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Abstract
We present a scalable end-to-end system for vision-based

monitoring of a biological phenomenon. Our system enables
automated analysis of thousands of images, where manual
processing would be infeasible. We automate the analysis
of raw imaging data using statistics that are tailored to the
task of interest, the study of avian behavior during nesting
cycles. The system uses simple image statistics (features) as
the low-level representation to be fed to generic classifiers
and final inferences exploit the temporal and spatial con-
sistencies. Our testbed achieves bird detection accuracy of
82%, and egg counting accuracy of 84%, allowing inference
of avian nesting stage with accuracy within a day. Our results
demonstrate the challenges and potential of using imagers as
biological sensors. An exploration of system performance
under varying image resolution and frame rate suggest that
an in situ adaptive vision system is technically feasible.

1 Introduction
In this paper we present the design and deployment of a

vision system of embedded wireless and wired imagers, and
automated server-based image processing to monitor avian
behavior during a nesting cycle. Birds are important indi-
cators of the health of ecosystems. Therefore the ability to
measure bird nesting patterns accurately and in a scalable
manner is broadly relevant to ecosystem studies, including
responses to climate change and land use. Currently, avian
biologists personally inspect nesting locations and visually
log the stage of the nest for future analysis. What they
hope to find are trends and differences in behavior that ulti-
mately influence reproductive success. Some indicator vari-
ables include the number of eggs that are laid and eventually
hatch and the occupancy of the nest over the different nesting
stages. By visiting the sites to collects this information, biol-
ogists can incorporate domain knowledge to filter unwanted
data and detect important events in real time. However, not
only is this time consuming but it limits the number of ob-
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servations a biologist can collect. Moreover, observations are
typically limited to the behavior of birds outside their nests
“...because [they] lacked the capability to peer inside the pri-
vate lives of birds”1 for long durations for fear of disturbing
the birds.

Imagers can play an integral part in this data gathering
process. First, imagers can be placed in situ at locations of
interest with minimal disturbance to the phenomenon being
observed. Secondly, through advances in low-power image
technology, wireless imagers enable access to locations oth-
erwise inaccessible to wires. Thirdly, current vision tech-
niques can be applied to the massive sequences of collected
images to automatically infer statistics of interest for the end-
user. Lastly, and most importantly, control over the imagers
can allow for constraints to be placed on the collected im-
ages, more specifically the type of objects to expect and the
scale (size in image) at which they should be detected. In
turn these assumptions can be incorporated into the vision
inferences making it easier to automate. And this is only
possible by considering the inference problem as an end-to-
end system.

Beyond deploying the system and collecting data, the
biggest challenges to realizing such a biological tool are in
automating the vision inference process. The sample images
from a nesting season in Figure 1 demonstrates some of the
challenges of using computer vision for inference. Environ-
mental factors such as lighting and bird behavior, and non-
environmental factors such as sensor sensitivity and place-
ment, introduce noise that have to be overcome. Conse-
quently, part of the vision algorithm includes the extraction
of low-level features (i.e. statistics) from the images that
are minimally impacted by the presence of such variability,
yet discriminating enough for accurate classification. Fur-
thermore, each of the multiple inferences biologists make
requires its own separately tuned algorithm.

We developed and deployed an end-to-end system con-
sisting of in situ image capture combined with server side
image analysis techniques, resulting in a powerful and scal-
able experimental tool for biologists. The system samples
the environment at a constant rate and delivers images to a
central repository for the entire duration of the nesting sea-
son. Once there, different vision algorithms are applied to
the image sequences in order to extract features. Then spe-

1private communication Prof. John Rotenberry, UC Riverside
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Figure 1. Images from various stages of the nesting season taken from a wired imager as described in Section 2.1.
First thing to note, the system can be designed to provide constraints, a top view of the box interior from a fixed location,
which can help reduce the search space of the problem. Even so, noise from environmental factors make this challenging.
Local image statistics (intensity, gradient orientation, histograms) are often similar for the birds or hatchlings and the
background nest, see for instance image (3,1). Eggs are occasionally occluded by feathers (2,2), or by straw (4,2), and
objects appear that are similar to eggs (4,2) which make the count non-trivial even for trained human experts. And
there are wide variation in intensity profile depending on the time of the day, including sharp highlights (2,4) from
direct sunlight.



cially tailored classifiers infer biologically significant behav-
ior, in particular presence/absence of the bird, number of laid
eggs, and the nesting stage transitions. Therefore, massive
(thousands of) image sequences can be translated to time-
series of various statistics. These time series traces can be
visualized to highlight spatial and temporal trends across a
single or multiple nest boxes, and aggregate statistics derived
to quantify observed trends.

We briefly summarize the systems implications of our
work for other vision systems. First, systems can be designed
to minimize the impact of errors from vision inferences by
taking advantage of domain knowledge and system con-
straints. For example, we leverage the spatio-temporal con-
sistency that exists in our application, uncommon in many
vision problems. Second, image quality, and therefore the fi-
nal inference, is significantly affected by aperture size, pixel-
filters, and light sensitivity of the imager, not only resolution.
Third, vision systems can and should use image resolution as
a knob to control resource consumption, similar to how sam-
pling is adjusted in other monitoring systems. These impli-
cations are discussed in greater length throughout the paper.

Our contributions are two fold. This is the first paper to
the best of our knowledge to present the deployment of an
end-to-end vision system, covering all steps from the con-
tinuous capture of images to inference of aggregated statis-
tics. Secondly, we show that we can provide “useful” infer-
ences rather than raw image sequences through the coupling
of system constraints, such as temporal consistency, and vi-
sion techniques. Consequently, our system detects the pres-
ence/absence of a bird correctly 82% of the time, provides
the correct egg count 84% of the time, and detects stage tran-
sitions to within a day.
2 System Overview

Our system is an end-to-end image sensing system con-
sisting of in situ image sensors, a combination of wired
and wireless transmission, image archiving and visualiza-
tion, and an integrated image processing and data analysis
system running on the server. In this section, we provide an
overview of our experimental setup and a more detailed view
of the deployed system components. Also the challenges that
we encountered in deploying those systems are shared. The
heart of the paper is in Section 3 where we present the appli-
cation and evaluation of vision techniques, and show how the
inferred statistics can be useful from a biological standpoint.
In Section 4, we explore the implications of our data analysis
on the system. We discuss supporting work and their impli-
cations to our work in Section 5. We conclude in Section 6
and share ideas for future works.
2.1 Deployment of Imagers

The active experimentation season for avian studies is ini-
tiated by warming temperatures in early April when birds
start moving to higher altitudes in the James San Jacinto
Mountain Reserve for nesting and breeding. Based on cur-
rent trends in the area the season lasts anywhere from 2-3
months until the end of July. There are currently 40 human-
made nest boxes across the reserve area (Figure 2) which are
regularly visited by the biologist during the avian breeding
season to log important information such as the seasonal oc-
cupancy of the nests, species of bird, or timing of the major

Figure 2. Map of James San Jacinto Mountain Re-
serve annotated with wired (large circles) and wire-
less(triangles) instrumented nest boxes. The solid points
are additional nest box locations that have yet to be
instrumented. The wireless connectivity clouds show
that it is possible to reach a major portion of these un-
instrumented boxes as well as any new sites.

breeding stages. A subset of the nest boxes have been in-
strumented with wired video cameras that periodically take
images and get recorded into a database.

The wired system has high quality imagers that provide a
very accurate representation of the birds activity throughout
the season. However, the wired system consumes signifi-
cant power, requires expensive infrastructure, and has lim-
ited geographical coverage. The latter severely hinders ex-
pansion of the wired camera system particularly in light of
minimum intra-nest distances to avoid avian territorial con-
flicts. Hence, only 13 nest boxes that are close to available
data and power facilities are instrumented with this system
(installed since summer of 2001).

To explore avian breeding in a wider geographical area,
the system was augmented with battery-powered wireless
Cyclops cameras. The advantage of a wireless system is
spatial coverage and minimum infrastructure requirements.
However, there are trade-offs in that the wireless system
does not have the image quality and image rate capabili-
ties of wired imagers and requires batteries to be replaced
intermittently. In the next two subsections we provide a
brief overview of both wired and wireless system and dis-
cuss some of the important system challenges. The auto-
mated image analysis techniques described in Section 3 are
designed to be applicable to both wired and wireless plat-
form types, however the specific algorithms tested here were
tuned to the imagers used in the wired nest boxes because
there were larger numbers of them deployed and therefore
occupied with birds at the time of this study. We note that
for Spring of 2007 season, we have deployed a larger set of
wireless nest boxes and hope to have sufficient occupancy to
provide a much richer wireless dataset.



Figure 3. Typical wireless instrumentation of a nest box.
In the interior near the top, a camera sensor node is lo-
cated on a transparent tray looking down with minimal
intrusion into the bird’s nesting activities. Infrared LEDs
provide a more consistent illumination of the box espe-
cially at night without disturbing the bird.

2.2 Existing Wired Image System
The existing wired camera network consists of miniature

video CCD cameras, high performance video servers that
networks up to four cameras and a database for recording the
images. The camera uses a high quality VGA (640×480)
black & white Sony CCD sensor with analog output that
continuously acquires images at 10fps. It is a small mod-
ule that operates at very low light intensity settings (down
to 0.0003lux). In turn this provides images with high signal
to noise ratio in the dim lighting condition of the nest. The
drawback for such a high performance (i.e. image resolution,
image rate and high SNR) is a high power consumption of
1.2W. Hence, each camera is powered by a 12V supply that
is located in the infrastructure facility through cables pro-
tected by conduits buried under ground. To capture images
from within the nest, the camera is placed on the top side
of the nest box on a transparent tray looking down onto the
nest (Figure 3). An infrared LED which consumes 24mW
continuously illuminates the nest to enable high quality im-
age acquisition in the dark nest environment. Although the
infrared light source is not at the center wavelength of the
sensitivity of the camera, it has been chosen to minimizes
any disturbance on the normal bird activity.

The wired nodes are divided into four groups each con-
nected to a high performance video server. Video servers
which are located in two of the facilities in the reserve,
each support 4 analog input video channels and are accessi-
ble for configuration and programming through the Internet.
A PhP script that runs on the video servers collect images
from the camera nodes and places them into a database at
15 minute intervals. The video servers consume significant
power, hence are directly connected to the reserve’s power
line. Since deploying each wired camera sensor is a labor
intensive task that involves trenching ground and laying out
conduits and power and data cables, only the 12 nest boxes
located closest to the reserve facilities are instrumented with
the wired system, thereby severely limiting the systems geo-
graphical coverage (Figure 2).

2.3 The Wireless Imaging System
We introduced our first wireless imagers in the spring

of 2006. The wireless system uses pairs of Mote/Cyclops
[15] as sensor nodes2, Stargate micro-servers [18] for net-
work management and image acquisition scheduling, and a
database for archiving and managing the image data.

Each Cyclops sensor node uses a Mica2 mote for radio
communication and a Cyclops for image acquisition. Cy-
clops has a CIF (320×280) color Agilent CMOS image sen-
sor which consumes 22mW and is capable of acquiring im-
ages at a minimum of 5Lux scene luminescence. To en-
able image acquisition under the nests’ dim light conditions,
we removed the internal infrared filter of the CMOS sen-
sors and used an infrared LED to illuminate the box during
the image capturing period. The Cyclops sensor has vari-
ous power-saving features but we only exploited a few of
them to minimize the risk of reliability problems in this first
deployment; the implemented features included radio duty-
cycling to minimize radio power-consumption, image sensor
scheduling to take still images and minimize CMOS sensor
power-consumption, and infrared flashing only during image
acquisition period. As configured, the deployed Cyclops sen-
sor nodes each consume 45mW during image transmission
and 28mW during idle mode. To provide power to the Cy-
clops sensor, we used four D-size alkaline batteries to sustain
the sensor nodes for an average of 15 days capturing images
at 15 minute interval before renewing the batteries. The de-
ployed system has not been optimized for energy consump-
tion to date, and based on our system experience, we expect
the energy consumption to be significantly reduced for future
tuned deployments.

Micro-servers, which are Stargate nodes running Linux,
have a broadband radio and a mote radio to communicate
with Cyclops sensor nodes for image configuration, image
acquisition and reading of the battery level. A script on
the micro-servers send periodic battery reading, image con-
figuration and image acquisition messages to each Cyclops
sensor and retrieves the results. The micro-servers, which
are accessible via Internet, continuously compress the ac-
quired images and upload them to a server for archiving in
a database. We have a web front-end that allows the user to
browse the gallery of acquired images.

Figure 2 illustrates the map of our wireless system de-
ployment in the reserve, which consists of three areas, each
equipped with a micro-server serving a total of 11 Cyclops
sensors. Our wireless system was operational from late
March until early June and provided on average between
4000-10,000 images depending on connectivity. Overall, 4
of the wireless instrumented nest boxes were regularly vis-
ited by a bird during the season and 3 of them eventually
inhabited.

In our deployment, the quality of the image sensors had
a significant impact on the performance of our automated
image analysis. Although, quality is usually equated to the
resolution of the images, in our experience there were other
factors that contributed to the quality loss. Important param-
eters include: aperture size, light sensitivity, and pixel-filters

2We call a pair of Mote/Cyclops as Cyclops sensor through the
rest of the paper.



Figure 4. Even though the two images are of the same
resolution, the image quality of the Cyclops camera is in-
ferior to the wired cameras. The image quality of the
Cyclops with IR better approximates the wired cameras
suggesting that future results will improve.

of the camera. The former two affect the minimum illumi-
nation required of the nest. Since the CCD Sony sensor in
the wired system is capable of operating in very low light
intensity settings, it provides images with more spatial de-
tail. The pixel-filter determines the frequency response of
the pixels in the imager. The Cyclops is a color sensor with
filters designed for the visible spectrum of light. Typically
one of these filters is an IR filter placed near the aperture
of the imager to act as low-pass filter. For our deployment,
we had to remove this filter to capture images under infrared
lighting. This had two major impacts on the eventual qual-
ity of our images. First the pixels of the camera are more
prone to noise when operating at non-nominal frequencies
(IR range). Secondly, since the imager is comprised of red,
blue, and green pixel-filters, each color is modulated by dif-
ferent amounts, exacerbating the already noisy readings. To-
gether, these resulted in low-contrast images with grid-like
noise patterns.

To make explicit the differences in image quality, Figure
4 shows representative images collected from the wired and
Cyclops camera with their respective gradient histograms.
Since gradients are used in the algorithms we exploit in our
system, we look at how the distribution of gradient magni-
tudes are affected by different image sensors under various
conditions. The distribution of the gradient from an image
captured by a wired camera is typical of a natural image.
The gradient histogram of a down-sampled image becomes
a smoothed out version of the original image showing a simi-
lar distribution of peaked low gradients and smooth drop off.
A Cyclops under nominal conditions (with IR filter and nor-
mal lighting conditions) that outputs an image with similar
resolution does produces a slightly poorer quality image as
seen by the noise in gradient histogram. However, the re-
moval of the IR filter from the Cyclops to take images under
infrared illumination results in a very distorted gradient his-
togram. As the evaluations in Section 3.2 show, these alter-
ations greatly impacted the accuracy of the inferences made
on the wireless data set. For this reason, we hope to resolve
these issues in future deployments by replacing the current

Figure 5. Components of the vision inference system
Data collected by the wired and wireless imagers are in-
puts into the system, time-series traces of inferred behav-
ior and aggregated statistics are outputs.

CMOS sensor with a monochrome sensor with higher sensi-
tivity.
3 Inference Architecture

We now turn our attention to inferring high-level informa-
tion from images collected in situ. The scientists’ require-
ments provide a natural organization of the system: Raw im-
ages are first processed by a “bird detection module;” next,
images not containing birds are analyzed to detect the pres-
ence and infer the number of eggs; finally, the egg counts
are fitted to a probabilistic finite-state machine to determine
nesting stages and transitions among them.

A challenge in image analysis is the wide variability of
the data with respect to “nuisance factors” that are of no in-
terest to the task, but that nevertheless greatly affect the data.
For instance, we wish to detect the presence of a bird regard-
less of its position, orientation, color, texture profile, ambi-
ent illumination etc. And yet, these nuisance factors result in
macroscopic changes in the image that far exceed those due
to the onset of the event of interest, say the appearance of an
egg (Figure 1).

We address these challenges by exploiting local image
statistics (a.k.a. “features”) that are designed to be in-
sensitive to illumination changes. These are located at
automatically-detected interest points, that makes them in-
sensitive to location and scale changes. Examples of interest
points include location of edges and corners; features can
include mean/variance of the intensity values within a sub-
region of the image. Both interest point and local features
can be computed using only local gradient operations. A
collection (or “bag”) of such features is then fed to classifiers
tailored to the problem. Additionaly, a hidden Markov model
demonstrates the way temporal consistency of the nesting cy-
cle can be exploited.
3.1 Evaluation Setup

Due to avian occupancy rates (20-30%) in the region and
connectivity issues, only images from one full season and
two half seasons were obtained from the wireless imagers.
Consequently a major portion of the data analysis was done
on wired images. To compensate for this, all wired images



Figure 6. Corners detected by algorithm with bird (left)
and without (right).

were down-sampled to wireless image size (128x128) in the
data analysis sections. The exploration in Section 2.3 sug-
gests this is reasonable given that by using a camera module
more favorable to the conditions experienced in the deploy-
ment, the quality would come close to that of down-sampled
wired images.

For the purpose of evaluation, we employed 10 full sea-
sons of manually labeled image data of nesting activity (1
wireless, 9 wired). Despite the infrared capability of the sen-
sor, daytime data was the primary focus since most avian ac-
tivity takes place between the hours of 5am and 8pm. Day-
time data are challenging because changes in illumination,
nest appearance and motion of the bird are most severe. The
image sequences were taken from the moment a complete
nest was constructed to a week after the eggs had hatched.
These were chosen because they can be reliably detected au-
tomatically, as we will illustrate. Images taken during the
latter stages of young development were not analyzed since
size and color of the young makes it difficult to distinguish
from the adults even for a trained human.
3.2 Bird Detection

Our first inference goal is to determine the presence of a
bird in the nest. The key idea is to identify a simple discrim-
inating feature. This is an image statistic that is insensitive
enough to nuisance factors and yet discriminative enough3

to enable subsequent stages of processing. Feature design is
a fine art where domain knowledge plays an important role.
Here we present simple strategies that are general enough to
be useful in a wide range of image analysis scenarios.
3.2.1 Pre-processing

At the outset, because the cameras are static, images are
cropped to reduce the region of interest to the bottom portion
of the nest. Next the cropped image is normalized with re-
spect to a patch from a remote region of the nest box that we
identified before hand as being disturbance free.
3.2.2 Interest point detection

In order to avoid processing large regions of the image
that are approximately homogeneous, we restrict our at-
tention to regions commonly called interest points, or key
points, salient points, or corners. These are regions where

3In the sense of achieving sufficient classification performance
when fed to a simple classifier.

Figure 7. Total corner point counts over sequence of im-
ages for one nest box. We are able to view the features
extracted from images in such a way since our images
have consistency over time and space.

Figure 9. Total corner point counts over image sequences.
The top and bottom dashed lines are the min and max
values of the 4 day window respectively. The solid middle
line represents the average of the min and max values. It
also turns out to be a good determinant of the boundary
between bird and no bird images.

the image exhibits large gradients in two independent direc-
tions, and are detected as extrema of scale-space using estab-
lished techniques dating back to [9].

A side benefit of this computation is that birds often ex-
hibit smooth feather coats, and therefore trigger few interest
points, whereas the nest and its high-contrast texture triggers
many, as is evident in Fig. 6. Hence the density of interest
points can be interpreted as a texture descriptor, which in
turn can be used to easily detect the presence of a bird. For
instance, Fig. 7 shows the total number of interest points per
image as a function of time: Early on in the season the bird
is building the nest (label 1) and one can observe a sharp in-
crease in the number of interest points in the image. These
level off as the nest is completed and the bird proceeds to lay
eggs and incubate them (label 2). After hatching the young



Stages NB8 2004 NB8 2005 NB8 2006 NB55 2005 NB71 2006
Pre-Incubation 88.0% 65.1% 88.8% 87.8% 54.0%
Incubation 84.2% 83.2% 90.9% 95.6% 60.1%
Post-Hatching 85.9% 80.9% 74.2% 89.9% 52.0%

Stages NB31 2004 NB31 2005 NB31 2006 NB54 2005 NB55 2006
Pre-Incubation 73.8% 61.3% 78.4% 93.4% 84.2%
Incubation 90.2% 81.8% 90.1% 92.3% 93.6%
Post-Hatching 60.2% 77.4% 67.5% 95.7% 73.0%

Figure 8. Performance
when applying bird
detection algorithm to
Violet-Green Swallow
(top) and Western
Bluebird (bottom) nest
boxes

start to cover more and more of the nesting material as they
grow (label 3) hence decreasing the interest point count.
3.2.3 Classification

In order to classify images as having a ‘bird’ or ‘no bird,’
we use the fact that interest point density is a good discrimi-
nator for the task of detecting the presence of the bird as can
be seen in Fig. 7. A cross indicates absence of bird and a cir-
cle presence. Since the classes are roughly separable, but not
linearly so, one could unleash a variety of supervised clas-
sification techniques such as kernel methods [17]. However,
if we take advantage of the temporal consistency seen in the
counts a simpler solution is possible. A sliding window can
be used to adaptively set a sufficient threshold to support the
subsequent levels of processing. In particular, a simple mid-
point of min and max values over a sequence of 200 frames
provides enough support to set a time-varying threshold that
achieves consistent classification throughout the sequence.
3.2.4 Evaluation

To evaluate the algorithms ability to detect bird presence,
ten seasons worth of images were used; first to obtain inter-
est points and then classify according to the min-max av-
erage. For interest point detection, an implementation of
the so-called Harris-Stephens corner detector was used over
each image sequence [6] to generate a time series of the total
counts. These all followed the qualitative trends described in
the previous section and allowed detecting the completion of
the nest-building phase to within one day. The end point of
the image sequences were selected a week after egg hatch-
ing had occurred. To determine the appropriate threshold for
each sequence of interest point counts, a min-max filter was
applied over a 4 day window. For each point the min and
max interest count over the window was determined and the
average of the two was used as the threshold. The perfor-
mance of this simple strategy is illustrated in Figure 9. A
mixture model of two Gaussians was also applied, but due to
the skewed distribution of points at certain stages in the sea-
son, the algorithm would fail to find an appropriate model,
and at other times similar results to the min-max filter were
obtained.

The accuracy results of the algorithm can be found in
Table 8. The results are separated according to species as
well as nesting stages. Generally the nest boxes with Violet-
Green Swallows (top table)performed better and were more
consistent across nesting stages than Western Bluebird boxes
(bottom table). This can be attributed to the way swallows
construct their nests; the makeup and construction of their
nests are simpler and have a shallower cup allowing the inter-
est point detection to pick up an even distribution of interest
points, while for Western Bluebird it is more patchy.

A second observation is that the bird detection algorithm
is most accurate during the incubation phase. During this
phase the nest is most stable with minimal disturbance from
the birds. In pre-incubation, nest material can be added or al-
tered – a perfect example being NB8 2005. In this image se-
quence, the bird brought in feather-like nesting material that
caused the number of interest points in the image to decrease
enough so that they would be wrongly labeled as having a
bird.

The worst performing of all was NB71, which also hap-
pened to be instrumented with the wireless nodes. Its poor
performance can be attributed to the image quality as de-
scribed in Section 3.3 that made it difficult to discriminate
the presence/absence of a bird even to a human observer. We
are currently upgrading our wireless system to use a more
appropriate camera module, for which the results can rea-
sonably be expected to be on par with the wired cameras.
3.3 Egg Count

Determining the number of eggs in a nest box is inves-
tigated for two reasons. First, the biologist would like to
know how many eggs are laid. Second, the number of eggs
informs the biologist of the stage the nest box is in. Un-
like the bird detection problem, here we have a multi-class
decision, with an a-priori unknown number of classes. To
solve this multi-class decision, we pose a binary decision
at a given sub-image centered around different location in
the image and at varying scales. We have multiple stages
in which each stage rule out many candidate sub-images ,
so that latter stages may run more efficiently. The resulting
number of positive decisions is used as the count of eggs in a
given image. What makes this task easier is the fact that we
are not interested in the number of eggs in a particular image,
but rather the number of eggs laid in a nest box. As can be
seen in Fig. 1, a single image is often insufficient to arrive at
a reliable egg count even for a human observer. Therefore,
each image will provide only what is called a weak classi-
fier. These classifiers are then combined into a HMM [14],
exploiting temporal consistency to improve the overall relia-
bility despite the modest performance of classifiers based on
individual images.

Our strategy is outlined in Fig. 10. First, we filter out
images in which birds have been detected, exploiting the re-
dundancy that arises from having fine temporal sampling.
Then, an image is broken down into candidate location and
scale combinations that are tested for eggs using a variety of
heuristics that we describe next. In the following we assume
a perfect bird detection algorithm so that the analysis can re-
flect the performance of the egg detector alone. As in the
bird detection algorithm, we exploit the fact that the camera



Figure 10. Decomposed egg counter. First images with
birds are ignored. We further simplify the task by disre-
garding locations and scales where eggs cannot be due to
the choice of imager location and orientation relative to
nest box. SIFT Detector is used to further reduce the pos-
sible location/scale candidates for eggs. Finally, a linear
classifier is used to separate eggs and non-egg images on
the remaining candidates. The number of positively clas-
sified candidates is the final output of the egg counter.

Figure 11. The SIFT features found for an example image
of 5 eggs. Blue marks indicate SIFT features correspond-
ing to eggs.

in a fixed position relative to the nest. This allows us to ne-
glect the periphery of the image as it portrays the walls of the
nest box.
3.3.1 SIFT Detector

In the remaining region, we search for candidate egg loca-
tion using a “blob detector” at multiple locations and scales,
based on scale-space image processing following [9]. This is
popularly known as “SIFT detector” where SIFT stands for
scale-invariant feature transform [10].

The SIFT detector is based on maximal response of a
Laplacian of Gaussian filter, approximated for efficient com-
putation with a difference-of-Gaussians. Such filters look
like elongated, oriented “blobs,” with scale and orientation
determined by the covariance parameters. The location of
the maxima, together with the associated scale automatically
detected by the algorithm are displayed in Fig. 11. In a cas-

nest box Precision Recall ‘Image Recall’
NB8 2004 5.8% 96.03% 97.26%
NB8 2005 4.5% 91.63% 94.88%
NB8 2006 4.8% 97.86% 98.55%

Table 1. This table indicates that SIFT has high egg recall
and low precision. ‘Image Recall’ refers to the percent of
images where all eggs are detected. This number tells us
the upper bound on our final performance.

cade of classifiers approach it is important that each weak
classifier has few missed detections, although it can have a
large number of false alarms [4]: The precision/recall curves
shown in Table 1 show precisely that. When the SIFT de-
tector misses an egg, it is usually because it is (partially) oc-
cluded by nesting material, feathers, or other eggs, as shown
in Fig. 1. In Table 1, ‘Image Recall’ gives the percent of im-
ages where all eggs are detected, providing an upper bound
on the final performance.
3.3.2 Mean/Variance

Unfortunately, one of the most common approaches cur-
rently used to this end in Computer Vision for object de-
tection and recognition in clutter fails in our context. The
so-called “bags of features” approach [11] is based on com-
puting a SIFT descriptor, or SIFT key, at each location found
by the SIFT detector just described. The SIFT descriptor
is a quantized histogram of gradient orientation that is de-
signed to be insensitive to illumination changes. Collecting
a number of SIFT keys into a set (a “bag”), regardless of their
position and scale, provides insensitivity to geometric trans-
formations and object locations. Finally, robust comparisons
allow for considerable robustness to clutter, for many SIFT
keys will fall outside the object of interest.

Unfortunately, because the egg has approximately uni-
form intensity, the SIFT descriptor turns out to characterize
the distribution of nesting material around it, rather than the
egg itself. A support vector machine (SVM) [23] trained on
one nest box using manual labeling of SIFT keys and tested
on the others performs essentially at chance level (53.43%
correct). An additional difficulty is that hatchlings look very
much like eggs at low resolution and the presence of egg
shells is a confounding factor (Fig. 1).

For these reasons, we abandon the SIFT descriptor al-
together, and just retain the SIFT detector as the building
block of our weak classifiers. The simplest discriminating
statistics in this context are just the scale at which SIFT de-
tection occurred (eggs have a characteristics range of sizes),
and the intensity mean and variance inside the region de-
tected by SIFT. The image is first normalized for contrast and
scaled globally to reduce the effects of illumination changes.
A simple linear classifier (Fisher linear discriminant) based
on these features was trained on one nest box and tested on
the others, with an average performance of 72.34% correct.
Performance across nest box can be found in Table 2, and
specific counts for a particular nest box is shown in Figure
13.

The number of eggs usually increases monotonically dur-
ing the egg-laying phase, and decreases rapidly during hatch-
ing, but otherwise stay the same. To enforce this tempo-
ral consistency, these weak classifiers are fed into an Hid-
den Markov Model, allowing significant improvement from



Figure 12. Histograms showing the distribution of the
distance from the boundary on correctly classified images
and incorrectly classified images. Most incorrectly classi-
fied images have samples which are close to the boundary.

nest box Weak HMM HMMv2
NB8 2004 71.76% 86.67% 91.42%
NB8 2005 73.12% 78.93% 82.24%
NB8 2006 72.13% 73.88% 78.71%

Table 2. The accuracy of the egg counter. First shown
is the accuracy of individual images (Weak). Accuracy
improves when enforcing temporal consistency (HMM)
and even further, when rejecting weak classifications
(HMMv2).
the performance of the weak classifiers. The HMMs were
trained on data from 2 nest boxes and tested on the remain-
ing one. The states of the HMM were the true egg count
and the observations were the estimated egg counts. In this
case, the average accuracy was 79.83%. As before, the per-
formance and specifics can be found in Table 2 and Figure
13.

Recognizing that there are some images that are harder to
classify than others, we hypothesize that there is a correla-
tion between the distance the features are from the decision
boundary and the chance of correct classification. Figure 12
shows that there is indeed a correlation. We use this distance
to suggest the confidence we have in our decision, and reject
images in which we have low confidence. The average ac-
curacy is improved to 84.12%, when rejected images within
0.5 of the decision boundary. Performance and specifics are
reported in Table 2 and Figure 13, as before.

3.4 Nesting Stage Determination
Given an accurate egg count, it is possible to infer the

nesting stage of the bird. Eggs are only present during the
egg-laying, incubation, and hatching stages, with an increase
in eggs during egg-laying, a constant number during incuba-
tion, and a decrease during hatching. Similar to the previous
section, an HMM is used to reduce the temporal inconsisten-
cies of the weak egg counter classifier. Rather than improv-
ing the overall egg count, this time an HMM is trained to
infer the nesting stage. The states of the HMM are the nest-

Figure 13. Time-series plot of predicted egg counts for a
particular nest box. This corresponds with the accuracy
reported in Table 2 for nest box NB8 2006.

Figure 14. Resulting estimation of nestbox stages for var-
ious nest boxes.
ing stages, while the observations are the number of eggs de-
tected by the egg counter. An HMM will find the most likely
stage transitions for a sequence of egg count observations
given the temporal constraint that one stage must follow log-
ically to the next. This can also be thought of as an attempt
to minimize the amount of contradictions that the weak egg
count classifier gives. Stages of short duration have a disad-
vantage because it does not have many observations to ac-
curately represent the stage. Errors close to any transition is
very costly.

We use the results from the weak classifiers rather than the
smoothed HMM version or the HMM with removed images.
These resulted in inferior results, perhaps because specific
biases are reinforced for each particular training set. Using
the weak classifier, the resulting estimated time and duration
of nesting stages closely follow the true stages of the nesting
cycle, as shown in Figure 14. The results are given for the
case where no images are rejected. With requiring increasing



Figure 16. Results of the automated analysis of presence/absence from a sequence of 5000 images has been smoothed
and plotted. A visual effect of this representation is that of a “heartbeat” signal as seen on most EKG monitors.

Figure 17. Various aggregate statistics used by biologist when investigating avian nesting behavior. (a) Proportion of
times the bird is out of the box versus in (b) & (c) daytime activity levels for incubating and post-hatching phases,
respectively.

distances from the margin for classification of an image, the
transition error decrease. The specific error rates are shown
in Figure 15.
3.5 Putting it Altogether

The continuous measurement and automatic inference
over the entire duration of the nesting season can provide
invaluable insight into avian nesting behavior. First a vi-
sualization of the data in time-series format is presented to
demonstrate it’s usefulness to extract “macroscopic” patterns
from “microscopic” in situ measurements. Next some aggre-
gate statistics are derived to quantify these observed patterns
along with biological interpretation. Herein, we focus on the
data implications of our vision system to show what is pos-
sible rather not an in-depth statistical analysis.

Typical avian nesting cycle follow a deterministic series
of stages (before, egg laying, incubation, hatching, post-
hatching) that starts with the selection of a nesting site and
ends with the fledging of young ( Figure 1 and 16). These
stages have well defined boundaries that we exploit in our

system. ‘Egg laying’ begins when the first egg is laid. Once
the final egg is laid, ‘incubation’ begins. ‘Hatching’ typically
occurs a few weeks after the onset of incubation and usually
lasts one or more days . In the early parts of ‘post-hatching’,
the mother will spend the night brooding to keep the hatch-
lings warm until they develop feathers to retain heat. Finally,
fledging occurs when the young are mature enough to leave
the nest.

Figure 16 is a visualization of a full seasons worth of
avian nesting activity. Here the predicted presence/absence
from one of the nests has been smoothed to provide tempo-
ral consistency - the higher the curve the greater proportion
of time the bird has been observed. Images from various
stages of the nesting season have been juxtaposed with the
smoothed trace to provide context. In this time-series repre-
sentation of the images behavioral patterns start to emerge.
A prominent feature in the trace is the diurnal cycles corre-
sponding to the night and day time presence of the bird in
the box. Before and during egg laying the bird is either al-



Figure 15. The average error in delimiting nest box stages
using a Hidden Markov Model with increasing number
of dropped images. Images are dropped according to the
distance from the decision boundary as described in Sec-
tion 3.3.2.

most never present or only present during the night. With
the laying of the last egg and onset of incubation, the pres-
ence of the bird inside the box dramatically increases, almost
equaling that of night time. This intensive period of incuba-
tion is followed by a gradual decrease in the presence of the
bird after hatching. In this post-hatching phase the mother
spends the night brooding to keep the hatchlings warm un-
til they develop feathers to retain heat after which she only
visits the box to feed them. Because of how ease with which
wireless systems can be deployed (relative to wired systems),
this type of analysis can be extended to multiple nest boxes
for inter-species and intra-species behavioral patterns, as il-
lustrated in the Appendix.

Besides being able to explore behavioral patterns on a
scale not possible before, aggregate statistics from the infer-
ences lend quantifiable measures of these trends. Consider
Figure 17 where the presence/absence data from the deploy-
ment has been used to derive the proportion of times the bird
was absent as compared to being in the box. The proportions
were calculated for daytime hours and have been averaged
for each species per nesting stage. These proportions can
determine parental nest attentiveness across stages and its
affects on reproductive success. Early in the season before
eggs have been laid, the bird spends most of its time outside
and only occupies the box in short spurts to construct a nest.
During incubation we see that the mother spends more time
inside the box incubating the eggs (“on bout”) than outside
(“off bout”). The proportion to which the mother is on ver-
sus off are of great interest to biologist since it determines
the mother’s energy investment in terms of how long she is
willing to incubate versus other activities such foraging for
food, which primarily take place outside the box. The gen-
eral trends in these proportions are what a biologist would
expect since during incubation the mother invests a large pro-
portion of her time incubating, as apposed to pre-incubation
and post-hatching during which more time is spent outside

the box on activities such as foraging and socializing.
Figure 17 has used the same data but to derive activity

levels throughout the day. Once again since most birds are
inactive during the night, the observations here are geared
towards daylight hours, specifically 5am-7pm. The measure
of activity graphed here is the total number of in/out tran-
sitions of the bird during a particular nesting stage over 2
hour periods. In (b) there is a noticeable peak formed in the
late morning hours, indicating that during those hours of the
day the bird is more active, most likely foraging for food
and frequently visiting the box during the peak temperature
hours. This is expected since birds are generally more active
during the morning hours and less so in the afternoon and
late evening. In (c) we see a flatter activity curve, suggest-
ing that the visits the mother makes to feed the young are
fairly evenly distributed throughout the day. Unfortunately,
this is not entirely the case since during the post-hatching
stage, visits to the box are short lived (less than 2 minutes),
and hence the system is greatly under-sampling. As the last
example demonstrates, the deployed system due to under-
sampling effects is not completely reliable. Nevertheless, our
analysis is encouraging in the face of these downfalls since
the observed global patterns and trends in the traces and ag-
gregate statistics is in agreement with current understanding
of avian behavior [2], [5].

Another major benefit of these time-series traces is that it
allows comparisons with other classes of temporally evolv-
ing processes. Micro and macro-climate conditions that have
been sampled for similarly long periods of time, can be com-
pared alongside the inferred image statistics to find correla-
tions. Also new biological questions can be formulated that
take advantage of these continuous, long-lived observations.

4 Discussion
The discussion here focuses on the opportunities avail-

able to an in situ imaging systems such as we described in
this paper. Data analysis has shown that more efficient al-
location of resources (power) is possible. In particular, we
discuss the resolution with which the images are captured
and subsequently transmitted and the frame rate used. Addi-
tionally, we discuss the feasibility of pushing computation to
the device.
More Efficient Allocation of Resources

Sampling Rate: In some ways, the current sampling rate
(every 15 minutes) is unnecessarily high to correctly delimit
nest box stages, which typically span multiple days. Reduc-
ing the sampling rate could free up some of the resources
of the imaging sensor for additional processing or increase
the longevity of the system. However, because of the noise
in the egg counter, as shown in Figure 13, the performance
of the HMM will inevitably become more sensitive to the
errors as the sampling rate is decreased. As shown in Fig-
ure 18, in general, the fluctuations in error increase as sam-
pling rate decreases. Each sampling interval was tested 100
times with random phase sifts, and the average is presented
here. In fact, sampling intervals of 3 hours or greater have a
non-negligable probability of having no observations during
incubation and hatching. Because of high bird presence to
absence ratio during this time, it is difficult to capture an im-
age of the eggs, when sampling at that low rate. Depending



Figure 19. Accuracy per day over time (days) for different resolution images of NB31 during 2004 season (left) and NB8
during 2006 (right)

Figure 18. Accuracy of stage determination when the
nest box is sampled at lower frequencies.
on the acceptable error range of the particular application, it
is possible to vary the minimum frame rate during different
stages of the nesting cycle to better capture the transitions.

Figure 18 also highlight another aspect of the sampling
rate. Errors tend to peak at sampling interval that fall on
the hour. This is particularly noticeable when the sampling
interval is high. Taking a closer look at the resulting sam-
ple sequence, it appears that the bird has a very consistent
habit of appearing and disappearing in the nest to the hour.
This results in large variations in sampling points when sam-
pling at hour intervals. Careful consideration on sampling
rate adjustments need to capture the underlying process of
bird presence and absence.

To properly measure the occupancy of the box a faster
frame rate than every 15min is necessary, as mentioned in
Section 3.4. However, the diurnal patterns seen in Figure 16
indicate that lower frame rates would be sufficient during the
night since the bird is either always there or not. There-
fore, besides “macro” events such as nesting stages, “mi-
cro” events such as day-night transitions can trigger frame
rate changes. One can imagine that by re-allocating the extra

samples that were taken at night to sample more during the
day, the node could last just as long while more accurately
sampling the phenomenon.

Resolution: A closer analysis of our bird detection algo-
rithm versus resolution suggests that a higher-resolution im-
age is not always necessary nor directly translate to higher-
accuracy. Tests were performed for each nest box at three
different resolutions: 64x64, 120x120, 225x225. Figure 19
are results from two of the boxes. The graphs show accuracy
of the algorithm per day over the course of the season. In
the graphs there are times when all three resolutions perform
equally well, as well as times when one or two of them out-
perform the rest. For nest box 31 of 2004 (left side of Fig-
ure 19), early on in the season and during incubation both
120x120 and 225x225 images perform equally well and out-
perform the lowest resolution (64x64). However in the post-
hatching stage, all three algorithms provide the same level of
accuracy, most likely due to the growing young in the box
that render higher-resolutions ineffective.

Further analysis of the accuracy results suggest that the
type of species can play a role in how the algorithm per-
forms over time. For the Violet-Green Swallow box (right
side of Figure 19), the 120x120 and 225x225 images perform
equally well during the early parts of the season as was found
for Bluebird box, but all three resolutions perform equally
well during incubation. This goes back to the fact that swal-
lows build simpler nests and during incubation when very
little changes occur all three resolutions provide good sepa-
ration between the ‘bird’ and ‘no bird’ images. For these rea-
sons a combination of nesting stages and species type could
be appropriate cues for when different resolutions are appro-
priate.
Local Processing

Both bird and egg detection algorithms mentioned in this
paper are based on gradient operations and convolutions.
Since these are pixel level operations, a programmable logic
such as a CPLD or FPGA can be used to perform them in
parallel at low energy cost. In addition, application specific



optimizations can be applied to the algorithms to boost speed
and reduce power consumption. A case in point being the
egg counting algorithm that relies on the detection of inter-
est points (potential sites of eggs) by searching across a large
set of possible scales. However, the nest box setup where im-
agers are placed a fixed distance from the object of interest
places a constraint on the distance of eggs. This allows the
SIFT algorithm to reduce its search space to a much smaller
range of scales in which the egg can be found. Spatial con-
sistency can further reduce the search space, since eggs are
typically grouped together in in a small region of the nest.
Upon detecting the first egg the algorithm can focus on areas
of the image in the neighborhood of previously detected egg
points. By performing these algorithms, we are better

5 Related Work
There is a growing number of deployment research that

explore using a network of wireless sensors to study envi-
ronmental phenomena. In particular, previous deployments
at James Reserve [19, 3] , Great Duck Island [20] and Red-
wood forest [21] exploit a network of wireless sensors to
monitor a range of environmental parameters such as tem-
perature or humidity at very low rates. These research have
made valuable contribution in applying sensor network tech-
nology to study environmental phenomena. They propose
a system architecture with similar components including in
situ sensors in the field, micro-servers acting as bridges be-
tween low rate wireless links and high-speed wired infras-
tructure, and a database archival unit. They also provide a
thorough analysis of the performance of the wireless system
including power consumption and lifetime, network connec-
tivity and data yield, and the application interpretation of the
data. For instance, [21] illustrates a through analysis of tem-
poral and spatial characteristic of the environmental data that
is collected by 40 nodes a in 44 days life of redwood tree.

A second class of deployment research involves monitor-
ing relatively high data rate phenomena with two important
applications: seismic activity and structural monitoring. For
instance, recent work by [13] and [22] study application of a
wireless network of sensors to monitor the health of a struc-
ture such as buildings or bridges and to monitor seismic ac-
tivity of an active volcano. Since in these applications there
are additional stress on the resources of a network, most of
the emphasis is on investigating the performance of the sys-
tem such as reliability and robustness in terms of data de-
livery, accurate timing of the signals, and data transfer per-
formance. From the data collection and analysis side, both
systems look at techniques such as event-based triggers to
reduce the quantity of data quality.

Several factors distinguishes our work from previous de-
ployment research which we discuss in this paper. First, we
exploit vision in a long-lived network and provide unique
insights into the challenges of deploying imagers in situ.
Unlike environmental or seismic sensors, different deploy-
ment settings of the image sensors may have significant im-
pact on quality of acquired images and ultimately on the
performance of the automated data analysis system. Sec-
ond, unlike other sensing modalities that readily provide in-
terpretable data, images require an integrated approach for
image processing and data analysisThird, we discuss per-

formance properties of our image processing routines under
image resolution and frame rate, important factors influenc-
ing power consumption in a vision system. Additionally ,
our collected data suggests that “micro” and “macro”-level
events could act as triggers to adjust these system parameters
to more accurately sample the environment and efficiently
allocate resources.

There are several techniques used to detect and/or iden-
tify objects. The most popular algorithms do not rely on
heuristics and use responses of generic filters to characterize
objects. The hope is that the filter responses are unique to
the object and therefore a statistical model can be learned to
separate this object from all others. Examples of these algo-
rithms include SIFT [10], Viola-Jones’s Cascaded AdaBoost
[24], and Mutch-Lowe [11]. On the other end of the spec-
trum are algorithms which rely on assumptions on the object
and the non-object instances in the data set we would like to
analyze. Assumptions on object size and intensity difference
to background allow for the use of background differencing
or blob detection.

Some vision architecture have been proposed [7, 12], that
focus primarily on the collection mechanisms of the visual
data. Our end-to-end system, besides collecting images its
primary focus is on the vision based inference and the impli-
cations that has on the system.
6 Conclusion

Automated analysis makes useful the large scale continu-
ous sampling of environmental phenomenon using imagers.
We demonstrated the automation of vision inference as it ap-
plies to avian breeding behavior. We leveraged our end-to-
end system to impose constraints in the way that images were
collected so that the subsequent vision analysis was feasi-
ble. In particular, fixed location and orientation of the im-
ager were used to select appropriate vision algorithms and
temporal consistency in the image sequences exploited to re-
duce inference error. This frees the biologist from having to
visit nesting locations to gather statistics about avian breed-
ing behavior, a tremendously time consuming task.

More generally we have demonstrated how images can
be used as biological sensors and have developed techniques
and a systems approach that should be applicable to other
biological phenomena in agriculture, ecology, and perhaps
even human spaces. Future work in progress includes im-
proving the camera module on our wireless nodes, creating
a data logger version for locations that are out of continuous
wireless reach, and extending the camera module so that it
can be placed off the board itself.
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Appendix A : Trace Study
Here we explore how the same traces described in Sec-

tion 3.5 can be used to analyze multiple nest boxes. Here
we look at a special case in which the observed general pat-
terns can be used to detect “anomalies”.In visualizing the
time-series traces, these patterns can readily be picked-up as
described by the gray callout boxes in Figure 20. By investi-
gating the images, possible explanations can be found:

(1) After further scrutiny of the images, it was determined
that only 1 of the 4 eggs in this nest hatched but that the fe-
male continued to incubate the remaining 3 eggs. This obser-
vation, although rare, is consistent with [5] which notes that
the female may “incubate for weeks beyond normal incuba-
tion period” after a failed clutch. (2) The images indicated
that another species, the Mountain Chickadee, had built a
nest initially, followed by a Western Bluebird, a rare event
that provides insight into inter-species interactions.




