
UC Berkeley
UC Berkeley Previously Published Works

Title
Shepherding Metadata Through the Building Lifecycle

Permalink
https://escholarship.org/uc/item/8835r7v5

ISBN
978-1-4503-8061-4

Authors
Fierro, Gabe
Prakash, Anand Krishnan
Mosiman, Cory
et al.

Publication Date
2020-11-18

DOI
10.1145/3408308.3427627

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8835r7v5
https://escholarship.org/uc/item/8835r7v5#author
https://escholarship.org
http://www.cdlib.org/

DOI 10.1145/3408308.3427627

Shepherding Metadata Through the Building

Lifecycle

Gabe Fierro1, Anand Prakash2, Cory Mosiman3, Marco
Pritoni, Paul Raftery1, Michael Wetter2, and David E. Culler1

1UC Berkeley, 2Lawrence Berkeley National Laboratory,
3National Renewable Energy Laboratory

Energy Technologies Area
November 2020

https://dl.acm.org/doi/10.1145/3408308.3427627

Disclaimer:

This document was prepared as an account of work sponsored by the United States Government. While this
document is believed to contain correct information, neither the United States Government nor any agency
thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty,
express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by its trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the University of
California.

Shepherding Metadata Through the Building Lifecycle
Gabe Fierro
UC Berkeley

gtfierro@cs.berkeley.edu

Anand Krishnan Prakash
Lawrence Berkeley National

Laboratory
akprakash@lbl.gov

Cory Mosiman
National Renewable Energy

Laboratory
cory.mosiman@nrel.gov

Marco Pritoni
Lawrence Berkeley National

Laboratory
mpritoni@lbl.gov

Paul Raftery
UC Berkeley

p.raftery@berkeley.edu

Michael Wetter
Lawrence Berkeley National

Laboratory
mwetter@lbl.gov

David E. Culler
UC Berkeley

culler@cs.berkeley.edu

ABSTRACT
Many different digital representations of a building are produced
over the course of its lifecycle. These representations contain the
metadata required to support different stages of the building, from
initial planning and design, to construction and commissioning,
through operations, audits, retrofits and maintenance. However,
because of differences in the semantics, structure and syntax of
these representations, the metadata they contain is not interoperable.
We present a novel method for leveraging these representations to
create a unified, authoritative Brick metadata model for a building
that can be continually maintained over the course of the building
lifecycle. A simple synchronization protocol relays inferred Brick
metadata from existing metadata sources such as gbXML, Build-
ingSync, Project Haystack and Modelica to a central integration
server, which merges the metadata into a valid Brick model.

CCS CONCEPTS
• Information systems→Ontologies; Data encoding and canon-
icalization; Information extraction.

KEYWORDS
Smart Buildings, Data Integration, Metadata, Ontologies, OWL,
RDF, Brick

ACM Reference Format:
Gabe Fierro, Anand Krishnan Prakash, Cory Mosiman, Marco Pritoni, Paul
Raftery, Michael Wetter, and David E. Culler. 2020. Shepherding Metadata
Through the Building Lifecycle. In The 7th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys
’20), November 18–20, 2020, Virtual Event, Japan. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3408308.3427627

BuildSys ’20, November 18–20, 2020, Virtual Event, Japan
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8061-4/20/11.
https://doi.org/10.1145/3408308.3427627

1 INTRODUCTION
Many different digital representations of a building are typically
produced over the course of its lifecycle. These representations con-
tain — in some form — the metadata required to support different
stages of the building, from initial planning and design, to construc-
tion and commissioning, through operations, audits, retrofits and
repairs. As a result, different representations communicate different
perspectives on the same building: the metadata required to sup-
port the construction of a building is different than the metadata
required to manage schedules and control sequences.

Despite the increasing digitization of building metadata, there
is often little reuse or effective communication of this metadata
across stages of the building lifecycle. This is due in part to the
difficulty of integrating the partially overlapping metadata from
different sources, which may use different terminology or names for
components, and provide varying levels of detail about the building
and its subsystems.

At the same time, a renaissance has occured around the use of
metadata to enable the agile deployment of building “applications”
such as fault detection and diagnosis, measurement and verifica-
tion and other analytics. Emerging standards such as ASHRAE
Standard 223P [4], Brick [9], Project Haystack [3], BOT [29] and
SAREF4BLDG [27] have embraced expressive data models for de-
scribing the metadata required to perform these applications.

However, a largely underserved question is how to create and
maintain these metadata representations. In this paper we present a
method for the continuous integration—“shepherding”—of existing
metadata sources into a unified metadata model. We implement the
method in a proof-of-concept system and demonstrate its operation
over several metadata sources used at different stages of the building
lifecycle.

1.1 Proposed Approach
We propose a method for creating a Brick-based representation of a
building (a Brick model) from the different metadata representations
across a building’s lifecycle, and keeping that Brick model up-to-
date with these other representations even as they change. The key
insight of our approach is that a unified metadata model of a build-
ing does not need to capture all relevant metadata for every task of

70

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

BuildSys ’20, November 18–20, 2020, Virtual Event, Japan Fierro, et al.

CommissioningConstructionDesign Operation

Maintenance

Audit

IFC, gbXML,
CDL, Modelica

IFC, gbXML,
CDL

BMS,
Haystack,
CDL, Brick

Brick,
Haystack

BuildingSync

Small
Retrofit

Large Retrofit, Renovation

IFC, gbXML

Figure 1: Different tools for different stages: Many different
metadata standards and technologies are applied over the
course of a building’s lifecycle, but are relatively siloed and
thus non-interoperable.

every stage of a building’s lifecycle. Instead, the unified metadata
model should capture the metadata needed to support data-driven
applications and preserve investments in existing representations
which support traditional applications.

We choose Brick as the unified representation of building meta-
data for three reasons. First, it has demonstrated success in captur-
ing the semantic requirements of a wide array of building applica-
tions [9, 17]. Secondly, its broad vocabulary covers concepts inmany
different building subsystems, meaning it can express concepts also
defined in other metadata representations. Lastly, because Brick is
a formal ontology, it is possible to provide well-defined mapping
between concepts in Brick and other metadata representations and
extend Brick to cover new or unusual concepts [16].

Supporting the continuous integration of metadata into a unified
Brick model enables several compelling features. First, applications
developed against Brick can automatically reconfigure themselves
to changes in the building by re-executing queries against the Brick
model [17]. Second, the unified representation provides a means
of automatically detecting when external metadata sources are
incongruent or out of date, which is typically a tedious and manual
process.

1.2 Contributions
An effective solution to maintaining a unified metadata model must
import metadata from multiple existing representations, recon-
cile the differences between the imported metadata, infer missing
properties, and keep the model up-to-date as the metadata repre-
sentations evolve. The contributions of this paper are:

(1) a simple protocol for assembling Brick metadata extracted
or inferred from established metadata sources

(2) a merge algorithm for detecting and reconciling differences
between overlapping metadata sources

(3) an open-source proof-of-concept implementation1, demon-
strating integration of metadata from four different sources

Together, these contributions enable the creation and mainte-
nance of an authoritative metadata model for a building that does
not require the adoption of a single universal metadata standard
throughout the building lifecycle. Because this authoritative model
combines the metadata from a collection of sources, it can present
a more comprehensive picture of the building than any individual
source.

1Available at https://github.com/gtfierro/shepherding

2 BACKGROUND
We define several terms integral to the discussion and provide
an overview of prevailing metadata representations used over the
building lifecycle.

Definition 2.1 (Metadata Source). A metadata source is a data
model, schema, standard or convention for representing building
metadata that defines the structure, syntax and/or semantics of that
metadata. Structure is the organization of metadata into data struc-
tures, objects and relationships. Syntax is the encoding and rules for
how that metadata can be expressed and communicated. Semantics
is the use of logical rules and statements to encode the “meaning”
of metadata. Examples include the IFC 4.1 standard (which defines
structure, syntax and semantics), Project Haystack v3.9.7 (which
defines structure and syntax), and BACnet point names (which
define syntax).

Definition 2.2 (Metadata Model). Ametadata model is the content
of a metadata representation for a building at a point in time. This
reflects the fact that building metadata may change over time via
updates made by tools or stakeholders.

Differences in the semantics, structure and syntax of models
generally result in a lack of interoperability [37]. This limits the
extent to whichmetadata from one stage of a building’s lifecycle can
contribute to the metadata for another stage. As a result, models are
often not maintained after the task for which they were developed
has completed [28].

There have been previous attempts to increase information shar-
ing and reuse between stakeholders though a shared knowledge
base [22] or by centralizing all data in a BIMmodel [37]. [30] demon-
strates the semi-automated configuration of a building automation
system by exporting BACnet objects from the BIM, enabling the
exchange of information across the design, construction and oper-
ational stages of a building. Rather than adapting an existing rep-
resentation to other stages of the building lifecycle, our approach
translates these existing representations into a unified model. This
allows existing representations to coexist with the unified model
and encourages maintenance of those existing representations so
that they can continue to support their traditional use cases while
keeping the unified model in sync.

2.1 Prevailing Metadata Models for Buildings
We describe five representative metadata models from the primary
stages of a building’s lifecycle.

Green Building XML (gbXML) [1] is an XML schema for the
exchange of building information modeling (BIM) data used for the
design and construction of a building. This includes the enumera-
tion and 3D geometry of the equipment and spaces in a building
and associated sensors. In contrast to other BIM representations
like Industry Foundation Classes [5], gbXML provides contextual
information about a building’s components by grouping related
equipment and spaces together.

BuildingSync [24] is an XML-based schema designed to capture
energy audit data in line with ASHRAE Standard 211 [6]. The stan-
dard requires the reporting of high-level operational parameters
of the building (e.g. floor area, occupancy classification, operating
hours), primary system information (e.g. heating, cooling, lighting,

71

Shepherding Metadata Through the Building Lifecycle BuildSys ’20, November 18–20, 2020, Virtual Event, Japan

process loads), historical energy consumption, benchmarking infor-
mation, and target performance objectives. Energy auditors use this
information to provide the building owner with recommendations
for achieving energy reduction goals or mandates. Energy audits
are often conducted at various points in a building’s lifecycle; e.g.
every 10 years for New York City buildings over 50,000 sq ft [38].

Modelica Buildings Library and Control Description Lan-
guage (Modelica/CDL): Modelica [8] is a declarative, equation-
based modeling language used to model engineered systems. Model-
ica defines modular objects which are coupled to each other through
connector objects to form systems. Connectors can represent in-
put/output ports for control signals, or physical ports such as for
representing a flange of a valve through which fluid flows. TheMod-
elica Buildings Library contains component and system models for
building and district energy and control systems [34].

The Control Description Language (CDL) [32] is a subset of
Modelica used to express control sequences for building automation
systems in a vendor-independent format. CDL aims at enabling the
digitization of the design, specification, deployment and verification
of building control sequences such as ASHRAE Guideline 36 [7, 33].
CDL is the basis for the initiation of a new standard, ASHRAE
Standard 231P, whose aim is to express building environmental
control sequences in a control-vendor neutral computer language.

Project Haystack (Haystack) [3] is a popular tag-based data
model that describes equipment and points (data sources) in build-
ings during the operational stage of a building. Haystack does not
formally define how well-known concepts should be described. As
a result, tag usage is inconsistent between Haystack models, which
limits the interpretability of the resulting model and the extent to
which it can be integrated with other metadata sources. Recent
work ameliorates these issues by automatically aligning Haystack
tags with existing formal definitions [16].

Finally, building management systems (BMS) often contain
vendor-specific and ad-hoc representations which follow in-
formal and inconsistent naming conventions, but may contain use-
ful metadata for data-driven applications [11].

2.2 Brick: a Lingua Franca
Although the above metadata sources provide utility for specific
stages of the building lifecycle, they do not carry across stages the
information needed to author data-driven applications without los-
ing crucial detail. Prior work has established that certain common
sources of metadata alone do not capture the information required
to run these applications [10]. Brick [9, 16] is a formal metadata rep-
resentation designed to address this gap by targeting completeness
(capturing the concepts required for applications), expressiveness
(capturing the relationships and properties required for applica-
tions) and extensibility (the ability to describe new concepts as
needed). This combination of features makes Brick a compelling
metadata source for data-driven applications [17, 20]. Applications
execute queries against a Brick model for the metadata they need
to configure and operate.

Brick defines a comprehensive set of concepts for describing
virtual, logical and physical “entities” in buildings, and a family
of rich semantic relationships for describing the connections and

http

http

http

http

.xml

.xml

http

.json

.xml.xml

.json.json

Figure 2: Overview of the proposed approach: drivers inter-
face directly with existing metadata sources stored in local
file systems, or accessed via file shares or networked ser-
vices. Drivers continuously publish inferred Brickmetadata
to a central server, which produces a unified model.

associations between them. Because Brick defines concepts for mul-
tiple building subsystems including HVAC, lighting, electrical and
spatial, there is often conceptual overlap between Brick and other
metadata sources. This means that not only is there a path for creat-
ing Brick models from existing metadata sources, but that Brick can
evolve to support new concepts and additional metadata without
needing to “backport” these changes to other metadata representa-
tions. For example, although Brick does not describe geometry, IFC
and gbXML descriptions of geometry can be associated with Brick
entities.

2.3 Data Integration
The system architecture of the proposed solution takes its inspi-
ration from the wrapper-mediator architecture for data integra-
tion [19, 35]. Wrappers — called drivers here — provide access to
heterogeneous data sources, and mediators — a role fulfilled by the
integration server — provides access to a unified view of the data
reported by the wrappers. Because of the additional complication
that our drivers can produce overlapping data, we also incorporate
methods from the record linkage literature to determine which data
relates to the same entities [36].

3 SHEPHERDING METADATA
We present an overview of the stages and metadata sources of the
building lifecycle, and summarize the components of the proposed
approach for continuously integrating the metadata sources used
throughout the lifecycle.

3.1 Building Lifecycle
Each phase of the building’s lifecycle involves the consumption or
production of one or more metadata sources (Figure 1).

The design phase of a building, conducted using BIM, may pro-
duce IFC or gbXML models that are used during the construction
phase of the building. During construction, this metadata may be
used in conjunction with CDL descriptions of the building’s se-
quence of operations to configure the BMS. Unstructured BMS
metadata may be captured in a Brick or Haystack model to facil-
itate data analysis and to perform predictive maintenance. Other
metadata sources such as BuildingSync may be used to conduct

72

BuildSys ’20, November 18–20, 2020, Virtual Event, Japan Fierro, et al.

energy audits before and after retrofits and repairs, which them-
selves may rely upon CDL, IFC or gbXML representations of the
building’s control loops and assets.

The differences in structure, syntax and semantics between the
above metadata sources limit the extent to which their metadata
can be re-used between stages of the building lifecycle. The content
of metadata sources may change over time in response to repairs
and retrofits or to add additional information to an evolving model.
Other metadata sources, such as floor plans or BIM representations,
may not be updated to reflect changes in the building. Enabling
the continuous integration of disparate metadata sources into a
unified and semantically rich model can facilitate and incentivize
the re-use of metadata throughout the building lifecycle.

3.2 Continuous Integration Architecture
The proposed approach to continuous metadata integration, repre-
sented in Figure 2, has the following components.

A driver is a software process that produces Brick metadata
from an underlying metadata source. For structured or standard-
ized metadata sources such as BuildingSync and gbXML, this may
be accomplished through direct translation of the source’s concepts
and structures to Brick. For less structured and ad-hoc sources such
as Haystack and BMS labels, a driver may infer Brick metadata
through a statistical or heuristic-based approach. The driver con-
tinually produces Brick metadata from the most recent version or
“snapshot” of the underlying metadata source. The driver has no
requirements for how the Brick metadata is produced or inferred,
but must implement the synchronization protocol to transmit
this metadata to the integration server.

The integration server is a logically centralized process that
assembles Brick metadata from a collection of drivers and produces
a unified Brick model representing the union of the collected meta-
data. Because different metadata sources are created at different
stages of the building and by independent stakeholders, the Brick
metadata produced by the drivers is likely to contain disagreements
and inconsistencies, or may simply be out of date. To address this
issue, the integration server incorporates a novel reconciliation
algorithm—analogous to the “merge” operation in git—that at-
tempts to resolve the differences between the metadata reported by
the drivers. The integration server makes the unified Brick model
available to applications and external services such as Mortar [17].

We formally describe the operation of each of these components,
implement an end-to-end proof-of-concept, and explore the behav-
ior of the approach on a set of representative metadata models and
buildings.

4 METADATA SYNCHRONIZATION
Producing a unified metadata model requires assembling metadata
from a variety of sources with differing structure, syntax and seman-
tics. Drivers implement a metadata synchronization protocol
which updates the integration server with the latest Brick meta-
data from a specific source. The metadata synchronization protocol
decouples the method of inferring or producing Brick metadata
from how that metadata becomes integrated into the authorita-
tive model. This allows the proposed system to incorporate new
metadata sources and novel methods of inferring Brick metadata.

1 {"id": "RTU-1",
2 "raw": {
3 "content": "<auc:Delivery ID=\"RTU-1\">
4 <auc:DeliveryType>
5 <auc:CentralAirDistribution>
6 <auc:AirDeliveryType>Central fan</auc:AirDeliveryType>
7 <auc:FanBased>
8 <auc:CoolingSupplyAirTemperature>73</auc:CoolingSupplyAirTemperature>
9 </auc:FanBased>
10 </auc:CentralAirDistribution>
11 </auc:DeliveryType>",
12 "encoding": "XML"},
13 "source": "BuildingSyncDriver",
14 "source_version": "2.1.0",
15 "timestamp": "2020-07-16T20:02:50",
16 "protocol_version": "1.0.0",
17 "triples": [["http://example.com/building#RTU-1",
18 "http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
19 "https://brickschema.org/schema/1.1/Brick#Rooftop_Unit"]]}

Figure 3: Example record published by the BuildingSync dri-
ver, showing the original metadata (raw) and the inferred
Brick metadata (triples).

4.1 Formal Definition of Brick Inference
A Brick model is a directed graph in which nodes are “entities”
(physical, virtual, logical things and concepts) and edges are re-
lationships between entities. Brick models are handily expressed
in the RDF data model, which defines a graph as a set of triples:
3-tuples of subject (node), predicate (edge), object (node).

A metadata source 𝑆𝑖 corresponds to a set of metadata models𝑚𝑡
𝑖

indexed by a unique timestamp 𝑡 . A driver 𝐷𝑖 is a function which
produces a set of entities for a particular metadata model:

𝐷𝑖 (𝑚𝑡
𝑖) → {𝑒𝑡1, 𝑒

𝑡
2, . . . , 𝑒

𝑡
𝑛} (1)

where 𝑒𝑡
𝑗
is described by a set of fields called a record. Each record

includes a set of triples describing the entity, given by 𝑇 (𝑒𝑡
𝑗
). To-

gether, the triples produced by a driver constitute a Brick model
𝐺𝑡
𝑖
for a given metadata source and timestamp. The content of the

Brick model is given by

𝐺𝑡
𝑖 =

𝑛⋃
𝑗=1

𝑇 (𝑒𝑡𝑗) (2)

4.2 Metadata Profile
A driver implements a metadata profile providing a structured repre-
sentation of the Brick metadata for the most recent metadata model
from a particular source. The profile is a set of HTTP resources:
The root resource (/) holds a list of entity ids with associated Brick
metadata for the current metadata model, and a timestamp repre-
senting the version of that metadata model. The record resources
(/record/<id>) hold the record associated with a given entity id.
A record contains the following fields:

• id: a name or other identifier for the entity, as given by the
metadata source

• raw: identifies the encoding (e.g. JSON, XML) and content of
the original metadata that defined this entity. May contain
additional metadata not expressed in Brick

• source: identifies the metadata source
• timestamp: denotes the time at which the metadata source
was read to produce the current metadata model

73

Shepherding Metadata Through the Building Lifecycle BuildSys ’20, November 18–20, 2020, Virtual Event, Japan

• triples: a list of RDF triples defining the Brick metadata
for the entity

The timestamp field constitutes the version of the metadata model
and is updated only when the model or driver changes.

Figure 3 contains an example of a BuildingSync record for an
HVAC delivery system named “RTU-1”. Note that the original XML
element contains additional metadata not conveyed in the produced
Brick triples.

4.3 Metadata Synchronization Protocol
Drivers synchronize the contents of the profile with the integration
server via the metadata synchronization protocol. This is analogous
to the “merge” operation in git. The protocol operates over HTTP
and consists of two request-response actions: check and sync.

A check is an HTTP GET which asks the server for the latest
known version of metadata from a particular source, and the num-
ber of records at that version. The server responds with the version
as a timestamp and an integer representing the number of records.
By comparing this information with the latest local version and
corresponding number of records, the driver can determine if the
server has a complete copy of the most recent Brick metadata from
the driver. If the server timestamp is older than the local timestamp,
or the number of server records at the latest timestamp is less than
the number of local records, the driver performs a sync.

A sync is an HTTP POST of the list of records for the most
recent version of the metadata model to the integration server,
These records must contain the same version timestamp, which
allows the set of records to span more than one HTTP POST while
still being associated with the same version of the metadata model.

The server saves all records in a local database. When the server
performs the reconciliation algorithm to produce a unifiedmetadata
model (§5), it by default only considers the records corresponding
to the most recent timestamp (version) per source. By extension,
the server can also produce a unified metadata model for any point
in the Brick model’s history. This allows applications to access
the history of changes in a building, but through the interface
of a standardized, unified representation rather than an ad-hoc
collection of diverse metadata sources.

The triples field can contain arbitrary Brick metadata to be
relayed to the server. Typically this involves type information (vav1
is a brick:VAV), system composition information (vav1 is down-
stream of ahu1), telemetry association (vav1 has temperature set-
point temp_sp1) and location information (tstat1 is in Room 410).
The triples may also define extensions to the Brick ontology, such
as to describe additional properties of an unusual device or point.

4.4 Producing Brick Metadata with Drivers
We examine the effectiveness of the metadata profile and synchro-
nization protocol by implementing proof-of-concept drivers for
four common building metadata representations. For each driver,
we explain the structural and semantic mapping between the meta-
data source and Brick. Our approach permits the development of
separate drivers for different versions of each metadata source.

4.4.1 BuildingSync. BuildingSync models contain energy-related
properties of buildings and their subsystems and coarse-grained re-
lationships between them. The driver produces Brick metadata from

a BuildingSync document by mapping combinations of XML ele-
ments and attributes to Brick class definitions. The correspondence
between BuildingSync and Brick is expressed as a mapping from an
XPath expression to a Brick class. For example, the BuildingSync
auc:Chiller element aligns with the Brick brick:Chiller class.
If the auc:Chiller element contains a auc:ChillerType prop-
erty with the value “Absorption”, then the driver can infer the more
specific Brick class of brick:Absorption_Chiller.

There are a few challenges that must be addressed by the driver.
BuildingSync documents often represent collective properties of
building systems and equipment — e.g. the number of absorption
chillers, not how the individual chillers are connected — which
limits the number of Brick relationships that can be derived. Also,
by modeling systems rather than components, BuildingSync models
often lack descriptive labels for equipment and points.

4.4.2 Project Haystack. The structure of a Haystack model has
a straightforward mapping to Brick: each Haystack entity corre-
sponds to one or more Brick entities. The generic links between
Haystack entities (called refs in Haystack parlance) can be ex-
pressed with Brick relationships.

However, because the semantics of a Haystack model are not
well-defined, there is no unambiguous and exhaustive mapping
of Haystack metadata to Brick. As a result, the types of Haystack
entities and relationships between them must be inferred through
some external process [16]. The engine described in [16] fulfills this
role by using tags associated with Brick concepts to infer the most
likely class for a given set of Haystack tags. This engine has been
incorporated into the Haystack driver, so that further updates and
refinements to the method can be incorporated into the metadata
integration process.

4.4.3 Modelica/CDL. Modelica and CDL models consist of a set of
connected objects. This linked structure clearly identifies entities
and the relationships between them, which closely resembles the
structure of a Brick model. Modelica objects have classes, which
supports the development of a mapping between Modelica classes
and Brick classes. For example, every instance of the Modelica class
Buildings.Fluid.Sensor.Temperature can be translated into a
brick:Temperature_Sensor entity. The links between objects in a
Modelica model can inform the choice of sequential (brick:feeds)
and compositional (brick:hasPart) relationships between their
corresponding Brick entities.

There are a few challenges in producing Brick metadata from a
Modelica/CDL model. First, because Modelica is a general model-
ing language, it is possible for models to describe buildings using
classes unknown to the driver. The driver establishes mappings
for many of the common classes in the Modelica Buildings Li-
brary [34], but there is no guarantee that a Modelica model will
use these classes. Second, due to Modelica’s model encapsulation,
contextual properties, i.e., how the objects relate to a larger sys-
tem, need to be inferred. For example, for an instance of the class
Buildings.Fluid.Sensor.Temperature, where it is located (e.g.
exhaust air, return air, entering water, leaving water) need to be
inferred from the system that contains the sensor.

74

BuildSys ’20, November 18–20, 2020, Virtual Event, Japan Fierro, et al.

4.4.4 gbXML. Drivers for BIM can produce Brick metadata about
individual components, but inferring contextual relationships be-
tween those components is more difficult. Because BIM models
focus on the geometry and physical connections of spaces and
equipment, the representations may lack or obscure the contextual
information needed during the operations and maintenance stages
of the building. For example, although several versions of the IFC
standard enumerate possible physical and contextual properties of
fans, these details may not be included in an IFC model or must be
inferred by traversing the connections between other elements in
the model. gbXML represents equipment and high-level contextual
relationships more explicitly than IFC, and the numbers in Figure 8
show promise.

A significant challenge for the production of Brick metadata
from a BIM model is variability in how BIM models are expressed.
BIM standards are designed to be flexible and extensible, which can
result in a lack of consistency and thus interoperability [14, 25].
Representing BIMmodels using semantic web technologywill allow
the driver to more easily validate and inspect the BIM metadata,
which may result in a more complete Brick metadata model [26].

5 METADATA RECONCILIATION
Differences in the Brick metadata produced by drivers must be rec-
onciled, or merged, into a consistent, unified model that supports
data-driven applications. Reconciliation must be performed con-
tinuously to account for changes in metadata sources arising from
evolving representations and buildings. We present a reconciliation
algorithm that extends existing record linkage techniques to graph-
based semantic metadata and enforces the logical and semantic
validity of the resulting unified model.

5.1 Problem Definition
Let 𝑆 be a set of metadata sources which change over time; the
content of a metadata source 𝑆𝑖 at time 𝑡 is given by the metadata
model𝑚𝑡

𝑖
. Recall that a driver produces a set of entities (Equation 1)

and that 𝑇 (𝑒 𝑗) denotes the Brick triples defining an entity. The
input to the reconciliation algorithm is the set of entities 𝐸 from
the latest metadata model for each of𝑚 sources

𝐸 =

𝑚⋃
𝑖=1

𝐷𝑖 (𝑚𝑡max
𝑖

) (3)

where 𝑡max is the timestamp of the most recent model for metadata
source 𝑖 .

The first phase of the reconciliation algorithm finds clusters
of entities such that (a) all entities in the cluster correspond to
the same logical, virtual or physical instance (the classic record
linkage problem [36]), and (b) the union of the associated metadata
is logically and semantically sound. Formally, each cluster of entities
𝑐 𝑗 has an associated metadata graph 𝐺 𝑗 which is the union of all
the associated triples for entities in that cluster:

𝐺 𝑗 =
⋃
𝑒𝑖 ∈𝑐 𝑗

𝑇 (𝑒𝑖) (4)

The clustering is successful and the algorithm terminates if the
metadata graph 𝐺 𝑗 satisfies a set of constraints determined by
formal ontologies such as Brick.

For example, consider two metadata models𝑚1 and𝑚2 which
propose the following sets of entities:

𝐸1 = {𝑒1, 𝑒2, 𝑒3} (5)
𝐸2 = {𝑒4, 𝑒5} (6)

along with their associated sets of triples (e.g. 𝑇 (𝑒1)). The recon-
ciliation algorithm may produce a set of three clusters in which
every entity in the same cluster refers to the same individual:
{𝑒1, 𝑒5}, {𝑒2, 𝑒4}, {𝑒3}.

When the content of a metadata source changes, such as the
result of a renovation or retrocommissioning, a driver produces a
new metadata model with a newer timestamp 𝑡 ′. The set of entities
𝐸𝑡
𝑖
corresponding to the old version are removed from the input set

𝐸 and are replaced by the new set of entities 𝐸𝑡
′
𝑖
. The reconciliation

algorithm, described below, must be re-executed.

5.2 Algorithm
The algorithm proceeds in two main phases. The high-level opera-
tion is illustrated in Figure 4. The input to the algorithm is the most
recent set of entities from each metadata source.

5.2.1 First Phase: Record Linkage. The first phase of the algorithm
currently performs two kinds of record linkage on the associated
names or labels of each entity: string matching and type alignment.
String matching calculates edit distance between entity labels to
produce clusters of entities. The name of an entity can be derived
from string-valued properties such as rdfs:label, or the URI of
the entity if no string-valued properties are found. The goal of
this step is to use the semantic information sometimes encoded
in entity labels as one heuristic for linking [11]. Due to different
naming conventions between metadata sources, there can often
be greater similarity scores between entities from the same source
than between entities of different sources. The algorithm assumes
that all entities reported by a metadata source are distinct and only
clusters entities from different metadata sources.

Type alignment leverages semantic information from the pro-
posed types of each entity to do type-aware clustering. The algo-
rithm identifies all entities with a Brick class and associates with
each entity all Brick classes which are equal to or are superclasses of
its given type. If two or more sources have the same number, 𝑘 , of
entities of a given type, the algorithm produces 𝑘 clusters contain-
ing one entity from each source with the highest pariwise similarity
between their names. The clusters produced by this second step
are added to the set of clusters produced by the first step.

5.2.2 Second Phase: Graph Union. The second phase of the algo-
rithm takes as input the clusters of entities from the first phase and
builds and validates the graphs formed by merging their associated
triples. For each cluster, the algorithm produces the graph𝐺 using
the formula in Equation 4. The algorithm also adds statements to
the Brick model to merge the different identifiers for the same entity
(this uses the owl:sameAs property).

Unlike many other metadata sources, Brick is built over formal
logic [16]. This allows continuous validation of a Brick model as
metadata is added to it, which allows the algorithm to produce a
logically valid model. The logical validation is implemented by a
process called a reasoner, which also generates logical consequences

75

Shepherding Metadata Through the Building Lifecycle BuildSys ’20, November 18–20, 2020, Virtual Event, Japan

Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 <e1,p,o>

Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 <e1,p,o>

Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 ...

e1
Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 <e1,p,o>

Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 <e1,p,o>

Entity: e3
Triples: <e3,p,o>
 <e3,p,o>
 ...

e1,e2,e3,e4,e5,e6,...

e1e3

e6

e6

e4

Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 <e1,p,o>

Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 <e1,p,o>

Entity: e5
Triples: <e5,p,o>
 <e5,p,o>
 ...

Gj

Figure 4: The phases of the reconciliation algorithm. The latest Brick metadata (far left) is stored by the integration server.

1 # BuildingSync: ahu-1
2 bldg:bsync-ahu-1 rdf:type brick:Air_Handling_Unit ;
3 rdfs:label "AHU-1" .
4 # BuildingSync: main-meter
5 bldg:bsync-meter rdf:type brick:Building_Power_Meter ;
6 rdfs:label "main-meter" .
7
8 # Haystack: rtu-1
9 bldg:ph-rtu-1 rdf:type brick:Rooftop_Unit ;
10 rdfs:label "RTU 1" ; brick:hasPoint bldg:oat-1 .
11 # Haystack: main-meter
12 bldg:ph-meter rdf:type brick:Power_Meter ; rdfs:label "Main Meter" .

Figure 5: Example Brick metadata produced by Build-
ingSync and Project Haystack drivers. The rdfs:label prop-
erty denotes the original name or identifier of the entity in
the metadata source.

1 bldg:rtu-1 rdf:type brick:Rooftop_Unit ; brick:hasPoint bldg:oat-1 .
2 bldg:meter rdf:type brick:Building_Power_Meter .

Figure 6: The inferred unifiedmetadatamodel for the triples
in Figure 5. The most specific type is chosen for each entity,
and that associated properties are carried through.

of the statements in a Brick graph [31]. The reasoner examines the
graph𝐺 𝑗 for each cluster and produces a set of logical exceptions.
These exceptions indicate that either the entities in the cluster are
not equivalent, or the metadata associated with those entities is
incorrect. Examples of exceptions include incompatible types (e.g. if
a cluster contains entities with disjoint types), incompatible relation-
ships (e.g. if the values of an entity’s properties and relationships do
not match associated constraints) and semantic “sniff tests” which
are qualities of the Brick graph that are not logical violations but
may indicate deeper issues. The primary example of the latter is an
entity’s types should all be subclasses or superclasses of each other.

When exceptions occur, the algorithm can optionally re-cluster
entities using more selective thresholds, or, as in the implemented
prototype, by requesting human input on the failing cluster. The
algorithm then repeats the graph union step. These steps are iter-
ated until no exceptions are logged, after which all of the cluster-
produced graphs are merged into a single graph. The algorithm
validates the unified graph; if this passes, the unified graph is re-
turned as the authoritative metadata model.

5.2.3 Human-aided Disambiguation. When the algorithm logs ex-
ceptions for the entities in a given “bad” cluster, the algorithm can
ask for external input on how to proceed. First, the algorithm asks
if it should split the bad cluster into two or more smaller clusters;

this can be performed automatically by adjusting clustering hyper-
parameters or manually by specifying the new clusters explicitly.
If reclustering occurs, then the algorithm begins another iteration
of the graph union phase above using the new clusters.

If reclustering does not occur for a “bad” cluster, then the al-
gorithm asks for manual resolution of the graph contents before
proceeding to the next cluster. This typically involves choosing
which Brick class to assign to a group of entities, but may also re-
quire editing properties and relationships of entities. The algorithm
saves the results of manual resolution so they can be applied during
future runs of the reconciliation algorithm.

The reconciliation process can use human feedback to learn how
to automatically cluster, classify and disambiguate entities as well
as reduce the amount of manual resolution needed. Although this
has not been implemented in the current proof-of-concept, the
continuous integration architecture can support active learning
techniques such as [11].

5.3 Example
We illustrate the behavior of the algorithm with an example of
merging a Haystack and BuildingSync model for a building. The
drivers for these two sources produce the Brick metadata listed in
Figure 5. The algorithm begins by clustering the entities. The string-
matching phase places bldg:bsync-meter and bldg:ph-meter
into the same cluster because their labels are sufficiently similar. The
bldg:bsync-ahu-1 and bldg:ph-rtu-1 entities are not grouped
because the labels are too dissimilar.

The type-aware phase examines the Brick-defined classes for
the remaining entities. Using the Brick ontology, the algorithm
infers that because brick:Air_Handling_Unit is a superclass of
brick:Rooftop_Unit, each source has metadata for one air han-
dling unit. Because each source has the same number of instances
of that type, the algorithm clusters those entities by label similarity.
This results in bldg:bsync-ahu-1 and bldg:ph-rtu-1 being clus-
tered. The difference in specificity between the original sources is
due to the fact that BuildingSync does not differentiate between
subclasses of air handling units, but Haystack does.

The algorithm proceeds by unifying the triples for the enti-
ties in each cluster and validates the logical and semantic sound-
ness of the resulting graph. In this simple example, the algorithm
only needs to verify that the types of each pair of entities are
compatible. This is true: brick:Air_Handling_Unit is a super-
class of brick:Rooftop_Unit and brick:Power_Meter is a super-
class of brick:Building_Power_Meter. Finally, the two graphs
are merged into a single Brick model (Figure 6).

76

BuildSys ’20, November 18–20, 2020, Virtual Event, Japan Fierro, et al.

6 ILLUSTRATION OF USE
We explore the proposed approach by implementing a fully func-
tional prototype and measuring aspects of its execution on a set
of real and artificial sites. As structured digital representations
of buildings become more standardized and widely available, we
envision this framework to serve a vital role in integrating this in-
formation over time. The prototype is open-source and is available
at https://github.com/gtfierro/shepherding.

6.1 Models and Sites
In order to understand the behavior and performance of the dri-
vers, we assemble a set of publicly available models for each of the
targeted metadata sources. These models do not cover the same
set of buildings, but the population permits empirical measure-
ment of the availability of Brick metadata. In total we measured 9
Haystack models, 18 BuildingSync models, 16 gbXML models and
3 Modelica/CDL models.

To illustrate the behavior of the reconciliation algorithm, we
assemble a collection of metadata models for two sites (Table 1).
Carytown is a public reference model for Haystack; we develop
a BuildingSync model for the site using available metadata. DOE
Medium Office is the reference building for a new construction,
medium office in a large U.S. city that has been described in the set of
U.S. Department of Energy Commercial Buildings Benchmark [12].
We used the Modelica model that had been developed for a single
floor (four perimeter zones and one core zone) of this building
as part of the Modelica Buildings library and developed Project
Haystack and BuildingSync representations for this building.

6.2 Driver Implementation
We use the implementation of four drivers to explore the issues
involved in extracting Brick metadata from existing sources, and
how well the metadata synchronization protocol supports that ex-
traction. The prototyped drivers are all implemented using a simple
framework which provides an API for constructing metadata pro-
files and automatically synchronizes the profile with an integration
server. The framework also exposes the metadata profile over a
built-in HTTP server which permits a user or automated tool to
debug the driver’s output without the use of an external server.

This set of features reduces the developer overhead of producing
a driver by abstracting away common elements of the protocol and
implementation. The prototype is built in Python 3, is small (∼200
LOC) and uses modules from the standard library; this suggests
few technical barriers to implementing the profile and protocol in
other languages.

Project Haystack Driver. The Haystack driver is built over
the inference engine described in [16], which is part of the open-
source brickschema Python package2. The driver only required
a few lines of code to read a JSON export of a Haystack model,
feed this to the inference engine, and extract the inferred Brick
metadata. The division of a Haystack model into a set of entities
is natural: each Haystack document becomes one or more Brick
entities, with relationships between them. Due to the high degree of
overlap in themodeling domain of Haystack and Brickmodels, most
of the Haystack metadata is translated into its Brick equivalent.
2https://pypi.org/project/brickschema/

Figure 7: The distribution of the number of triples inferred
per entity for each driver.

Figure 8: The distribution of the total number of triples in-
ferred by each driver. Note the log-scale on the X axis

One exception is the timeseries information embedded in Haystack
models (such as the current value and timestamp of a point), which
has no direct representation in Brick.

BuildingSync Driver. The BuildingSync driver operates by us-
ing XPath expressions to conditionally extract parts of a Build-
ingSync XML document and translate the information to Brick
metadata. At time of writing, the driver defines 27 direct mappings,
primarily for locations and equipment types. The amount of Brick
metadata obtained from a BuildingSync model is limited compared
to what can be inferred from gbXML, Modelica or Project Haystack
models (Figure 8). This is due to a difference in scope: BuildingSync
describes properties and performance characteristics of building
systems, rather than the individual components and relationships
found in other metadata sources. As a result, a BuildingSync model
may be a better export target from a unified Brick model.

gbXML Driver.We chose to implement a gbXML driver instead
of an IFC driver because previous work indicates that little Brick
metadata can be inferred from IFC models [23]. This is due in part
to the complex and generic schema of IFC in which related pieces of
information are often separated by many intermediate objects [13].
In contrast, gbXML models contain more explicit contextual in-
formation such as the <AirLoop> element, which groups related
HVAC equipment together. This permits the inference of more
metadata such as sequential and compositional relationships.

Modelica/CDL. The driver takes as input a JSON export of
a Modelica/CDL model [2]. The driver treats each instance of a
Modelica model in the document as a Brick entity, and assigns a
Brick class to entities whose class is defined in the Modelica Build-
ings Library [34]. To infer relationships between these entities, the
driver examines the ports for each Modelica instance; these are
connected by connect statements to other instances of Modelica
models. From these statements, the driver can infer the Brick rela-
tionships brick:feeds, brick:hasPart and brick:hasPoint.

To compare the behavior of each of the drivers, we executed each
driver on a collection of publicly available metadata sources and
measured the number of records and triples each produced. Figure 7
shows the distribution of the number of Brick triples that each driver
produced per entity across all of the buildings. Figure 8 shows the
distribution of the total number of triples obtained for each model.

77

Shepherding Metadata Through the Building Lifecycle BuildSys ’20, November 18–20, 2020, Virtual Event, Japan

Site Name Metadata Source % Contributed Unique Model Size (Triples) # manual interventions

Carytown Haystack 32.9% 100% 280 0BuildingSync 20% 100%

DOE Medium Office
Haystack 31.9% 100%

1,698 4Modelica 41.9% 98.2%
BuildingSync .8% 98.5%

Table 1: The results of merging multiple metadata models for two different sites, showing the diversity of the metadata avail-
able between the available metadata sources. The % Contributed percentages do not add up to 100% because the rest of the
graph consists of inferred metadata not contained in any particular model.

Within this population of sites, Modelica models contain the most
Brick metadata per entity, but do not contain as many entities as
Haystack models. Haystack models contain more entities and more
Brick metadata per entity than metadata sources for energy audits
and BIM.

6.3 Server Implementation
Weexplore the reconciliation algorithm’s behavior through a Python
implementation of the integration server. The server exposes the
API endpoints required of the metadata synchronization protocol
and logs all sync messages received from drivers in a SQLite data-
base. The triples in these messages, which contain the inferred Brick
metadata from each driver, are inserted into a dedicated table and
indexed by their metadata source and timestamp. This allows the
definition of a SQL View that contains the most recent triples for
each driver, which is used as input to the reconciliation algorithm.
The server incorporates Allegrograph’s reasoner implementation to
perform the required logical validation of the Brick metadata [18].
The server also embeds an in-memory instance of HodDB [15] to
support application queries against Brick metadata.

Evaluation of Reconciliation Algorithm. To develop an un-
derstanding of how the algorithm behaves, we execute the system
on a collection of sites with more than one metadata source.

Table 1 contains the results of reconciling the Brick metadata
from each source for each site. The % Contributed column contains
the proportion of triples in the unified model that were contributed
by each source; this includes redundant triples. The Unique column
contains the proportion of triples in the unified model that are
unique to each source.

Although there are only a few sites and models, we can observe
some general behavior about the metadata extracted from the avail-
able drivers. First, the metadata from Haystack and BuildingSync
drivers are mostly complementary and there is little overlap be-
tween them. This aligns with the respective scopes of eachmetadata
source: BuildingSync describes holistic properties of systems that
may not be covered by Project Haystack models (at least in a stan-
dard way). Secondly, Modelica drivers provide more Brick metadata
than Haystack drivers: a Modelica/CDL model can produce a signif-
icant portion of the Brick metadata for a building. This aligns with
the detailed treatment of HVAC systems found in Modelica models
compared with the coarse-grained modeling found in Haystack.

For all sites, the metadata common to all drivers was very low.
This is to some extent due to the completeness of the drivers at time
of writing, but is also limited by the different levels of detail and dif-
ferent perspectives of a building that are communicated by different
metadata sources. The metadata contributed from each driver was
almost completely unique: even though there is some overlap in the

entities described by each driver, it is rare for two drivers to produce
Brick metadata at the same level of detail or level of completeness.
For example, one sensor was identified as a brick:Flow_Sensor
by the Modelica driver and a brick:Return_Air_Flow_Sensor by
the Haystack driver.
6.4 Discussion and Future Work
The above exploration of our proof-of-concept demonstrates that
integrating metadata from many different sources is not only prac-
tical, but also yields a richer and more complete representation
than any individual source. The resulting unified metadata model
enables the development of portable applications that can use se-
mantic metadata to configure themselves [17].

The metadata synchronization protocol successfully decouples
the tasks of inferring Brick metadata from a particular source and
integrating multiple sources of Brick metadata into a unified model.
This establishes a common platform for Brick metadata inference
research; for example, inference methods such as [11] and [21] that
operate on ad-hoc metadata representations can be adapted to the
protocol. This permits direct comparison of the Brick metadata
produced by different methods, and eases the integration of these
methods with other drivers. The protocol also offers a clear path for
future metadata standards such as ASHRAE’s 223P [4] to support
or integrate with Brick. We will continue to develop the existing
drivers to deliver more complete and accurate Brick metadata, and
implement additional drivers that operate on historical telemetry
and unstructured data like BMS labels.

Our experiences with the reconciliation algorithm demonstrate
that the extension of record linkage techniques to support semantic
metadata graphs can successfully produce useful Brick models. Due
to the lack of descriptive labels, record linkage using type align-
ment was much more effective than string matching for producing
clusters of entities. In particular, autogenerated labels in Haystack
and Modelica models caused a number of false positives when us-
ing string matching. Despite these difficulties, the algorithm was
able to detect the resulting semantic issues in the merged model by
using the Brick ontology. We plan to augment the reconciliation
approach with active learning capabilities that can apply human
input to automatically perform the required clustering and disam-
biguation.

7 CONCLUSION
We present a method and system for performing the continuous
integration of buildingmetadata into a unifiedmodelwithout requir-
ing widespread adoption of a single metadata standard throughout
all stages of a building’s lifecycle. The unified metadata model
enables a new generation of portable, data-driven analytics built

78

BuildSys ’20, November 18–20, 2020, Virtual Event, Japan Fierro, et al.

over semantic metadata, while preserving investments in existing
metadata representations. Future work will explore using the uni-
fied metadata model to support the creation or augmentation of
other metadata representations from a Brick model. This work also
establishes a common and extensible architecture for building meta-
data inference research. It facilitates future evaluations of the Brick
metadata that can be produced from existing metadata representa-
tions and provides a path to integrating established and emerging
inference methods.

8 ACKNOWLEDGEMENTS
This research is supported in part by Department of Energy grants
DE-EE0008681, DE-AC36-08GO28308 and DE-AC02-05CH11231
and the CONIX research center, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored by
DARPA. The opinions expressed belong solely to the authors, and
not necessarily to the authors’ employers or funding agencies.

REFERENCES
[1] 2020. Green Building XML. https://www.gbxml.org
[2] 2020. Modelica to JSON parser. https://github.com/lbl-srg/modelica-json
[3] 2020. Project Haystack. http://project-haystack.org/
[4] American Society of Heating, Refrigerating and Air-Conditioning Engi-

neers. 2018. ASHRAE’s BACnet Committee, Project Haystack and Brick
Schema Collaborating to Provide Unified Data Semantic Modeling Solution.
http://web.archive.org/web/20181223045430/https://www.ashrae.org/about/
news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-
collaborating-to-provide-unified-data-semantic-modeling-solution.

[5] 16739-1:2018 2018. Industry Foundation Classes (IFC) for data sharing in the
construction and facility management industries . Standard. International Organi-
zation for Standardization, Geneva, CH.

[6] ASHRAE. 2018. ANSI/ASHRAE/ACCA Standard 211-2018: Standard for Commercial
Building Energy Audits. Technical Report. ASHRAE, Atlanta, GA.

[7] ASHRAE. 2018. New Guideline on Standardized Advanced Sequences Of Operation
For Common HVAC Systems. https://www.ashrae.org/news/esociety/new-
guideline-on-standardized-advanced-sequences-of-operation-for-common-
hvac-systems

[8] Modelica Association. 2020. Modelica Language. https://www.modelica.org/
modelicalanguage

[9] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck,
Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, et al.
2016. Brick: Towards a unified metadata schema for buildings. In Proceedings of
the ACM International Conference on Embedded Systems for Energy-Efficient Built
Environments (BuildSys). ACM.

[10] Arka Bhattacharya, Joern Ploennigs, and David Culler. 2015. Short Paper: An-
alyzing Metadata Schemas for Buildings: The Good, the Bad, and the Ugly. In
Proceedings of the 2nd ACM International Conference on Embedded Systems for
Energy-Efficient Built Environments. ACM, 33–34.

[11] Arka A Bhattacharya, Dezhi Hong, David Culler, Jorge Ortiz, Kamin Whitehouse,
and Eugene Wu. 2015. Automated metadata construction to support portable
building applications. In Proceedings of the 2nd ACM International Conference on
Embedded Systems for Energy-Efficient Built Environments. ACM, 3–12.

[12] M Deru, K Field, D Studer, K Benne, B Griffith, P Torcellini, B Liu, M Halverson,
D Winiarski, M Rosenberg, M Yazdanian, J Huang, and D Crawley. 2011. U.S.
Department of Energy Commercial Reference Building Models of the National
Building Stock. (2 2011). https://doi.org/10.2172/1009264

[13] Bing Dong, Khee Lam, Y.C. Huang, and G.M. Dobbs. 2007. A comparative study
of the IFC and gbXML informational infrastructures for data exchange in com-
putational design support environments. IBPSA 2007 - International Building
Performance Simulation Association 2007 3 (01 2007), 1530–1537.

[14] Karim Farghaly, Fonbeyin Henry Abanda, Christos Vidalakis, and Graham Wood.
2018. Taxonomy for BIM and asset management semantic interoperability. Jour-
nal of Management in Engineering 34, 4 (2018), 04018012.

[15] Gabe Fierro and David E Culler. 2018. Design and analysis of a query processor
for brick. ACM Transactions on Sensor Networks (TOSN) 14, 3-4 (2018), 1–25.

[16] Gabe Fierro, Jason Koh, Yuvraj Agarwal, Rajesh K Gupta, and David E Culler. 2019.
Beyond a House of Sticks: Formalizing Metadata Tags with Brick. In Proceedings
of the 6th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation. 125–134.

[17] Gabe Fierro, Marco Pritoni, Moustafa AbdelBaky, Paul Raftery, Therese Peffer,
Greg Thomson, and David E Culler. 2018. Mortar: an open testbed for portable
building analytics. In Proceedings of the 5th Conference on Systems for Built Envi-
ronments. ACM, 172–181.

[18] Inc Franz. 2017. AllegroGraph: Semantic Graph Database. https://allegrograph.
com/allegrograph/

[19] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajara-
man, Yehoshua Sagiv, Jeffrey Ullman, Vasilis Vassalos, and Jennifer Widom. 1997.
The TSIMMIS approach to mediation: Data models and languages. Journal of
intelligent information systems 8, 2 (1997), 117–132.

[20] Tobias Käfer and Andreas Harth. 2018. Rule-based programming of user agents
for linked data. In Workshop on Linked Data on the Web.

[21] Jason Koh, Bharathan Balaji, Dhiman Sengupta, Julian McAuley, Rajesh Gupta,
and Yuvraj Agarwal. 2018. Scrabble: transferrable semi-automated semantic
metadata normalization using intermediate representation. In Proceedings of the
5th Conference on Systems for Built Environments. ACM, 11–20.

[22] Matija König, Jaka Dirnbek, and Vlado Stankovski. 2013. Architecture of an open
knowledge base for sustainable buildings based on Linked Data technologies.
Automation in Construction 35 (2013), 542 – 550. https://doi.org/10.1016/j.autcon.
2013.07.002

[23] Henrik Lange, Aslak Johansen, and Mikkel Baun Kjærgaard. 2018. Evaluation
of the opportunities and limitations of using IFC models as source of building
metadata. In Proceedings of the 5th Conference on Systems for Built Environments.
21–24.

[24] Nicholas Long, Jason DeGraw, Mark Borkum, Alex Swindler, Kristin Field-
Macumber, Edward Ellis, et al. 2018. BuildingSync®. Technical Report. National
Renewable Energy Lab.(NREL), Golden, CO (United States).

[25] Fiona Moore, David Churcher, and Sarah Davidson. 2020. BIM Interoperability
Expert Group Report. Report. Center for Digital Built Britain.

[26] Pieter Pauwels and Walter Terkaj. 2016. EXPRESS to OWL for construction
industry: Towards a recommendable and usable ifcOWL ontology. Automation
in Construction 63 (2016), 100–133.

[27] Marıa Poveda-Villalón and R García-Castro. 2018. Extending the SAREF ontol-
ogy for building devices and topology. In Proceedings of the 6th Linked Data in
Architecture and Construction Workshop (LDAC 2018), Vol. CEUR-WS, Vol. 2159.
16–23.

[28] Viorica Pătrăucean, Iro Armeni, Mohammad Nahangi, Jamie Yeung, Ioannis
Brilakis, and Carl Haas. 2015. State of research in automatic as-built modelling.
Advanced Engineering Informatics 29, 2 (2015), 162 – 171. https://doi.org/10.1016/
j.aei.2015.01.001 Infrastructure Computer Vision.

[29] Mads Holten Rasmussen, Maxime Lefrançois, Georg Ferdinand Schneider, and
Pieter Pauwels. 2019. “BOT: the Building Topology Ontology of the W3C Linked
Building Data Group. Semantic Web (2019).

[30] Shu Tang, Dennis R. Shelden, Charles M. Eastman, Pardis Pishdad-Bozorgi, and
Xinghua Gao. 2020. BIM assisted Building Automation System information
exchange using BACnet and IFC. Automation in Construction 110 (2020), 103049.
https://doi.org/10.1016/j.autcon.2019.103049

[31] W3C OWL Working Group. 2012. OWL 2 Web Ontology Language Document
Overview (Second Edition) - W3C Recommendation 11 December 2012. http:
//www.w3.org/TR/owl2-overview/

[32] Michael Wetter, Milica Grahovac, and Jianjun Hu. 2019. Control description
language. In Proceedings of The American Modelica Conference 2018, October 9-10,
Somberg Conference Center, Cambridge MA, USA. Linköping University Electronic
Press, 17–26.

[33] Michael Wetter, Jianjun Hu, Milica Grahovac, Brent Eubanks, and Philip Haves.
2018. Openbuildingcontrol: Modeling feedback control as a step towards formal
design, specification, deployment and verification of building control sequences..
In Proceedings of Building Performance Modeling Conference and SimBuild co-
organized by ASHRAE and IBPSA-USA, , Chicago IL, USA.

[34] Michael Wetter, Wangda Zuo, Thierry S. Nouidui, and Xiufeng Pang.
2014. Modelica Buildings library. Journal of Building Performance Sim-
ulation 7, 4 (2014), 253–270. https://doi.org/10.1080/19401493.2013.765506
arXiv:https://doi.org/10.1080/19401493.2013.765506

[35] Gio Wiederhold and Michael Genesereth. 1997. The conceptual basis for media-
tion services. IEEE Expert 12, 5 (1997), 38–47.

[36] William E. Winkler. 1999. The State of Record Linkage and Current Research
Problems. Technical Report. Statistical Research Division, U.S. Census Bureau.

[37] Q.Z. Yang and Y. Zhang. 2006. Semantic interoperability in building design:
Methods and tools. Computer-Aided Design 38, 10 (2006), 1099 – 1112. https:
//doi.org/10.1016/j.cad.2006.06.003

[38] The City Of New York. 2020. New York Local Law 87. http://web.archive.org/
web/20200531233953/https://www1.nyc.gov/html/gbee/html/plan/ll87.shtml

79

