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Modeling the Visual Similarity of Chinese Characters Across Expertise Groups 

Zhuqian Zhou1, James E. Corter1 

 

Teachers College, Columbia University 

 

Abstract 

This study investigated how well similarity models of Chinese 
characters developed in previous research could be used to 
model human judgments across different levels of proficiency 
in Chinese. The behavioral data collected from the three groups 
of participants confirmed the superiority of and preference for 
configurations over components in experts' perceptions. In 
contrast, Chinese learners' and novices' criteria for similarity 
judgments were less clear, as indicated by the low proportion 
of variance that could be accounted for by extended tree 
analysis of their group judgments. We discuss computational 
challenges in modeling human perception and judgments about 
Chinese characters and propose future directions for research, 
including the potential use of statistical and machine learning 
techniques with larger datasets for improved model 
development. 

Keywords: Chinese characters; computational modeling; 
extended tree analysis; perceptual expertise; visual similarity 

Introduction 

Learning of a novel visual category arises through perceptual 

experience. But increasing experience, and expertise, often 

leads to the grouping and re-grouping of perceptual elements. 

The trajectory from novices to experts, therefore, may 

manifest in qualitative shifts in the perception of the object 

being studied (Chase and Simon, 1973; Vogt & Magnussen, 

2007; Slovic, 2016). 

Language learning is no exception. The study of visual 

perception of a language’s basic characters becomes even 

more important when it comes to nonalphabetic languages 

like Chinese whose writing system possesses thousands of 

characters. Thus, understanding how people’s perception of 

Chinese characters varies developmentally with increasing 

expertise in the Chinese language should not only help 

Chinese language educators to devise effective instructional 

strategies, but also inform visual cognition research, 

especially research focused on the debate on holistic versus 

analytical processing as a mark of perceptual expertise for 

word recognition, in contrast to face perception (Chen & Yeh, 

2015; Moret-Tatay et al., 2020; Ventura, & Cruz, 2023; 

Wong et al., 2012). 

In the dynamic process of visual perception of Chinese 

characters, being able to recognize a character and to 

discriminate it from its confusingly similar neighbors is basic 

to Chinese perceptual expertise (Woodrome & Johnson, 

2009). Discrimination in particular relies on making effective 

and accurate similarity judgments in the character pool 

(Ashby & Perrin, 1988; Tversky, 1977). Therefore, in order 

to study the perception of Chinese characters, investigating 

their visual similarity for language learners can provide 

telling information as to recognition processes and visual 

learning for complex stimuli. Previous research concerning 

Chinese character recognition followed this general logic. 

To investigate human judgments of the visual similarity of 

Chinese characters, previous research adopted either direct or 

indirect assessments of similarity that were in line with 

common measures of psychological similarity in various 

domains (Medin et al., 1993). Direct assessments had 

participants rate the degree of similarity of each pair of 

characters on a Likert-type scale (Yencken and Baldwin, 

2006) while indirect assessments derived similarity data from 

behavioral tasks, such as sorting cards with Chinese 

characters into piles according to similarity (Rosenberg, 1975; 

Yeh & Li, 2002) and discriminating confusing character pairs 

under time pressure (Yang & Wang, 2018). 

While different behavioral measures of character similarity 

provide generally consistent results, there has not yet been a 

consensus on how the visual similarity of Chinese characters 

should be modeled computationally. The only common 

ground so far has been to specify the visual features of the 

characters. Visual features are vital because there has been an 

established consensus in cognition and vision research that 

people recognize patterns and letters through feature 

detection (Coates et al., 2019; Geyer & DeWald, 1973; 

Gibson, 1969). Even when Pelli et al. (2006) made a serious 

effort to disprove the feature detection theory, strong results 

from a series of experiments they conducted (including 

experiments on Chinese character identification) compelled 

them to reaffirm it. Historically, various lists of features have 

been proposed to account for English letter recognition 

(Geyer, 1970); Gibson, 1969; Laughery, 1971; Coates et al., 

2019) with pros and cons for each. The definitive set of visual 

features of English letters has yet to be established. 

Meanwhile, there is even less consensus about the visual 

features of Chinese characters.  

Current computational models of Chinese character 

similarity can be classified into two groups by how each 

character was decomposed and coded. One type of model 

requires an explicit experimenter-specified description of the 

visual features of a character, that recognizes the hierarchical 

structure of Chinese ideographs. Figure 1 demonstrates this 

hierarchy—a Chinese character is composed of one or more 

radical components; a component is further composed of one 

or more basic strokes—continuous marks in writing. 

Therefore, one a priori way to code Chinese characters is to 

specify what/how many components and/or strokes are in a 

character (Yang, 1998; Yencken & Baldwin, 2008). 

Moreover, different relative positions of components in a 

character lead to different configurations of the character. 明 

in Figure 1 is of a left-right configuration type, because its 

components 日  and 月  are on the left and right side 
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respectively. Other common configurations include the 

above-below configuration (e.g. 吞 swallow = 天 sky + 口 

mouth) and the boxed configuration (e.g. 囚  prison = 人 

person + 口  mouth). Thus, apart from components and 

strokes, the configuration of a character is also a commonly 

used human-coded feature (Yeh & Li, 2002; Yeh et al., 2003). 

 

 
 

Figure 1: The hierarchical structure of Chinese character 明 

 

The other type of computational models of Chinese 

character similarity stems from computer vision research and 

relies on low-level features machine-extracted directly from 

the images of characters. Lepage (2014) simulated a Chinese 

character analogy task using this approach. The four groups 

of feature vectors were calculated based on a 16 × 16 binary 

image of each character, with each pixel’s value of either one 

or zero indicating whether it was a black pixel or a white one. 

The four groups of feature vectors included: 

1) features based on random positions: the number of black 

pixels at 1/n pixel positions randomly selected from the 

binary image (named as “pix-n”), and the number of black 

pixels at (n-1)/n pixel positions randomly selected from the 

binary image (named as “pyx-n”), 

2) features of rows and columns: the number of black 

pixels on each of the 16 rows (named as “lin”), and on each 

of the 16 columns (named as “col”), or of rows and columns 

combined (named as “lincol”), 

3) features inspired by classic image processing algorithms: 

the number of pixels with given contexts defined by possible 

patterns of a 3 × 3 window with the pixel of interest in the 

center (named as “nei”), and the number of pixels with the 

same gray level for its neighborhood defined by the possible 

number of black pixels in a 3 × 3 window with the pixel of 

interest in the center (named as “ngr”), and 

4) features inspired by classical image data structure: the 

number of black pixels in each quarter of each level of the 

binary image until level n (named as “qua-n”, see Figure 2). 

When n is zero, qua-n is a one-dimensional feature vector 

with one value equal to the total number of black pixels on 

the image. When n is one, qua-n is a five-dimension feature 

vector with one value equal to the total number of black 

pixels on the image and the rest four values equal to the 

number of black pixels on the four evenly divided parts of the 

image. The character image was cut in quarters by cutting the 

rows and columns in halves simultaneously. 

 

 
 

Figure 2: The “qua-2” feature vector of 伴 from Lepage 

(2014, p. 48) 

 

 But in general, the adequacy of particular visual features 

of Chinese characters for modeling their visual similarity has 

been little investigated.  Thus, the present research seeks to 

compare the abovementioned visual features of Chinese 

characters that have been proposed by computational 

psychologists and computer scientists against behavioral data 

collected from three groups of adults—Chinese native 

readers, Chinese second-language learners, and Chinese 

novices who did not know any Chinese. Differences in model 

performance across different groups of participants were 

analyzed and implications are discussed. 

Methods 

Materials 

We used 16 characters (i.e. 啄, 曉, 偌, 排, 售, 曇, 惹, 菲, 問, 

曆, 匿, 痱, 重, 爾, 幾, 事) in the present study, a subset of 

characters employed in previous research of human 

judgments of Chinese character similarity (Yeh & Li, 2002). 

The characters were deliberately chosen to provide varied 

information for subjective similarity judgments. As shown in 

Table 1, three basic configurations of elements (i.e. left-right, 

above-below, and boxed) and four specific components (i.e. 

口, 日, 若, 非) were factorially varied to select 12 characters. 

That is, each of the twelve characters corresponded to a 

unique configuration-component combination. Four 

additional characters (the last four in Table 1) were added as 

foils. The font type of Chinese characters used in the current 

study was Microsoft YaHei.  

 

Table 1: Sixteen Chinese characters and their corresponding 

configurations and key components. 

 

Stimulus Configuration Component 

啄 Left-Right 口 

曉 Left-Right 日 
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偌 Left-Right 若 

排 Left-Right 非 

售 Above-Below 口 

曇 Above-Below 日 

惹 Above-Below 若 

菲 Above-Below 非 

問 Boxed 口 

曆 Boxed 日 

匿 Boxed 若 

痱 Boxed 非 

重 Foil Foil 

爾 Foil Foil 

幾 Foil Foil 

事 Foil Foil 

 

Participants 

Visual similarity judgments were collected from 18 Chinese 

novices who did not know any Chinese, 17 Chinese second-

language learners, and seven native Chinese readers. The 

participants were recruited via the Amazon Mechanical Turk 

(MTurk) marketplace. All of the 42 participants were age 18 

or older. Each participant received one US dollar (USD) for 

approximately ten minutes of work. The goal was to have at 

least 15 valid responses from each proficiency group via a 

single channel. However, due to difficulty recruiting 

participants from MTurk who were Chinese native readers, 

we collected another 15 responses from Chinese native 

readers via wjx.cn, the Chinese equivalent of MTurk. These 

participants were also above the age of 18. Each received five 

Chinese Yuan (CNY) for their participation. In total, 57 valid 

responses were collected and submitted for subsequent 

analysis. 

Procedure 

The entire procedure was delivered online via Qualtrics. 

After answering seven survey questions on their age, gender, 

education level, and proficiency level in Chinese, participants 

completed four rounds of sorting tasks by giving responses to 

the four subsequent questions. Each round requested the 

participant to sort the 16 characters into two, three, four, or 

five piles “according to their Visual Similarity”. Participants 

accomplished the sorting task by dragging the randomly 

sequenced characters listed vertically on the left of the screen 

and dropping them into the corresponding number of boxes 

on the right of the screen. This drag-and-drop form of 

interaction was implemented using the “Pick, group, and rank” 

question tool on Qualtrics. The last question on the survey 

was an open-ended question asking participants to “explain 

why you made the above groupings”. This question was not 

mandatory, however. 

(Dis)similarity Matrices of Participants 

For each participant, a 16 × 16 matrix was built, indicating 

how many times the character on the corresponding row and 

the character on the corresponding column were dragged to 

the same box. The highest score possible in a cell for each 

participant was four because there were four rounds of sorting. 

The lowest score possible could be zero if the pair of 

characters were never put into the same box by the participant. 

For each proficiency group, we summed up individual 

matrices and subtracted the score of each cell from the 

maximum possible score (i.e. the summed value in diagonal 

cells) to get the dissimilarity matrix for later clustering 

analysis. 

Feature Vectors and Dissimilarity Matrices of 

Models 

We deployed and compared multiple visual similarity models 

of Chinese characters that differed in what feature vectors 

were used to represent the set of characters in the study. Five 

models were based on a priori human-coded features, i.e. 1) 

type of configuration, 2) key component, 3) number of total 

strokes, 4) number of horizontal strokes, and 5) number of 

vertical strokes, and 14 models were based on machine-

extracted features—pix-3, pix-5, pix-7, pyx-3, pyx-5, pyx-7, 

lin, col, lincol, nei, ngr, qua-2, qua-3, and qua-4 (see the 

Introduction for their definitions and descriptions). 

The dissimilarity matrix for a particular model was 

computed by calculating the Euclidean distance between the 

feature vectors of a pair of characters (Yang, 1998). We chose 

Euclidian distance rather than cosine similarity because the 

overall level (i.e., how many black pixels on a dimension) 

matters when all characters are of the same size. 

Results 

Evaluating Model Fit 

We evaluated how well a model performed in two ways—by 

comparing individual model performance against human 

performance and by comparing the performance of two sets 

of models in predicting human performance. 

First, we assessed to what extent similarity measures of 

characters resulting from a model reproduced actual 

similarity data from the participants. This was done by 

calculating the rank-order correlation coefficient using 

Kendall’s τ (Galili, 2015) between a model distance matrix 

and each proficiency group’s dissimilarity matrix. The result 

is that none of the five high-level human-defined features 

show significant correlations with human similarity 

judgments. In contrast, almost all distance matrices generated 

by the low-level machine-coded features, except features col 

and ngr, significantly correlate with Chinese novices’ 

dissimilarities (see Table 2).  
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Table 2: Correlation coefficients (Kendall’s τ) between the 

dissimilarity matrices for the three participant groups and 

the distance matrices generated by low-level machine-

extracted features. 

 

  Native 

Readers 
Learners Novices 

RP 

pix-3 -0.033 .000 .157* 

pix-5 -0.02 -0.012 .156* 

pix-7 -0.027 -0.028 .136* 

pyx-3 0.008 -0.028 .157* 

pyx-5 -0.001 -0.039 .152* 

pyx-7 0.003 -0.026 .174** 

RC 

lin -0.065 0.021 .152* 

col 0.119 -0.046 0.089 

lincol 0.01 -0.006 .156* 

DS 

qua-2 0.1 -0.038 .257** 

qua-3 0.1 -0.04 .274** 

qua-4 0.099 -0.042 .276** 

PA 
nei 0.074 -0.015 .255** 

ngr 0.072 -0.036 0.093 
*p < .05, **p < .01 

Note. RP: features based on randomly sampled positions; RC: 

features of rows and columns; DS: features inspired by 

classical image data structure; PA: features inspired by 

classical image processing algorithms 

 

Second, we compared two general models—based on 

human-coded features and machine-extracted features—by 

conducting multiple regressions predicting the observed 

dissimilarity matrix (MRM; Lichstein, 2007) of each 

participant group by a linear combination of the model-

derived distance matrices generated by features in each set. 

These regression analyses generally confirmed the results 

from the simple correlation analyses. First, none of the 

Chinese character dissimilarity matrices produced by the 

three participant groups could be significantly predicted by 

the linear combination of five distance matrices generated by 

high-level human-defined features of Chinese characters. In 

contrast, the linear combination of 14 distance matrices 

generated by the low-level machine-extracted features 

significantly predicted dissimilarity matrices from Chinese 

novices (R2 = .320, p < .01) with pyx-3 and nei being 

significant predictors (see Table 3). 

 

Table 3: Multiple regressions between dissimilarity matrices 

of participant groups and distance matrices generated by 

low-level machine-extracted features. 

 

 Native 

Readers 

Learners Novices 

 Estimate 

Intercept 40.843 74.234 6.743 

pix-3 1.288 1.272 0.256 

pix-5 -0.743 -0.806 -0.760 

pix-7 -0.323 -0.115 0.427 

pyx-3 1.646 -0.698 1.804* 

pyx-5 -2.034 -2.742 -2.062 

pyx-7 0.219 3.001 0.718 

col -0.122 -0.136 0.043 

lin 0.241 -0.160 0.241 

lincol -0.195 0.290 -0.336 

nei 0.143 -0.369 -1.033 

ngr -0.063 1.132 3.301 

qua-2 -0.063 -0.835 -2.132 

qua-3 0.234 0.001 0.371** 

qua-4 0.098 -0.062 0.052 

R2 .178 .079 .320** 
*p < .05, **p < .01 

Extended Tree Analysis 

Because the machine-extracted and human-coded features 

account for only a modest proportion of the variance in the 

three participant groups’ sorting data, it can be concluded that 

other features underlie the assessment of visual similarity for 

Chinese characters. Thus, we undertook exploratory analyses 

of the similarity-sort data, submitting the summed and 

transformed dissimilarity matrix for each group for analysis 

by the EXTREE program (Corter & Tversky, 1986). The 

EXTREE model can identify both hierarchical or nested 

feature structures, like any hierarchical clustering algorithm, 

but also identifies additional features that “cut across” the tree 

hierarchy, allowing the visual display of more general 

overlapping cluster structures (Corter, 2023). EXTREE 

represents non-nested feature sets by adding “marked” or 

labeled extra features to the branches of an additive tree to 

represent features that cannot be accommodated by the tree 

structure per se. Such a non-hierarchical clustering method is 

needed here where the stimulus set is constructed in a type of 

factorial design, creating “crossed” features. Note that the 

EXTREE algorithm first estimates the best-fitting additive 

tree for the dissimilarity data. The additive tree generalizes 

the ultrametric tree fit by most hierarchical clustering 

algorithms by including the estimation of stimulus-specific 

weights for the “unique features” of each object (Sattath & 

Tversky, 1987; Corter, 1996). 

The EXTREE analyses yielded extended tree diagrams of 

data from the three participant groups. These extended tree 

solutions provide a direct visual display of how people with 

different proficiency of Chinese perceive the similarity of 

Chinese characters. The description and discussion of the 

three tree diagrams below are organized as follows: first, we 

walk readers through the tree diagram branch by branch 

ignoring added features; second, we point out the added 

marked features and suggest what these features might mean; 

third, we compare the three trees for the three expertise 

groups and summarize their characteristics. 
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Figure 3: The extended tree of Chinese native readers 

 

Figure 3 displayed the extended tree diagram produced by 

the EXTREE program to account for Chinese native readers’ 

perceived similarity of Chinese characters. There were three 

main branches. The first branch contains all four left-right 

characters—啄, 曉, 偌, and 排. The second branch contained 

two boxed characters—問 and 曆—nested under the same 

sub-branch and character 曇 and two foils—爾 and 幾—

under another sub-branch. The third branch again contained 

two boxed characters—匿 and 痱—nested under the same 

sub-branch and three above-below characters—售, 菲, and 

惹—and two foils—重 and 事—under another sub-branch. 

The plain additive tree accounted for 74.0% of the variance 

(R2) in the original data. 

On top of the tree structure, eight marked features labeled 

as C [排, 痱, 菲], D [排, 痱, 菲, 售], E [曉, 曇, 問, 曆, 爾, 

幾], H [曉, 曇, 問, 曆, 爾, 幾, 啄], I [啄, 偌, 排], N [曆, 匿, 

痱], O [曆, 匿, 痱, 問], and U [曇, 售, 惹, 菲] on the tree in 

Figure 3 increased the R2 to 95.9%. Characters sharing 

Feature C were all characters in the study containing 

Component 非. Adding 售 to the Feature C set led to the set 

of characters with Feature D. This set seemed to reflect a 

visual feature containing a long vertical line and a couple of 

short horizontal lines perpendicularly attached to the vertical 

one (e.g. ╡or╞). Features E and H seem to represent crossed 

strokes, with E emphasizing orthogonal crosses, e.g.＋, and 

H emphasizing tilted crosses, e.g.×. Feature I, N, O, and U 

point unambiguously to configurations. All three characters 

with Feature I are left-right characters. All three characters 

with Feature N and all four with Feature O are boxed 

characters. All four characters with Feature U are above-

below characters. Although the above-below and boxed 

configurations were not perfectly reflected in the plain 

additive tree, the extended features fully recovered the 

configuration dimension in data collected from Chinese 

native readers, suggesting that they are strongly influenced 

by the configuration information in their similarity sorts. 

Figure 4 displays the extended tree of Chinese learners. 

There were three main branches. (Note: the third branch split 

into two sub-branches right after the first split that gave birth 

to the three main branches, so it appears to be four main 

branches in Figure 4.) The first branch contained all 

characters with Component 日  or 非 . The second branch 

contained one left-right character with Component 口, one 

above-below character with Component 若, and two foils. 

The third branch contained the rest two characters with 

Component 口, the rest two characters with Component 若, 

and the rest two foils. The R2 increased from 42.6% to 66.5% 

when eight features were added to the tree by the EXTREE 

program—C [排, 事, 菲, 曆, 痱], D [惹, 問], E [菲, 重], H 

[問, 啄, 惹], I [爾, 曉, 排, 曇], N [菲, 幾], O [匿, 重], and U 

[爾, 排]. Feature C seemed to capture characters with open 

parallel lines (e.g. ≡) although 曆 is somehow an exception. 

Feature D seemed related to a rectangle at the center of the 

character. Feature E could be about symmetry. Feature I 

could be related to crosses of strokes (e.g. ＋  and ×). 

However, Feature H, N, O, and U could not easily be 

interpreted. 

 

 
 

Figure 4: The extended tree of Chinese learners 

 

In the novices’ extended tree (see Figure 5), there were two 

main branches with the first branch containing all four left-

right characters, three of the four above-below characters, 

two of the four boxed characters, and two of the four foils. 

The other six characters—two with Component 日, one with 

Component 若, and three foils—are in the second branch. 

The R2 increased from 43.8% to 68.0% after eight features 
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were added to the extended tree by EXTREE—C [售, 事, 曆], 

D [售, 事, 菲, 痱], E [售, 事, 曇, 曆, 匿, 重], H [痱, 事], I [幾, 

爾], N [重, 排, 菲, 痱], O [問, 排], and U [問, 匿]. Feature C, 

D, E, H, N, and O seemed related to visual elements—

Component 非, ╡or╞, and ≡ that appeared in Feature C and 

D found in native readers’ data and Feature C found in 

learners’ data. Feature I seemed related to stroke crosses— 

＋and ×—that appeared in Feature E and H found in native 

readers’ data and Feature I found in learners’ data. Feature U 

highlighted the boxed configuration of the two characters. 

 

 
 

Figure 5: The extended tree of Chinese novices 

 

Comparing the three extended threes with each other, we 

found that their tree structures had little in common. The 

number of main branches of the tree diagrams dropped from 

four for native readers, to three for learners, and to two for 

novices. While the four branches for native readers 

corresponded roughly to the three configurations plus one set 

of foils, the tree structures of the other two proficiency groups 

showed no priority of configurations or components as their 

classification criteria.  There were only two sub-branches 

(clusters) that were present in more than one tree, i.e. the 爾-

幾 branch in the trees of native readers and of learners and 

the 啄-惹 branch in the trees of learners and of novices. Trees 

of native readers and novices shared no sub-branches at all. 

Such distinctiveness among the three proficiency groups was 

also quantified by the weak correlations between each two 

dissimilarity matrices: τ(native, learner) = .06, τ(native, 

novice)=.10, τ(learner, novice) = -.03. None of these 

correlations are statistically significant. Nevertheless, despite 

the heterogeneity among the three groups, we also discovered 

some visual elements attended to by all three groups, such as 

╡,╞, ≡, ＋, and ×. 

Discussion 

This study utilizes computational modeling to explore the 

perception of Chinese characters by people with differing 

levels of proficiency in the language. We focused on 

evaluating how well feature models of Chinese character 

similarity proposed in previous research could predict human 

judgment of the characters’ visual similarity, as measured by 

a sorting task. The visual features of Chinese characters 

suggested post hoc by EXTREE analysis of the behavioral 

data were also discussed and compared among the language 

proficiency groups.   

The correlation and regression analyses show that low-

level machine-extracted features significantly predict the 

visual similarity judgments of Chinese characters by Chinese 

novices, but not the judgments of Chinese second-language 

learners or native readers. The fact that the significantly 

predictive low-level features include features based on pixels 

selected at random suggests that Chinese novices who do not 

know any Chinese may perceive the characters based mainly 

on elementary low-level perceptual routines for object 

recognition and shape perception. 

The post hoc features emerging in the EXTREE diagrams 

in the forms of the tree structure and extra marked features 

suggest that the type of configuration, one of the proposed 

high-level human-defined features evaluated here, is a 

primary criterion for judging the similarity of Chinese 

characters among Chinese native readers. This finding 

confirms and extends findings in the literature on expertise 

concerning the influence of high-level abstract and relational 

features (e.g., configurations) over low-level features (e.g., 

components) in experts’ perception (Chase and Simon, 1973; 

Gobet, 2005; Vogt & Magnussen, 2007; Slovic, 2016; Yeh & 

Li, 2002; Yeh et al., 2003). 

Although configuration is suggested by the EXTREE 

solution to be an important high-level feature characterizing 

Chinese native readers, the correlation and regression 

analysis do not show a statistically significant effect of 

configuration, which suggests that a more nuanced model of 

native readers’ perception of Chinese characters may be 

needed. Furthermore, how Chinese learners classify Chinese 

characters cannot be explained by either the high-level or the 

low-level features. 

Future research might attempt to expand the set of potential 

features, either by exploring features manifested by EXTREE 

post hoc, or via automatic search. We note that previous 

efforts for identifying visual features for Chinese character 

recognition have not implemented machine learning 

algorithms trained on large datasets. To discover features 

with stronger predicting power, we plan to train new models 

against large open datasets of Chinese characters. With the 

human-defined and machine-extracted features in this paper 

and machine-learned features in future research, we hope that 

progress can be made to better understand expertise 

development in identifying, reading, and writing Chinese 

characters. 
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