Our results apply to pure states in quantum mechanics and

local quantum field theory. Our primary goal is to detail the universal role of localized unitary

operators in creating localized excitations. A brief overview of our results is as follows. Just

as every observable is represented by some Hermitian operator, every localized excitation

is created by some localized unitary operator. If a localized operator is non-unitary, the

excitation it creates is not necessarily localized. For example, a localized unitary operator

eiαO(x) creates a localized excitation while the localized non-unitary operator eαO(x) does

not. Localized experimentalists can only act on states by deforming the Hamiltonian by a

localized quantity, H → H + Hloc(t), and this is equivalent to acting with the Heisenberg-

picture localized unitary operator T
(
ei
∫
dtHloc(t)

)
on the state. As they create localized

excitations, localized unitary operators are tied to basic questions of causality.

This manuscript extends contemporary studies of excited-state entanglement entropy in

conformal field theories (CFTs) [61–68]. Our work builds upon the large body of work

on localized excitations and real-time perturbation theory (see, for example, [69–79]). In

addition to presenting our own results, we reinterpret some well-known results from this

body of literature and from quantum information theory that are relevant. We revisit these

results to give a coherent picture for the connection between localized unitary operators and

localized excitations. We present all results in elementary terms and eschew a complete or

axiomatic treatment of the topics discussed. Our purpose is to make contact with modern

studies of entanglement entropy in CFT, and a more formal treatment of locality is outside

the scope of this work.

While we explore how localized unitary operators create localized excitations, these op-

erators play many other well-known roles in quantum systems. Specific forms of localized

unitary operators create squeezed states, coherent states, generalized coherent states, and
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implement local gauge transformations [80–84]. Localized unitary operators are also impor-

tant in large-N and large-dimension limits in quantum mechanics, gauge theories, and the

AdS/CFT correspondence.

We now summarize each section. In section 2, we define what we mean by localized and

review related concepts. Suppose a Hilbert space H can be written as a tensor product

Hilbert space H = H1 ⊗ H2. An excitation of state |Ψ〉 ∈ H can be represented by acting

with some operator Oe on |Ψ〉, where Oe is suitably normalized so that Oe |Ψ〉 has unit norm.

This excitation is localized in H1 if

〈Ψ|O†eOOe|Ψ〉 = 〈Ψ|O|Ψ〉 (3.1.1)

for all operators O local in H2. O is local in H2 when O can be written as

O ≡ I1 ×O2. (3.1.2)

Here I1 is the identity in H1 and O2 : H2 → H2. In field theory, H1,H2 can be chosen

as the Hilbert spaces of the theory restricted to a subregion A of a Cauchy surface and

its complement Ac. An excitation localized to A does not affect correlation functions of

operators inserted at points spacelike-separated from all points in A. The familiar local

operators O(x) in field theory are localized to the Hilbert space of every arbitrarily small

neighborhood of x. Localized operators can be built from operators that are local in different

points or Hilbert spaces. For example, if f(x) has support in region R, smeared operator∫
dxf(x)O(x) is localized in R. We address subtleties involved in defining localization for

gauge theories.

In section 3, we review real-time perturbation theory [69, 70]. This perturbation theory

gives corrections to correlation functions in time-dependent states perturbatively in a time-

dependent interaction Hamiltonian. Perturbation theory for the S-matrix calculates in-

out matrix elements 〈Ψout|Ψin〉, while real-time perturbation theory calculates in-in matrix
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elements 〈Ψin|O1 . . .On|Ψin〉. Real-time perturbation theory makes manifest how localized

interaction Hamiltonians create localized excitations.

In section 4, we present a coherent picture for time-dependent operations in quantum

mechanics and field theory. We call this picture the local picture of quantum systems. In the

local picture, an experimentalist can only alter states through deforming the Hamiltonian.

A localized experimentalist can only make localized deformations. The excitations that

are natural in the local picture are created by acting with a time-ordered localized unitary

operator on a state, for example the Heisenberg-picture operator T
(
ei
∫
dtJ(t)O(t)

)
. As we

show later, the familiar local non-unitary operators of field theory generically create non-

localized excitations, so the local picture reveals that local experimentalists cannot act with

generic local non-unitary operators.

In section 5, we present results in quantum mechanics. We show how local unitary oper-

ators alter entangled states locally, while local non-unitary operators alter entangled states

non-locally. Local non-unitary operators can be written as state-dependent non-local uni-

tary operators. In the language of quantum information, non-unitary operators implement

non-local quantum gates. Our results explain the Reeh-Schlieder theorem intuitively. The

superposition of two local excitations may not be a local excitation itself in entangled states.

For instance, the sum of two unitary operators U1 + U2 is not necessarily unitary. We show

that the natural way to combine localized excitations created by operators U1,U2 to pro-

duce another localized excitation is by acting with the operators in succession: U1U2. This

prescription for combining localized excitations follows from the local picture.

In section 6, we move on to quantum field theory, our main focus. We show that localized

unitary operators create localized excitations. The reason is as follows. If x, y are spacelike-

separated, local operators O,O′ inserted at x, y commute:

[O(x),O′(y)] = 0. (3.1.3)
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It follows immediately that

〈Ψ|eiO(x)O′(y)e−iO(x)|Ψ〉 = 〈Ψ|O′(y)|Ψ〉 . (3.1.4)

If x, y are not spacelike-separated, then the above equality generically does not hold. For

example, in the vacuum of a free real scalar field, the Baker-Campbell-Hausdorff lemma gives

〈0|eiαφ(x)φ(y)e−iαφ(x)|0〉 = iαGR(x− y) + . . . , (3.1.5)

where α can be treated as an expansion parameter and x is restricted to the future of y. The

retarded Green’s function GR(x − y) vanishes when x − y is spacelike. More generally, the

commutator of operators 〈[O(x),O′(y)]〉 diagnoses causality in field theory, and we see that

this commutator is in fact the order α correction to 〈O′〉 in the excited state e−iαO(x) |Ψ〉.

We explore the properties of localized unitary operators, including what we call separable

and non-separable localized unitary operators. Separable unitary operators like ei(O(x)+O(y))

create excitations at x, y that are not entangled with each other. Acting with non-separable

unitary operators like eiO(x)O(y) create excitations at x, y that may be used to violate causality.

As such, non-separable unitary operators cannot be applied to states under time evolution

in local quantum field theory. We give a criterion to test separability.

We show that local non-unitary operators can create non-local excitations in field theory.

We provide examples and show where the intuition that arbitrary local operators create local

excitations breaks down. We provide evidence that certain local non-unitary operators do

create local excitations and give examples of others that do not.

In section 7, we apply lessons from the previous sections to give new results concerning the

entanglement entropy of excited states in field theory. Recently, a compelling quasi-particle

picture has emerged from calculations of entanglement entropy in CFTs [61, 63–65, 85]. It

has been suggested that local operators create entangled pairs of quasi-particles at their

insertion point [64]. We provide evidence that this picture applies to local operators with
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definite conformal dimension. It is known that the quasi-particle picture is invalid for certain

theories [65,86], and using the example of the operator eαO(x), we show how this picture fails

to extend to all local operators even within theories for which the picture is expected to

be accurate. We extend a result in ref. [87] by proving a general causality relation for

entanglement entropy.

3.2 Background: Locality in Quantum Systems

We will review locality and causality criteria in quantum mechanics and quantum field theory.

Causality in field theory is a statement about the commutators of operators. If spacetime

points x, y are spacelike-separated, then any two local operators O1(x),O2(y) commute.

[O1(x),O2(y)] = 0. (3.2.1)

An analogous statement holds if the operators are smeared out over some spacetime region.

The vanishing of the commutator for spacelike separation is equivalent to a statement about

the branch cuts of all Euclidean correlators that contain O1,O2.

We may state a locality condition based on whether local operations affect observables

non-locally. We state a version of this condition first in quantum mechanics. Express the

Hilbert spaceH of some system as a tensor product Hilbert spaceH = HA⊗HB of subsystems

A,B. First we define local operators.

Definition 1 The operator O(B) is local in HB when it can be written as

O(B) ≡ IA ⊗OB. (3.2.2)

Here, OB : HB → HB and IA is the identity in HA.

As we will show in section 5, acting with operator O(B) may change the expectation value

of some operator O(A) local in HA, and therefore some measurement performed by an
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experimentalist with access to subsystem A but not B. We define the relevant notions of

local and non-local changes in state.

Definition 2 Suppose operator O is normalized in a state |Ψ〉 so that 〈Ψ|O†O|Ψ〉 = 1.

Suppose also that there exists an operator O(B) local in HB such that

〈Ψ|O†O(B)O|Ψ〉 6= 〈Ψ|O(B)|Ψ〉 . (3.2.3)

If for all O(A) local in HA,

〈Ψ|O†O(A)O|Ψ〉 = 〈Ψ|O(A)|Ψ〉 , (3.2.4)

then O changes the state |Ψ〉 locally in HB. Otherwise, O changes the state non-locally.

It should be understood that when we assess locality by expectation values of operators, we

are considering only operators that correspond to observables. We can also assess locality

with the reduced density matrix ρA. If acting with O does not change ρA, in other words

ρA(O |Ψ〉) = ρA(|Ψ〉), (3.2.5)

then O changes the state locally in HB. Local is a special case of localized. A localized

operator is local in more than one Hilbert space.

The definitions we have given for local operators and changes in state apply to field

theory. So-called local operators in field theory are local in the quantum-mechanical sense

we have defined. Operator O(x) is local in H(x), the Hilbert space of the theory restricted to

point x. When referring to local operators O(x), we will refer to the point x as the “insertion

point” of O. The insertion points of a Wilson loop are the points along its integration path.

An operator inserted at multiple points is non-local. For example O(x)O(y) is non-local but

localized to x, y.

We define localized excitations in field theories. This definition is the same as definition
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1 but we state it using field theory terminology for clarity. First, we define what we mean

by an excitation.

Definition 3 In field theory, we call O |Ψ〉 an excitation of the state |Ψ〉 with operator O.

The following definition of localized excitations is also known as “strict localization” [72].

Definition 4 Consider O(A) inserted in subregion A of a Cauchy surface. The complement

of A on the Cauchy surface is subregion B. An operator O creates an excitation that is

localized to B if

〈Ψ|O†O(A)O|Ψ〉 = 〈Ψ|O(A)|Ψ〉 ∀ O(A). (3.2.6)

The definitions we provided extend in an obvious way to describe operators and excitations

localized to a region of spacetime, rather than just a region of a Cauchy surface. A local

excitation is an excitation that is localized to a single point. We will sometimes refer to

local and non-local excitations of the state in quantum mechanics if we make statements

that apply to both quantum mechanics and field theory. Various statements we will make

also apply in a natural way to non-localized operators, which are operators inserted in every

point in a Cauchy surface.

In gauge theories, we must fix a gauge before checking the above condition, or we may

simply work in terms of gauge-invariant operators. We must also fix a gauge in order to

use the reduced density matrix ρA to diagnose locality as the density matrix is not gauge-

invariant. In this work, we will rarely mention these subtleties involved with gauge theories,

as our statements can often be extended in an obvious way to these theories.

The ability to change a state through a non-local excitation should not be confused

with the inability for localized experimentalists to transmit information between spacelike-

separated entangled systems by performing local measurements. We will explain how these

two features of locality are different and consistent in section 5.3.

We state the Reeh-Schlieder theorem, a theorem in quantum field theory that is important

for understanding locality considerations. Consider the set of all operators O(B) that are
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localized to an open subregion B of a Cauchy surface. These operators generate an algebra

A(B) of the subregion B. The complement of B on the Cauchy surface is Bc. Suppose

the Hilbert space of the theory on the full Cauchy surface is H. Consider the vacuum state

of some quantum field theory |Ω〉. The Reeh-Schlieder theorem is that states A(B) |Ω〉 are

dense in H [71]. In other words, one can act with operators that are localized to B to change

the state in Bc. Moreover, acting with operators localized in B can prepare a state in Bc

that is arbitrarily close to any state in H even if that state is an excitation localized entirely

in Bc. The Reeh-Schlieder theorem is paradoxical if one assumes that any state O(B) |Ω〉

in principle represents the action of an experimentalist localized to region B on the state

|Ω〉. The Reeh-Schlieder theorem holds for states other than the vacuum as well. Standard

references to the Reeh-Schlieder theorem, as well as other aspects of locality in algebraic and

axiomatic quantum field theory include refs. [88, 89].

3.3 Background: Real-time Perturbation Theory

We review real-time perturbation theory, otherwise known as the in-in formalism [69, 70].

The formalism is called in-in in contrast to perturbation theory for S-matrix elements, which

can be called in-out perturbation theory as it calculates transition amplitudes between initial

and final states. Real-time perturbation theory calculates correlation functions

〈Ψ|O1 . . .On|Ψ〉 (3.3.1)

perturbatively in an interaction Hamiltonian with arbitrary time dependence and makes

aspects of locality and causality manifest. Beginning with some initial time-independent

Hamiltonian H0 and initial state |Ψ(t0)〉, time evolution commences, and an interaction

Hamiltonian may be turned on. The calculations proceed purely in Lorentzian signature,

but the initial state |Ψ(t0)〉 may be prepared in various standard ways including by Euclidean

path integral. The real-time formalism is also known as the closed-time or Keldysh formalism
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because the same calculation can be performed using a path integral with a closed-time

(Keldysh) contour. The real-time formalism is an inherent part of cosmology and AdS/CFT

[90–92].

Just as in-out perturbation theory may be obtained from a Euclidean path integral

through Wick rotation, real-time perturbation theory may be obtained from the same Eu-

clidean path integral by deforming the purely imaginary-time contour into a closed-time

contour. Calculations proceed similarly for in-out and real-time perturbation theory, both

in the use of Feynman diagrams and the treatment of divergences.

To illustrate how real-time perturbation theory works, we calculate the expectation value

of Heisenberg-picture operator O(t,x) in a theory with a time-dependent interaction Hamil-

tonian Hint(t). We work in (d + 1)-dimensional spacetime throughout this manuscript. In

defining the Heisenberg picture, we use reference time t0. The associated Schrodinger-picture

operator defined at time t0 is O(t0,x). The full Hamiltonian is

H(t) = H0 +Hint(t), (3.3.2)

where H0 is time-independent. We use a perturbation that is zero at time t0:

Hint(t0) = 0. (3.3.3)

We now work in the interaction picture, denoting interaction-picture operators with a sub-

script I. The interaction picture is defined in terms of Schrodinger-picture states and oper-

ators as

|ΨI(t)〉 = eiH0(t−t0) |Ψ(t)〉 . (3.3.4)

OI(t,x) = eiH0(t−t0)O(t0,x)e−iH0(t−t0). (3.3.5)

The interaction Hamiltonian Hint(t) in the interaction picture is HI(t). As we are working
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in real time, time evolution is unitary and preserves the norm of the state, which we choose

to be 〈Ψ(t0)|Ψ(t0)〉 = 1. The time evolution operator U(t, t0) is

U(t, t0) = T
(
e
−i
∫ t
t0
dt′H(t′)

)
. (3.3.6)

The interaction-picture evolution operator is

UI(t, t0) = T
(
e
−i
∫ t
t0
dt′HI(t′)

)
= eiH0(t−t0)U(t, t0). (3.3.7)

We may now calculate 〈Ψ(t0)|O(t,x)|Ψ(t0)〉 perturbatively in HI . Explicitly,

〈Ψ(t0)|O(t,x)|Ψ(t0)〉 = 〈Ψ(t0)|U †(t, t0)O(t0,x)U(t, t0)|Ψ(t0)〉

= 〈Ψ(t0)|
(
U †(t, t0)e−iH0(t−t0)

) (
eiH0(t−t0)O(t0,x)e−iH0(t−t0)

)
×
(
eiH0(t−t0)U(t, t0)

)
|Ψ(t0)〉 . (3.3.8)

Passing into the interaction picture,

〈Ψ(t0)|O(t,x)|Ψ(t0)〉 = 〈Ψ(t0)|U †I (t, t0)OI(t,x)UI(t, t0)|Ψ(t0)〉 . (3.3.9)

Expanding in HI ,

〈Ψ(t0)|O(t,x)|Ψ(t0)〉 = 〈Ψ(t0)|O(t0,x)|Ψ(t0)〉+ i

∫ t

−∞
dt1 〈Ψ(t0)|[HI(t1),OI(t,x)]|Ψ(t0)〉

−
∫ t

−∞
dt1

∫ t1

−∞
dt2 〈Ψ(t0)|[HI(t2), [HI(t1),OI(t,x)]]|Ψ(t0)〉+ . . . .

(3.3.10)
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The all-order expression for real-time perturbation theory is given by Weinberg [91].

〈Ψ(t0)|O(t,x)|Ψ(t0)〉 =
∞∑
N=0

iN
∫ t

−∞
dtN

∫ tN

−∞
dtN−1 . . .

∫ t2

−∞
dt1

× 〈Ψ(t0)| [HI(t1), [HI(t2), [. . . [HI(tN),OI(t,x)] . . .]]] |Ψ(t0)〉 .

(3.3.11)

The interaction-picture operators are the Heisenberg-picture operators of the unperturbed

theory at time t0.

Real-time perturbation theory makes manifest how turning on a localized interaction

creates a localized excitation. Suppose the interaction Hamiltonian is given by some local

operator O′ smeared over a spatial region:

HI(t
′) =

∫
ddyf(t′,y)O′I(t′,y). (3.3.12)

The interaction HI(t
′) can only change 〈O(t,x)〉 if f(t′,y) has support on points that are

null or time-like separated from the point (t,x). Only the perturbations for which t′ ≤ t

contribute. If f(t′,y) has support only at points spacelike-separated from the point (t,x),

then

[HI(t
′),OI(t,x)] = 0. (3.3.13)

Each term in (3.3.11) will also vanish for the same reason.

Suppose H0 is a free Hamiltonian and |Ψ(t0)〉 = |0〉, the vacuum of H0. At each order

in perturbative expansion, the nested commutators will produce various contractions mul-

tiplied by an overall retarded Green’s function GR(x − y), which has precisely the correct

causality properties. Diagrammatic rules that make retarded Green’s functions manifest are

discussed in ref. [93]. In practice, one can obtain the different terms in (3.3.11) from different

analytic continuations of the appropriate Euclidean correlators. The structure of real-time

perturbation theory and the presence of retarded Green’s functions parallels a problem in
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classical field theory, calculating corrections to the value of a free field perturbatively in a

source.

3.4 A Local Picture for Time-Dependent Quantum Systems

We present a coherent picture for time-dependent operations on pure states in quantum

systems. We will refer to this picture as the “local picture”. This picture is generated by

the assumptions that all physical interactions occur through terms in the Hamiltonian, and

localized experimentalists deform the Hamiltonian in a localized region. We define the local

picture because it unites several different manifestations of locality and causality into one

concrete framework. The local picture will provide simple explanations for results in later

sections.

We first briefly review the two types of systems we may consider in quantum mechanics.

Closed quantum systems are pure states that undergo unitary time evolution. For example,

the Hilbert space of a closed quantum system H may be a tensor-product Hilbert space of a

system, experimentalist, and environment:

H = Henv ⊗Hexp ⊗Hsys. (3.4.1)

The experimentalist can be described as an observer and an interaction apparatus:

Hexp = Hobs ⊗Happ. (3.4.2)

Open quantum systems are systems that can be acted upon by some external experimentalist.

Pure states of an open quantum system are elements of the Hilbert space Hsys. In closed

quantum systems, measurement is described by an interaction term in the Hamiltonian

that entangles states between Hexp,Hsys. This is a unitary process and there is no state

collapse. Projecting onto one of the states in Hexp⊗Hsys shows the state that one particular
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experimentalist has access to. In an open quantum system, this measurement process is

modelled by projection operators that implement the collapse of the state, which is the

Copenhagen interpretation of quantum mechanics, together with a re-normalization of the

state. In principle, an open quantum system can be obtained from a closed quantum system,

and the details of this process are the subject of current research. We will assume this well-

known description is valid formally. In short, to describe the measurement process without

collapse and state re-normalization, we must use the closed quantum system. To describe

operations performed on the state by an external experimentalist and calculate expectation

values, the open quantum system is the natural choice.

We now state the local picture, which governs the evolution of the pure state |Ψ(t0)〉 of

some system prepared at time t0. Physical operations on the state are described by deforma-

tions of the Hamiltonian. Any norm-preserving operation can be treated as a Hamiltonian

deformation, but deforming the Hamiltonian by functions of local operators are natural ways

to implement physical operations. Localized experimentalists can only deform the Hamil-

tonian by localized operators, and therefore only act with localized unitary operators on

the state. Operators that create non-localized excitations can only be implemented by non-

localized experimentalists. Non-localized experimentalists are experimentalists that have

access to the entire Cauchy surface, and should not be confused with experimentalists who

may depart from the principles of local quantum field theory. We have given the local picture

for open quantum systems, but these principles describe closed quantum systems as well.

We give an example that makes the elements of the local picture concrete and shows

how they arise. We work in quantum field theory for convenience. The expectation value of

operator O(x, t) evolves as

〈O(x, t)〉 = 〈Ψ(t0)|U †(t, t0)O(x, t0)U(t, t0)|Ψ(t0)〉 . (3.4.3)

In order to describe the effect of some interaction Hamiltonian Hint, we may pass into the
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interaction picture. As we reviewed in section 3,

〈Ψ(t0)|O(t,x)|Ψ(t0)〉 = 〈Ψ(t0)|U †I (t, t0)OI(t,x)UI(t, t0)|Ψ(t0)〉 (3.4.4)

The above expresion is equivalent to the following calculation, in the Heisenberg picture

defined by evolution from t0 with Hamiltonian H0:

〈O(t,x)〉 = 〈Ψe|O(t,x)|Ψe〉 ,

|Ψe〉 ≡ T
(
e
−i
∫ t
t0
dt′Hint(t′)

)
|Ψ(t0)〉 . (3.4.5)

We use Hint to denote Hint in the Heisenberg picture. It is therefore natural that localized

unitary operators U of the form

U = T
(
e
−i
∫ t
t0
dt′Hint(t′)

)
(3.4.6)

create localized excitations, and this follows from real-time perturbation theory. This con-

clusion is independent of perturbation theory, as we will show in Section 6.

As we have shown, there is a correspondence between excitations of the state and Hamil-

tonian deformations. We focus on localized unitary operators, but this correspondence holds

for non-localized unitary operators and their associated non-localized Hamiltonian deforma-

tions in the same way. Localized Hamiltonian deformations take the form of local operators

smeared over some compact spacetime region, as in equation (3.3.12), while for non-localized

Hamiltonian deformations the smearing function has support on all of spacetime. It is of

course not obvious how to find an explicit Hint or unitary operator U to represent the ac-

tion of an arbitrary operator NO on a state. Here N is the state-dependent normalization

constant |N |2 = 1/ 〈Ψ(t0)|O†O|Ψ(t0)〉.

We comment on what an experimentalist cannot easily do according to the principle

that she may only interact with the system through Hint. At any given time, she may only
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interact with the state through operators evaluated at that time, and interactions that last

for some finite time must be time-ordered. Other operations, while mathematically valid,

are not as natural. For example, it is natural to act with the operator U1 but not U2:

U1 = T
(
e−i

∫
dtO(t)

)
U2 = e−i

∫
dtO(t)

Calculating correlation functions of operators O(t) at time t represents experiments con-

ducted at t, and excitation of the state that occur after this time do not contribute. These

naturalness conditions for operator excitations follow automatically from the local picture.

The local picture reveals that localized experimentalists cannot act with operators that

create non-localized excitations. If the experimentalist is localized to some spacelike region,

she can only use Hint also localized in this region, which means acting with unitary operators

localized to that same region. These operators create localized excitations. In sections 5 and

6, we will find that local non-unitary operators NO can create non-localized excitations,

and so a localized experimentalist cannot act with these operators. In fact, if O creates a

non-local excitation, the experimentalist must know the state on the entire Cauchy surface

in order to calculate N . Operator NO can only be acted on the state by a non-localized

experimentalist. An example of such an operator is a normalized projection operator that

implements a measurement, but to discuss locality in the context of measurements, one is

using a closed quantum system either implicitly or explicitly. Projection operators in an open

quantum system are simply models of the process. We will discuss measurements explicitly

in a later section.
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3.5 Localized Unitary and Non-unitary Operators in Quantum

Mechanics

We discuss unitary and non-unitary operators in quantum mechanics. Locality properties of

operators depend on whether or not they are unitary. Our conclusions in quantum mechanics

apply to quantum field theory as well. For a Hilbert space H = H1⊗H2, we address whether

acting with an operator local inH1 may affect expectation values taken inH2. In this section,

we will use a two-particle system of spin 1/2 particles, where the particles are prepared in

product and entangled states. We label the two spin states as |±〉.

Non-unitary operators generically do not preserve the normalization of states, so to rep-

resent their action on the state, we must include a normalization factor along with each

operator. This normalization factor must be state-dependent, and so in general non-unitary

operators are state-dependent. We will refer to these norm-preserving non-unitary operators

as non-unitary operators for short.

Consider an operator local in H2:

O = I1 ⊗O2. (3.5.1)

We will act with O on different states and calculate the reduced density matrix of particle

1, ρ1. If ρ1 changes, O has changed the state non-locally. Following the examples, we will

prove various general results. The proofs are elementary, and we use elementary methods in

order to make certain properties explicit.

We will refer to product states and entangled states of, for example, H. A state |Ψ〉 ∈ H

is a product state if there exist states |Ψ1〉 ∈ H1, |Ψ2〉 ∈ H2 such that |Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉.

Product states are also known as separable states. A pure state that is not a product state

is entangled.
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3.5.1 Local operators create local excitations in product states

In this section, we show how both local unitary and non-unitary operators change product

states locally. We show an example and then prove this statement. Choose O2 to be diagonal

for convenience:

O2 = N

a 0

0 b

 . (3.5.2)

Here, a, b ∈ C. If a, b are pure phases then O2 is unitary. Here N is a normalization factor.

First, consider the product state

|Ψp〉 = |+〉1 |−〉2 . (3.5.3)

The reduced density matrix ρp1 is

ρp1 = |+〉 〈+| . (3.5.4)

Acting with O,

O |Ψp〉 = N |+〉1 (b |−〉2) ≡ |Ψp′〉 . (3.5.5)

To normalize the state, |N |2 = 1/|b|2. The reduced density matrix is unchanged:

ρp
′

1 = |+〉 〈+| . (3.5.6)

Acting with O does not change measurements performed on particle 1 regardless of what

values a, b take.

We now prove that all local operators, including non-unitary operators, change product

states locally. Consider two Hilbert spaces H1,2 and n orthonormal basis elements |ψn1,2〉.

Consider the arbitrary product state |Ψp〉 ∈ H with H = H1 ⊗H2, and an arbitrary norm-
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preserving operator O local in H2.

|Ψp〉 =
∑
i

ci1 |ψi1〉
∑
j

cj2 |ψj2〉 . (3.5.7)

The state is normalized: (∑
i

|ci1|2
)
×
(∑

j

|cj2|2
)

= 1. (3.5.8)

The reduced density matrix associated with H1 is

ρ1 =

(∑
i

ci1 |ψi1〉
)(∑

k

ck∗1 〈ψk1 |
)∑

j

|cj2|2. (3.5.9)

Acting with O on the state,

O |Ψ〉 =
∑
i

ci1 |ψi1〉
∑
j

dj2 |ψj2〉 , (3.5.10)

where the dj2 are defined by the action ofO on states inH2 in the chosen basis: dj2 ≡
∑

iOjici2.

The normalization condition is

(∑
i

|ci1|2
)
×
(∑

j

|dj2|2
)

= 1. (3.5.11)

Acting with O is a unitary operation in H2:

∑
j

|dj2|2 =
∑
j

|cj2|2. (3.5.12)
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We may see that the new reduced density matrix ρ′1 is equal to ρ1:

ρ′1 =

(∑
i

ci1 |ψi1〉
)(∑

k

ck∗1 〈ψk1 |
)∑

j

|dj2|2

=

(∑
i

ci1 |ψi1〉
)(∑

k

ck∗1 〈ψk1 |
)∑

j

|cj2|2 = ρ1. (3.5.13)

This concludes the proof.

3.5.2 Locality in entangled states

In entangled states, local unitary operators affect the state locally but local non-unitary

operators may affect the state non-locally. As an example, we will act with O on entangled

state |Ψe〉 and find that generically O will change the state non-locally unless O2 is unitary.

|Ψe〉 =
1√
2

(|+〉1 |−〉2 − |−〉1 |+〉2). (3.5.14)

The reduced density matrix ρe1 is

ρe1 =
1

2
(|+〉 〈+|+ |−〉 〈−|). (3.5.15)

Acting with O on the state |Ψe〉 gives

O |Ψe〉 =
N√

2
(b |+〉1 |−〉2 − a |−〉1 |+〉2) ≡ |Ψe′〉 . (3.5.16)

The normalization factor satisfies |N |2 = 2
|a|2+|b|2 . The reduced density matrix is now

ρe
′

1 =
1

|a|2 + |b|2 (|b|2 |+〉 〈+|+ |a|2 |−〉 〈−|). (3.5.17)

Acting with O changes ρe1 unless |a|2 = |b|2, which would make O2 unitary.

Local operators mix states withinH2, but if these states are coupled with different weights
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to states in a different Hilbert space H1, mixing states within H2 will generically change the

relative weights of the states in H1. Only local unitary operators mix states in H2 in the

way that leaves the partial trace unchanged.

The action of any non-unitary operator NO on a state may by definition be written as

a unitary operator U acting on the state. In the state |Ψ〉, |N |2 = 〈Ψ|O†O|Ψ〉−1
. For every

O and |Ψ〉 there exists a unitary operator U such that

NO |Ψ〉 = U |Ψ〉 . (3.5.18)

This equality follows from the fact that acting with NO does not change the norm of the

state. It follows that this norm-preserving operation on a state can be implemented by

acting with some unitary operator U , as the set of all unitary operators is the space of all

possible norm-preserving operations on the state. The non-unitary operator NO is of course

not equal to the corresponding unitary operator U , but their actions on the state |Ψ〉 are

the same. The same O is represented by different U on different states |Ψ〉. If the operator

O changes the state non-locally, U is non-local. The equivalence between non-unitary and

unitary operators acting on the state shows how non-unitary operators may be applied to

a state through time evolution. According to the local picture, the unitary operator U is

applied by a non-local experimentalist with access to both systems, as U is not local in H1

or H2 alone.

Let us see an explicit example of the equivalence between non-unitary and unitary op-

erators using the operator O and state |Ψe〉. We now work in the basis of the full Hilbert

space: (|+〉 |+〉 , |+〉 |−〉 , |−〉 |+〉 , |−〉 |−〉) where we have dropped the subscripts 1, 2. We

wish to find a unitary operator U that satisfies the following:

U |Ψe〉 = O |Ψe〉 . (3.5.19)
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Writing this condition in the chosen basis,

O |Ψ〉 = N 1√
2



0

b

−a

0


= U 1√

2



0

1

−1

0


= U |Ψ〉 . (3.5.20)

We can now write down a solution. U rotates components into one another, and may produce

an arbitrary phase.

U(θ, φ1, φ2) =



1 0 0 0

0 eiφ1 cos θ −eiφ2 sin θ 0

0 eiφ1 sin θ eiφ2 cos θ 0

0 0 0 1


. (3.5.21)

The above matrix is the product of the rotation matrix with diag(1, eiφ1 , eiφ2 , 1). The rela-

tions between the angles and a, b are:

eiφ1 cos θ + eiφ2 sin θ = bN (3.5.22)

eiφ1 sin θ − eiφ2 cos θ = −aN . (3.5.23)

Elements aN , bN have three degrees of freedom: an overall phase, a relative phase, and a

relative magnitude. Operator U has the same three degrees of freedom as well: two phases

φ1, φ2, the angle θ that controls the components’ magnitudes. The normalization condition

(|aN|2 + |bN|2)/2 = 1 is satisfied. We see that the unitary operator U depends on O and

the state.

We will now show that local unitary operators change entangled states locally and generic

local non-unitary operators change entangled states non-locally. This is an elementary prop-

erty of the partial trace, but we will find a proof in component notation useful. We begin
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with an arbitrary entangled state |Ψe〉. We use repeated index summation notation in this

proof. Label states in H1,2 by |ψ1,2〉.

|Ψe〉 = Cia |ψi1〉 |ψa2〉 . (3.5.24)

The normalization condition is C†aiCai = 1. The reduced density matrix of H1 is

ρ1 = CiaC
†
aj |ψi1〉 〈ψj1| . (3.5.25)

Now act with an operator O that is local in H2 on the state.

|Ψe〉 = ObaCia |ψi1〉 |ψb2〉 . (3.5.26)

Assume that O is normalized to satisfy the normalization condition C†diO†dbObaCia = 1. If

O† = O−1 then O†dbOba = Ida and the state’s norm is automatically preserved. The new

reduced density matrix ρ′1 is

ρ′1 = C†djO†dbObaCai |ψi1〉 〈ψj1| . (3.5.27)

If operator O is unitary, then ρ′1 = ρ1. If not, the state may change non-locally. In the

language of quantum information, non-unitary operators O implement non-local quantum

gates, as O’s action can be represented by a non-local unitary operator.

There are states for which non-unitary operators acting on a subspace do leave ρ1 un-

changed. Suppose that for a > k, Cai = 0 for every i. To leave ρ1 unchanged, (O†O)db = Idb

for d, b ≤ k suffices, but this condition not necessary for d, b > k. A simple example is if O

is local and unitary in subspace P ∈ H but non-unitary in the rest of H: O will create a

local excitation of states in P despite being non-unitary. When the two Hilbert spaces have

the same dimensionality, such states require the density matrix to have at least one zero
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eigenvalue.

We have not addressed the most general condition for operators to leave entanglement

entropy unchanged, which is a weaker condition than leaving ρ1 unchanged, and an inter-

esting direction for future work. Entanglement entropy is the von Neumann entropy of a

reduced density matrix. The entanglement entropy S1 of the subsystem with Hilbert space

H1 is

S1 = −tr(ρ1 ln ρ1) (3.5.28)

In a pure state, entanglement entropies for the two subsystems must be equal: S1 = S2. It

follows that acting with a local unitary operator on one subsystem or the other does not

change S1, S2 because the density matrix of the subsystem not acted upon is unchanged.

There can be local non-unitary operators O that alter a state |Ψ〉 non-locally, but leave

expectation values of operators O′ unchanged. In field theory this condition is sometimes

satisfied by the modular Hamiltonian, O′ = − ln(ρ1), whose expectation value is entangle-

ment entropy [64]. It would be interesting to investigate this question further in quantum

mechanics and field theory to understand the basis of the apparent quasi-particle picture for

entanglement entropy.

3.5.3 Causality, non-local state preparation, and Reeh-Schlieder

So far, we have shown how local non-unitary operators act as unitary operators on entangled

states, and that these unitary operators must be non-local. According to the local picture,

operators that change states non-locally can only be implemented by non-local experimen-

talists. Experimentalists act with the non-local unitary operators through time evolution.

Non-unitary operators are intrinsically non-local in entangled states.

Our results can be viewed another way, motivated by the Reeh-Schlieder theorem in field

theory. In a state in H = H1 ⊗H2 that is entangled between H1,H2, non-unitary operators
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O local in H2 can prepare states in H1. We may see how this works for |Ψe〉.

|Ψe〉 =
1√
2

(|+〉1 |−〉2 − |−〉1 |+〉2). (3.5.29)

We may use suitably normalized operators L±, Lz acting on particle 2 that are the angular

momenta operators for spin 1/2 particles. Ignoring the overall normalizations,

L+ |Ψe〉 = |+〉1 |+〉2 .

L− |Ψe〉 = |−〉1 |−〉2 .

(1 + Lz) |Ψe〉 = |−〉1 |+〉2 .

(1− Lz) |Ψe〉 = |+〉1 |−〉2 . (3.5.30)

Our results show that seemingly counter-intuitive features of the Reeh-Schlieder theo-

rem are perfectly straightforward in quantum mechanics. The fact that local non-unitary

operators create non-local excitations in entangled states is the origin of the non-local state

preparation in the Reeh-Schlieder theorem. The theorem is consistent with causality because

local experimentalists act only with local unitary operators, which do not permit non-local

state preparation. The example we gave of preparing a state non-locally was used as a

quantum-mechanical model for the Reeh-Schlieder theorem in the leading interpretation [75].

Discussions of the Reeh-Schlieder theorem have previously been centered on non-local state

preparation through measurements in open quantum systems.

Our conclusions about the non-locality of non-unitary operators may appear to contra-

dict a standard statement of causality for entangled states that allows non-local changes in

state, but in fact the two are compatible. Measurements in an open quantum system can be

described in the associated closed quantum system by projecting onto an experimentalist-

system state with a particular measurement outcome. It is obvious that replacing a superpo-

sition of states with one of its constituent states is a non-local change of state, but questions
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of locality are more clearly formulated in the closed quantum system, in which it is manifest

how measurement does not change states non-locally. These statements are standard, but

for completeness we now make them concrete with an explicit example.

Consider an initial state of a closed quantum system with Hilbert space H = Hexp⊗Hsys,

|Ψ〉 = |Ψ1
exp〉 |Ψ2

exp〉 (a |+〉1 |−〉2 − b |−〉1 |+〉2). (3.5.31)

We label the experimentalists by the outcome they observe as |Ψexp(±)〉. After experimen-

talist 2 measures the spin of particle 2, the state is

|Ψ〉′ = |Ψ1
exp〉 (a |Ψ2

exp(−)〉 |+〉1 |−〉2 − b |Ψ2
exp(+)〉 |−〉1 |+〉2). (3.5.32)

Experimentalist 1 may now measure the spin of particle 1. Once again, this is an interaction

that couples experimentalist states to system states. The new state is

|Ψ〉′′ = a |Ψ1
exp(+)〉 |Ψ2

exp(−)〉 |+〉1 |−〉2 − b |Ψ1
exp(−)〉 |Ψ2

exp(+)〉 |−〉1 |+〉2). (3.5.33)

We now could project onto various states to determine what each experimentalist measures.

However, tracing out experimentalist 2 and particle 2, the reduced density matrix ρexp1⊗sys1

for experimentalist 1 and particle 1 is

ρexp1⊗sys1
= |a|2

(
|Ψ1

exp(+)〉 |+〉 〈+| 〈Ψ1
exp(+)|

)
+ |b|2

(
|Ψ1

exp(−)〉 |−〉 〈−| 〈Ψ1
exp(−)|

)
. (3.5.34)

The reduced density matrix is unchanged by the measurement that experimentalist 2 per-

formed. The unitary operator that implements experimentalist 2’s measurement is localized

to H2
sys ⊗H2

exp, and so it does not change ρexp1⊗sys1
.
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3.5.4 Superpositions of localized excitations

In entangled states, the superposition of two localized excitations is generically not itself

a localized excitation. One can represent each localized excitation as a localized unitary

operator acting on some reference state. The sum of two unitary operators need not be

unitary, and so their superposition need not create a localized excitation. For example,

by adding two unitary matrices of the form diag(eiφ1 , eiφ2), we may change the magnitude

of the sum’s diagonal entries. The non-locality of the superposition measures a kind of

interference between the two unitary operators. We can state the general condition for which

the superposition of localized excitations implemented by U1,U2 must itself be a localized

excitation in entangled states.

U1U †2 + U2U †1 = 0 (3.5.35)

We will not explore this condition. It follows that a local experimentalist cannot superimpose

two local excitations of an entangled state. The condition for superpositions of local unitary

operators to be local has been addressed on a more formal level [73].

There is a natural way to combine local excitations without superposition. Acting with

two localized unitary operators on the same state creates a localized excitation. For example,

the operator U1U2 creates an excitation localized to the same Hilbert spaces in which U1,U2

are localized. In the local picture, these two operators should be time-ordered: T (U1U2).

This method of combining local excitations is natural in the local picture, as it corresponds

to an interaction that occurs in two subsystems: T
(
ei(O1+O2)

)
and is implemented by turning

on sources for both O1 and O2. We will elaborate on this point in a later section when we

discuss separable and non-separable localized unitary operators.

Superpositions of local unitary operators create non-local excitations, which are asso-

ciated more naturally with non-unitary operators. This relationship between unitary and

non-unitary operators can be viewed from another direction. Non-unitary operators can

be written as superpositions of unitary operators. Acting with a non-unitary operator is
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equivalent to superimposing states formed by acting with unitary operators. As is standard,

any operator O can be written as a linear combination of an Hermitian operator H+ and

anti-Hermitian operator H−.

O = H+ +H−. (3.5.36)

H± =
1

2
(O ±O†). (3.5.37)

In fact, H− can be written in terms of a Hermitian operator H ′+ simply: H ′+ = iH−. We

now show that any Hermitian operator can be written in terms of a unitary operator and its

adjoint, subject to a certain condition. Suppose the spectrum of some Hermitian operator H

is bounded from above and below. This is not always the case for the Hamiltonian, but this

is true for many other operators, especially those relevant in systems with a finite number

of spins. There exists λ which is at least as large as H’s largest-magnitude eigenvalue, but

finite. Operator H is given by

H =
1

2|λ|(U + U †). (3.5.38)

To prove this, first suppose H is diagonal. Its entries are its eigenvalues, which are real. We

may choose U = diag(eiφ1 , eiφ2 , . . .).

U + U † = diag(2 cos(φ1), 2 cos(φ2), . . .). (3.5.39)

One may then choose each φi to match each eigenvalue in H. Hermitian matrices are

diagonalized by unitary matrices, so we may use unitary V to produce any other Hermitian

operator from H that has the same eigenvalues:

V HV † =
1

2|λ|(V UV
† + V U †V †) (3.5.40)

≡ 1

2|λ|(U
′ + U ′†). (3.5.41)
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Note that U ′ is also unitary. This concludes the proof.

3.6 Localized Unitary and Non-unitary Operators in Quantum

Field Theory

We now turn to field theory and our main result: localized unitary operators create local-

ized excitations, while more familiar local non-unitary operators generically create non-local

excitations. We explore the properties of these operators. As generic states in field theory

are entangled over spatial regions, field theory is often the study of operators in entangled

states. The properties we found in section 5 will apply in field theory as well. An initial

investigation into the locality of certain local unitary operators was conducted in the context

of free field theory, and our work extends this investigation [72].

3.6.1 Localized unitary operators create localized excitations

In a (d + 1)-dimensional theory, we give a general form for time-ordered localized unitary

operators U , or localized unitary operators for short. This form arises naturally in the local

picture. Foliate the spacetime by Cauchy surfaces and define a timelike coordinate that

parameterizes motion across these surfaces. For any given foliation, all operators of the

following form are localized unitary operators:

U = T
(
e
−i
∑
n

(∏
{in}

∫
Rin

dd+1xin

)
Jn(x1,x2,...,xin )(

∏
{in}Oin (xin ))

)
. (3.6.1)

For each n, there is a set denoted by {in} which specifies the source function Jn and

operators Oin(xin) appearing in the product. Functions Jn can have dimensions and include

a small expansion parameter. The term in the exponent multiplying i is Hermitian. Unitary

operators can always be placed in exponential form but the expression we present is sim-

ply the general time-ordered exponential of products and sums of localized operators with

smearing functions. Operators O(xin) need not be local in space but must be local in time,
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and we have labelled operators Oin by their insertion points schematically.

Rin is defined as the spacetime region in which the smearing function Jn(x1, . . . , xin) is

non-zero. The localized unitary operator U creates an excitation localized to spacetime region

R = ∪inRin . Correlators of operators inserted at spacelike separation from all points in R

do not change. Consider 〈O(y)〉 in an excited state formed by U . If y is spacelike-separated

from all points in R,

〈Ψ|U †O(y)U|Ψ〉 = 〈Ψ|U †UO(y)|Ψ〉 = 〈Ψ|O(y)|Ψ〉 . (3.6.2)

If y is not spacelike from all of R, the above equality may not hold. While we may find it

convenient to use perturbation theory to calculate correlators in this state, this result is true

non-perturbatively, and follows from (3.2.1).

There is an operator-excited state correspondence for subregions. For every Hermitian

operator O inserted in a subregion A of a Cauchy surface, there is an excited state whose

excitation is localized to A and is given by acting eiO on the original state.

Just as Hint is not normal ordered, the operators in the exponent of U are not normal-

ordered. Correlators in this state will generically diverge. Treating Hint as a perturbative

correction, calculating correlators in a state created by U amounts to a calculation in real-

time perturbation theory, and the divergences are treated using standard methods.

A simple example of a local unitary operator is

U(x) = e−iαO(x), O†(x) = O(x). (3.6.3)

The parameter α can be chosen to be α ≡ α′ε, where α′ may have dimensions and the dimen-

sionless parameter ε may be taken small. Exciting a state with this operator is equivalent

to introducing the interaction

∫
Hint = α

∫
dd+1x′δd+1(x′ − x)O(x′). (3.6.4)
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The first-order correction to 〈O(y)〉 is a familiar quantity in time-dependent systems, the

commutator.

〈Ψ|U †(x)O(y)U(x)|Ψ〉 = 〈Ψ|O(y)|Ψ〉 − iα 〈Ψ|[O(y),O(x)]|Ψ〉+ . . . . (3.6.5)

Conversely, calculations of the commutator of two operators are also the first-order correc-

tion to the one-point function in an excited state. In general, the correspondence between

localized unitary operators and Hamiltonian deformations is

U = T
(
e
−i
∑
n

(∏
{in}

∫
Rin

dd+1xin

)
Jn(x1,x2,...,xin )(

∏
{in}Oin (xin ))

)
l∫

Hint =
∑
n

∏
{in}

∫
Rin

dd+1xin

 Jn(x1, x2, . . . , xin)

∏
{in}

Oin(xin)

 . (3.6.6)

This correspondence is clear from the interaction picture and section 4.

Deformations of the Hamiltonian cannot always be represented by localized unitary op-

erators acting on states. For example, if Hint has not turned off at the time operators are

inserted, the calculation of an unequal-time correlator will involve insertions of operators

e−i
∫ tHint between operators inserted at different times. Also, the time t should not be taken

later than the latest time at which the operators in the correlation function are inserted.

These rules follow from the interaction picture.

In gauge theories, it is natural to restrict the operators in the exponent of a localized

unitary operator to be gauge invariant. For example, the operator U(x) = eiF
2(x) with

Fµν(x) being the field strength tensor of a gauge theory creates a local excitation. Not

all quantities diagnose locality well in gauge theories. For example, entanglement entropy

is not a gauge-invariant measure, but relative entropy and mutual information are free of

ambiguities associated with the gauge theories, and so may prove useful [94–96].

Localized excitations can change conserved quantities. For example, a localized excitation
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created by U(x) will generically change the total energy 〈
∫
ddyT 00(y)〉. The energy added

by U(x) is injected at x and can spread within the forward lightcone of x. The amount by

which a localized unitary operator changes a conserved quantity is a property of both the

operator and the state. It has been argued that localized excitations of fixed particle number

are of limited applicability [72,77,78,97].

We may also prepare a localized excitation by sending in an “ingoing excitation” rather

than by deforming the Hamiltonian. So far, we have described how to create a localized

excitation by applying a localized unitary operator U to some state |Ψ〉. Applying this

operator can change conserved quantities. The same localized excitation can be prepared by

beginning with some initial state and evolving time. Conserved quantities will not change in

this case. The initial state |Ψ(t0)〉 that encodes the ingoing excitation is found by evolving

the state U(x) |Ψ〉 backwards in time. Here, U(t, t0) is the time evolution operator and U(x)

is a local unitary operator inserted at spacetime point x = (t,x).

|Ψ(t0)〉 = U(t0, t)U(x) |Ψ〉 . (3.6.7)

Even in an interacting field theory in an arbitrary number of dimensions, the ingoing ex-

citation must be a pulse that leaves no imprint on the state as it passes through a space-

time region, because the regions it passes through are causally connected to points that

are spacelike-separated from x. While such excitations are familiar in classical theories, in

quantum field theories they can require extensive fine-tuning, and may not be possible in

practice.

The dynamics of entanglement at different scales within a local excitation can be investi-

gated through the time-dependence of entanglement density [98]. This investigation may be

useful in the AdS/CFT correspondence through the Hubeny-Rangamani-Takayanagi conjec-

ture, and as part of the entanglement tsunami picture [86,99–101].
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3.6.2 Separable vs. non-separable localized unitary operators

There are two qualitatively different types of excitations created by localized unitary opera-

tors, separable and non-separable. We explore their properties. We use the labels separable

and non-separable for reasons which will become clear.

We have stated a general form for useful localized unitary operators is

U = T
(
e
−i
∑
n

(∏
{in}

∫
Rin

dd+1xin

)
Jn(x1,x2,...,xin )(

∏
{in}Oin (xin ))

)
.

Separable unitary operators U create separable excitations, and take the form

U = T
(
e−i

∑
n

∫
Rn

dd+1xnJn(xn)On(xn)
)
. (3.6.8)

Non-separable unitary operators contain products of operators in the exponent that are

inserted at different points. For example, consider separable and non-separable local unitary

operators Us,Uns, with

Us = e−i(O(x)+O(y)). (3.6.9)

Uns = e−iO(x)O(y). (3.6.10)

Points x, y are spacelike-separated and so time-ordering has no effect for these two operators.

We require that O† = O. Operator Us can be separated into the product of two local unitary

operators while Uns cannot. This will become obvious shortly.

We can understand separable and non-separable unitary operators through their quantum-

mechanical analogs. Consider an entangled state of two spin 1/2 particles. A separable

operator is Us = e−i(S
1
z+S2

z ), which amounts to acting with a local unitary operator on each

particle. Separable operators are the natural way to concatenate local excitations of a sys-

tem. A non-separable operator is Uns = e−iS
1
z⊗S2

z . This is equivalent to turning on a spin-spin
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coupling between the two systems. Separable operators represent interaction of an external

system with the state and non-separable operators represent the coupling of two subsystems.

In the local picture, separable operators are implemented by a non-local experimentalist.

Separable unitary operators represent uncorrelated localized excitations while non-separable

unitary operators represent correlated excitations. We will explore this statement in field

theory. If two excitations are correlated, correlators affected by one excitation will also

depend on the value of the field at the location of the second excitation. Consider the expec-

tation value of operator O(z) which is altered by the excitation at x but not y. Suppose z

and x are timelike-separated and z is in the future of x. Point z is spacelike-separated from

y. For the separable operator,

〈Ψ|U †s (x, y)O(z)Us(x, y)|Ψ〉 = 〈Ψ|eiO(x)O(z)e−iO(x)|Ψ〉 . (3.6.11)

For the non-separable operator,

〈Ψ|U †ns(x, y)O(z)Uns(x, y)|Ψ〉 = 〈Ψ|O(z) + i[O(x)O(y),O(z)] + . . . |Ψ〉

= 〈Ψ|O(z) + iO(y)[O(x),O(z)] + . . . |Ψ〉 . (3.6.12)

Both separable and non-separable unitary operators create localized excitations, just as

Us,Uns change the state only in the forward lightcones of their insertion points x, y. With

Uns, the correction to 〈O(z)〉 depends on an operator O(y) inserted at spacelike separation.

Just as in quantum mechanics, the non-separable operator has coupled the state at x and y.

We can understand what this coupling entails. If we first alter the state at y with another

local excitation, we will affect 〈O(z)〉 only when the next excitation is non-separable. Create

this first excitation with a local unitary operator U(y′) where y′ and y are timelike-separated

but y′ is spacelike-separated from x and z. Point y′ is earlier in time than y. The operator

U(y′) when acted alone changes the state at y, but not x or z. The expectation value 〈O(z)〉
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does not change for the separable excitation:

〈Ψ|U †(y′)U †s (x, y)O(z)Us(x, y)U(y′)|Ψ〉 = 〈Ψ|eiO(x)O(z)e−iO(x)eiO(y′)eiO(y)e−iO(y)e−iO(y′)|Ψ〉

= 〈Ψ|eiO(x)O(z)e−iO(x)|Ψ〉 . (3.6.13)

The expectation value 〈O(z)〉 does change for the non-separable excitation:

〈Ψ|U †(y′)U †ns(x, y)O(z)Uns(x, y)U(y′)|Ψ〉 = 〈Ψ|U †(y′)(O(z) + iO(y)[O(x),O(z)] + . . .)U(y′)|Ψ〉

= 〈Ψ|O(z) + iU †(y′)O(y)U(y′)[O(x),O(z)] + . . . |Ψ〉

As y and y′ are timelike-separated, the above expectation value of an operator at z has

changed in response to an excitation at y′ which is spacelike-separated from z.

The behavior we have identified for non-separable excitations violates the causality prop-

erties of local quantum field theory at the time the operator acts. Measurements at z are

affected by a local excitation at y′, which was spacelike-separated from z. This violation of

causality is no surprise, as acting with Uns corresponds to turning on an interactionO(x)O(y)

in the Hamiltonian, which couples the field at spacelike-separated points. This term is not

allowed in the Hamiltonian of a local quantum field theory. Even a non-local experimentalist

in the closed system cannot act with this operator as long as the theory that describes the

experimentalist and system are both local quantum field theories. We conclude that there

is a restriction on localized operators and excitations in local quantum field theories: the

operators and excitations must be separable. Separability can be tested using the criteria

we have used in this section.

Separable unitary operators localized to two different regions of a Cauchy surface do not

change the entanglement entropy of those regions, as the operators can be expressed as the

product of unitary operators, each local in a different subregion. For example, Us(x, y) does

not change the entanglement entropy of region A or B for x ∈ A, y ∈ B.
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3.6.3 Noteworthy quantities as localized unitary operators

We give examples of familiar quantities that are localized unitary operators. Squeezed states,

coherent states, generalized coherent states are examples of excitations that can be created

by localized unitary operators, and their interpretations are well-understood [80–83]. In a

free (d+ 1)-dimensional field theory, a coherent state is (cf. [102])

|Ψc(πc(x), φc(x))〉 = ei
∫
ddxπc(x)φ̂(x)−φc(x)π̂(x) |0〉 . (3.6.14)

The state is labelled by its expectation values

〈Ψc(πc(x), φc(x))|φ(y)|Ψc(πc(x), φc(x))〉 = φc(y). (3.6.15)

〈Ψc(πc(x), φc(x))|π(y)|Ψc(πc(x), φc(x))〉 = πc(y). (3.6.16)

A coherent state is a localized excitation when both φc(x), πc(x) have compact support.

Generalized coherent states are analogous constructions for arbitrary Lie groups [103] and

also create localized excitations.

Path-ordered exponentials can be localized unitary operators for certain choices of path.

If the path is nowhere spacelike, then the path ordering is a time ordering. If the path is

everywhere spacelike, then the operator creates an excitation at a single time. Wilson loops

with spacelike integration paths are examples of these operators, and they create flux tubes

along their path.

Localized unitary operators model certain quantum quenches exactly. Quantum quenches

are abrupt changes in the Hamiltonian. For instance, the coefficient λ(x) of some operator

O(x) in the Hamiltonian may change suddenly. If the state was the ground state of the

Hamiltonian, the state after the quench is an excited state of the new Hamiltonian. In

global quenches, λ(x) is constant in space. In inhomogeneous quenches, λ(x) varies in space.

Two different types of quenches go by the name “local quenches”. One type of local quench
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involves preparing two different states in half the space, joining them, and evolving with

time [104, 105]. Another type of local quench is given by changing λ(x) at one spacetime

point [61, 62, 64]. We give the localized unitary operators that describe this second type of

local quench. Global and inhomogeneous quenches are described in a similar way, although

the corresponding unitary operators are fully non-localized. In a (d + 1)-dimensional field

theory,

Global quench : U = e−i
∫
ddxO(x). (3.6.17)

Inhomogeneous quench : U = e−i
∫
ddxf(x)O(x). (3.6.18)

Local quench : U = e−iO(x). (3.6.19)

Motivated by the properties of non-separable unitary operators, we see that non-separable

operators model a “non-separable quantum quench”

Non-separable quench : U = e−iO(x)O(y). (3.6.20)

Introducing a small parameter α in the exponent to control the strength of the quench, the

first, second, and third-order corrections to operator expectation values are straightforward

to calculate in CFTs as they often involve two, three, and four-point functions.

3.6.4 Localized non-unitary operators do not always create local-

ized excitations

In this section, we show that the familiar local operators in field theory do not always

create localized excitations. While this may seem counter-intuitive, locality in field theory

is enforced through commutators, and expectation values in states O |Ψ〉 do not involve any

commutators with O. Moreover, the statement that two operators commute at spacelike

separation is not a statement about expectation values in the state created by acting with one
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of those operators. In section 5, we showed that localized finite-norm operators generically

create non-localized excitations. An operator O has a finite norm if O |Ψ〉 has a finite norm

for all normalized states |Ψ〉. A related conclusion is that local non-unitary operators do not

always model a local quench exactly. Infinite-norm operators will be treated more carefully,

and we give a specific infinite-norm operator that creates a non-local excitation.

We first address an intuition that is sometimes held about local operators creating local

excitations. Consider a real scalar field in (3 + 1) dimensions. We may ask about the

interpretation of the state

φ(x) |0〉 =

∫
d3p

(2π)3

1

2Ep

e−ip·x |p〉 . (3.6.21)

We will paraphrase the interpretation of this state given in a well-known field theory textbook

[106]. For small (non-relativistic) p, Ep is approximately constant, and in this case φ(x) |0〉

approaches the non-relativistic expression for a position eigenstate |x〉 in basis |p〉. To

quote the authors, “we will therefore put forward the same interpretation, and claim that

the operator φ(x), acting on the vacuum, creates a particle at position x.” Moreover, this

interpretation is corroborated by calculating

〈0|φ(x)|p〉 = 〈0|
∫

d3p′

(2π)3

1√
2Ep′

(
ap′e

ip′·x + a†p′e
−ip′·x

)√
2Epa

†
p|0〉 (3.6.22)

= eip·x. (3.6.23)

This is the same as the inner product 〈x|p〉 in non-relativistic quantum mechanics. We may

perform another check to learn that the analogy with quantum mechanics is only valid in

the non-relativistic limit.

QM : 〈x|y〉 = δ(3)(x− y) (3.6.24)

QFT : 〈0|φ(x)φ(y)|0〉 =

∫
d3p

(2π)3

eip·(x−y)

2Ep

= D(x− y). (3.6.25)
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In the non-relativistic approximation, Ep is approximately constant, and both expressions

are delta functions. The authors of course never make an erroneous claim, for example

that φ(x) creates a particle only at x but nowhere else. In fact, particles themselves are

approximate notions, and it has been shown that localizing a finite number of particles in

a single region is in tension with causality [72, 77, 97]. We have reproduced a textbook

argument here to make explicit what considerations and terminology may lead one to the

incorrect intuition that if a field theory operator is local it creates a local excitation.

In field theory, the Dirac orthogonality condition does not diagnose locality as we have

defined it. The condition that the inner product between two states 〈0|φ(x)φ(y)|0〉 = D(x−

y) grows small as the separation between x, y grows large is known as asymptotic locality

[107]. We have seen how localized unitary operators create localized excitations, and even

localized unitary operators are not Dirac orthogonal. Consider operators of the form U =

e−iO:

〈Ψ|U †(y)U(x)|Ψ〉 = 〈Ψ|Ψ〉+ i 〈Ψ|O(y)−O(x)|Ψ〉+ . . . (3.6.26)

The failure of local excitations in field theory to obey the Dirac orthogonality condition

illustrates that not all quantum-mechanical measures of locality are useful measures in field

theory.

Our discussion of the Reeh-Schlieder theorem in section 5.3 applies to field theory as

well. The Reeh-Schlieder theorem is a consequence of local non-unitary operators acting

in entangled states. It is widely accepted that the source of Reeh-Schlieder theorem in

field theory is the entanglement between spatial regions [75]. To make the connection with

our quantum-mechanical explanation of the Reeh-Schlieder theorem, we should consider

finite-norm operators in field theory localized to some region. Local operators generically

have infinite norm, and must be smeared over some region to have finite norm. Just as

in quantum mechanics, these finite-norm non-unitary operators may be localized, but they

create the non-localized excitations described by the Reeh-Schlieder theorem.

Some local infinite-norm operators create non-localized excitations. For example, con-
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sider the infinite-norm operator

Oe = eαO(x). (3.6.27)

Here, α is real and O is Hermitian. Consider how the expectation value of some operator in

the vacuum 〈0|O′|0〉 changes in the excited state Oe |0〉. To first order in α this excitation

does not change the state’s norm as 〈0|O(x)|0〉 = 0. So, for the first-order calculation, we

do not have to regulate the operator. The expectation value to first order is therefore

〈0|Oe(x)O′(y)Oe(x)|0〉 ≈ 〈0|O′|0〉+ α 〈0| {O(x),O′(y)} |0〉+ . . . (3.6.28)

The anticommutator of two operators does not vanish for spacelike separations and so this

local infinite-norm operator creates a non-localized excitation.

3.6.5 Certain local non-unitary operators create local excitations

While not all infinite-norm local operators create local excitations, we show some which do.

The locality of these operators comes from the singularity structure of the infinite-norm

states they create. This is in contrast to unitary operators, which obtain their locality

through operator commutators. To calculate correlators in excitations created by infinite-

norm operators, we must first regulate the norm. One way to regulate is to dampen the

high-energy modes, which is equivalent to inserting the operator at complex time [64,108]:

e−δHO(x) |0〉 = O(x− iδ) |0〉 . (3.6.29)

We have used the shorthand x± iδ ≡ (t± iδ,x). Expectation values are taken with the limit

δ → 0.

As a simple example of an expectation value in an infinite-norm state, we consider the

two-point function 〈φ(x)φ(y)〉 of a free scalar field in state φ(z) |0〉, and we work in d+1 > 2

spacetime dimensions. We will find that φ(z) creates a local excitation at z. Suppose x, y
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are spacelike-separated from z. This way the δ → 0 limit can be taken without crossing any

branch cuts in complex time, and so including the state normalization factor,

〈φ(x)φ(y)〉 ≡ 〈0|φ(z + iδ)φ(x)φ(y)φ(z − iδ)|0〉
〈0|φ(z + iδ)φ(z − iδ)|0〉

=
D(z + iδ, x)D(y, z − iδ) +D(z + iδ, y)D(x, z − iδ)

D(z + iδ, z − iδ) +D(x, y). (3.6.30)

Here, D(x− y) = 〈0|φ(x)φ(y)|0〉. The two-point function is unchanged by the excitation in

comparison to its vacuum expectation value, as only the φ(z + iδ)φ(z − iδ) contraction in

the numerator has the same divergence as the denominator in the δ → 0 limit, as long as

x, y are spacelike-separated from z:

lim
δ→0
〈φ(x)φ(y)〉 = D(x, y). (3.6.31)

The same conclusion holds for an n-point function in this state. The infinite-norm local

operator φ(z) creates a local excitation at z even though it is not unitary.

In general CFTs, we can prove the same behavior we saw in the free scalar case, that

a non-unitary infinite-norm local operator with definite conformal dimension creates a local

excitation. When calculating a correlation function in the state O(x − iδ) |Ψ〉, the OPE

between O and O† may be used when x is spacelike separated from the locations of the

other operators in the correlation function. When |Ψ〉 is a conformally-invariant state, for

example the vacuum, the identity dominates the OPE in the δ → 0 limit, and the correlator

is unaffected by the excitation created by O. We will see an explicit example of this process

in section 7.2. This argument applies when O has definite non-zero conformal dimension.

For example, this excludes the operator φ of the free scalar in (1 + 1) dimensions, which has

conformal dimension zero and creates an excitation that is not asymptotically local [107].
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Explicitly, for x spacelike-separated from all yi,

〈O(y1)O(y2) . . .O(yn)〉 ≡ 〈Ψ|O
†(x+ iδ)O(y1)O(y2) . . .O(yn)O(x− iδ)|Ψ〉

〈Ψ|O†(x+ iδ)O(x− iδ)|Ψ〉

=
∑

∆k,sk

〈Ψ|
[
CO†OOk

Ok(x+iδ)

(2iδ)2∆−∆k

]
O(y1)O(y2) . . .O(yn)|Ψ〉

〈Ψ|O†(x+ iδ)O(x− iδ)|Ψ〉 . (3.6.32)

The sum is over all operators Ok, which we have indexed by dimension ∆k and spin sk, and

the CO†OOk are theory-dependent coefficients. If Ok is a primary operator, then CO†OOk is

the three-point coefficient.

As the state |Ψ〉 is conformally invariant, 〈Ψ|Op|Ψ〉 = 0 for all local primary operatorsOp.

Therefore, O†O must contain the identity in its OPE in order for the two-point function in

this state, 〈Ψ|O†(x+ iδ)O(x− iδ)|Ψ〉, to be non-zero. We will assume the identity is present

in this OPE. It follows that only the identity’s contribution to the OPE in the numerator of

(3.6.32) survives the δ → 0 limit.

〈O(y1)O(y2) . . .O(yn)〉 =
∑

∆k,sk

〈Ψ|
[
CO†OOk

Ok(x+iδ)

(2iδ)2∆−∆k

]
O(y1)O(y2) . . .O(yn)|Ψ〉

〈Ψ|O†(x+ iδ)O(x− iδ)|Ψ〉

=
∑

∆k,sk

〈Ψ|
[
CO†OOk

Ok(x+iδ)

(2iδ)2∆−∆k

]
O(y1)O(y2) . . .O(yn)|Ψ〉

(2iδ)−2∆

δ→0−→ 〈Ψ|O(y1)O(y2) . . .O(yn)|Ψ〉 . (3.6.33)

Even if the field theory is not a CFT, an argument similar to (3.6.33) shows that O(x)

creates local excitations if we assume a certain short-distance factorization. The only non-

zero contribution to a correlator evaluated a state created by O(x−iδ) comes from the δ → 0

contribution. If x is spacelike from the insertion points of all the other operators, then the

δ → 0 limit does not cross any branch cut of the complex-time correlator. If, in a particular

state of a field theory, the correlator factorizes on the δ → 0 singularity, then O(x) creates
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a local excitation, and the argument proceeds similar to the CFT case:

〈O†(x+ iδ)O(y1)O(y2) . . .O(yn)O(x− iδ)〉
〈O†(x+ iδ)O(x− iδ)〉

δ→0−→ 〈O
†(x+ iδ)O(x− iδ)〉 〈O(y1)O(y2) . . .O(yn)〉

〈O†(x+ iδ)O(x− iδ)〉

= 〈O(y1)O(y2) . . .O(yn)〉 , yi − x spacelike.

(3.6.34)

Strictly speaking, local operators themselves are only operator-valued distributions. While

certain infinite-norm operators may create local excitations, these operators must be smeared

with some test function to create a physical excitation with finite norm. But once the non-

unitary operator has finite norm, the finite-norm excitation will generically not be localized

to the region of smearing. As such, the conclusions drawn from the locality properties of

infinite-norm operators must be treated with care, as they may not extend to the operators’

smeared counterparts.

3.7 Entanglement Entropy in Excited States

Entanglement entropy has recently emerged as a useful probe of excited-state dynamics in

(1 + 1)-dimensional conformal field theories. A compelling quasi-particle picture has been

proposed for local operators, wherein generic local operators create local excitations that

can be interpreted as entangled pairs of quasi-particles [64]. In this section, we revisit

the results in the literature and show how, while some infinite-norm operators create local

excitations that may admit a quasi-particle description, entanglement and Renyi entropies

change non-locally for other infinite-norm operators, and so the quasi-particle picture is not

universal for all local operators. It is known that the quasi-particle picture fails for some

theories [65, 86], and we show its failure in theories in which the picture is expected to

be accurate. We show the results in the literature are consistent with evidence we have

presented that local operators with definite conformal dimensions create local excitations.

We also prove a causality relation for entanglement entropy.
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3.7.1 Causal properties of entanglement entropy

The details of how localized excitations are implemented by localized unitary operators

motivate a general causality condition for entanglement entropy in quantum field theories.

The condition applies to pure states. Our result extends the result proved in ref. [87].

This earlier result makes use of the fact that, for a localized excitation within domain of

dependenceD(A) of subregion A of a Cauchy surface, one can always find a Cauchy surface A′

of D(A) such that the state on A′ is unaffected by the excitation. The excitation’s support R

is in the future of A′ and to the past of A. As a reminder, the domain of dependence is defined

as the region D(A) that, if an inextendible curve that is nowhere spacelike passes through

the region, then this curve must intersect A. The domain of dependence D(A′) = D(A).

The reduced density matrices on A,A′ are unitarily related and so the entanglement entropy

does not change.

However, having a Cauchy surface A′ that is unaffected by the excitation is not a nec-

essary condition. For example, no such A′ exists for local excitations prepared by ingoing

excitations, yet these excitations still do not change entanglement entropy. We provide a

proof that does not rely on the existence of A′, but on the properties of the excitation

regardless of how it was prepared.

Consider a quantum field theory in some pure state |Ψ〉. We choose a purely spatial

surface at time t as a Cauchy surface for simplicity. Divide the spatial surface into two

regions A,B with reduced density matrices ρA, ρB. Consider an excitation localized within

A at time t. This excitation can be created by acting with a unitary operator U(A) localized

in A. This localized excitation does not change ρB. The entanglement entropy SB of region

B therefore does not change either. As the state |Ψ〉 is pure, SA = SB, and so SA does not

change. If the perturbation is localized within B, the excitation does not change ρA or SA.

Only when the excitation is localized to a region that is causally connected to both

A and B will these arguments fail. In this case, the entanglement entropy may change.
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The complement of D(A) ∪ D(B) to the past of t is precisely the correct region. This

region includes its boundary, which consists of null rays. We recover the causality condition

of ref. [87]. Some excitations with support in both A and B can leave the entanglement

entropy unchanged. As we showed in section 6.2, the excitations created by separable unitary

operators accomplish this.

3.7.2 Entanglement entropy calculations with infinite-norm oper-

ators

In light of our conclusions that some infinite-norm local operators can create non-localized

excitations, the results of recent entanglement entropy calculations may seem surprising. We

show how these calculations are consistent with our results.

Calculations of entanglement entropy in excited states created by infinite-norm operators

have shown that Renyi and entanglement entropies change only when the operator insertion

is null or timelike to the subregion [61–68]. States of the form O(x) |0〉 were considered in

(1+1)-dimensional CFTs. It was suggested that the jumps in entanglement entropy reveals a

local quasi-particle picture. In this picture, a local operator creates quasi-particle pairs that

propagate at the speed of light from the operator’s insertion point. Entanglement entropy

changes only when one member of the pair is inside the subregion, but not both members.

The (1 + 1)-dimensional calculations we address use the replica trick to calculate en-

tanglement entropy. In the replica trick, entanglement entropy of interval A is calculated

from the replicated density matrix trρnA, and conveniently given by correlators with twist

operators Φn [109, 110]. The path integral for a field φ on an n-sheeted Riemann surface is

given by a path integral for fields φi living on C with certain boundary conditions relating

the φi. These boundary conditions can be represented by inserting twist operators at the

endpoints of the interval. Twist operators are primary. Correlators are taken in the theory

with the n fields φi. For details, see ref. [111].

We consider a single interval A with endpoints u, v. The replica trick for excited states
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has been established [61–64]. Take O to be an operator creating an excited state. For

example, one such operator could be O(x) =
∏n

i φi(x). Renyi entropies are calculated from

Tr(ρnA) =
〈0|O†(x+ iδ)Φn(u)Φ̄n(v)O(x− iδ)|0〉

〈0|O†(x+ iδ)O(x− iδ)|0〉 . (3.7.1)

The normalization is such that Tr(ρnA) = 1 for n = 1. Entanglement entropy is calculated

from the Renyi entropy. In generic excited states, when the Renyi entropy changes, the

entanglement entropy will change as well.

Suppose O is an operator with definite conformal dimension. If x is spacelike-separated

from u, v, we can use the O(x+ iδ)O†(x− iδ) OPE to understand what happens in the limit

δ → 0. For finite δ the excitation created by O has a finite-norm and can be non-local.

Indeed, entanglement entropy changes at spacelike separations for finite δ [61–64]. The

leading contribution to the OPE for small δ is from the identity operator, and we showed

in (3.6.33) how this implies the locality of certain operator excitations. We will revisit and

provide context for this statement shortly, comparing it to the result in ref. [66] to understand

when the leading contribution to the full correlator comes from the identity and when it can

come from the full identity block. For small δ,

Tr(ρnA) =
〈0|O†(x+ iδ)O(x− iδ)|0〉 〈0|Φn(u)Φ̄n(v)|0〉+ subleading

〈0|O†(x+ iδ)O(x− iδ)|0〉 . (3.7.2)

For δ → 0,

Tr(ρnA) = 〈0|Φn(u)Φ̄n(v)|0〉 . (3.7.3)

The excitation created by O does not affect the Renyi entropy. This argument was also given

in section 6.5.

As x becomes null-separated from u or v, the OPE of O†(x+iδ)O(x−iδ) is not convergent

because the twist operators are within what would be the neighborhood of convergence. In

ref. [66], the authors instead consider the vacuum block approximation to the four-point func-
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tion, which is valid under certain assumptions and in a particular limit. They observe that

this function has a certain branch cut, that when performing the continuation to real time,

causes the entanglement entropy to pick up an additional contribution when the excitation

is not spacelike-separated from the subregion. This is an example of how the entanglement

entropy changes when the subregion becomes null and timelike to x.

Our statement that for spacelike-separations the identity operator and not also its descen-

dants dominates the correlation function as δ → 0 is consistent with the recent calculations

in ref. [66] of Renyi and entanglement entropies in the presence of a local operator excitation

of the vacuum. In the δ → 0 limit, their expression for Tr(ρnA) reduces to the two-point

function of twist operators in the vacuum as long as the excitation is spacelike-separated

from the interval. The Renyi entropy is therefore unchanged by the excitation, just as we

found in (3.7.3). In the expression for the vacuum conformal block used in ref. [66], δ → 0

is the z → 1 limit. The leading divergence in the vacuum block corresponds to exchanging

the identity, while all divergences subleading in z− 1 correspond to exchanging descendants

of the identity. As δ → 0, only the leading divergence to the vacuum block gives a non-zero

contribution to the correlator. Only when the excitation is not spacelike-separated from the

interval does z̄ pass to its second sheet, and the branch cut in the conformal block causes

the Renyi entropy to change.

The argument we have given that infinite-norm local operators create local excitations

fails when O does not have a definite scaling dimension. As an example, instead excite the

vacuum with the operator

Oe =
n∏
i

eαOi(z) (3.7.4)

Here α is real and contains a small dimensionless parameter. For simplicity, take Oi = O†i .

To first order in α,

Oe = 1 + α

n∑
i

On(z) ≡ 1 + αO(z). (3.7.5)

We denote
∑n

i On(z) = O(z) for short. Notice that this operator does not change the
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state’s norm to first order in α. The correction to the Renyi entropy is proportional to

〈0|
{
O(z),Φn(u)Φ̄n(v)

}
|0〉, and unless the three-point function vanishes, the anti-commutator

generically is not zero for z spacelike-separated from u, v. For an explicit example, choose

O =
∑n

i Tn(z), the stress tensor. The anticommutator is known [109]. This calculation may

be performed with the entanglement first law. Alternatively, replace Oi(z) with a non-local

operator Oi(z1)Oi(z2) to see a case in which the Renyi entropy will be non-zero.

The argument we gave that uses the OPE to show that Renyi and entanglement entropies

change in response to a local excitation does not apply to Oe. For example, to first order in

α, the four-point function is a three-point function involving one O, and so there is no OO

OPE to take. Said another way, as the OPE Oe(z + iδ)Oe(z − iδ) contains no divergence to

first order in α, the contribution of the identity operator to the OPE does not determine the

correlator’s behavior. While we must introduce a regulator δ for the state’s infinite norm,

we need not introduce δ if we are working to first order in α.

The calculations we have shown are consistent with our arguments in section 6.5, as

operators O which have definite conformal dimension change entanglement entropy only

when O is in causal contact with the interval.

We have shown the quasi-particle picture does not describe excitations created by all

local operators, but we have provided evidence that operators with definite conformal di-

mension have a quasi-particle interpretation for certain conformal field theories. Others have

demonstrated that the quasi-particle picture is invalid for some field theories [65, 86]. The

quasi-particle picture remains a compelling description of certain excitations in certain theo-

ries, and understanding its origin may reveal important properties of entanglement entropy.

3.8 Discussion

In this work, we have shown how localized unitary operators are fundamental building blocks

of time-dependent quantum systems in entangled states. Localized unitary operators cre-

ate localized excitations. We have detailed various features of localized unitary operators,

92



including their locality properties, their behavior under superposition, and the difference be-

tween separable and non-separable unitary operators. We found that non-separable unitary

operators, and their associated non-separable localized excitations, are in conflict with the

principles of local quantum field theory. We gave a criterion to test for separability.

We have shown how, unlike local unitary operators, local non-unitary operators can cre-

ate non-local excitations in entangled states. As a reminder, generic states in field theory

are entangled over spatial regions. Local non-unitary operators are state-dependent and can

have infinite norm. We provided an example of an infinite-norm local non-unitary operator

that creates a non-local excitation. We gave arguments that suggest that certain infinite-

norm local non-unitary operators do create local excitations. However, these operators must

be smeared to have finite norm, and the resulting finite-norm operators can create fully non-

localized excitations. Consequently, one must be careful when drawing conclusions about

locality properties based on those of infinite-norm local operators. In practice, however, cor-

relators in excited states created by a non-unitary operator O(x) can be simpler to calculate

than correlators in excited states created by a unitary operator eiαO(x), which can involve

perturbation theory in α and a treatment of divergences.

We defined a local picture for quantum systems that unifies several different manifesta-

tions of locality and causality into a simple description. The local picture follows naturally

from real-time perturbation theory and the definitions of open and closed quantum systems.

According to the local picture, experimentalists can only act through deforming the Hamil-

tonian, and localized experimentalists can only deform the Hamiltonian locally. Localized

unitary operators are central features of the local picture. Deforming the Hamiltonian in a

localized region is equivalent to acting with a localized unitary operator on the state, and

this operator will create a localized excitation. Generic non-unitary operators create non-

localized excitations, so in order to act with these operators on the state, the experimentalist

must be fully non-localized herself.

Using the local picture and our analysis of unitary and non-unitary operators, we dis-
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tilled more formal results in algebraic quantum field theory into elementary statements in

quantum mechanics, and demonstrated their underlying mechanisms. We showed how the

non-local state preparation described by the Reeh-Schlieder theorem comes from the fact

that local non-unitary operators create non-localized excitations in entangled states. The

local picture makes clear how the Reeh-Schlieder theorem is intuitive and consistent with

causality. Localized experimentalists can only create localized excitations, and so cannot act

with the local non-unitary operators that create non-localized excitations.

We applied our results to entanglement entropy in field theory. We used properties of

localized excitations to prove a causality condition for entanglement entropy that extends

an earlier result [87]. Our proof applies to separable excitations and states prepared with

ingoing excitations. We addressed recent calculations of entanglement entropy in (1 + 1)-

dimensional conformal field theories [61–64, 66], and provided evidence that the locality

properties demonstrated by these calculations are only properties of operators with definite

conformal dimension. We showed consistency between these calculations and our conclusions

about the locality of operator excitations. We provided an example of a local non-unitary

operator that changes entanglement non-locally. While the quasi-particle picture is known to

fail in certain theories [65,86], we concluded that the quasi-particle picture does not describe

excitations created by all local operators in theories in which the picture is expected to hold.

Understanding whether the picture applies to all localized excitations may provide insights

into entanglement entropy.

We connect our results to the AdS/CFT correspondence in the limit in which the bulk is

semiclassical. Non-normalizable modes of bulk fields φ with dual CFT operatorsO are turned

on at the boundary by acting with the localized unitary operators T
(
e−i

∫
dd+1xφ0(x)O(x)

)
in the CFT. An excitation of the CFT on a Cauchy surface S is associated with a bulk

excitation in QS ∪ S, where the causal shadow QS is the set of points spacelike-separated

from all points in S. This is because the region QS ∪ S is the union of all possible bulk

Cauchy surfaces which intersect the boundary at S, and there is generically no preferred way
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to choose one of these Cauchy surfaces for the bulk theory. Work on operator reconstruction

is fully compatible with the fact that local non-unitary operators generically create non-

localized excited states. For instance, for every local Hermitian operator O(x) there is a

unitary operator eiαO(x) which creates a local excitation at x. Recent work sheds light on

these considerations through a bulk exploration of the Reeh-Schlieder theorem [112, 113].

Recall that unlike unitary operators, non-unitary operators are state-dependent operators.

State-dependent operators in AdS/CFT have been explored in detail [114–117].

We expect that our results, along with our elementary treatment of related discussions

in diverse branches of the literature will help clarify investigations into locality, causality,

entanglement entropy, and the AdS/CFT duality in the future.
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Chapter 4

Entanglement Entropy with a

Time-dependent Hamiltonian

The time evolution of entanglement tracks how information propagates in interacting quan-

tum systems. We study entanglement entropy in CFT2 with a time-dependent Hamiltonian.

We perturb by operators with time-dependent source functions and use the replica trick to

calculate higher order corrections to entanglement entropy. At first order, we compute the

correction due to a metric perturbation in AdS3/CFT2 and find agreement on both sides

of the duality. Past first order, we find evidence of a universal structure of entanglement

propagation to all orders. The central feature is that interactions entangle unentangled ex-

citations. Entanglement propagates according to “entanglement diagrams,” proposed struc-

tures that are motivated by accessory spacetime diagrams for real-time perturbation theory.

To illustrate the mechanisms involved, we compute higher-order corrections to free fermion

entanglement entropy. We identify an unentangled operator, one which does not change the

entanglement entropy to any order. Then, we introduce an interaction and find it changes

entanglement entropy by entangling the unentangled excitations. The entanglement propa-

gates in line with our conjecture. We compute several entanglement diagrams. We provide

tools to simplify the computation of loop entanglement diagrams, which probe UV effects in
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entanglement propagation in CFT and holography.

4.1 Introduction

Entanglement is a fundamental feature of quantum field theory. The program of study-

ing entanglement and other information-theoretic quantities in field theory has recently led

to new understanding of the well-known holographic correspondence between gravitational

theories in anti-de Sitter spacetimes (AdS) and large-N strongly-coupled conformal field

theories (CFTs). The AdS/CFT correspondence provides a route towards understanding

quantum gravitational effects through their dual CFT description, and aspects of strongly

coupled field theories through their dual AdS solutions [118]. Basic entries in the AdS/CFT

dictionary involve information-theoretic quantities, including quantum error correction, com-

plexity, mutual information, and relative entropy [119–123]. The black hole information loss

paradox is intimately tied to questions of entanglement across the horizon [124,125].

We will focus on entanglement entropy in this work. A significant body of evidence

suggests that surface area in AdS calculates the entanglement entropy of CFT subregions,

see for example [100, 101, 126, 127]. CFT entanglement entropy can also be used to derive

bulk equations of motion [128]. We investigate the time-dependence of entanglement entropy

in CFTs. We work in 1 + 1 dimensions, in which global conformal symmetry is enhanced to

Virasoro symmetry, providing greater control over the system in question. We study time-

dependent perturbations of vacuum entanglement entropy of a single interval in a CFT and

apply our results to the AdS3/CFT2 correspondence.

The time evolution of entanglement entropy in excited states has been well-studied,

see for example [61, 63–66, 85, 129, 130]. Excited states can also be created by a time-

dependent Hamiltonian, and the two setups are related but distinct [2]. Excited states

have been used to model quantum quenches, wherein the Hamiltonian changes abruptly

and the state is no longer a vacuum of the new Hamiltonian [66, 131]. Studies of en-

tanglement with time-dependent Hamiltonians have also focused on quantum quenches
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[104, 105, 108, 132–134]. General features of Hamiltonian perturbations by local operators

have been explored [135,136] and a study of their time-dependence has been initiated [137].

In [137], the first law was used to calculate the change in entanglement entropy to first order

in J due to the Hamiltonian perturbation J(x, t)O(x) for operators O in the free scalar and

fermion theories in various spacetime dimensions. Their CFT results agreed with that of the

Hubeny-Rangamani-Takayanagi prescription (HRT) in the bulk, the covariant generalization

of the Ryu-Takayanagi prescription (RT) for computing CFT entanglement entropy through

extremal surface area.

We will now summarize this manuscript for the reader’s convenience. In this work, we

study corrections to vacuum entanglement entropy of a single interval A due to Hamiltonian

perturbations of the form J(x, t)O(x). For illustrative purposes, the source function J(x, t)

is localized in spacetime, but our methods apply for general source functions. Our primary

CFT tool is the replica trick.

In 4.2, we provide background on the analytic continuation of correlators from Euclidean

to Lorentzian signature in position space and the replica trick.

In 4.3, we warm up with first-order Euclidean computations. We consider an infinitesimal

Weyl transformation, equivalent to choosing O = Tr(T ), and compute the change in entan-

glement entropy with the replica trick and a proper length cutoff procedure. As expected,

entanglement entropy changes only at the location of O, the only place conformal symmetry

is broken. Using a bulk diffeomorphism that implements the CFT metric transformation, we

compute the change in the Ryu-Takayanagi surface area and find agreement with the CFT

result. The Euclidean entanglement entropy changes only due to the perturbation at the

entangling surface ∂A, as in the CFT.

In 4.4, we work in Lorentzian signature and perform a metric perturbation equivalent

to choosing O(z) = T (z). Computing the entanglement entropy in the CFT using the

replica trick and the entanglement first law give the same result, and we identify a non-

trivial causality property that the modular Hamiltonian obeys but does not make manifest.

98



We compute the change in entanglement entropy in the bulk using the corresponding AdS3

solution and find agreement with the CFT result. The bulk geodesic integral reduces to the

CFT first law integral. We conclude that the perturbation changes physics at the entangling

surface, just as in the Euclidean case.

Shifting gears, we move to higher orders in perturbation theory. Here, we find evidence

of a universal structure of entanglement propagation to all orders: interactions entangle

unentangled excitations according to entanglement diagrams.

In 4.5, we make the precise conjecture. For operators O that do not change entangle-

ment entropy to any order in J , certain interactions λOλ in the Hamiltonian entangle these

excitations. Entanglement changes only when a non-trivial “entanglement diagram” can be

drawn of the process, depicting entanglement propagating through a web of interactions. See

figure 4.1 for an example. Entanglement diagrams are position-space diagrams associated

with the computation of entanglement entropy in real-time perturbation theory, with rules

specific to entanglement propagation. However, even in the case of perturbation about a

free field theory, entanglement diagrams are not the standard spacetime Feynman diagrams

built from Wick contractions of the elementary fields. Instead, lines and vertices in entan-

glement diagrams are built from operators that serve as building blocks of entanglement in

that theory. We provide a procedure to identify these operators.

Entanglement diagrams explicitly differentiate between two mechanisms of entanglement:

entanglement due to interactions between excitations, and entanglement due to pre-existing

background state correlations. We develop a diagrammatic method of organizing and stream-

lining real-time perturbation theory computations that makes causality properties manifest.

In 4.6, we perform calculations that provide evidence for the conjecture in 4.5. We

use explicit twist operators in the bosonized free fermion theory to compute perturbative

corrections to entanglement entropy, as in for example [138]. In the free fermion theory, the

natural entanglement diagrams are the position-space Feynman diagrams associated with

real-time perturbation theory, but in which lines are Wick contractions of the free boson
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Figure 4.1: A sample spacetime entanglement diagram for subsystem S. Ds is the domain of
dependence of S. A − F label incoming unentangled excitations, which interactions subsequently
entangle as labeled.

φ rather than the free fermion ψ = eiφ. We identify an unentangled operator O = ∂φ,

the spin 1 current, that does not change entanglement entropy to any order. Then, we

compute entanglement entropy in the presence of the cubic interaction Oλ = (∂φ)3, the spin-

three current. Entanglement entropy changes at order J2λ2, and entanglement propagates

according to the associated entanglement diagrams. We compute all J2λ2 diagrams. The

computation manifests various features of the conjecture in Section 6, for instance that

processes that would contribute to a generic correlator are prohibited entanglement entropy

corrections according to the entanglement diagram rules. The free fermion is an elementary,

tractable testing ground for features of entanglement propagation to high loop order.

Our goal is to make locality and causality manifest and so we express the lightcone diver-

gences in position space rather than momentum space. Divergences can be addressed using

methods in [139]. We consider irrelevant, marginal, and relevant Oλ, and we expect that the
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entanglement structure we find is independent of operator dimension. All expectation values

are taken in the vacuum unless otherwise specified, and beginning in 4.4, we omit overall

numerical factors that play no role in our results.

4.2 Background

4.2.1 Analytic continuation to Lorentzian signature

We review the procedure of analytically continuing correlators from Euclidean to Lorentzian

signature, connecting the iε prescription that is transparent in free field theory to the more

general contour prescription discussed in [85].

We begin with the iε prescription for obtaining Lorentzian two-point functions in free

field theory. We will use the free scalar field in d + 1 dimensions as an example and use

the mostly minus signature. Just as in the Feynman prescription, we may begin with the

Euclidean Green’s function

G(x) =

∫
C
dd+1p

e−i(p
0(±iε)−p·x)

(p0)2 − (p)2 −m2
, (4.2.1)

with contour C for p0 chosen along the imaginary axis. Notice that if Euclidean time ε is

continued to Lorentzian time in the integrand, the integral will diverge unless the contour is

rotated. Choosing −iε allows us to close the contour in the p0 > 0 half of the plane, enclosing

the Ep =
√

(p)2 +m2 pole. At this point, ε is analytically continued so that −iε → t − iε,

which amounts to increasing t to its non-zero Lorentzian value. Taking the ε→ 0 limit, we

obtain the Lorentzian two-point function 〈0|φ(x)φ(0)|0〉. Using the iε value instead gives

〈0|φ(0)φ(x)|0〉. In the spacelike region x2 < 0, choosing either ±iε will give the same result.

In this case, the operators commute just as in the Euclidean correlator [88,89].

Now we examine the iε prescription in position space. Correlators are multivalued in

complex time and the iε prescription indicates the direction from which we approach branch
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cuts in the correlator when we continue from complex to real time. Consider a spinless

operator O of dimension ∆ in a CFT as an example. In the spacelike region x2 < 0,

〈0|O(x)O(0)|0〉 =
1

(−x2)∆
. (4.2.2)

When −x2 > 0, choosing ±iε gives the same result because there is no branch cut in this

region. When −x2 crosses zero, choosing ±iε must give different results. We may orient

the branch cut of (−x2)−∆ along the negative real axis of −x2. To obtain the correlator for

timelike separation, we must analytically continue the spacelike expression.

〈O(x, t± iε)O(0)〉 =
1

((|x|+ t± iε)(|x| − t∓ iε))∆
≈ 1

(x2 − t2 ∓ iε sgn(t))∆
. (4.2.3)

The quantity 〈O(x, t± iε)O(0)〉 denotes the continuation of the Euclidean two-point function

to complex time, and so the operator ordering of this expression is meaningless except in the

limit ε→ 0. Moving O(x) through the future f or past p lightcone of O(0) corresponds to t

crossing ±|x|, which is equivalently fixed by sgn(t). This choice is separate from the choice

of ±iε that gives the two different operator orderings. The timelike two-point function in

the two kinematic regions t > |x| and t < −|x| is

〈O(x, t± iε)O(0)〉f =
1

(t2 − x2)∆
e±π∆i,

〈O(x, t± iε)O(0)〉p =
1

(t2 − x2)∆
e∓π∆i. (4.2.4)

The iε prescription is precisely what chooses the branch cut of the two-point function when

the argument becomes negative. There is an unphysical choice of overall normalization. Here

we have chosen e±iπ to parameterize the two directions of approaching the branch cut, but

in general we may choose eαi, eβi for any |α− β| = 2π. A common choice is α = 0, β = 2π.

Having addressed the two-point function, we summarize the rules for obtaining the

n-point correlator in which all operators are timelike separated from one another. The
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Lorentzian correlator

〈O1(x1)O2(x2)O3(x3) . . .〉 (4.2.5)

corresponds to the continuation ti → ti − iεi with ε1 > ε2 > ε3 . . . > 0 of the Euclidean

correlator in the limit of ε1 → 0 [88,89,140–142]. Moving Oi(xi) past Oj(xj) in the correlator

amounts to reversing the sign of εi − εj, which as we have seen amounts to approaching the

branch cut in xi−xj from the opposite direction, as in (4.2.4). It is equivalent to view the iε

prescription of approaching branch cuts as the complex time path of analytic continuation

passing through different sheets of the correlator before reaching the real axis [85]. The

location of the singularities can be different on different sheets of the correlator. See [85] for

a detailed explanation of this contour prescription.

Now, we address the null singularities of correlators. Correlators can have delta-function

lightcone singularities that require a generalization of the iε prescription. We review the

lightcone singularity of the 3 + 1 dimensional free scalar two-point function, as in for ex-

ample [143], and then provide its generalization to all dimensions. To our knowledge this

generalization has not been stated in position space in the literature, so we justify the result

in detail.

We begin by calculating the spacelike two-point function D(x) in d + 1 dimensions. We

will omit most numerical prefactors. Performing the p0 integral,

D(x) =

∫
ddp

1

Ep
e∓iEpt+ip·x, Ep = |p|. (4.2.6)

The ± signs specify the pole ±Ep enclosed. With r ≡ |p|, we can integrate over the angular

directions. The lightcone divergence comes from the large r behavior of D(x), which is

D(x) =
1

|x|

∫ ∞
0

drrd−3
(
e−ir(±t−|x|) − e−ir(±t+|x|)

)
. (4.2.7)
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In the familiar case of d = 3 [143,144], the quantity (4.2.7) is

D(x) =
1

|x|(δ(±t− |x|)− δ(±t+ |x|)) = δ(t2 − |x|2) = δ(x2). (4.2.8)

We could have obtained this divergence by analytically continuing the Euclidean two-point

function instead. For t > 0,

lim
ε→0

D(x, t± iε) = lim
ε→0

1

x2 ∓ iε = ±iπδ(x2) + p.v.

(
1

−x2

)
, (4.2.9)

where p.v. denotes the Cauchy principal value. We will omit the principal value designation

from now on, but it is understood to be present and can be restored easily. For higher

dimensions, (4.2.7) becomes

D(x) =
1

|x|∂
d−3
t

∫
dr
(
e−ir(±t−|x|) − e−ir(±t+|x|)

)
= ∂d−3

t δ(x2). (4.2.10)

Using

lim
ε→0

1

(s± iε)n =
(−1)n−1

(n− 1)!
∂n−1
s lim

ε→0

1

s± iε , (4.2.11)

and (4.2.4), we can write the full CFT two-point function of O in general dimensions by

analytically continuing the position-space Euclidean correlator.

Spacelike x2 < 0 : 〈O(x)O(0)〉 = 〈O(0)O(x)〉 =
1

(−x2)∆
.

Timelike, null x2 ≥ 0 : 〈O(x)O(0)〉 = 〈O(x, t− iε)O(0)〉 ,

〈O(0)O(x)〉 = 〈O(x, t+ iε)O(0)〉 , (4.2.12)
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where for x2 ≥ 0,

〈O(x, t± iε)O(0)〉f = ±(−1)∆−1

(∆− 1)!
· iπ∂∆−1

xf
δ(x2) +

1

(x2)∆
e±π∆i,

〈O(x, t± iε)O(0)〉p = ∓(−1)∆−1

(∆− 1)!
· iπ∂∆−1

xp δ(x2) +
1

(x2)∆
e∓π∆i. (4.2.13)

The lightcone coordinates xf = |x| − t and xp = |x| + t. The prescription (4.2.13) matches

the 3 + 1 dimensional free-scalar result of [144].

We have discussed correlators of bosonic operators, but there is an additional negative

sign involved in computing fermionic correlators through analytic continuation. Taking

tz → tz − iε in the two-point function 〈0|ψ(z)ψ∗(w)|0〉 at timelike separation produces

1/(z−w), but to obtain the other ordering one must take tz → tz + iε and also anticommute

the fermions, obtaining 〈0|ψ∗(w)ψ(z)|0〉 = −1/(z − w). In even spacetime dimensions,

the commutator of free scalars and anticommutator of free fermions have support only on

the lightcone while the anticommutator of scalars and commutator of scalars have support

everywhere inside the lightcone. However, this is reversed in odd spacetime dimensions,

leading to what is known as a violation of Huygen’s principle in odd dimensions [145].

4.2.2 Entanglement entropy from the replica trick

Our main tool in this work will be the replica trick, a useful method of calculating entan-

glement entropy in 1 + 1 dimensional CFTs. We will briefly review the replica trick here,

but for a more complete review, see for example [109, 111]. The entanglement entropy SA

of subsystem A can be computed as SA = −∂n=1tr(ρA)n, where ρA is the reduced density

matrix of A. The quantity trρnA can be computed from an n-sheeted Riemann surface,

trρnA =
Zn(A)

(Z1)n
, (4.2.14)
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where Zn(A) is the partition function of the theory on an n-sheeted Riemann surface. The

surface is formed by joining n copies of the plane along cuts located at A on each sheet.

The theory on the Riemann surface can be mapped to n copies of the theory on the plane

with local twist operators that impose the correct boundary conditions upon the n species

of replica fields. trρnA is proportional to the expectation value of these twist operators [109].

The twist operator Φn(u) and anti-twist operator Φ̄n(v) are inserted when the subsystem A

is the interval (u, v), the case we consider. We use the twist operator normalization fixed

by 〈Φn(u)Φ̄n(v)〉 = 1/(u− v)2∆Φ , where the scaling dimension ∆Φ = c
12

(n− 1
n
) and c is the

central charge of the theory.

The action of the twist operators is apparent in their diagonalizing basis. Labeling the

n replica fields on the plane as φl, the diagonalizing replica fields φ̃k are

φ̃k =
n−1∑
l=0

e2πil k
nφl, k = 0, 1, . . . , n− 1. (4.2.15)

Moving the φl around the twist operator Φn(u) takes φl → φl±1, and is equivalent to mul-

tiplying φ̃k by e2πik/n. Moving around the anti-twist Φ̄n(v) produces a factor of e−2πik/n.

Deforming the Lagrangian L of the original theory by φm corresponds to deforming the

replicated Lagrangian Ln by
∑

l(φl)
m, and

n∑
l=1

(φl)
m = δ0,

∑
kiφ̃k1φ̃k2 . . . φ̃km , (4.2.16)

up to an overall n-dependent normalization factor. For bilinears,
∑

l φlφl =
∑
φ̃kφ̃−k.

The free fermion theory provides an explicit realization of the twist operators through

bosonization. Details of the setup not provided here can be found in [138, 146–148]. In

bosonization, the holomorphic and anti-holomorphic fermions are written in terms of a free

scalar as follows:

ψ(z) = eiφ(z), ψ̄(z̄) = eiφ̄(z̄), (4.2.17)
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where 〈φ(z)φ(w)〉 = − ln(z − w) and similarly for φ̄. Here φ, φ̄ are real.

Under cyclic permutation of ψl, the fermion on the last sheet must be identified with the

first fermion up to a negative sign that depends on whether n is even or odd, as ψl can always

be redefined to eliminate all but a possible overall sign change under this operation [147].

The diagonalizing replica fields ψ̃k are

ψ̃k =
n−1∑
l=0

e2πil k
nψl, k = −1/2(n− 1),−1/2(n− 1) + 1, . . . , 1/2(n− 1). (4.2.18)

The inverse transformation is

ψl =
1

n

∑
k

e−i2πl
k
n ψ̃k. (4.2.19)

We will be using fermion bilinears in this work, for which
∑

l ψlψ
∗
l =

∑
ψ̃kψ̃

∗
k. The twist

operators for the free fermion are

Φn(z, z̄) =
∏
k

ei
k
n

(φk(z)−φ̄k(z̄)),

Φ̄n(z, z̄) =
∏
k

e−i
k
n

(φk(z)−φ̄k(z̄)). (4.2.20)

The operator eiαφ(z) has conformal dimension 1
2
α2, consistent with the normalization of

〈φ(z)φ(w)〉.

We will use the normal-ordered product of twist operators. Notice that this operator is

a neutral product of vertex operators. For interval A between (u, ū) and (v, v̄),

N(Φn(u, ū)Φ̄n(v, v̄)) =: exp

(∑
k

i
k

n

[
φk(u)− φ̄k(ū)− φk(v) + φ̄k(v̄)

])
Z0(n), (4.2.21)

where Z0(n) is the n-sheeted partition function for the vacuum [147]. Z0(1) = 1 and

−∂n|n=1Z0(n) = SA, the entanglement entropy of the interval in the vacuum. The fac-

tor Z0(n) will not contribute to any of our entanglement entropy calculations, so we will

omit it. We will sometimes use the notation Φn(u, ū) = Φn(u) for compactness.

107



4.3 First order metric perturbation: Euclidean AdS3/CFT2

In this section we work in Euclidean AdS3/CFT2 and compute the perturbative correction

to the vacuum entanglement entropy, which is

SA =
c

3
ln

(
u− v
ε

)
, (4.3.1)

to first order in a metric perturbation. Here, ε is a UV cutoff. We consider an infinitesimal

Weyl transformation as our metric perturbation:

g′µν = δµν + ω(x)δµν , ω(x)� 1. (4.3.2)

We compute the change in entanglement entropy using the replica trick in the CFT and

find that the correction depends only on the metric perturbation at the interval’s endpoints,

which is expected as perturbation by the trace of the stress tensor preserves conformal

symmetry wherever ω(x) = 0. Next, we compute the change in entanglement entropy as the

change in a proper-length cutoff and find agreement with the replica trick result. Using the

Ryu-Takayanagi prescription, we compute the first-order correction in AdS3 and reproduce

the CFT result. Our ultimate goal is to work in Lorentzian signature, and this Euclidean

computation will mirror features of later Lorentzian calculations.

4.3.1 CFT2: Replica trick

We begin by using the replica trick. The quantity trρnA changes under an infinitesimal Weyl

transformation as

δtrρnA = −1

2

∫
d2x
〈Φn(u)Φ̄n(v)T µµ (x)〉ω(x)

〈Φn(u)Φ̄n(v)〉 . (4.3.3)

We have used the stress tensor normalization such that for an infinitesimal diffeomorphism

that acts as g′µν = gµν + δgµν , the action changes as δS = −1
2

∫
T µνδgµν . Using the Ward
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identity,

T µµ (x)Φn(u)Φ̄n(v) = −δ(x− u)∆ΦΦn(u)Φ̄n(v)− δ(x− v)∆ΦΦn(u)Φ̄n(v). (4.3.4)

We therefore have

δtrρnA =
c

24

(
n− 1

n

)
(ω(u) + ω(v)), (4.3.5)

and the change in entanglement entropy

δSA =
c

12
(ω(u) + ω(v)). (4.3.6)

Only the Weyl transformation at the endpoints changes the entanglement entropy to this

order.

4.3.2 CFT2: Proper length cutoff

We can view the change in entanglement entropy as a change in the coordinate length

UV cutoff ε defined by a proper length εp that is held fixed under the infinitesimal Weyl

transformation. After the Weyl transformation, the coordinate length cutoff ε associated

with u for example is

ε =

∫ u±εp

u

ds′ =

∫ u±εp

u

√
eωdx2 ≈

∫ u±εp

u

(
1 +

1

2
ω(x)

)
dx. (4.3.7)

Assuming (εp)
n dn

dxn
ω(x)� 1 for n ≥ 1, we can expand ω(x) about u and neglect all but the

leading term ω(u). Therefore,

ε =

(
1 +

1

2
ω(u)

)
εp. (4.3.8)

We remind the reader that we have the freedom to choose two distinct UV cutoffs, one asso-

ciated with each endpoint [110]. Choosing two cutoffs εp(u), εp(v) is equivalent to replacing
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εp by
√
εp(u)εp(v) in the vacuum result with a single cutoff.

SA =
c

6

(
ln

(
u− v
εp(u)

)
+ ln

(
u− v
εp(v)

))
. (4.3.9)

Using (4.3.8),

SA + δSA ≈
c

3
ln

(
u− v
ε

)
+

c

12
(ω(u) + ω(v)), (4.3.10)

in agreement with (4.3.6).

4.3.3 AdS3: Ryu-Takayanagi

For a holographic CFT2, the Ryu-Takayanagi prescription can be used to calculate the change

in entanglement entropy in the dual AdS3. In AdS3, we can implement the infinitesimal

boundary Weyl transformation through a bulk diffeomorphism. We work in the Poincare

patch of AdS3 and use the Fefferman-Graham coordinates for the metric near the boundary.

ds2 = dη2 + e2η/ldzdz̄, (4.3.11)

where η →∞ corresponds to the boundary of AdS3 and l is the AdS radius. In an asymp-

totically AdS3 spacetime, the CFT2 metric and expectation value of the CFT2 stress tensor

can be read off from the form

ds2 = dη2 + e2η/lg
(0)
ij dz

idzj + g
(2)
ij dx

idxj. (4.3.12)

The term g
(0)
ij is the CFT2 metric and g

(2)
ij is proportional to the expectation value of the

boundary stress tensor [149].

Precisely speaking, conformal transformations of the CFT are a conformal coordinate

transformation followed by a Weyl transformation to remove the conformal factor. By mod-

ifying the bulk diffeomorphism that produces this boundary conformal transformation [149],

110



we can find the diffeomorphism that will implement only the boundary Weyl transformation.

We work in (anti) holomorphic coordinates z, z̄ with z = x + iτ, z̄ = x − iτ . Consider the

infinitesimal Weyl parameter

ω = (ε+ ε̄)/l, (4.3.13)

where ω � 1. ε/l will be the small parameter in the bulk. The diffeomorphism that produces

the infinitesimal boundary Weyl transformation is

z → z +
1

2
lε̄′e−2η/l, z̄ → z̄ +

1

2
lε′e−2η/l, η → η +

1

2
(ε+ ε̄), (4.3.14)

where the primes denote (anti)holomorphic derivatives. To first order in ε, ε̄,

ds2 = dη2 + e2η/l (1 + (ε+ ε̄)/l) dzdz̄ +
1

2
l(ε′′ + ε̄′′)dzdz̄. (4.3.15)

It will be convenient to work in Poincare coordinates, with the radial coordinate ρ = le−η/l.

The transformation (4.3.14) in Poincare coordinates is

z → z +
ρ2

2l
ε̄′, z̄ → z̄ +

ρ2

2l
ε′, ρ→ ρ

(
1− ε+ ε̄

2l

)
. (4.3.16)

Converting back to coordinates x, τ , the transformation (4.3.14) is

x→ x+
ρ2

4l
(ε̄′ + ε′), τ → τ +

ρ2

4il
(ε̄′ − ε′), ρ→ ρ

(
1− ε+ ε̄

2l

)
. (4.3.17)

According to the Ryu-Takayanagi prescription, the geodesic distance between boundary

points x = u, x = v computes entanglement entropy. As (4.3.17) is simply a diffeomorphism,

the geodesic distance between two points on the boundary will take the same form before and

after the diffeomorphism. The change in length will arise from applying the diffeomorphism

to the geodesic length expression.

We will review the geodesic length computation. Consider a τ = 0 geodesic without loss
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of generality. The boundary cutoff surface is at ρ = δ � l, r, where δ is related to the CFT

cutoff and r = v − u. Geodesics in Euclidean AdS3 are semi-circles. We parametrize the

semi-circle centered at x = a, ρ = 0 and with radius r as

ρ = r sin θ, x = a+ r cos θ. (4.3.18)

Integrating from x = a+ r to x = a− r, the geodesic length L is

L =

∫
ds =

∫ π

0

dθ
l

sin θ
= l ln

(
tan

(
θ

2

)) ∣∣∣∣π−δ/r
δ/r

≈ l ln(2r/δ) + l ln(2r/δ). (4.3.19)

The regulated endpoints of the interval, (x, ρ) = (a± r, δ), transform to first order in the δ, ε

as follows, where we denote spatial dependence of ε, ε̄ with [. . .]:

(a± r, δ)→
(
a± r, δ

(
1− ε[a± r] + ε̄[a± r]

2l

))
. (4.3.20)

The geodesic length is therefore

L = l ln

 2r

δ
(

1− ε[a−r]+ε̄[a−r]
2l

)
+ l ln

 2r

δ
(

1− ε[a+r]+ε̄[a+r]
2l

)
 . (4.3.21)

This is the transformed geodesic length. We now use the Ryu-Takayanagi prescription SA =

Areamin/4GN and the Brown-Henneaux relation c = 3l
2GN

[101,150] and find

δSA =
c

12
(ω(u) + ω(v)), (4.3.22)

in agreement with the CFT2 result (4.3.6). The bulk computation resembles the proper-

length CFT computation in that the transformation of the cutoff led to the change in entan-

glement entropy (4.3.10). There is no fundamental obstacle to extending (4.3.22) to higher

orders in ω: the diffeomorphism that produces the finite Weyl transformation of the bound-
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ary is known [151], and correlators of twist operators with stress tensor insertions are fixed

by Ward identities.

4.4 First order metric perturbation: Lorentzian AdS3/CFT2

In this section, we will calculate the first-order change in entanglement entropy due to a

metric perturbation. From this point on, we will work entirely in Lorentzian signature. We

will view the corresponding Hamiltonian perturbation by the stress tensor as creating an

excited state. The two descriptions are entirely equivalent [2]. We consider the excited state

U |0〉 with

U = T
(
e−i

∫
d2yg(yµ)T (y−)

)
, (4.4.1)

where y± are lightcone coordinates. Our notation in this section is y− = y − ty with

yµ = (ty, y). The function g(yµ) ≡ g(ty, y) is bounded and contains a small dimension-

less parameter so that the first order correction in g to correlation functions dominates for

small value of this parameter. To first order in g, time ordering will not be relevant. Acting

with the operator in (4.4.1) is equivalent to perturbing the metric by δg−− = g(yµ). We

compute entanglement entropy of a constant-time interval A at a time tx when the source

has turned off: g(tx, y) = 0 for all y. At this point the Hamiltonian is once again equal to

the unperturbed Hamiltonian, but the state is no longer the vacuum of that Hamiltonian.

We choose tx = 0 for convenience.

The first order correction to entanglement entropy is found by calculating the entan-

glement entropy in the state (1 − iλT (y−)) |0〉 to first order in λ and then integrating this

quantity Iλ against g:

δSA =

∫
d2yg(yµ)Iλ(yµ). (4.4.2)

Agreement between CFT and bulk methods occurs for the kernel of the perturbation Iλ
as expected. Non-analyticity of g in time poses no fundamental obstacle to defining or

implementing the replica trick, and our calculation demonstrates this perturbatively. In the
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CFT, we will use the entanglement first law and the replica trick and find agreement. A

basic causality property of entanglement entropy, that excitations localized to the causal

domain of A cannot change the entanglement entropy SA, is not manifest in the modular

Hamiltonian. However, this property holds nevertheless, and imposes constraints on the

modular Hamiltonian. In the bulk we will use the Hubeny-Rangamani-Takayanagi proposal

and reproduce the CFT result. Finally, we will integrate Iλ and provide an interpretation for

the change in entanglement entropy as a changing of the physics at the cutoff (entangling)

surface.

4.4.1 CFT2: Entanglement First Law

We will compute the correction to the entanglement entropy using the entanglement first

law [129]. The first-order correction δSA is

δSA =

∫
d2yg(yµ)

∫
A

dxf(x) 〈0|[T−−(y−), T00(x)]|0〉 (4.4.3)

For the interval A, f(x) = (x− u)(x− v)/(u− v). The commutator 〈0|[T−−(y−), T00(x)]|0〉

is fixed by conformal invariance.

〈T−−(x, t)T00(0)〉 =
1

(x− t)4
, (4.4.4)

where we have omitted the overall factor of c. The commutator has support only on the

lightcone, as seen from (4.2.13).

〈[T−−(x, t), T00(0)]〉 = ∂3
xδ(x− t). (4.4.5)

The correction to entanglement entropy (4.4.3) is

Iλ =

∫
∂A

dxf(x)∂3
xδ(x− − y−) (4.4.6)
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From this expression, it naively seems that entanglement entropy can change when the

perturbation is within the causal domain DA of A, violating a well-known causality property

of entanglement entropy [2, 87]. DA is defined as the region through which no timelike

geodesic can intersect without also passing through A. In the present case, DA is the causal

diamond of A. Integrating by parts,

Iλ = −f ′(x)∂xδ(x− − y−)

∣∣∣∣
∂A

+ f ′′(x)δ(x− − y−)

∣∣∣∣
∂A

, (4.4.7)

where primes denote spatial derivatives. We have used that f(x) is zero for x ∈ ∂A, the

boundary of the interval, which is necessary for the modular flow to vanish at ∂A. If we

restored the overall numerical factors we have omitted, we would find that the i in the

commutator multiplies the i coming from the perturbation to give a real result.

We have also used that f ′′′(x) = 0 for x ∈ A. We had no reason a priori to require

f ′′′(x) = 0, but notice that if this were not true, entanglement entropy would change due

to an excitation localized entirely within DA. We see that simple causality considerations

restrict the form of f(x). This argument applies only in two dimensions, but the same f(x)

appears in higher-dimensional modular Hamiltonians, and so can be viewed as a constraint on

the modular Hamiltonian. This argument applies whenever the modular Hamiltonian is given

by an integral over the stress tensor over any spacelike surface with the same boundary as A.

Showing that f ′′′(x) = 0 for x ∈ A follows from some basic principle would be illuminating.

In general, this property holds for the vacuum modular Hamiltonian defined by choosing any

Cauchy surface for DA. Substituting for f(x), we have

Iλ = −∂y(δ(v − y−) + δ(u− y−)) +
2

u− v (δ(v − y−)− δ(u− y−)). (4.4.8)

While the perturbation we have shown is right-moving, a general metric perturbation can

change the entanglement entropy when null-separated from the interval’s endpoints.
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4.4.2 CFT2: Replica Trick

We compute Iλ using the replica trick [109] in Lorentzian signature. In Euclidean signature,

the expectation value of T (y−) on the n-sheeted Riemann surface is

〈T (y−)〉Rn =
〈T (y−)Φn(u)Φ̄n(v)〉
〈Φn(u)Φ̄n(v)〉 =

c

24
(n− 1/n)

(u− v)2

(y− − u)2(y− − v)2
. (4.4.9)

Acting with −∂n=1,

∂n|n→1 〈T (y−)〉Rn =
c

12

(u− v)2

(y− − u)2(y− − v)2
(4.4.10)

We will assume that we can use the replica trick to calculate the change in entanglement

entropy by treating the twist operators as well-defined local operators purely in Lorentzian

signature. Using standard real-time perturbation theory implies that corrections to their

expectation value will involve computing their commutators with Hamiltonian perturbations.

This assumption is the natural sibling of the assumption made in order to compute excited-

state entanglement entropy using twist operator insertions [66].

Our assumption should not be confused with assuming a purely-Lorentzian definition

of the twist operators. The twist operators are ordinarily defined by imposing boundary

conditions that lead to a Euclidean n-sheeted Riemann surface - moving a diagonalizing

replica field φn on sheet n around the twist operator in Euclidean signature exchanges the

field for one on another sheet: φn → φn±1. Calculations for non-zero Lorentzian time

are performed first in Euclidean time and then analytically continued. This procedure is

equivalent to using the Schwinger-Keldysh contour. See [127] for further discussion of this

point. Performing real-time perturbation theory, however, is equivalent to instead using the

closed-time (Keldysh) contour and treating the twist operators as well-defined operators in

some Lorentzian-signature quantum field theory. See refs. [2, 91] for a review. While in

Lorentzian signature the replica trick is well-defined and twist operators can be identified by

their fractional lightcone singularities in correlators, there is no obvious method of defining
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the twist operators without recourse to complex time.

According to our assumption,

Iλ = −∂n=1
〈0|[T (y−),Φn(u)Φ̄n(v)]|0〉
〈0|Φn(u)Φ̄n(v)|0〉 . (4.4.11)

We must analytically continue

Iλ =

[
1

(y− − u)2
− 2

(u− v)(y− − u)
+

1

(y− − v)2
+

2

(u− v)(y− − v)

]
ty±iε

. (4.4.12)

Using (4.2.13),

Iλ = −∂y(δ(v − y−) + δ(u− y−)) +
2

u− v (δ(v − y−)− δ(u− y−)). (4.4.13)

This agrees with the first law result (4.4.8).

4.4.3 AdS3: Hubeny-Rangamani-Takayanagi

We compute the change to entanglement entropy using the HRT proposal. We first use

a bulk diffeomorphism to implement the boundary metric perturbation in analogy to the

Euclidean case. Next, we directly compute the geodesic length and find agreement between

the two methods and with the CFT result.

In general dimensions, we would need to check that the bulk metric sourced by our metric

perturbation at the cutoff surface has a boundary stress tensor expectation value that agrees

with the CFT value. However, in pure AdS3, the solution for the bulk metric with a flat

boundary CFT metric g
(0)
µν = ηµν is known exactly. For 〈Tzz̄〉 = 〈Tz̄z〉 = 0,

ds2 = l2
(
L+dx

2
+ + L−dx

2
− −

1

2
ρ2L+L−dx+dx− − 2

1

ρ2
dx+dx− +

dρ2

ρ2

)
, (4.4.14)

where L± ∝ 〈T±±〉 [149, 152]. By solving Einstein’s equations in the bulk or using the CFT
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stress tensor two-point function, one can show that perturbations of g±± are accompanied

by a non-zero Weyl anomaly, 〈T±∓〉 6= 0 [153]. However, after the perturbation has turned

off, 〈T±∓〉 = 0 and (4.4.14) applies. It is this regime we are considering.

As in the Euclidean case, we may calculate the change in the HRT surface length by

finding the diffeomorphism that reproduces the correct boundary stress tensor expectation

values. We will label the boundary lightcone coordinates as z, z̄ so the parallels to the

Euclidean case are clear. The small parameter ε(z, z̄) is dimensionless and corresponds to

the metric perturbation δgzz = ε(z, z̄)δzz. We assume ε has compact spacetime support. The

diffeomorphism that reproduces 〈T (z)〉 = ∂3
zδ(z − zs) is

η → η + εl2∂zδ(z − zs), z → z − ε2lδ(z − zs), z̄ → z̄ + εl3e−2η/l∂2
zδ(z − zs). (4.4.15)

As expected, once the source turns off, the bulk metric can be obtained by a diffeomorphism

that implements a boundary conformal transformation. The metric becomes

ds2 =dη2 + e2η/ldzdz̄ + εl3∂3
zδ(z − zs)dzdz. (4.4.16)

We use the diffeomorphism (4.4.15) to compute the change in entanglement entropy. To first

order in the cutoff δ the extremal surface area changes as

SA → SA +
c

3
ln

(
1 + ε

l

u− v (δ(v − zs)− δ(u− zs))
)

− c

6
(ln(1− εl∂uδ(u− zs)) + ln(1− εl∂vδ(v − zs))) . (4.4.17)

Omitting overall factors and using zs = y−,

Iλ = −∂y(δ(v − y−)) + δ(u− y−)) +
2

u− v (δ(v − y−)− δ(u− y−)). (4.4.18)

This agrees with the CFT result (4.4.8).
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A related but distinct computation was performed in [154]. The method of finding a

diffeomorphism to reproduce the AdS3 metric corresponding to a stress tensor perturbation

was used to model the time-dependent entanglement entropy of a pulse in a CFT [154]. In

this case the pulse produced a finite expectation value for the boundary stress tensor at all

times, while in our case, the stress tensor expectation value turns on at some finite time.

The two setups are physically different: in [154], the state of the dual CFT being modeled

was a mixed state, as the pulse changed the entanglement entropy when its location on

the boundary was inside DA. In contrast, the perturbation we consider is a pure-state

perturbation and, as we have seen, does not change the entanglement entropy when the

perturbation is within DA.

We will now reproduce the AdS3 result through directly computing the geodesic length

in the background (4.4.16). Interestingly, the integral naturally takes the same form as the

entanglement first law. To first order in the metric perturbation, the extremal surface does

not change. The extremal surface is a geodesic parameterized by θ as x = v+u
2
− v−u

2
cos θ, θ ∈

[0, π]. With r = (v − u)/2, the geodesic is parameterized by ρ = r sin θ. The new extremal

length L′ in terms of the original length L is

L′ = L+
1

2

∫
dθ

∂3
zδ(z − zs) (r sin θ)2√

1
(r sin θ)2 ((r cos θ)2 + (r sin θ)2)

= L+
1

2
r2

∫
dθ(sin θ)3∂3

zδ(z−zs). (4.4.19)

Here, d
dz

= 1
r sin θ

d
dθ

. This derivative is singular at the endpoints θ = 0, π as expected. We

can rewrite this integral in a more familiar form. Substituting back for x and using

dx = −r sin θdθ, r2 sin2 θ = −(x− u)(x− v), (4.4.20)

we can rewrite the integral as an integral over boundary coordinate x.

Iλ =

∫
dx

(x− u)(x− v)

(u− v)
∂3
xδ(z − zs). (4.4.21)
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We have demonstrated agreement with the the CFT first law result (4.4.3) and therefore

(4.4.8). It would be interesting to extend this to higher order and include matter to obtain

higher-order integral expressions for holographic CFT entanglement entropy. By subtracting

the contributions from the perturbation to the state, which are known from standard real-

time perturbation theory, this procedure would algorithmically calculate the corrections to

the expectation value of the modular Hamiltonian for holographic CFTs.

4.4.4 Integrating the perturbation and interpretation

In this section we integrate Iλ against g and discuss the result. As g has compact support,

boundary terms arising in integration by parts are zero. We restore the factor of c we had

omitted.

δSA = c

∫
dy+

[
∂vg(v, y+) + ∂ug(u, y+) +

2

u− v (g(v, y+)δ(v − y−)− g(u, y+)δ(u− y−))

]
.

(4.4.22)

We have used the notation g = g(y−, y+). The entanglement entropy depends only on g

along the lightcones of u, v.

The ∂g term is independent of interval length but zero if g is constant on the lightcone.

In the Lorentzian bulk computation, this term arises from changing the cutoff. This inter-

pretation of the result in the CFT is consistent with the ∂g term, as we expect changes in

entanglement entropy due to changing the cutoffs at u, v to be additive and independent of

the interval length v − u. When g changes across the lightcone, that is ∂vg(v, y+) 6= 0, the

relationship between the inner and outer cutoff surfaces changes.

In contrast, the g term changes entanglement entropy even when g is constant across

the lightcone. We interpret the g term as arising from correlations of the background state

(the vacuum) between different locations on the entangling surface. This interpretation is

consistent with the g term, whose contribution decays as 1/(v − u) and if g is constant, the

change in entanglement entropy along u’s lightcone precisely cancels that from v’s lightcone.
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In the bulk calculation, this term comes from transforming the interval length.

Entanglement entropy obeys the causality properties of an operator localized to the

entanglement surface. While there are well-known ambiguities in associating entanglement

entropy with an observable located at the entangling surface, these ambiguities can arise

from gauge invariance [94]. It would be interesting to examine whether these issues arise

in computing corrections due to time-dependent perturbations. The causality structure of

these corrections depends only on Lorentz-invariant quantities, and so perhaps these causal

properties provide a gauge-invariant probe of the physics at the entangling surface.

The result (4.4.22) is valid even when g(ty, y) is not analytic in time. As previously

discussed, Lorentzian-time calculations of entanglement entropy that use the replica trick

begin with all operators at zero Lorentzian time and then the result is analytically continued.

One may wonder whether this procedure is fundamentally limited, inapplicable when features

of the excitation are not analytic in time, for example, discontinuities in the excitation or, in

the bulk description, the metric. Perturbatively, however, we see that the computation does

proceed by analytic continuation. We do not anticipate that non-analyticity in time poses a

fundamental obstruction to implementing the replica trick.

4.5 A conjecture: interactions entangle excitations

The higher-order computations we will perform shortly provide evidence for the conjecture

that interactions entangle excitations. In this section we will develop a convenient dia-

grammatic tool for performing computations in real-time perturbation theory, detail our

conjecture, and provide motivation. The content in this section uses real-time perturbation

theory [69, 70]. For a recent review, see [2, 91]. In real-time perturbation theory, the time

contour in the path integral is never complex.
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4.5.1 Diagrammatic rules for real-time perturbation theory

We develop a diagrammatic approach to real-time perturbation theory in order to simplify

computations and make basic causality properties manifest. This approach applies to per-

turbations about a free field theory.

Consider computing corrections to the expectation value of an operator O due to turning

on sources for operators A,B,C. We will consider a local operator O as an example. Space-

time Feynman diagrams describe the various contributions to the integrand at each order,

as a function of operator locations xA, xB, xC , xO. In Euclidean AdS/CFT, these diagrams

are Witten diagrams. Suppose the contribution we are interested in comes from the com-

mutator [A, [B, [C,O]]]]. The spacetime diagram will be ordered with tO > tC > tB > tA,

which also determines whether operators cross future or past lightcones of other operators

when continued to Lorentzian signature. The procedure we give accounts for that sign. The

only non-zero contribution to the commutator comes from fully connected contractions.

In a spacetime diagram, lines that correspond to Wick contractions between operators at

spacelike-separated points are labeled separated, as in figure 4.2. We call these lines spacelike

lines for short, and similarly for timelike and null cases. Factor the spacelike contractions

〈E〉s out of the Euclidean integrand 〈E〉, as they will not affect the causal structure of the

quantity 〈Ec〉 we use to compute the commutator: 〈E〉 = 〈E〉s 〈E〉c. The time-ordering and

corresponding commutator can be read off from the spacetime diagram. Begin by continuing

〈E〉c to Lorentzian time with the following operator ordering:

〈L〉(1)
c = 〈ABCO〉 (4.5.1)

using (4.2.13). Now beginning from O in the diagram and descending, subtract the contin-

uation corresponding to reversing the iε associated with each vertex passed. This is nothing

more than computing the commutator beginning with [C,O] and working outwards. Explic-
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itly,

〈L〉(2)
c = 〈L〉(1)

c − 〈L〉
(1)
c |εOC→−εOC = 〈AB[C,O]〉 . (4.5.2)

Moving past B,

〈L〉(3)
c = 〈L〉(2)

c − 〈L〉
(2)
c |εOB ,εCB→−εOB ,−εCB = 〈A[B, [C,O]〉 . (4.5.3)

Another iteration produces the full Lorentzian commutator

〈L〉(4)
c = [A, [B, [C,O]]]. (4.5.4)

This procedure is illustrated in figure 4.2.

xB

xA

xC

xO

AB[C,O]

A[B, [C,O]]

[A, [B, [C,O]]]

ABCO

Figure 4.2: A sample diagram for real-time perturbation theory. We have chosen conventions to
make the diagram less visually confusing. When a loop is between null-separated points, we draw
only one of the lines null. Some lines therefore may appear spacelike, but it is understood that only
the lines labeled with × are spacelike.

Other than the rules we have described, the rules for building integrands from diagrams
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are the standard position-space Feynman rules. In the in-out perturbation theory used for

scattering amplitudes, disconnected contractions cancel due to their exponentiation, while

here the presence of disconnected contractions makes the whole diagram zero due when the

commutators are computed.

Causality properties are manifest in the diagrammatic formulation. Information cannot

be transmitted along spacelike lines, but these lines contribute to the perturbative result ac-

cording to the correlations in the background state. This can be seen in the simple case of the

correction to the two-point function given by [φ2(x), [φ2(y), φ(z)φ(w)]]. When integrating,

spacelike lines can become null or timelike, becoming propagators and carrying information.

Non-zero diagrams must be fully-connected to O once all spacelike lines are cut. From the

cutting rule, it follows that every operator insertion must be connected to an operator in its

future by at least one null or timelike line. Otherwise, this operator will commute with all

operators in its future and the diagram will be zero.

4.5.2 The conjecture

In this section we make a conjecture about entanglement propagation in field theory. Con-

sider a Lagrangian of a quantum field theory in d + 1 dimensions somewhere along its RG

flow, written schematically as

L = L0 + J(t)O + λOλ. (4.5.5)

Assume the initial state |Ψ〉 is time independent for simplicity.

Consider the entanglement entropy S of subregion A at a time t by which the source has

turned off: J(t) = 0. S can be expanded in J, λ.

S =
∑
m,n=0

Sm,nJ
mλn, (4.5.6)
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where S0,0 is the entanglement entropy in state |Ψ〉. Suppose that there exists at least one

local operator O such that

Sm,0 = 0. (4.5.7)

Operators O create unentangled excitations and serve as building blocks for entangled states

in that theory. We refer to these operators as unentangled operators, and all others as

entangled operators. There generically exists a set of entangled operators Oλ that change

the entanglement entropy in the presence of these unentangled excitations:

Sm,n>0 6= 0. (4.5.8)

When L0 is a free action, Oλ can sometimes be built from normal-ordered products of O.

One can think of Oλ as interactions necessary to entangle unentangled excitations created

by O, and which themselves must be entangled operators.

Sm,n>0 6= 0 only when one can draw spacetime “entanglement diagrams” to determine

for which n, interactions Oλ, and kinematic regions Sm,n>0 6= 0 is allowed. See figure 4.3 for

a simple example. Entanglement diagrams are zero when the same diagram interpreted as a

spacetime Feynman diagram would be zero according to the properties explained in 4.5.1.

When L0 is a free Lagrangian, it is possible but not necessary that entanglement diagrams

reduce to the spacetime Feynman diagrams associated with real-time perturbation theory,

and the lines are Wick contractions of free fields 1.

In interacting conformal field theories, one may identify vertices as follows: for example,

in the S3,1 correction, the Oλ serves as a cubic vertex for the three operators O in the

associated entanglement diagram when

〈Ψ|OOOOλ|Ψ〉 6= 0. (4.5.9)

1In the following section, we will see that this occurs for a special case, the bosonized free fermion. In this
case, the contractions occur between the bosons, whose relationship to the fermions is inherently non-local.
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DA

A

w

z

x

wz

Figure 4.3: An entanglement diagram for a non-zero S2,1 process in 1 + 1 dimensions in which
propagation occurs only along null rays. Entanglement entropy of a subregion A obeys the causality
properties of a non-local operator OA with support within DA, and this diagram corresponds to
the commutator [O(w), [O(z), [Oλ(x),OA]]]. The line labeled with z, w is the flow of entanglement
of unentangled excitations. If we want to keep track of the flow of all entanglement, we would also
include the label x. We may also keep track of background state entanglement across spacelike
lines.

One consequence 2 is that in large-N field theories in which O,Oλ are single-trace primaries

whose dimensions are held fixed as N → ∞, Oλ serves as an m-point vertex for m odd to

order N0. At order 1/N , m can be even or odd. By inserting projectors
∑

i |ψi〉 〈ψi| into

(4.5.9), each entanglement diagram line can be decomposed into a sum over contributions

from different states |ψi〉. This is equivalent to inserting the identity along Cauchy surfaces

between each operator in the entanglement diagram. Not all exchanged states lead to a

non-zero entanglement diagram; as a trivial example, the exchange of the vacuum state

|0〉 along every line will produce no change in entanglement entropy. In 1 + 1 dimensions,

the state-operator correspondence allows us to identify the exchanged states |ψi〉 with those

created by local operators. While the notions of generalized contractions and vertices we

have discussed depend on the system, entanglement diagrams always chart causality and the

flow of entanglement consistent with real-time perturbation theory.

2This follows from large-N factorization of generalized free fields.

126



Entanglement diagrams obey the following rules, which are particular to entanglement

propagation. At least one timelike or null line must end on the subregion A. All Oλ,O

insertions must remain outside the outside DA3. Entanglement diagrams obey an additional

cutting rule over for example spacetime Feynman diagrams. Upon cutting all lines that end

on A, every remaining connected subdiagram must contain at least one operator that is itself

entangled. As a corollary, turning on sources for different unentangled operators does not

produce entanglement.

Entanglement diagrams distill two kinds of entanglement: entanglement due to excita-

tions interacting and entanglement due to correlations in the background state. Entangle-

ment cannot propagate along spacelike lines, but correlations in the state |Ψ〉 will cause

excitations to be correlated 4. One can label diagrams according to the propagation of

background state entanglement.

Oλ can entangle excitations that are themselves entangled, but not entangled with each

other. This is the more common case, as generic operators are entangled. In this case,

Sm,0 6= 0 but entanglement diagrams still dictate when Sm,n 6= 0 is allowed and govern the

flow of entanglement. We have formulated this section in terms of unentangled excitations,

but our statements apply to processes which contain only entangled excitations.

4.5.3 Motivation and evidence

Similar entanglement structure has been found in excited state entanglement entropy com-

putations [2, 61, 63–65, 85]. Working with the free scalar, [64] showed that entanglement

entropy in state eiαφ |0〉 is equal to that of the vacuum, but in the state
(
eiαφ + e−iαφ

)
|0〉

jumps by log(2), precisely what is expected from a single entangled pair. The authors put

forward a compelling quasi-particle picture, including a discussion of entangled operators.

Here, the additional entanglement arose from interactions between the pair of excitations

3This fact follows from basic entanglement entropy causality [2, 87].
4As discussed in 4.5.1, the existence of these two types of correlations is not specific to entanglement

entropy, but is a general feature of field theory.
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that occurred in preparing the entangled state. In processes with a time-dependent Hamil-

tonian, the entanglement will arise from interactions for the same reason. We expect the

notion of entangled operators creating entangled states to parallel our conjecture for time-

dependent Hamiltonians. We have only explored perturbations about the vacuum, but one

can perform similar perturbative computations in excited states.

In this work, we consider L0 for free and holographic field theories and |Ψ〉 = |0〉. Our

results in 4.6 will provide evidence for the conjecture in 4.5.2. We consider localized excita-

tions to make the mechanisms physically transparent. Without a general method to compute

field theory entanglement entropy, it is unclear how to prove the statements in 4.5.2 that we

have not already shown follow from basic properties of entanglement and causality. While

entanglement entropy is not itself a physical observable, it is determined by ρA, and all ob-

servable properties of ρA are fixed according to the expectation values of operators localized

to DA, which themselves change according to standard real-time perturbation theory.

4.6 Higher order perturbation theory: the free fermion

The computations in this section demonstrate the mechanisms that we conjecture in 4.5.2.

Even in the absence of excitations, deforming a CFT by some operator will change its vacuum

entanglement entropy. This can be seen from the Euclidean perturbation theory and has

been well studied. How this happens is clear: deforming the CFT changes the vacuum

state. Here, we will perform computations that reveal a different mechanism: separately

from changing the vacuum state of the theory, interactions change entanglement entropy by

entangling excitations.

We calculate higher-order corrections to entanglement entropy in the free 1 + 1 dimen-

sional fermion using the replica trick. The twist operators for the free fermion are known

explicitly and so the result can be computed exactly, with causality properties manifest

at every step. We compute several entanglement diagrams built from the following chiral
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operators:

J =
∑
k

∂φk, T =
∑
k

(∂φk)
2, W =

∑
k

(∂φk)
3, (4.6.1)

with k = −1/2(n − 1),−1/2(n − 1) + 1, . . . , 1/2(n − 1). These operators are the spin 1, 2,

and 3 currents respectively, which are built from bilinears of fermion fields, schematically

: ψ∂mψ∗ : with m = 0, 1, 2 [138,155].

4.6.1 Warmup: metric perturbation

To understand basic features of fermionic calculations of entanglement entropy, we warm up

by reproducing the first-order change in entanglement entropy due to a metric perturbation

(4.4.13). Using (4.2.21),

〈0|T (z)Φn(u)Φ̄n(v)|0〉 =
∑
k

−k2

n2
〈0| : (∂φk)

2(z) :: (φk(u)− φk(v))2 : |0〉 . (4.6.2)

The singularity structure of (4.4.13) is apparent even before acting with −∂n=1 to obtain

entanglement entropy.

〈0|T (z)Φ(u)Φ̄n(v)|0〉 =
∑
k

−k2

n2

(
1

(z − u)2
+

1

(z − v)2
+

2

(u− v)(z − v)
− 2

(u− v)(z − u)

)
.

(4.6.3)

The remaining steps lead to (4.4.13).

4.6.2 J creates unentangled excitations

We will compute entanglement entropy due to perturbations in J with a time-dependent

source. Without loss of generality, we will suppose v is spacelike-separated from all sources

to simplify the expressions unless specified otherwise. At first order in J(z), entanglement
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entropy does not change. The Euclidean integrand is

IEJ (z) =
∑
k

k

n
〈0|∂φk(z)φk(u)|0〉 =

∑
k

k

n

1

z − u. (4.6.4)

Performing the sum over k, we see IJ = 0, as expected for a primary operator. The second-

order correction comes from

IEJ2(w, z) =
∑

k1,k2,k3,k4

〈0|∂φk1(w)∂φk2(z) :
k3

n
φk3(u)

k4

n
φk4(u) : |0〉 . (4.6.5)

Performing the sum over k3, k4 gives zero in any connected correlator above. All higher-

order corrections will be zero for the same reason, which is that J is linear in ∂φ. J therefore

creates an unentangled excitation as defined in 4.5.2. J is indeed a non-trivial excitation, as

it does change correlators of fermions on the plane.

4.6.3 Adding an interaction W entangles J excitations

We introduce a cubic interaction W and observe how this entangles two unentangled J

excitations. To O(J2W ),

IEJ2W (w, z, x) =
∑

k1,k2,k3

〈0|∂φk1(w)∂φk2(z) : (∂φk3)3(x) :: e
∑
k4
i
k4
n
φk4

(u) : |0〉 . (4.6.6)

All connected contractions are zero because they involve a sum over an odd power of ki.

Non-zero correlators require an even number of φ operators within the correlator with twist

operators. At O(J2W 2),

IEJ2W 2(w, z, x, y) =
∑

k1,k2,k3,k4

〈0| ∂φk1(w)∂φk2(z)

× : (∂φk3)3(x) :: (∂φk4)3(y) :: e
∑
k5
i
k5
n
φk5

(u) : |0〉 . (4.6.7)
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Not all contractions contribute to entanglement entropy. All terms with a single contraction

between φ(w) or φ(z) with φ(u) are zero upon summing over ki. This is true to all orders in

J,W , consistent with the cutting rule for entanglement diagrams, as J represents an unen-

tangled excitation. This conjectured cutting rule is non-trivial and specific to entanglement

entropy: in computing corrections to generic correlators instead of entanglement entropy,

these contractions would not be zero. If all lines ending on A are cut and the diagram D

factorizes into DentDunent, which is the product of a diagram that changes the entanglement

entropy on its own and a diagram containing only unentangled excitations, then the associ-

ated change in entanglement entropy occurs at a different order in perturbation theory than

the original diagram.

The diagram in figure 4.4 with the x, y contractions exchanged has no branch cuts in

u − y, and so will be zero once we compute the corresponding commutators. As explained

in 4.5.1, this is the real-time perturbation theory rule that every vertex must have at least

one future-directed line that is not spacelike.

There are two allowed diagrams, and which one is non-zero depends on the location

of x, y. The diagram in figure 4.4 corresponds exclusively to the causal entanglement of

excitations. In contrast, when for example u = x and v = y, the diagram in figure 4.5

corresponds exclusively to background state entanglement.

z

w

x

y

wz

DA

A vu

Figure 4.4: A non-zero diagram contributing to the O(J2W 2) process. We have drawn one of the
incoming lines as left-moving for clarity.
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w
z

x
y

DA

A vu

Figure 4.5: A diagram contributing to theO(J2W 2) process. This diagram corresponds to a change
in entanglement entropy due to background state correlations. A similar diagram contributes when
x, y = u, in which case the entanglement is not due to background state correlations.

We compute the diagram in figure 4.4. The Euclidean signature integrand is

IEJ2W 2(w, z, x, y) =
1

(w − x)2(z − x)2(x− y)2(y − u)2
. (4.6.8)

Using the procedure in 4.5.1, it is straightforward to compute the commutator, although we

will shortly use real-time Feynman rules to simplify the process further. Using the top sign

in the top line of (4.2.13),

I(1)

J2W 2(w, z, x, y) =

(
1

(w − x)2
+ iπ∂w−xδ(w − x)

)(
1

(z − x)2
+ iπ∂z−xδ(z − x)

)
×
(

1

(x− y)2
+ iπ∂x−y δ(x− y)

)(
1

(y − u)2
+ iπ∂y−uδ(y − u)

)
.

(4.6.9)

As in 4.5.1, we begin with the operator at u descend to compute the commutator.

IJ2W 2(w, z, x, y) = ∂w−xδ(w − x)∂z−xδ(z − x)∂x−yδ(x− y)∂y−uδ(y − u). (4.6.10)

We see that the W operators entangle the unentangled J excitations and entanglement

travels according to the associated entanglement diagram. It is straightforward to integrate
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this result against sources for the operators, as in (4.4.22).

δSJ2W 2 =

∫
d2wd2zd2xd2y∂wJJ(w, w̄)∂zJJ(z, z̄)∂xJW (x, x̄)∂yJW (y, ȳ)

∣∣∣∣
w=z=x=y=u

,

(4.6.11)

where JJ ,JW are the source functions for operators J,W .

Because we work in free field perturbation theory, real-time position space Feynman

rules apply, and they simplify calculations further. We will need the Feynman rules for

operators φ, ∂φ. When spacetime points a, b are causally connected, φ(a)∂φ(b) contributes

a δ(a − b) and ∂φ(a)∂φ(b) contributes ∂a−bδ(a − b). When a, b are spacelike-separated,

φ(a)∂φ(b) contributes 1/(a− b) and ∂φ(a)∂φ(b) contributes 1/(a− b)2. We have omitted the

overall numerical factors in these expressions.

Using the above Feynman rules, we can now easily compute the diagram in figure 4.5 in

the kinematic regime w = u, z = u. We find the contribution

IJ2W 2(w, z, x, y) =
1

(y − x)2
∂wδ(w − x)δ(x− u)∂zδ(z − y)δ(y − v). (4.6.12)

We see that the background state entanglement decays in y − x. That this diagram decays

in y−x is expected from the spatial decay of vacuum correlations. In the regime w = z = u,

IJ2W 2(w, z, x, y) = δ(y − u)δ(x− u)∂yδ(y − x)∂zδ(z − y)∂wδ(w − x). (4.6.13)

At O(J2W 2) performing the integration reveals similar features to the metric perturbation

result (4.4.22), namely that the sources often must change across the lightcones of u, v

in order to change entanglement entropy. This is a distinctly time-dependent feature of

entanglement entropy and its interpretation is similar to that of (4.4.22). Diagrams in other

kinematic regions are straightforward to obtain from the results we have given, and higher-

order integrands are similarly easy to construct using the tools we have provided.

As all the operators we have used are fermion bilinears, the standard Wick contraction
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between fermions would not have produced a diagram with a cubic vertex. However, the

condition we gave in (4.5.9) identifies W as a cubic vertex. The bosonic field φ and entan-

glement diagrams naturally describe entanglement propagation in much the same straight-

forward way that the fermionic field ψ and spacetime Feynman diagrams naturally describe

time-dependent corrections to local observables.

4.7 Discussion

In this work, we have investigated entanglement entropy in conformal field theory with

a general time-dependent Hamiltonian. We have extended previous first-order studies by

computing higher order corrections. Past first order, we found evidence of a universal entan-

glement structure in perturbation theory. We have conjectured that interactions entangle

unentangled excitations. Using the free fermion as an illustrative example, we identified the

spin-1 current J as an unentangled excitation, included the spin-3 current W as an entan-

gled interaction and found that, when the interaction turns on where the two J excitations

collide, the interaction entangles the excitations. We computed the corresponding J2W 2

processes. Having identified unentangled excitations J and an entangled cubic vertex W ,

we show that the free fermion is a simple, tractable arena in which to investigate details of

entanglement propagation.

We have conjectured that the flow of entanglement entropy is governed by “entanglement

diagrams”. Entanglement propagates only when there is a non-trivial entanglement diagram

associated with the process. These diagrams are motivated by the accessory spacetime

Feynman diagrams of real-time perturbation theory, but they are entirely independent of

Feynman diagrams and obey certain rules specific to entanglement entropy. We provided

a diagrammatic approach to streamline computations in real-time perturbation theory and

found this approach makes causality properties of the correlators manifest. In the bosonized

free fermion, entanglement diagrams are spacetime Feynman diagrams but for the boson φ

rather than the fermion ψ. The procedure we propose for identifying vertices in entanglement
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diagrams identifies W as a cubic vertex independently of the bosonization procedure that

makes this fact manifest. More generally, we expect that further study of entanglement

diagrams and the entanglement of excitations through interaction with entangled vertices

may uncover natural variables for entanglement propagation in field theory.

4.7.1 Future directions

We detail several exciting directions of further study, some of which we hope to report on in

the future.

Causality may place stringent constraints on the 1 + 1 dimensional modular Hamiltonian

via a bootstrap approach, order by order in perturbation theory. In 4.4 we found that entan-

glement causality places a non-trivial constraint on the integrand of the modular Hamiltonian

if the integrand is function of local operators. Using the replica trick and Ward identities,

one can compute the entanglement entropy due to metric perturbations to arbitrary order.

Constraints on the modular Hamiltonian at a given order feed into its form at the next

order. The ansatz can be checked for consistency against the exact expression, obtainable

using standard perturbation theory [156]. At each order, the modular Hamiltonian must be

consistent with entanglement causality due to perturbation by primary operators as well.

While local, explicit twist-operators are special to 1 + 1 dimensional fermions, replica

trick computations in the free scalar and fermions are in principle straightforward in general

dimensions for a single interval [64]. One can clarify the relationship between entangled oper-

ators for excited states and Hamiltonian perturbations, as there is a correspondence between

local operator excitations and Hamiltonian perturbations [2]. For example, vertex operators

have a simple interpretation as building blocks of EPR states [64]. What is the entanglement

propagation structure of vertex operators as Hamiltonian perturbations? The entangling in-

teractions Oλ affect entanglement propagation. A concrete question to answer is: how does

entanglement velocity depend on the choice of Oλ? We have only addressed entanglement

entropy, but one may investigate similar questions for other information theoretic measures.
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Time-dependent Hamiltonian perturbations can serve as another probe of HRT. Specifi-

cally, approximate expressions for the conformal blocks dominating the 〈OOΦnΦ̄n〉 correlator

are known in the large c limit for holographic CFTs [66, 157, 158]. This correlator gives the

entanglement entropy to second order in the Hamiltonian perturbation J(t)O, and one can

compare the result to the bulk HRT calculation. Keeping ∆O/c fixed in the large-c limit cor-

responds to a non-perturbative bulk computation. In [159] one part of this CFT calculation

was performed. ∆O(n) = n∆O was used, while the full second order correction involves the

operator
∑n

k J
kOk, where ∆Ok = k∆O. On the other hand, holding ∆O fixed in the large-c

limit corresponds to standard bulk semiclassical perturbation theory.

While we have so far discussed entanglement in flat spacetimes, it is well known that the

structure of entanglement in AdS plays an important role in the AdS/CFT correspondence.

In particular, one may investigate the entanglement spreading that we have described in

flat space in AdS, and address its dual CFT interpretation. What is the CFT dual of

bulk entanglement diagrams like figure 4.1? Specifically, tree-level Witten diagrams can be

expressed as linear combinations of conformal blocks, see for example [160], and so we expect

that bulk tree-level entanglement diagrams have a dual CFT description at the corresponding

order in 1/N . How do the UV data of the theory - the interactions - affect entanglement

structure on a covariant measure of entanglement and entropy, namely light sheets [161,162]?

One can study loop-level effects in entanglement entropy. The loop-level integrals are

challenging, but these may be addressed using modern machinery developed to calculate

scattering amplitudes [34,163,164]. Integrating over the external sources is a task particular

to real-time perturbation theory, but computing entanglement entropy order by order in

interactions Oλ amounts to computing loop entanglement diagrams, and the integrals are

analytic continuations of those that appear in loop-level scattering processes. Using the

free scalar and fermion, and the perturbation theory tools we have presented here, one can

investigate how UV behavior affects entanglement entropy.
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