
Lawrence Berkeley National Laboratory
LBL Publications

Title
Low-rank approximations with sparse factors I: basic algorithms and error analysis

Permalink
https://escholarship.org/uc/item/8816t6n9

Journal
SIAM Journal of Matrix Analysis, 23(3)

Author
Zhang, Zhenyue

Publication Date
1999-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8816t6n9
https://escholarship.org
http://www.cdlib.org/


LBNL-44003 
Preprint 

ERNEST ORLANDO LAWRENCE 
BERKELEY NATIONAL LABORATORY 

Low-Rank Approximations with 
Sparse Factors 1: Basic Algorithms 
and Error Analysis 

Zhenyue Zhang, Hongyuan Zha, and Horst Simon 

National Energy Research 
Scientific Computing Division 

July 1999 
Submitted to 
SlAM journal of 
Matrix Analysis 

' . < . • 

I 
CD z 
I 
I 

.j::o 

.j::o 
tSl 
tSl 
w 



Low-Rank Approximations with Sparse Factors 1: 
Basic Algorithms and Error Analysis 

Zhenyue Zhang, Hongyuan Zha, and Horst Simon 

National Energy Research Scientific Computing Division 
Ernest Orlando Lawrence Berkeley National Laboratory 

University of California 
Berkeley, California 94 720 

July 1999 

LBNL-44003 

This work was supported by the Director, Office of Science, Office of Laboratory Policy and Infrastructure 
Management, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Computing 
resources were supported by the Director, Office of Advanced Scientific Computing Research, Division of 
Mathematical, Information, and Computational Sciences of the U.S. Department of Energy under Contract No . 

. DE-AC03-76SF00098. Work was also supported in part by NSFC under Project No. 19771073 and National 
Science Foundation Grant Nos. CCR-9619452 and CCR-9901986. 



LOW-RANK APPROXIMATIONS WITH SPARSE FACTORS I: 
BASIC ALGORITHMS AND ERROR ANALYSIS 

ZHENYUE ZHANG*, HONGYUAN ZHAt, AND HORST SIMONt 

Abstract. We consider the problem of computing low-rank approximations of matrices. The 
novel aspects of our approach are that we require the low-rank approximations be written in a factored 
form with the factors having certain sparsity patterns and the degree of sparsity of the factors can be 
traded off for reduced reconstruction error by certain user determined parameters. We give a detailed 
error analysis of our proposed algorithms and compare the computed sparse low-rank approximations 
with those obtained from singular value decomposition. We present numerical examples arising from 
several application areas to illustrate the efficiency and accuracy of our algorithms. 

1. Introduction. We consider the problem of computing low-rank approxima
tions of a given matrix A E nmxn which arises in many applications areas, see [9, 12] 
for a few examples. The theory of singular value decomposition (SVD) provides the 
following characterization of the best low-rank approximations of A in terms of Frobe
nius norm II· IIF [4]. 

THEOREM 1.1. Let the singular value decomposition of A E nmxn be A= u~vr, 

and U and V orthogonal. Then for 1 :=:; k :=:; min( m, n), 

min(m,n) 

L ul =min{ IIA- Ell} I rank(B) :=:; k}. 
i=k+l 

And the minimum is achieved with bestk(A) = uk diag(ul' ... 'Uk)Vt' where uk and 
Vk are the matrices formed by the first k columns of U and V, respectively. Further
more, bestk(A) is unique if and only if Uk > Uk+l· 

For any low-rank approximation B of A, we calliiA- BIIF the reconstruction er.
ror of using Bas an approximation of A. By Theorem 1.1, bestk(A) has the smallest 
reconstruction error among all the rank-k approximations of A. In some applications, 

• Center for Mathematical Sciences & Department of Applied Mathematics, Zhejiang Univer
sity, Hangzhou, 310027, P. R. China. zyzhang(Dmath.zju.edu.cn, and National Energy Research 
Scientific Computing Center, Lawrence Berkeley National Laboratory, One Cyclotron Road, M/S: 
SOF, Berkeley, CA 94720, USA. The work of this author was supported in part by NSFC (project 
19771073), Zhejiang Provincial Natural Science Foundation of China, and Scientific Research Foun
dation for Returned Overseas Chinese Scholars, State Education Commission. The work also was 
supported in part by NSF grants CCR-9619452 and by the Director, Office of Science, Office of Lab
oratory _Policy and Infrastructure Management, of the U.S. Department of Energy under Contract 
No. DE-AC03-76SF00098. Computing resources were supported by the Director, Office of Advanced 
Scientific Computing Research, Division of Mathematical, Information, and Computational Sciences 
of the U.S. Department of Energy under contract number DE-AC03-76SF00098. 

tDepartment of Computer Science and Engineering, The Pennsylvania State University, Univer
sity Park, PA 16802, zhaiDcse.psu.edu. The work of this author was supported in part by NSF 
grants CCR-9619452 and CCR-9901986. 

tNational Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, 
One Cyclotron Road, M/S: SOB, Berkeley, CA 94720, HDSimoniDlbl.gov. This work was supported 
by the Director, Office of Science, Office of Laboratory Policy and Infrastructure Management, of 
the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Computing resources 
were supported by the Director, Office oL Advanced Scientific Computing Research, Division of 
Mathematical, Information, and Computational Sciences of the U.S. Department of Energy under 
contract number DE-AC03-76SF00098. 



2 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON 

it is desirable to impose further constraints on the low-rank approximation B (besides 
being low rank). For instance, even if the matrix A is sparse, it is generally not true 
that bestk(A) or Uk and Vk will also be sparse. Therefore, the storage requirement of 
bestk(A) in the factored form bestk(A) = Uk diag(a-1 , ... ,ak)V{ can be even greater 
than that of the original matrix A. To overcome this difficulty, we seek to find low
rank approximations with sparsity properties. One possibility will be to impose some 
sparsity requirements directly on the low-rank approximation B itself, i.e., we require 
that B be sparse. However, this approach is less flexible and it is very hard to achieve 
a reasonable reconstruction error (as compared with that obtained from bestk(A), for 
example) using a sparse B. Besides, it is not straightforward to construct low-rank 
matrices with a given sparsity patterns. Inspired by the work reported in [6, 10], we 
consider the approach of writing B in a factored form as B = X DYT, and imposing 
sparsity requirements on the factors X and Y instead while keeping D in diagonal 
form. Therefore, even though X and Y are sparse B may be rather dense, and this 
actually gives the flexibility to achieve smaller reconstruction errors. On the other 
hand, the low-rank constraint on B is automatically imposed by writing B in the 
factored form, i.e., rank( B) :::; k if X has k columns. Although the focus of this paper 
is on imposing sparsity constraints, we should also mention that other constraints on 
the low-rank approximations may also be desirable: in probabilistic Latent Semantic 
Indexing [5], for example, elements of columns X and Y represent conditional prob
abilities, and therefore are required to be nonnegative. As another example, in the 
so-called structured total least squares problems, the low-rank approximations need 
to have certain structures such as Toeplitz or Hankel. 

The rest of the paper is organized as follows: In section 2, we cast the problem 
of computing sparse low-rank approximations in the framework of an optimization 
problem. We then propose algorithms and heuristics for finding approximate optimal 
solutions of this optimization problem. In section 3, we give a detailed error analysis of 
the proposed algorithms and heuristics. Specifically, we prove that the reconstruction 
errors of the computed sparse low-rank approximations are with a constant factor 

'of those that are obtained by SVD. In section 4, we discuss several computational 
variations of the basic algorithms proposed in section 2 and in section 5 we conduct 
several numerical experiments to illustrate the various numerical and efficiency issues 
of our proposed algorithms. We also compared the low-rank approximations computed 
by our algorithms with those obtained by SVD and the approaches developed in [10]. 
In section 6, we summarize our contribution and point out future research directions. 

2. Sparse low-rank approximation. Computing low-rank approximations with 
sparse factors has been considered by several authors before. In [6] Kolda and O'Leary 
propose the so-called semi discrete decomposition (SDD) where they write a low-rank 
approximation as Bk = XkDkY{ with Xk E nmxk, Yk E Rkxn, and Dk is diago
nal. Furthermore, they require that Xk and Yk contain elements drawn from the set 
{ -1, 0, 1}. The restriction on the elements of Xk and Yk usually demands a much 
larger k » K in order for Bk to achieve the comparable reconstruction error as that 
of bestK(A), and therefore the low-rank property of Bk may not hold. But usually 
the storage requirement of Bk in the factored form is much lower than that of A, and 
this is certainly the major strength of SDD. In (10] Stewart proposes to construct 
low-rank approximations of a sparse matrix A by selecting certain columns and rows 
of it, i.e., he writes a low-rank approximation as Bk = AcM A;, where Ac and A; are 
certain k columns and k rows of A, respectively, and M is chosen to minimize the the 
error IIA- AcM A;IIF once the left and right factors Ac and Ar are chosen. Ac and 



Matrix Low-Rank Approximations with Sparse Factors 3 

Ar are determined by variations of QR algorithms with certain pivoting strategy. In 
general, the matrix M will be dense. Due to the denseness of M, storage requirement 
of Bk can become dramatically higher ask increases. Numerical experiments showed 
that Stewart's approach is especially effective when A itself is close to rank-deficient. 
The approach we now propose can be considered as a compromise of the above two 
approaches: we want to have a low-rank approximation and at the same time we also 
want to have greater control of the sparsity properties of the approximation. To this 
end, we consider the following general minimization problem. 

The above optimization problem in its present form is ill-defined because the minimum 
depends on the sparsity constraints: the number of nonzeros of the left and right 
factors and the positions of those nonzero elements which constitute what we call 
their sparse patterns. So ideally the goal is to make the reconstruction error IIA -
XkDkYtliF as small as possible and keep in mind the following questions: 

• How to determine good sparse patterns for the left and right factors? 
• How to find the best approximation Bk = XkDkYt with the chosen sparse 

structures of X k and Yk? 
In this paper we will not discuss how to impose the sparsity constraints on the fators 
Xk and Yk in general, but rather start with an heuristic. In this section, we propose 
the framework of our sparse low-rank approximation (SLRA) approach and discuss 
several of its computational variations in Section 4. As can be seen, the heuristic 
dynamically and implicitly imposes sparsity constraints on Xk and Yk. 

Algorithm SLRA (Sparse low-rank approximation). Given a 
matrix A E nmxn and an integer k ~ min{m,n}, this algorithm 
produces a diagonal matrix Dk, and sparse matrices Xk and Yk. 
At the conclusion of the algorithm, Bk = XkDkYt gives a low
rank approximation of A with sparse factors. 

1. [Initialize] Set Ao =A. 
2. Fori= 1, 2, · · ·, k 

2.1 [Rank-one approximation] Find a sparse rank-one 
approximation Xidiy[ to Ai-l with sparse unit vec
tors Xi and Yi· 

2.2 Set Ai = Ai-l - xidiy[. 

The core structure of Algorithm SLRA is a sequence of k deflation steps [8] which 
allows us to build a low-rank approximation one rank at a time. This general approach 
is also adopted in [6], but the actual deflation step is very different from ours. After 
k steps, Ak = A - XkDk yk with xk = [xl' ... 'Xk], yk = [Yl' ... 'Yk] and Dk = 
diag(d1, · · · ,dk)· . 

It is worthwhile to point out that the integer k, the rank of Bk in general, can 
be determined by the stopping criterion IIA- XkDkYtiiF ~ tol because the erro'r 
IIA- XkDkYtiiF = IIAkiiF can be easily calculated by a recurrence relation, see 
Section 4 for more details. 

The key step of Algorithm SLRA is Step 2.1, i.e., computing sparse rank-one 
approximations. By Theorem 1.1 the best rank-one approximation to A is given by 
uavT with { u, a, v} the largest singular triplet of A. The triplet { u, a, v} can also be 



4 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON 

used to produce a good sparse rank-one approximation. The basic idea is to sparsify 
u and v to get sparse vectors x and y, and choose a scalar d such that 

Since u and v will undergo this sparsification process, it is not necessary to compute 
them to high accuracy. Some less expensive approximation will do and this results in 
faster algorithms. Now we give more details of the computation of the sparse rank-one 
approximation, Step 2.1. 

Step 2.1 of SLRA (Sparse rank-one approximation.) Given a 
matrix A, this algorithm produces a rank-one matrix xdyT with 
sparse vectors x and y. 

1. Compute (approximations of) the largest left and right 
singular vectors u and v of A. 

2. Sparsify u and v to get sparse vectors x andy with llxll = 
IIYII = 1. 
2.1 (Sort] Sort the entries of u and v in two sections: 

where P1 and P2 are the permutation matrices re
sulted from the sorting process. 

2.2 (Sparsify] Discard the second sections u_ and v_ to 
get sparse vectors x and y: 

3. Set d = xT Ay which minimizes 

{IIA- xsyTjiF Is scalar}. 

Two aspects of Algorithm SLRA are still left to be specified: 1) the determination 
of k and 2) the partition of the u and v into sections. Since our error analysis of 
Algorithm SLRA does not depend on these two issues, we will delay their discussion 
to Section 4. We now present an example to illustrate the low-rank approximations 
computed by Algorithm SLRA. 

EXAMPLE. This example is taken from [2]. We have a list of book titles. Figure 
2.1 plots the 16 x 17 term-document matrix A = ( aii) with aii represents the number 
of times term1 i appears in title j. Below is the list of terms. 

1 In this example, a term is just a word since we do not use multi-word phrases. 



Matrix Low-Rank Approximations with Sparse Factors 5 

" " .. 
~-" 

FIG. 2.1. The 16 x 17 term-document matrix A. 

1 algorithm 9 methods 
2 application 10 nonlinear 
3 delay 11 ordinary 
4 differential 12 oscillation 
5 equations 13 partial 
6 implementation 14 problem 
7 integral 15 systems 
8 introduction 16 theory 

The index of the terms correspond to the row number of the matrix A. We apply 
the Separated variation of Algorithm SLRA to the term-document matrix A, choosing 
k = 2 and € = 0.1 (see Section 4 for details). In the following we list the nonzero 
components of Xi, Yi, i = 1, 2 arranged in nondecreasing order and their corresponding 
row indexes. • 

I index I x1 I index I x2 II index I Y1 I index I Y2 
5 0.7125 14 0.4944 15 0.3671 7 0.4789 
4 0.5320 1 0.4825 14 0.3421 3 0.4332 
3 0.3315 7 0.3772 11 0.3313 16 0.3958 

16 0.1409 6 0.3148 12 0.3313 6 0.3624 
13 0.1329 8 0.3009 4 0.3209 5 0.3557 
11 0.1250 16 0.2899 13 0.3207 17 0.3445 
9 0.1200 2 0.2622 10 0.3190 1 0.1585 . 

12 0.1192 15 0.1824 2 0.2874 9 0.0987 
7 0.0881 8 0.2806 15 -0.0488 

1 0.2284 11 0.0485 
12 0.0485 

The decomposition we computed above has a very interesting interpretation: ·the 
two triplets { x1, d1, Yl} and { x2, d2, Y2} divide the 17 book titles into two topics. 
The first topic is about differential equations and the second algorithms and systems. 
The nonzero elements of xi specify the most influential words for the topic, and 
nonzero elements of Yi specify those book tiles that belong to this topic. Below we 
list the influential words for topic differential equations and algorithms and systems, 
respectively. ~ · · 



6 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON 

Differential Equations Algorithms and Systems 
5 equations 14 problem 
4 differential 1 algorithm 
3 delay 7 integral 

16 theory 6 implementation 
13 partial 8 introduction 
11 ordinary 16 theory 

9 methods 2 application 
12 oscillation 15 systems 

7 integral 

The indexes corresponding to y1 indicate the book titles which deal with the first 
topic while the indexes corresponding to Y2 indicate the book titles which deal with 
the second topic. 

3. Error analysis. In this section we will compare the low-rank approximations 
computed by Algorithm SLRA with those obtained by SVD. One potential alternative 
is to make the comparison directly with the optimal solutions of (2.1) assuming we 
have made more specifications on the sparsity of Xk and Yk, for example, we can 
impose constraints on the number of nonzeros of Xk and Yk. This approach at the 
moment is rather difficult to pursue because we still do not have a good understanding 
of the structures of the optimal solutions (2.1). Fortunately, bestk(A) obtained from 
SVD gives the optimal solutions for (2.1) when there are no sparsity constraints on 
Xk and Yk, and the heuristic of Algorithm SLRA takes advantage of this connection. 
Therefore we choose to compare with bestk(A) computed by SVD. To proceed, we first 
consider the rank-one case, assuming we have computed the largest singular triplet 
exactly. Throughout the rest of the paper, we assume that A E nmxn. 

THEOREM 3 .1. Let { u, a, v} be the largest singular triplet of A. Using the same 
notation as in Step A2.1 of Algorithm SLRA, and assume that ilu- 11 2 + llv- 11 2 ~ 2t:2 

withE~ 1/../3. Then 

where 

a= "'n 2, 
uj=2 ai 

Proof Notice that d is chosen such that IIA - xdyTII} = IIAII} - ~, we need to 
derive a lower bound for ldl- To this end, partition 

conformally with those of P1u and P2v (see Step A2.1 of Algorithm SLRA). It follows 
from the choice of d that 

Recalling that Au = av and AT v = o:u, we obtain 

T T . 2 T T 2 
u+Auv+ + u+A12v- = allu+ll , u_A21v+ + u_A22v- = allu-11 , 



Matrix Low-Rank Approximations with Sparse Factors 7 

and similarly, we have 

v!A[1u+ + v!Aftu_ = allv+ll2, v'!:A[2u+ + v'!:Af2u- = allv-112. 

A simple calculation yields that 

Thus, 

ldl > a(1 - llu-112 - llv- 112) - allu-11 . llv-11 
- llu+ll· llv+ll 

1- ~(llu-112 + llv-W) > a -----7--'.:..:----'-'-:---........:.:-"-::-'-
- 1- Hllu-11 2 + llv-112 ) 

1- 3E2 

2: a 1- E2 

= a ( 1- 1 ~2E2) 2: 0. 

Here we used that fact that IIA22II ~ IIAII = a. It follows that 

min(m,n) ( 2 2 ) 2 

IIA- xdyTII} ~ ?: a]- ai 1- 1 ~ E2 = (1 + ar)IIA- uavTII}, 
J=l 

where a1 2: a2 2: · · · 2: aminm,n are the singular values of A and 

T = 1 - ( 1 - 1 ~2f2) 2 = 4E2 ( 1 - (1 ~2E2)2) ' 
completing the proof. 0 

In practical situations the exact largest singular triplet is not available and as we 
mentioned before it may not be even desirable to have it computed to high accuracy 
since we will sparsify u and v by throwing away some of their nonzero elements anyway 
during the sparsification process. Hence, we need to consider the case when we only 
have approximations of the left and right singular vectors. 

THEOREM 3.2. Let {u,v} be approximate largest left and right singular vectors of 
A and a= a1 (A). Using the notation of Step A.2.1 of Algorithm SLRA, and assume 
that llu-112 + llv-11 2 ~ 2t:2

• Then 

IIA- xdyTIIF ~ ,/1 + a(r + 8)11A- uavTIIF, 

where 

IIAv- aull + IIATu- avll 
'f/= . 

2a 

Proof Define r 1 = P1(Av- au) and r 2 = P[(AT u- av). Similarly as in the 
proof of Theorel!l 3.1, we have 



8 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON 

which yields 

( 
.. 2€2 '17 ) 

- a 1 - -- - ----,==='=:::::::;;: 
- 1- E2 V1- 2t:2 . 

The result follows because 

1- (1- _2E_2 - 'IJ )2- T + (2- 6€2- ---;=:='f/~) 'f/ 
1 - E2 V1 - 2t:2 - 1- E2 V1 - 2t:2 Vl- 2t:2 

ry(2- 6E2 - 'IJ) 
:s T + 1 - 2E2 = T + 8, 

completing the proof. 0 
REMARK. We notice that '17 measures the accuracy of the approximate left and 

right singular vectors in a certain relative sense. From Theorem 3.1, T = O(t:2). If E 
is fixed, there is no point to compute u and v to higher accuracy than O(t:2). On the 
other hand, given approximate u and v and the corresponding ry, we should choose E 

to match their accuracy, i.e., E = O(..fii). 
Now we proceed to prove the general case. With the assumptions that the left 

and right singular vectors are only approximate, the proof become rather unwieldy, 
and the bounds obtained are less transparent. Therefore, in the following we will 
assume that the left and right singular vectors·are computed exactly. We first need 
several technical lemmas. 

LEMMA 3.3. If s 2: 0, t 2: 0 satisfy s2 + t 2 :S 2E2 :S 5- y'I7, then 

st(1 + st) ~(s2 + t2)(1 + ~(s2 + t2)) t:2(1 + E2) 
(1 - s2) (1 - t2) :S (1 - H s2 + t2))2 :::; (1 - E2)2 . 

Proof It is easy to see that the condition s2 + t2 :::; 2t:2 :::; 5 - v'I7 implies that 

s2 + t2 ( s2 + t2 ) 
-

2
- 1 - -

2
- :::; 2(1 .:.. s2 - t2), and (s + t)2 :::; 2(s2 + t2) < 2. 

It follows that 

st(1+st)(s+t? :S8t(1+8t) (1+ (8 ~t)
2

) 

<-- 1+-- 1+8t+--82 + t2 ( 82 + t2) ( 82 + t2) 
- 2 2 2 

:S 2(1 - 82 - t2) ( 1 + 2st + (8 ~ t)
2

) 

:S 2(1- 82)(1 - t2). ( 1 + 28t + (8 ~ t)
2

) 

Multiplying (8- t) 2 /4 on the two sides of the inequality yields that 

st(1 + 8t) ( 82; t2) 2:::; (1- 82)(1- t2) ((1 + 2st) (8 ~ t)2 + (8 ~ t)4) 

= (1- 82)(1,- t2) ( 82 ; t2 ( 1 + 82 ; t2) - 8t(1 + 8t)) . 



Matrix Low-Rank Approximations with Sparse Factors 9 

Therefore we obtain that 

( 
2+t2)2 ( ( 2 t2)

2
) st(1 + st) 1 - T = st(1 + st) (1- s2)(1- t2) + T 

~ (1 - s2) (1 - t2) c2 ; t2) ( 1 + 82 ; t2) , 

completing the proof. 0 · 
LEMMA 3.4. Denoted= u~Anv+f(llu+ll·llv+ll) 2 , and u = u1(A). If llu-112 + 

llv-112 ~ 2E2 ~ 5- v'I7, Then 

lu-dl 2 
-U- ~C1E, 

1 + E
2 

Cl = (1 - E2)2' 

and if E2 < 1/3, 

Proof Similar as in the proof of Theorem 3.1, we have 

It is easy to verify that 

Hence, 

It follows from Lemma 3.3 that 

The second inequality directly follows from the first one. 0 
Now we prove a key lemma. Notice that if { x, d, y} is the exact largest singula,r 

triplet, ui(A- xdyT) = Ui+l(A), fori= 1, · · · ,min{m,n} -1, and ui(A- xdyT) = 0 
fori ~min{ m, n }, i.e., the 2nd largest singular value of A becomes the largest singular 
value of A- xdyT, the 3rd largest singular value of A becomes the 2nd largest singular 
value of A - xdyT, and so on. It is easy to see that for any distinct indexes i 1 , ... , h, 

k k 

L ul; (A- xdyT) ~ L u?;+l (A), 
i=l j=l 

The following result shows what happens if { x, d, y} is only an approximate largest 
singular triplet. 



10 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON 

LEMMA 3.5. Using the notation of Step 2.1 of Algorithm SLRA, and assume that 
llu-112 + llv-112 :::; 2€2 with €2 < 1/3. Then for any distinct indexes i1, ... ,ik, 

k k 

L at (A- xdyT) :::; L ari+l (A) + 0"1 (A)a2 (A)€ +CO"~ (A)€2
' 

j=l j=l 

where c depends on k, 

c = { 2(1 + c1€
2
)
2

(c3 + v'2c2t:) + c1€, 

4(1 + C1€2)2(c3 + v'2c2t:) + c1t:, 

k=1 

k > 1 

with c3 = 2 + max{c2(4 + c2)€2, 1/(1 + c1€2)} :::; 3, where c1 and c2 are defined in 
Lemma 3.4. 

Proof Let the SVD of A be A = UI:VT. To simplify the notation, we assume 
that U and V have the first column u and v, respectively, and I: has a on its (1, 1) 
position. Partition 

Denoting B = UT(A- xdyT)V, we can write 

B = [ ~ ~2 ] + d[el,wl] [ ~ !1 ] [e 1 ,wl]T =I:- d(e1 - wl)(e1 - w2 )T, 

where d = d/(llu+IJ·IIv+ll), h =(a- d)jd, 

w, ~ [ ::: l ~ (P,V)T [ v~ l ~ [ v)li l ] . 
It can be verified that 

Notice that B is a rank-2 modification of diag(O, I:2). We now show that BT B is a 
rank-3 modification of diag(O, I:~). To this end, let 

- [ 0 ] ~ [h 1 ][ 1 
WI = I:2w21 ' 2 = 1 -1 wu 

Then it can be verified that 

wu 
wu 

BT B = diag(O, I:~)+ d[el, W2, wd~3(el, w2, wdT = diag(O, I:~)+ d~, 

where 

[ 

d(h + wu)Z 
~3 = dh(l ~ wu) 

dh(1- wu) 
d(l-wu) 

-1 



Matrix Low-Rank Approximations with Sparse Factors 11 

Therefore, it follows from [11, Page 202] that for distinct indexes i1, ... , ik, 

j=l j=l j=l 

i.e., 

j=l j=l j=l 

(We have used Aj(·) to denote the j-th largest eigenvalue of a symmetric matrix.) 
Since rank(6.) :::; 3, we have Aj(6.) = 0 for j > 3. We now show that 

First, rank([e1 , w2 , wl]) ;::: 2 because e1 is orthogonal to w1 . Without loss of 
generality, we assume that rank([e1 , w2, w1]) = 3. (The case when rank([e1 , w2, w1]) = 
2 is easier to handle.) Thus by Inertia Theorem, the number of positive eigenvalues 
of 6. is equal to the number of positive eigenvalues of 6.3 . 

Secondly, at least one principal minor of 6.3 is negative. It implies that 6.3 has at 
least one negative eigenvalue. Also 6.3 is not negative definite since it has a positive 
diagonal element. 

Finally, it can be shown that det(6.3 ) = -d(1 + h) 2 < 0. Therefore, 6.3 has 
exactly two positive eigenvalues, and so does 6.. Hence we have 

k k min{k,2} "2 T "2 . " L....t ai; (A- xdy ) :::; L....t ai;+l (A) + d L....t Aj(6.). 
j=l j=l j=l 

It is easy to see that A(H) = {llwdJ,O, ... ,0, -llwiii}. To estimate IILill, we write 
W2 = w2/llw2ll and WI= w2/llw211· Obviously, 

where 



12 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON 

Now by Lemma 5.2 of [12] and Lemma 3.5, 

11Lill~max{idi(h+wu)2,,,[ d(1-wu)l~w2112 
-11w2

0
llllwtll Jll} 

-11w2ll llwtll 
+idh(1- wu)lllw211 

~max { idi(h + wu)2, idl(1- wu)llw2ll2 + llw2llllw1 II}+ idh(1- wu)lllw211 

~ a-1 (A)(1 + c1 t?) ( max{2 + c2(4 + c2)E2, 2 + 1/(1 + Ct€2)} + /2c2E)E2 

= Ut(A)(1 + CtE2)(c3 + v'2c2E)E2 = cu1(A)E2. 

Therefore, 

Fork= 1, we have 

u[(A- xdyT) ~ uf+l (A)+ 0"1 (A)(1 + CtE2)(u2(A) + 2Ca-t (A)€)€ 

= u[+l (A)+ a-1 (A) (u2(A) + c1u2(A)E2 + 2Ca-t (A)(1 + CtE2)E) E 

~ u[+l (A)+ 0"1 (A)u2(A)E + ca-1 (A)2€2, 

and fork> 1, we have 

k 

L ulj (A- xdyT) ~ o}+1 (A)+ a-1 (A)(1 + c1E2)(u2(A) + 4Ca-t (A)E)E 
j=l 

k 

~ L ufj+l (A) + a-1 (A)a-2 (A)E +a-1 (A) 2 ( c1 E + 4c(1 + c1 €2)) €2, 
j=l 

completing the proof. 0 
We still need one more result before we can prove our main theorem. 
LEMMA 3.6. Let {u,u = u1 (A),v} be the largest singular triplet of A. Denote 

E = uuvT - xdyT. If llu- 11 2 + llv- 11 2 ~ 2€2, assuming E2 < 1/3, then 

and 

O"j (A- xdyT) ~ O"j+l (A)+ C40"1 (A)E, 

where c4 = v'2 + €(1 + €2)/(1- €2). 
Proof. Let h = (u- d)ju, where dis defined in Lemma 3.4. Then d = a-(1- h), 

md . 

By Lemma 3.4, lhl < 1. Hence, 



Matrix Low-Rank Approximations with Sparse Factors 

= a2 (h2 + {1- k2){11u-ll2 + llv-112 -llu-ll2 llv-ll2
)) 

:::; (j2 (h2 + {1- h2). 2c:2) 

:::; a2 ((cic:4{1- 2c:2) + 2c:2) 

<. 2 (2 (c:{1+c:
2
))

2
) 2 

- a + {1 - c:2) c: 

By the well-known perturbation theorem about singular values, we have 

completing the proof. 0 

Oj(A- xdyT) = aj(A- uavT +E) 

:::; aj(A- uavT) + IIEII 
= Uj+l (A) + liE II 
:::; Uj+l (A) + C4a1 {A)c:, 

REMARK. It can be shown that If llu-11 :::; c: and llv-11 :::; c:, then 

aj(A- xdyT):::; Uj+l(A) + a1(A) ( 1 + h) E. 

13 

THEOREM 3. 7. Use the notation in Step 2.1 of Algorithm SLRA, and assume 
that llu-112 + llv-112 :::; 2E2 with E2 < 1/3. Then 

IIA- XkDkY{IIF :::; vh + bkE IIA- UkEk V{IIF, 

where 

Then Ak = Ak-1 - xkdky'[, where Xk and Yk are the sparsified version of the largest 
left and right singular vectors u(k-1) and v(k-1) of Ak-1 , respectively. Specifically, 
we choose permutation matrices Pik-1

) and pJk-1
) such that 

[ 

(k-1) l p(k-1) (k-1) _ ut: 
1 u - {k-1) ' u_ [ 

(k-1) l 
P.(k-1) (k-1) _ vt: 

2 v - (k-1) v_ 



14 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON 

By Lemma 3.5 with Ak = Ak-1 - xkdky[, we have 

n 

IIA- XkDkY{II~ = L o}(Ak) 
j=1 

n 

:::; L a](Ak_t) + at(Ak-1)a2(Ak-t)E + cai(Ak-t)E2 

j=2 
n k-1 k-1 

:::; L a](A) + Lat(Aj)a2(Aj)E + c L ai(Aj)E2. 
j=k+l j=O j=O 

On the other hand, by Lemma 3.6, we have 

a1(Aj) :::; a2(Aj-d + c4at(Aj_t)E 

:::; a3(Aj-2) + c4(a1(Aj-2) + a1(Aj_t))E 

< ... 

:::; aHt (A) + c4 L:i;:"~ a1 (Ai)E. 

Let s j = 2:1,:;-~ a1 ( Ai). Then, 

Sj = a1(Aj-t) + Sj-1:::; aj(A) + (1 + C4E)Sj-1 

:::; aj(A) + (1 + C4E)(aj-t(A) + (1 + C4E)Sj-2) 

:::; ... 
:::; 2::1=1 (1 + C4E)j-iai (A) 

which gives 

j 

a1 (Aj) :::; aH1 (A)+ C4 L(1 + C4E)i-iai(A)E = ai+l (A)+ ¢;jE, 
i=l 

where if;j = C4 2::1=1 (1 + C4E)i-iai(A). Similarly, we have 

a2 (Aj) :::; aH2 (A) + ¢;jE· 

Therefore, 

k-1 k 

L a1 (Aj)a2(Aj) :::; L (aj(A)aHl (A)+ (aj(A) + ai+1 (A)+ ¢j-1E)¢j-1E), 
j=O j=l 

and 

k-1 k 

L ai(Aj):::; L (a](A) + 2aj(A)¢j-tE + ¢]_1 E
2). 

j=O j=1 

It follows that 

n k 

T '"'2'""""' -2 IIA- XkDkYk IIF :::; L.,; aj (A)+~ aj(A)aj+l (A)E + bkE 
j=k+l j=l 

= (1 + bkE)IIA- Uk'J:,k V{ll~, 



where 

I 
0.95\ 

I 

0.9 

0.85 

0.0 

0.75 

0.7 

0.65 

0.6 

Matrix Low-Rank Approximations with Sparse Factors 

1.1 

... 
0.55 __ {1+'\;'epsilon) 

2
j 

_ll+~'epsllonr,J 

0'5o 10 20 30 40 so oo 10 eo 90 100 o..eo!---':--7:--::,--7:--::----::-----::--::--:':--:: 
' 

FIG. 3.1. (1 + ck * €)- 1 and (1 + bk * €)- 112 (left) and the relative errors (right}. 

k 

bk = L { ca](A) +((I+ 2cE)aj(A) + Oj+1 (A)+ (I+ cE)</Jj-1E) </Yj-1}, 
j=1 

completing the proof. 0 

I5 

REMARK. Using the well-known Wielandt-Hofmann Theorem and Lemma 3.6, 
one can prove that 

( 

n ) 1/2 2 if
1 

a](A) +a1(A)(h+ h)· 
Therefore it is not·hard to prove that 

IIA- XkDkYtiiF::; (I+ CkE)IIA- Uk'Ek V{IIF, 

with Ck = v122::=1 ai(A)f(L~=k+l o}(A))112 + 0(£). However, the coefficient ck 
seems to give a less tight bound. Figure 3.I plots the curves of (I + CkE)-1 and 
(I+ bkE)-112 with the O(E) terms omitted for the matrix med (cf Section 5) on the 
left and the relative error 

(k) 
_ IIA- bestk(A)IIF 

errbest - IIAIIF , 

and the upper bounds 

(I+ CkE)errbest{k) and (I+ bkE) 112errbest(k), 

on the right. It is easy to see that the bound using bk is much tighter. 

4. Computational Variations. In this section, we first discuss several compu
tational variations of Algorithms SLRA, in particular we will discuss two approaches 
for sparsifying vectors in the sparse rank-one approximation step of Algorithm SLRA. 
We first briefly discuss how to find approximate solutions to the largest singular triplet 
of a matrix. 



16 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON 

Approximation to Largest Singular Vectors. As we mentioned in Section 2, the 
largest singular triplet { u, a, v} need not be computed to high accuracy because a 
sparsification process that follows will introduce errors by discarding certain nonzero 
elements of u and v. There are several approaches for approximating the largest 
singular triplets such as the power method and Lanczos bidiagonalization process 
[4, 8]. Using the power method, we suggest to perform several steps of power iteration 
as follows, 

v +--(AT A)"'vo, 

v +-- v/llvll2, 

u +-- Av/IIAvll2· 

wh~re vo is an initial guess, for example, v0 = (1, · · ·, l)T, a is a small integer, for 
example, a = 3. 

For Lanczos bidiagonalization, we run several iterations to generate a pair of 
orthogonal basis {ui.···,u,e} and {v1 ,···,v,a}, and a lower bidiagonal matrix B,e 
satisfying 

A[v1, · · ·, v,a] = [u1 , · · ·, u,a]B,e + b,eu,B+l, 

AT[u1, · · ·, u,a] = [v1, · · ·, v,a]BJ. 

The largest singular vectors a and b of B,e will be used to obtain approximations u 
and v: 

v = [vi, ... ' v,a]a, u = [ul' ... 'u,a]b. 

Sorting and Sparsification. This corresponds to how to partition the ·computed 
approximate singular vectors u ap.d v for later sparsification process. By Theorems 3.1 
and 3.2 the reconstruction error IIA- xdyTIIF of the sparse rank-one approximation 
depends on the size of the discarded sections llu-ll2 and llv-112· Therefore it makes 
sense to sort vectors u and v in decreasing order by their absolute values so that 
the number of the discarded elements is largest under the constraints llu-ll2 ::; € and 
llv-ll2 ::; E, or llu-11~ + llv-11~ ::; 2t:2. In particular, we find permutations P1 and P2 

such that u = P1 u = [ ~~ ] , v = P2v = [ ~~ ] and 

Let ku and kv be the lengths of sections u+ and v+, respectively. Thus u+ = u( 1 : ku) 
and v+ = v(1: kv). We then choose 

x = Pt [ u(i ~ ku) ] fllu(1: ku)ll, y = P[ [ v(i ~ kv) ] /llv(1: kv)ll-

The integers ku and kv can be determined by the following two different schemes. 
• SEPARATED. In this approach, we sort the elements of u and v separately and 

ku and kv are defined by · 

k k 

ku = min { k I L u] 2': 1 - t:2 }' kv = min { k I L vJ 2': 1 - €
2

} 

j=l j=l 

for a given tolerance €. 



Matrix Low-Rank Approximations with Sparse Factors 17 

• MIXED. Another approach is to set w = [uT, vTJT and find a permutation P 
such that Pw = w, jw1l 2: lw2l 2: · · · 2: lwm+nl· We determine kw such that 

k 

kw = min { k I L w; 2: 2 - 2E2
}. 

j=l 

Obviously, the order of the u-components of vector w implies the permutation 
P1 . So does the order of the v-components for P2. Therefore the main 
section w(1 : kw) also determine u(1: ku) and ii(1 : kv), where ku and kv are, 
respectively, the numbers of u-components and v-components of w(1 : kw). 

REMARK. In general, our experiments show that the mixed scheme performs 
better than the separated scheme. 

Choice of tolerance E. At each iteration step of the Algorithm SLRA, the tolerance 
E can be chosen to be constant or variable. We will use, for variable tolerance, at the 
k-th step 

which depends on the approximation computed by previous iterations. 
Choice of k. Notice that the norm of error Ak reads 

k 

IIAkll} = IIA- XkDkYkll} = IIAII}- L d]. 
j=l 

In fact, we have 

It is quite convenient to use this recurrence as a stopping criterion of Algorithm SLRA: 

for the given user-specified tolerance tol. 
Self-correcting Mechanism. This is certainly an area that deserves further re

search, and in the following we can only touch the tip of the iceberg. When we 
use a rank-one matrix uavT that is constructed from the exact largest singular 
triplet { u, a, v} of A, the difference A - uavT will not have any components in 
the two one-dimensional subspaces spanned by u and v, respectively. Notice that 
IIA- uavTIIJ;. = IIAII}- a2 , and the amount of reduction in the F-norm is the largest 
possible by a rank-one modification. Now when we use an inaccurate rank-one ap
proximation xdyT, in general, it is true that A = A- xdyT will have some components 
left in the directions ofu and v. Also IIAII} = IIAII}-~, and the reduction in F-norm 
will be smaller. The question now is if we compute the rank-one approximation xdf)T 
for A, will xdf)T pick up some of the components in u and v that are left by the 
previous rank-one approximation xdyT? The answer seems to be yes even though we 
do not have a formal proof. This indicates that Algorithm SLRA has a self-corre.cting 
mechanism: errors made in early deflation steps can be corrected by later deflation 
steps. We now give an example that illustrate this phenomenon. Table 4 lists the 
first 10 diagonals { di} and the singular values { ai} of matrix A, respectively. In this 
example, those steps j for which di > ai show the self-correcting process at work. 



18 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

TABLE 4.1 
Self-CX?rrection 

4.5595e+05 
3.8998e+05 
4.5482e+05 
3.7309e+05 
4.4721e+05 
3.5648e+05 
2.2148e+05 
1.8609e+05 
2.3341e+05 
2.2075e+05 

4.5808e+05 
4.5762e+05 
4.5761e+05 
3.9093e+05 
3.9050e+05 
3.9049e+05 
2.2090e+05 
2.2046e+05 
2.2044e+05 
1.1472e+05 

A combinatorial optimization problem. Now we reexamine the optimization prob
lem (2.1) fork= 1. We can impose the following constraints: nnz(x) = nx,nnz(y) = 
ny, where nx ~ m and ny ~ n are fixed. Let i 1 , ... ,inz and j 1 , .. ·Jny be the indexes 
of the nonzero elements of x and y, respectively. Then it is easy to see that the 
optimization problem (2.1) is reduced to 

. mi~ IIA([il, ... ,inJ,[]!, ... ,jn]) -xd:QTIIF, 
xE"R."z ,yE"R."Y Y 

where A::::: A([i1 , ... , inJ, []!, .. ·Jny]) is the submatrix of A consists of the intersection 
of rows i 1 , ... , inz and columns ]! , ... Jny. Therefore, by Theorem 1.1 we need to find 
the largest singular triplet of A. Hence, the optimization problem (2.1) fork = 1 is 
equivalent to the following problem: Find nx rows and ny columns of A such that 
the largest singular value of the resulted A is maximized. This is a combinatorial 
optimization problem, and we do not know any good, i.e., polynomial-time, solution 
method for it. Step 2.1 of Algorithm SLRA does seem to provide an heuristic for its 
solution. Now we give an example to illustrate this point. 

EXAMPLE. In this example, we take a matrix A from [1] with the change A( 4, 3) = 
1 so that the largest left singular vector u has different elements to keep the decreasing 
order to be unique. Below is the matrix A. 

1 0 0 1 0 
1 0 1 1 1 

A= 
1 0 0 1 0 
0 0 1 1 0 
0 1 0 1 1 
0 0 0 1 0 

The goal is to compare the computed sparse low-rank approximation with the optimal 
solution of the combinatorial optimization problem computed by exhaustive search. 

We first compute the sparse approximation XkDkY{ fork= 2 using Algorithm 
SLRA with € = 0.3 and f3 = 4 for the bidiagonalization. Then we compute the best 
rank-one approximation u1 s1 v'[ to A with nnz(x1) = 5 nonzeros of u1 and nnz(y1) = 4 
nonzeros of v1, and the best rank-one approximation u2s2vf to matrix A- u 1s1v'[ 
with nnz(x2) = 3 nonzeros of u2 and nnz(y2) = 3 nonzeros of v2. Below we list the 
computed components of vectors Xi, Yi, ui, and vi. The two approximations give the 
same sparsity patterns. 



Matrix Low-Rank Approximations with Sparse Factors 19 

X1 X2 Ul U2 

0.4058 0.3245 0.4111 0.3118 
0.6146 0 0.6362 0 
0.4058 0.3245 0.4111 0.3118 
0.3583 0 0.3587 0 
0.4058 -0.8885 0.3587 -0.8975 

0 'o 0 0 

Y1 Y2 VI V2 

0.4508 0.5423 0.4905. 0.5066 
0 -0.6170 0 -0.6322 

0.3075 0 0.3346 0 
0.7734 0 0.7318 0 
0.3226 -0.5702 0.3346 -0.5863 

5. Numerical Experiments. In this section, we discuss several numerical is
sues associated with Algorithm SLRA and illustrate its effectiveness and efficiency. 
We will also compare its performance with truncated SVD and the approach proposed 
in [10]. For our numerical experiments, we made a collection of test matrices which 
are listed below together with some statistics about the matrices: matrices 3, 4, 5 
and 6 are term-document matrices from SMART information retrieval System, and 
the rest of the matrices are selected from Matrix Market [3, 7]. We do not claim that 
the collection is comprehensive that covers all possibilities. 

Matrix m n nnz(A) Density(%) Accuracy Rank-SVD 
1 ash958 958 292 19196 0.68 8.84e-1 33 
2 illc1033 1033 320 4732 1.43 1.65e-2 42 
3 cisi 5081 1469 66241 0.89 8.12e-1 68 
4 cacm 3510 3204 70339 0.63 7.70e-1 63 
5 med 5504 1033 51096 0.90 8.16e-1 79 
6 npl 4322 11429 224918 0.46 8.48e-1 41 
7 watson4 467 468 2836 1.30 3.04e-2 94 
8 orsirr2 886 886 5970 0.76 2.22e-1 248 
9 e20r1000 4241 4241 131430 0.73 8.83e-1 159 

Some explanation of the notation we used is in order here: m and n represent the 
row and column dimensions, respectively, of the the given matrix. nnz(A) gives the 
number of nonzeros of the matrix A. Density is computed as nnz(A)/(mn). The 
seventh column of the table lists the reconstruction errors of the approximations 
using 100 columns/rows of the corresponding matrix A if min(m, n) :::; 500 or 300 
columns/rows otherwise, determined by Stewart's sparse pivoted QR approximations 
(SPQR) [10]. It should be pointed that the SPQR needs a priori to determine the 
integer k, the number of columns/rows of A which are-used to construct the approxi
mation Bk = AcMA;.2 We also use the reconstruction errors ofSPQR approximation 

2 Notice that if we nee~ to compute a Bk such that IIA- BkiJF :S tol for a given user specified 
tol, there is no easy way to determine k a priori to satisfy this constraint. 



20 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON 

ash958 

' 
0.995 ' ' ' ' 
o.99 ' ' ' ' 

0.985 
0 10 20 30 

cacm 

' 0.99 ' 
' 0.98 ' 

' ' 0.97 ' 
20 40 60 

wa1son4 

lllc1033 cisi 

1[]1 0.8 0.995 ' 

0.6 0.99 ',,, 

0.4 0.985 ' ' 
' 

02. 0.98 ', 
I ' 

20 40 60 0204060 
mod 

0.99 ' ' 

0.98 

'-----~ 
020406080 

orsin2 

0.99:LSJ\,' ~ 
0.99 '' 

0.985 .... ' ' 

0 20 40 
e20r1000 o.:w 0.6 0.8 

0.995 
' 

' ' 
0.4 0.7 

I 
02 \ 0.6 

' 
' 

0.99 
' 

--
50 100 150 100 200 300 50 100 150 

FIG. 5.1. Plots for merits computed by SLRA with constant tolernce E = 0.1 and separated 
sorting scheme (solid lines) and the lower bounds (1 + bkE)- 112 in Theorem 3. 7 (dashed lines). 

as the accuracy for the numerical experiments. The last column is for the ranks of 
the best approximation obtained by truncated SVD (TSVD), i.e., bestk(A), which 
achieve the same accuracy. For Algorithm SLRA, we run a few steps f3 = 4 or 6 of 
the Lanczos bidiagonalization to compute the approximate largest singular vectors, 
because bidiagonalization is more efficient than the power method. 

TEST 1. We compare the low-rank approximations computed by Algorithm SLRA 
with constant tolerance f = 0.1 and those computed by truncated SVD. The dimension 
for Lanczos bidiagonaliz~tion for computing the approximate largest singular vectors 
is f3 = 4. We use the merit defined by 

to measure the effectiveness of Algorithm SLRA. It is easy to see that 0 :::::; merit(k) :::::; 
1. The larger the merit is, the more effective SLRA is. Below we list the merits of 
SLRA with constant tolerance<:= 0.1 and separated sorting scheme. The rank k is 
chosen to be 5 "'20% of the size l = min{m, n) of matrix A. 

Matrix k= 5% 10% 15% 20% Average 
ash958 0.9946 0.9896 0.9876 0.9845 0.9908 
illc1033 0.3622 0.9160 0.9226 0.8984 0.8595 
cisi 0.9866 0.9771 0.9690 0.9612 0.9778 
cacm 0.9774 0.9625 0.9427 0.9221 0.9596 
med 0.9882 0.9790 0.9699 0.9617 0.9790 
watson4 0.9784 0.9374 0.4833 0.3166 0.7809 
orsirr2 0.9217 0.8942 0.9136 0.9206 0.9274 



Matrix Low-Rank Approximations with Sparse Factors 

~---,._...-----

-::r~~-r~~;=:;:~;;:~;-;_ · 
-<>-"""" 
~- lk1033 
·•··dsl 

350 ....;:,-. cacm 

0.15 02 0.25 O> 

""""" VarlablaM!xltdSLAA 

0.3S 0.4 0.45 05 

------

+~~~~~~~~;;;=:;~:~:::. 

•r"~~~---r--,__v~-r-~~·-~-M~---r~~~ 
-<>- ...... 
--lllc1033 ....... 
·"~<•· cacm 
··J~:"·rnod 

--~-- npl 

..._ __ _ ....,. 
-+- e2Cr1000 

---·-4.----------~---------

~---e----e----~-- ---(;- __ -o----<'~- ----o-----a----
0 
0.05 0.1 0.15 0.2 025 0~ .,..,. 

x10
5 VarlableMJxodSLRA 

6 

0.35 0.4 0.45 

_,_.,.. 
-«-lllc1033 

-·- dsl -G- caan 
. ., .. mod ......... 
-&- wntsonc 

-""""' ...... 9201'1000 

0.5 

21 

FIG. 5.2. Plots for ronks (left) and numbers of nonzeros of Xk and Yk (right} vs starting 
epsilon for the variable toleronce, separoted (top) and mixed (bottom} sorting approaches. 

Figure 5.1 plots the merit quantities computed by SLRA with for all the nine matrices 
until Bk = XkDkY{ achieves the accuracy listed in the test matrix table. These 
examples show that SLRA has very high merits for most of the test matrices, specially 
for the term-document matrices. 

TEST 2. In general, the mixed sorting scheme gives a smaller number of nonzeros 
for the sparse factors Xk and Yk than the separated sorting scheme if we use the same 
tolerance sequence and there are no appreciable changes in rank k. Figure 5.2 plots 
the ranks (left) and the total number of nonzeros of Xk and Yk (right) computed by 
SLRA with separated (top) and mixed (bottom) sorting schemes. We use variable 
tolerance with different starting values € = 0. 05: 0. 05: 0. 5. 

TEST 3. In this test we compare TSVD, SPQR and SLRA (using variable tol
erance and mixed sorting scheme) with t: = 0.1, 0.5 and (3 = 6 for Lanczos bidiag
onalization. The approximations computed by the three approaches have the same 
reconstruction errors for each test matrix. The numerical results show that SLRA 
can give very small rank k and acceptable sparse structures of the factors Xk and Yk· 
Note that the last matrix bcsstk02 from Matrix Market [7) is a dense matrix. SLRA 
can also give sparse approximations to dense matrices. On the other hand, SPQR 



22 ZHENYUE ZHANG, HONGYUAN ZHA AND HORST SIMON 

are very effective for sparse matrices that are close to rank-deficient, for example, 
watson4 and orsirr2. 

atrix E rank total nnz flops 
ash958 TSVD 33 42339 474566713 

SLRA 0.10 34 28196 20696012 
0.50 50 13451 40396443 

SPQR 100 11036 5668695 
illc1033 TSVD 42 58590 1024293779 

SLRA 0.10 55 50343 58649189 
0.50 57 43276 62056281 

SPQR 100 11808 8909800 
cisi TSVD 68 449412 6925863163 

SLRA 0.10 72 217401 523406959 
0.50 136 102124 1587083864 

SPQR 300 129720 568382817 
cacm TSVD 63 426951 5390479001 

SLRA 0.10 67 216982 478032905 
0.50 129 121950 1488980629 

SPQR 300 133784 463854304 
med TSVD 79 522664 9598485598 

SLRA 0.10 84 278456 658852943 
0.50 157 118615 2018489359 

SPQR 300 120444 469695010 
npl TSVD 41 647472 6208537332 

SLRA 0.10 44 384118 616205165 
0.50 98 217025 2249873520 

SPQR 300 227567 588513394 
watson4 TSVD 94 96726 1305367466 

SLRA 0.10 136 39832 213502126 
0.50 175 24040 341078084 

SPQR 100 11352 7792938 
orsirr2 TSVD 248 500960 39404030518 

SLRA 0.10 274 259894 1615591558 
0.50 347 210951 2524914675 

SPQR 300 94127 110865410 
e20r1000 TSVD 159 1373919 55819003349 

SLRA 0.10 168 245692 3246302118 
0.50 247 83545 6533202985 

SPQR 300 102695 315702973 
bcsstk02 TSVD 40 6880 73220467 

SLRA 0.10 42 4350 7555338 
0.50 57 3846 11306462 

RRQR 44 7744 4266443 

6. Concluding Remarks. We have presented algorithms for computing matrix 
low-rank approximations with sparse factors. We also gave a detailed error analysis 
that compared the reconstruction errors for the low-rank approximations that are 
computed by SVD and the low-rank approximations that are computed by by our 



Matrix Low-Rank Approximations with Sparse Factors 23 

sparse algorithms. Our algorithms are flexible in the sense that users can balance 
the tradeoff of high sparsity level of the computed low-rank factors and the reduced 
reconstruction error. Several issues deserve further investigation: 1) we need to de
velop better ways- for computing sparse rank-one approximations. As we mentioned, 
for example, if we fix the number of nonzero elements in x andy, say p and q, then 
min IIA- xdyTIIF is equivalent to the following combinatorial optimization problem: 
find p rows and q columns of A such that the largest singular value of their intersec
tion is maximized. We are in the process of finding heuristics for solving this problem 
and investing the their relations to the sorting approach of Algorithm SLRA. 2) Once 
a low-rank approximation Ak is computed, a certain refinement procedure needs to 
be developed to reduce its reconstruction error and/or the number of nonzeros of its 
sparse factors. 3) It will also be of great interest to consider reconstruction errors in 
norms other than II·IIF· 

REFERENCES 

[1] M.W. Berry, z. Drmac and E.R. Jessup. Matrices, vector spaces, and information retrieval. 
SIAM Review, 41:335-362,1999. 

(2] M.W. Berry, S.T. Dumais and G.W. O'Brien. Using linear algebra for intelligent information 
retrieval. SIAM Review, 37:573-595, 1995. 

(3] Cornell SMART System, ftp://ftp.cs.cornell.edu/pub/smart. 
(4] G. H. Golub and C. F. Van Loan. Matrix Computations. iohns Hopkins University Press, 

Baltimore, Maryland, 2nd edition, 1989. 
(5] T. Hofmann. Probabilistic Latent Semantic Indexing. Proceedings of the 22nd International 

Conference on Research and Development in Information Retrieval (SIGIR'99), 1999. 
[6] T. Kolda and D. O'Leary. A semidiscrete matrix decomposition for latent semantic indexing 

in information retrieval. ACM TI-ans. Information Systems, 16:322-346, 1998. 
(7] Matrix Market. http: I /math. nist. gov /MatrixMarket/. 
(8] B.N. Parlett. The Symmetric Eigenvalue Problem. SIAM Press, Philadelphia, 1998. 
[9] H. Simon and H. Zha. Low-rank matrix approximation using the Lanczos bidiagonalization 

process. CSE Tech. Report CSE-97-008, 1997. (Also LBNL Tech. Report LBNL-40767-
UC-405.) 

[10] G.W. Stewart. Four algorithms for the efficient computation of truncated pivoted QR approx
imation to a sparse matrix. CS report, TR-98-12, University of Maryland, 1998. 

[11] G.W. Stewart and J. G. Sun. Matrix Perturbation Theory. Academic Press, 1990. 
[12] H. Zha and Z. Zhang. Matrices with low-rank-plus-shift structure: partial SVD and latent 

semantic indexing. To appear in SIAM Journal on Matrix Analysis and Applications, 
1999. 



@I;;J;!I#iiO.-"tij' ~ lb/:)td;;Jjl~l!l$ @)#lloJ;;ii§IL@Ii."/ ~ ~ 

l§m3 ~ ~ ~ @!#loj@?IIJ5\7o ~ ~~ 




