
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Continuous Semantic Inspection

Permalink
https://escholarship.org/uc/item/880242xm

Author
Yan, Yan

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/880242xm
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Continuous Semantic Inspection

A dissertation submitted in partial satisfaction of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Yan Yan

Committee in charge:

Professor William G. Griswold, Chair
Professor William Howden
Professor Ranjit Jhala
Professor Sorin Lerner
Professor Kevin Patrick

2017

Copyright

Yan Yan, 2017

All rights reserved.

 iii

SIGNATURE PAGE

The Dissertation of Yan Yan is approved, and it is acceptable in quality

and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2017

 iv

DEDICATION

To my family, and my dearest memory.

 v

EPIGRAPH

Diligence is the mother of good luck.

—Benjamin Franklin

I hear and I forget. I see and I remember. I do and I understand.

—Xun Zi

A day is a miniature of eternity.

—Ralph Waldo Emerson

 vi

TABLE OF CONTENTS

SIGNATURE PAGE ... iii

DEDICATION ... iv

EPIGRAPH ... v

TABLE OF CONTENTS ... vi

LIST OF FIGURES .. x

LIST OF TABLES .. xii

ACKNOWLEDGEMENTS ... xiii

VITA ... xv

ABSTRACT OF THE DISSERTATION .. xvi

Chapter 1 Introduction .. 1

1.1 Challenges .. 2

1.2 Overview of Continuous Semantic Inspection ... 3

1.3 Roadmap ... 5

Chapter 2 Related Work .. 8

2.1 Patch Comprehension ... 8

2.1.1 Syntax Differencing ... 9

2.1.2 Semantic Differencing ... 9

2.1.3 Interpreting Changes by Natural Language ... 11

2.1.4 Comparisons ... 11

2.2 Invariant Inference and Differencing ... 12

2.2.1 Daikon .. 13

2.2.2 Invariant Differencing .. 15

 vii

2.3 Improving Lightweight Code Review .. 15

Chapter 3 Continuous Semantic Inspection .. 18

3.1 “Hello CSI” – A GSON Case Study ... 18

3.2 Concepts ... 25

3.2.1 Invariant Differentials .. 25

3.2.2 Impact Isolation .. 27

3.2.3 Invocation Flows .. 30

3.3 Design and Implementation .. 31

3.3.1 Build Framework ... 31

3.3.2 Fact Extraction ... 33

3.3.3 Dynamic Invariant Inference .. 34

3.3.4 User Interface Generation .. 35

Acknowledgments ... 37

Chapter 4 Performance and Scalability ... 38

4.1 Challenges .. 38

4.2 Methods to Improve Performance .. 39

4.3 Scalability ... 44

Acknowledgments ... 47

Chapter 5 Quantitative Evaluation .. 48

5.1 Finishing the GSON Case Study .. 48

5.2 Reducing Inspection Load .. 55

5.3 Checking Test Sufficiency ... 60

5.4 Checking Semantic Change Consistency ... 63

 viii

5.4.1 Incorrect Invariants .. 65

5.4.2 Missing Expected Invariants .. 67

5.5 Threats to Validity .. 68

Acknowledgments ... 70

Chapter 6 User Study .. 71

6.1 Study Description ... 72

6.1.1 Roles and Participants .. 72

6.1.2 Issue Lifecycle and Reviewer Workflow ... 74

6.1.3 Study Tasks .. 77

6.2 Code Review Process ... 80

6.2.1 Control Group Review Process .. 81

6.2.2 Experimental Group Review Process ... 86

6.3 Reviewer Feedback .. 91

6.4 Limitations .. 94

6.5 Threats to Validity .. 95

6.6 Final Remarks ... 96

Acknowledgments ... 96

Chapter 7 Future Work ... 97

7.1 Quality of Invariant Differentials ... 97

7.2 Tool Integration .. 99

7.3 More Applications .. 100

Chapter 8 Conclusion .. 102

Appendix I .. 105

 ix

Appendix II ... 111

Bibliography ... 113	

	 	

 x

LIST OF FIGURES

Figure 1 Likely invariants are a summary of test executions .. 13

Figure 2 The commit history for JsonPrimitive:equals .. 19

Figure 3 A screenshot of GETTY for commit #7 .. 21

Figure 4 Source-impact isolated invariant differentials ... 23

Figure 5 Source code changes to JsonPrimitive:equals ... 24

Figure 6 Test change impact isolation for commit #7, for old source ... 28

Figure 7 Three-layer GETTY Architecture ... 32

Figure 8 Patch Summary Zone .. 35

Figure 9 Invocation Flow Zone .. 35

Figure 10 Semantic Inspection Zone ... 36

Figure 11 Inference Execution Time of 6 Open Source Projects .. 42

Figure 12 Average running time versus number of processors ... 45

Figure 13 Cloud cost of invariant extraction against the number of CPUs used 46

Figure 14 Selected dynamic invariant differentials for commits #1 - #3 49

Figure 15 The failing test case in commit #10 ... 50

Figure 16 New feature to compare between integers in commit #4 .. 50

Figure 17 Commit #4: the invariant differential clearly indicates a bug. 51

Figure 18 Test case to confirm the integer-equality bug ... 52

Figure 19 Test case to confirm the decimal-equality bug .. 53

Figure 20 Commit #11: invariant differential points to a similar bug as commit #4 53

Figure 21 Fixing the introduced integer-equality bug ... 54

Figure 22 Test Sufficiency Inspection Result .. 61

Figure 23 GSON bug at commit b634804, indicated by the invariant diff 65

 xi

Figure 24 Collections bug at commit 83226e1, indicated by the invariant diff 66

Figure 25 Crypto bug at commit 9faf04e; no invariant diff for exit-point 138 67

Figure 26 Configuration bug at commit c75a72c, lack of invariants for String conversion 69

Figure 27 User Study Issue Lifecycle .. 75

Figure 28 Reviewer Interactions .. 76

Figure 29 Control Group Review Process ... 81

Figure 30 Code change in the intValue method ... 82

Figure 31 the intValue method with context .. 83

Figure 32 Experimental Group Review Process .. 86

Figure 33 Invariant and code diff for the longValue method in GETTY .. 87

Figure 34 The test case for the longValue method .. 88

Figure 35 Use test impact isolation to verify the lack of tests ... 89

 xii

LIST OF TABLES

Table 1 Behavior Comparison Strategies .. 29

Table 2 Execution Time in ATAM Mode .. 39

Table 3 Project Information and Execution Time of Dynamic Inference 40

Table 4 Execution Time (Hours) of Different Modes (1) .. 41

Table 5 Execution Time (Hours) of Different Modes (2) .. 43

Table 6 Execution Time (Hours) of PATSC Mode ... 44

Table 7 Results of Invariant Reduction without Impact Isolation ... 56

Table 8 Results of Invariant Reduction under Source Impact Isolation .. 57

Table 9 Results of Invariant Reduction under Test Impact Isolation for Old Source 58

Table 10 Results of Invariant Reduction under Test Impact Isolation for New Source 58

Table 11 Results of Inspecting Buggy Commits ... 64

Table 12 Participant Labels ... 74

 xiii

ACKNOWLEDGEMENTS

I am greatly indebted to my advisor, Professor William G. Griswold, for his

guidance and support in my research and other matters. His insightful advice has always

turned my seemingly trivial ideas into exciting projects. I can still remember our first

research meeting when I discussed my initial idea of using invariants for software

engineering. At that early phase of my research, he encouraged me to dig further and

wider, and positively fostered all my following research activities. Bill has also been my

inspirational example of personal charisma and professional integrity. He has been a

great mentor and demonstrated to me his high bar of success in family life without

compromising any quality of his professional achievement. I feel it a great honor to have

the chance to work with Bill and stay in the Griswold academic tree.

I am very grateful that I had the opportunity to work with Doctor Massimiliano

Menarini. He was my colleague and later became my de facto co-advisor after he got his

PhD degree. Max is a very smart researcher and engineer. He unblocked me from nearly

all the technical issues I had encountered in my research. Max met with Bill and me

regularly to discuss about this dissertation. Max shared numerous great opinions and new

ideas. He was the co-author of all my research papers, and was also actively involved in

the acquisition and analysis of the data for Chapter 4, Chapter 5 and Chapter 6 in this

dissertation.

Thanks must also go to the professors Sorin Lerner, Ranjit Jhala, and William E.

Howden, for sharing their insightful comments during the course of my research. Their

input was invaluable. I learnt that not only the research results but also the way to achieve

 xiv

and present them matter. Special thanks are given to Professor Kevin Patrick for his

support of my first half of PhD study. His CYCORE project attracted me into the area of

web applications and thus had a deep impact on my career path. Here I would like to

thank all my committee members for reading my dissertation and attending my final

defense.

Life at UCSD would be dull without all the great people I met during this phase of

my life. First thank Professor Ingolf Krueger for recruiting me and becoming my first

advisor. I felt home to meet with my office mates: Massimiliano Menarino, Barry

Demchak, Celal Ziftci, Filippo Seracini, To-ju Huang and Xiang Zhang, and then Steven

Rick, Danilo Gesques Rodrigues and Soohyun Nam. Specially, I would like to thank

Professor Nadir Weibel for providing the nice lab for doing my user study for Chapter 6.

Chapter 3 contains the material as it appears in “Mining Software Contracts for

Software Evolution”. Yan, Yan; Menarini, Massimiliano; Griswold, William G. IEEE

International Conference on Software Maintenance and Evolution, 2014. The dissertation

author was the primary investigator and author of this paper.

Chapter 3, Chapter 4, Chapter 5 and Chapter 6, in part, are currently being

prepared for submission for publication of the material, Yan, Yan; Menarini,

Massimiliano; Griswold, William G. “Mining Code Repositories for Semantics-Assisted

Code Review” The dissertation author was the primary investigator and author of this

material.

At last, I appreciate the support of my family. This work is dedicated to you, my

most important people in this world.

 xv

VITA

2006 Bachelor of Science, Tsinghua University

2009 Master of Science, Peking University

2014 Internship, AppFolio, Inc.

2015 Internship, Uber Technologies, Inc.

2017 Doctor of Philosophy, University of California, San Diego

 xvi

ABSTRACT OF THE DISSERTATION

Continuous Semantic Inspection

by

Yan Yan

Doctor of Philosophy in Computer Science

University of California, San Diego, 2017

Professor William G. Griswold, Chair

As testing is an incomplete validation of software changes, many developers

review code changes before patching the system. Popular source code versioning systems

aid review by showing the textual differences between the old and new versions of the

 xvii

source code. This leaves developers with the difficult task of determining whether the

differences produced the desired behavior.

We introduce Continuous Semantic Inspection (CSI), which aids code review

with inter-version differential semantic analysis. During inspection of a new commit, a

developer is presented with not only code differences, but also changes to behaviors, as

expressed by likely invariants inferred from testing. We hypothesize that with the extra

semantic information developers can more easily determine whether the code changes

produced the desired effect.

This dissertation comprises four parts to demonstrate our hypothesis. (1) We

present the design and implementation of GETTY, a highly automated tool to support the

concept of CSI. (2) To scale the expensive invariant inferences for practical use, we

divide GETTY’s analysis into multiple processes distributed to a 16-processor cluster. We

achieve substantial performance improvement and show that our approach is feasible for

open source projects by enabling a timely repair-compile-review feedback loop. (3) From

applying CSI on six open source projects, we found inferred invariants contain the

information required to help discover insufficient tests and inconsistent semantic changes

at the time of their introduction. (4) We conducted a user study of reviewers using

GETTY, which shows that invariant differentials draw attention to information that

otherwise often escapes notice, helping developers formulate more focused questions that

keep the review moving forward.

1

Chapter 1

Introduction

Code review is a software quality assurance practice of examining changed code

for overlooked mistakes. Most code review processes fall into two categories: formal

software inspection and lightweight code review [1]. Formal software inspection is the

traditional method of review that mandates strict review criteria, including but not limited

to specification checklists and in-person meetings [2]. By contrast, lightweight code

review requires less overhead and is intended to be more cost-effective. Reviewers peruse

the changed code and make judgments based on their own experience, and the form of

conducting reviews is flexible.

Nowadays most organizations and companies are adopting lightweight code

review practice as part of team shipping processes [3]. For example, Google requires all

code changes to be peer reviewed before deploying [4]. In a typical interaction cycle,

developers submit a patch of reasonably small size for review [5]; reviewers (often other

developers [6]) examine the code changes, check for implemented functionalities and

possible mistakes, and either accept the patch or send feedback for a revision. The end

result of fast development-review turnarounds is a development history of frequent,

small, independent, and complete contributions by both developers and reviewers.

In this dissertation, we are concerned with improving the quality and efficiency of

lightweight code review process.

2

1.1 Challenges

Today’s popular Version Control Systems (VCS, e.g., git [7]) integrate with

textual differencing tools (e.g., git-diff [8]) to aid lightweight code review. A reviewer

can start with a summary of changed code between two versions, then navigate to related

code snippets at their own discretion. When developers are fixing a bug, for example, a

reviewer expects the code changes to reflect changes to the software’s behavior such that

the erroneous behavior is gone.

However, the textual, program-level differences from current differencing tools

provide only indirect information about the actual behavioral impact of code changes.

The results of testing provide only a pass/fail view of that behavior, perhaps disguising

subtle bugs. Reviewers have to read further into the source code to understand both the

syntactic and semantic changes, and examine the related tests to verify that the changes

are being properly tested. For certain cases, serious reviewers will have to compile the

code, run the tests and manually observe their runtime behaviors to confirm the change

delivers the desired result.

This dissertation aims for an effective and efficient method to aid code review by

bridging the gap between textual code differences and their actual behavioral impacts.

There are existing solutions (as will be discussed in Chapter 2) in three categories: syntax

differencing, semantic differencing, and natural language interpretation, with decreasing

human efforts and increasing computational efforts. As code review activities are

becoming more and more frequent [5], ideal methods should also be efficient for fast

development iterations. However, the solutions that require less human efforts are

3

generally not efficient enough, while the efficient solutions may require more effort from

reviewers. Therefore, it remains challenging to design a means that is both effective and

efficient.

1.2 Overview of Continuous Semantic Inspection

We propose balancing the computational and human efforts so it is both effective

for reviewers and efficient for fast software iterations. To this end we advocate inspecting

program semantics during code review, with the assurance that crafted tooling will

support the inspection in fast development cycles like nightly builds.

To support and encourage semantic review of source code changes, we provide

reviewers with direct summaries of the behavioral effects of those changes. The

summaries would ideally be concise, comprehensive, presented in a familiar notation, and

integrated into the existing reviewing infrastructure. Likewise, the production of the

summaries should require little or no effort on the part of the developer or reviewer, just

like Continuous Integration today supports effortless testing. We call the resulting

infrastructure and process Continuous Semantic Inspection (CSI).

In CSI, we suggest differencing semantics in order to produce a focused view of

the important behavioral changes. The idea of differential assertion checking [9], [10] is a

gesture in the right direction, but the requirement to manually add assertions is both

labor-intensive [11] and does not provide a comprehensive view of semantic effects.

However, applying this concept to the likely invariants extracted by a tool like Daikon

[12] could provide the best of both worlds. Its invariants are reported in the terminology

of the program itself at the method and class level, akin to software contracts. Although

4

Daikon can produce overwhelming volumes of likely invariants, differencing them can

eliminate this problem. Because they are reported at the method level, it is easy to attach

them to the code difference summaries provided by a tool like git.

The approach is not without challenges, however. First, the behavioral effects of

changed source code versus changed tests must be distinguished, or the reviewer could be

misled. Second, changed code can have widespread effects on behaviors, affecting other

parts of the code. Reviewers need help in finding paths where semantic effects propagate.

Third, many compute-intensive steps are implied by this approach. For example, inferring

invariants from runtime information can be costly because it may have to be done at

whole-program mode. Given that more tests are more likely to ensure software quality,

they may also deteriorate the performance and invalidate practical use of a tool.

We propose isolating behavioral impacts to one part of the program by fixing the

other parts of the program during check-in. For example, by running the same tests on

both the old and the new source, all resulting invariant differences can be confidently

attributed to the source. To help reviewers reason about behaviors, we build local-area

call-graphs consisting of callers, immediate siblings and callees for each method of

interest. We hypothesize that all semantic information is organized in a natural way for

reviewers to digest: reviewers can isolate behavioral changes of interest, and they can

explore the related behavioral changes by following the control flow displayed in the

local-area call-graphs.

For efficiency, we suggest parallelizing test executions to improve performance.

We identified that the performance bottleneck of our approach is the invariant inference

5

process, whose massive cost is in turn due to memory pressure. Software testing is

embarrassingly parallel, and so is dynamic invariant detection. We can distribute the load

of inference processes to multiple processors to reduce the memory pressure. We also

found this approach is highly scalable in that dispatching inference processes to a high-

performance cluster achieved substantial performance improvement. Therefore, we

proved that our approach is efficient for practical use.

1.3 Roadmap

This dissertation presents our approach to aiding code review. We argue that our

approach is both effective and efficient. The remainder of this dissertation is structured as

follows.

In Chapter 2, we discuss the related work. We discuss the existing differencing

techniques that deal with different levels of program information. After comparing their

computational and human costs, we discover that semantic differencing is the promising

technique that better balances the trade-offs between effectiveness and efficiency. This

observation motivated the overall design of our approach. After investigating into the

existing, highly usable, invariant detection tool, Daikon [12], we decide to use

dynamically inferred invariants to help reviewers better understand semantic changes.

In Chapter 3, we define the concept of Continuous Semantic Inspection (CSI),

which is enabled by augmenting code-change summaries with automatically extracted

behavior-change summaries. We introduce CSI through a scenario of a reviewer using

GETTY, our tool support for CSI, on an open source project. The scenario highlights the

three most salient features of CSI: behavioral diffing, impact isolation, and exploration of

6

invocation flows. We present the design of our GETTY tool. GETTY differences likely

invariant dynamically inferred by Daikon, isolates invariant changes due to single source

by fixing other parts of the program before inference, and builds the local-area dynamic

call-graph to organize gathered invariants. We finish this chapter with a three-layer

implementation of GETTY. The infrastructure layer integrates Daikon and existing open

source tools for Continuous Integration, like Maven [13] and git, which eliminates the

human overhead of pulling check-ins and building source code [14]. The application

layer follows the design of GETTY to extract likely invariants for diffing. It also computes

all the information needed, including static change summary and dynamic invocation

flows, for the top layer that generates User Interface (UI) for reviewers.

In Chapter 4, we describe the improved implementation of GETTY for scalability.

It automates and parallelizes the production of invariants for Java projects. We introduce

and study different modes for the parallelization. We found that dividing inference

processes at class level achieved most performance improvement on a single computer,

and substantial performance boost when the processed were deployed to multiple cluster

nodes. This reveals that although likely invariant inference is expensive in practice, it is

possible to leverage the independent nature of test executions to distribute the inference

process in the cloud and achieve the desired performance.

We evaluate the effectiveness of GETTY in the next two chapters. In Chapter 5, we

present a case study of Google’s JSON library (GSON) where we replayed a portion of

its revision history, showing that employing CSI provides behavior-change summaries

that can reveal bugs and other problems earlier than they were actually discovered. To

7

generalize our observation, we performed a retrospective quantitative analysis of six open

source projects, where CSI as supported by GETTY helped find gaps in testing in 32 of

100 commits. Furthermore, for one known bug in each of six projects, CSI’s invariant

differentials made the bug evident at its point of introduction in 4 out of 6 cases. In

Chapter 6 we evaluate the effectiveness of GETTY from a human perspective. We

conducted a six-group user study to observe whether and how GETTY users achieved the

desired goals in a code review setting where they inspect real issues and commits from

GSON repository. We found that GETTY users generally outperformed the past reviewers

of GSON in that they were able to more actively identify specific test inadequacies. The

derived review patterns prove effective in discovering bugs at earlier times.

In Chapter 7 we discuss other potential applications of using invariants,

alternative inference techniques, and future work. We conclude in Chapter 8.

8

Chapter 2

Related Work

A large body of work has attempted to help reviewers understand the commits,

known as patch comprehension. The techniques come with various computational and

human costs. Care must be taken to balance the costs for better assisting code review. In

this chapter, we will first discuss all the related techniques for patch comprehension in

Section 2.1.

Our proposed invariant-based technique depends on the tools we use for invariant

inference and differencing. From the many options that exist we choose Daikon and

textual differencing for our research. Daikon and the related invariant differencing

techniques will be discussed in Section 2.2 of this chapter.

At last, a number of research literatures are dedicated to improve the quality of

lightweight code review by utilizing other code analysis tools. This will be discussed in

Section 2.3.

2.1 Patch Comprehension

Software patches are mostly implemented and expressed by line-based, textual

changes to source code. To help understand a patch, developers created a spectrum of

techniques to translate its textual changes into more meaningful representations. Some of

these techniques may not be designed for code reviews, but they can potentially bridge

the gap between textual code changes to their semantic impact.

9

2.1.1 Syntax Differencing

One step to better comprehend code change is to understand its underlying

syntactical changes. GumTree [15] takes as input two versions of source code, computes

differences between their Abstract Syntax Trees (ASTs), and derives a sequence of edit

actions that well reflects developers’ intent. It uses an efficient differencing algorithm so

as to scale for large ASTs in open source projects. In addition to element additions and

deletions, GumTree is particularly helpful in detecting moved and renamed elements.

Kim et al. apply structural changes project-wide (LSdiff [16]) and introduce the concept,

systematic changes (similar, related changes to multiple contexts), into a code review

tool, CRITICS [17]. Given a specified change, CRITICS prepares a context-aware AST edit

template. As an effort to interact with the tool, reviewers iteratively customize its

parameters, let it match against codebase, summarize systemic edits and locate

potentially problematic edits. CRITICS scales to industry-scale projects and receives

favorable feedback from professional engineers. Furthermore, the set of elements that are

relevant or essential (for example, references of a changed method) but not presented

directly in the textual code change can be computed to better understand the impact of

code change [18], [19].

2.1.2 Semantic Differencing

Static Semantic Differencing. Many researchers have appreciated the value of

differencing static semantic information. Lahiri, Vaswani and Hoare from Microsoft

Research discuss differential static analysis [20]. Several promising applications are

highlighted, including semantic differencing and differential contract checking. Person et

10

al. proposes differential symbolic execution to detect and characterize the effects of

program changes in terms of behavioral differences, then use a theorem prover to

compare the symbolic summaries for such differences [21]. iProperty hits the similar idea

[10]. SYMDIFF [9] presents differential assertion checking for comparing different

versions of a program with respect to a set of assertions. The approach defines relative

correctness: the second program version does not violate assertions the first one satisfies.

Although it provides a weaker guarantee than outright correctness, it is more tractable

than traditional assertion checking, and is still powerful: the authors of SYMDIFF were

able to soundly verify null-pointer dereferencing bugs.

Dynamic Impact Analysis. Chianti executes tests on two versions of the code

and differentiates their runtime behaviors, then it decomposes the difference into a set of

predefined atomic changes like “add a new class”, “remove a method”, “change

definition of static initializer”, etc., and then relates those changes to affected tests [22].

Chianti is particularly helpful in isolating changes that lead to a test failure. iDiSE

considers dynamic calling context information from inter-procedural analysis to

categorizing impact behaviors, and extending notions of test coverage by chang impact

information [23]. Although Chianti and iDiSE were designed as debugging tools, their

underlying technologies could be applied to aid code reviews.

Hybrid Differencing Techniques. Holmes and Notkin take a hybrid static-

dynamic approach to the differencing concept [24]. Their approach analyzes invocation

dependencies based on their presence in each of four graphs: the static call graph and the

dynamic call graph from each of the two versions given. A visualization of the

11

differences across the cross-product of graphs can reveal anomalies that motivate further

inspection. For example, a developer who updated a third-party library and expected their

system to behave the same would be surprised to find their control flow has changed at

runtime, but in the static call graph.

2.1.3 Interpreting Changes by Natural Language

Another very broad area of related work that can help programmers understand

semantic changes is program comprehension in natural languages [25], [26]. Recently, Su

et al. [27] and Devanbu et al. [28] used statistic models to study software and buggy code

and discovered their naturalness as human artifacts. This makes it possible to understand

code changes by using natural languages processing techniques. For example, reviewers

often read test cases to understand code changes between two versions [29]. A recent

technique, TestDescriber can extract natural language phrases from test cases and

generate natural language summaries [30].

2.1.4 Comparisons

Computational cost vs. human effort. Syntax analysis itself does not imply any

computational cost on semantic inference. Its main focus is to help developers understand

editing activities. But to understand the resulted patch developers need to take their own

efforts to understand the semantics. On the other hand, natural language interpretations

can be much easier for human consumption. However, that implies significantly more

computational cost on semantic inference and language translation. What is worse,

natural languages are by their nature ambiguous so it is nearly impossible to ensure the

12

preciseness or even correctness of the result. Balancing computational cost and human

effort, we favor the idea of semantic differencing.

Static vs. dynamic techniques. Despite great potentials, the practical use of static

differential analysis is limited because the approach generally requires users to write

assertions, intermediate contracts, or worse, proof scripts, all of which impose very high

overhead to programmers [20]. By contrast, dynamic differential analysis can be more

accessible because it generally does not require extra annotations. Moreover, static

analysis can be overly conservative, limiting the value of its inferences. By contrast,

dynamic analysis provides insights from runtime information, which helps increase

reviewer’s confidence. However, it is worth noting that dynamic semantic analysis could

perform in whole-program mode so scalability problems of dynamic analysis tools could

be more serious than static analysis tools [31]. Our approach is motivated by dynamic

differencing ideas like [23] and [24], but uses differences of source-level likely program

invariants rather than differences in the more abstract control flow. We also dealt with

performance and scalability issues that could impede its practical use for code reviews.

2.2 Invariant Inference and Differencing

Runtime information is often named in the low-level binary code or machine

language space. Such information from trace files can be hard for users to understand. In

addition, runtime information can be unstable. For example, applications using system

clock or random number generator may get different results from them each time. Using

runtime information carelessly risks high rate of false positives or false negatives. [31]

13

2.2.1 Daikon

Invariants, as a summary of runtime data from test execution, can be a powerful

tool for reviewing semantic differences. Dynamic invariant inference was pioneered by

the Daikon tool [12].

Daikon comprises a front-end and a back-end. The Daikon front-end (also known

as an instrumenter or tracer) instruments the target program. During program execution,

The Daikon front-end records information about variable values at entry- and exit-

program points, and produces data trace files. One can choose to obtain traces for only

part of the target program to avoid inundating onself with output, and can also improve

performance. After recording data traces, Daikon passes it to its back-end (invariant

detector) as input. The Daikon back-end applies machine-learning techniques to infer

likely invariants, according to its set of invariant template library, from the traces.

Figure 1 Likely invariants are a summary of test executions

 boolean isEqual(int a, int b) {
 return (a == b);
 }

(a) Method implementation
 void testIsEqual() {
 assert isEqual(2, 2);
 assert isEqual(100, 100);
 assert !isEqual(4, 5);
 assert !isEqual(70, 60);
 }

(b) Tests for the method

Entry-Point:
 a > 0, b > 0, ...

Exit-Point:
 (return = true) → (a = b), ...

(c) Inferred likely invariants

14

The inferred likely invariants can be considered a summary of the program

executions. As an example, consider the isEqual method in Figure 1. Developers added

four test cases (four pair of numbers) to verify the correctness of the implementation.

From test execution, Daikon deduces that at the entry-point of the isEqual method, a

and b are both positive numbers, and that at the exit-point, if the method returns true

then a and b must be identical. The expected contract of the isEqual method should

indicate that it returns true if and only if a and b are identical. Likely invariants are close

to the expected contract in that they indicate the method is probably correct when

comparing two positive numbers. As a summary of the test executions, the closer they are

to the expected contract, the better quality of the test suite it can be.

Daikon’s invariant template library supports a wide range of invariants for up to

three scalar dimensions. For example, its FloatLessThan is an invariant type

representing the “less than” relationship between two double scalars. Daikon is especially

supportive for inferring invariants for arrays; for example, it can detect invariants

regarding an array’s size, index, and even relationships between internal elements.

Daikon is still under active development and is limited in certain ways. For

example, Daikon does not have a strong invariant template for the String type.

Optimistically, String is just an array of characters, so there is potential for

improvement of Daikon by taking advantage its excellent array invariant templates.

Likewise, currently Daikon does not support invariant inference for program points that

throw exceptions. We use an improved version of Daikon that supports exceptional exit

invariant inference [32].

15

2.2.2 Invariant Differencing

The number of invariants inferred by Daikon can be overwhelming, while they

may not be all useful. However, we need not display all invariants to reviewers. Since our

purpose is to help developers understand the change of semantics, we difference the

invariants and display the changes only. We postulate the number of changed invariants

is smaller than the number of all invariants, and consequently the number of invariants to

display can be reduced.

Our differencing method is based on the similarity of invariant texts. We

discussed in Section 2.1.2 alternative methods that support some understanding of logic.

As an application example, Randoop employs static invariant differencing to determine

when random test case generation can halt, that is when adding tests stops improving the

invariants [33]. Their differencing method is more sophisticated than our current textual

approach. We will discuss our plan on improving our results by comparing logical

formulae in Section 7.1.

2.3 Improving Lightweight Code Review

Researchers expended significant effort on understanding how developers

understand the code and how code review quality can be improved. Y. Tao, et al.

conducted an exploratory study at Microsoft and revealed the lack of tool support for

acquiring information such as a patch’s completeness, consistency and risks [29]. O.

Kononenko, et al. performed a qualitative analysis of a survey of 88 Mozilla developers,

and concluded that code review quality is greatly influenced by the thoroughness of

reviewers’ feedback and their familiarity with the code [5]. On this path, we believe that

16

tool support for helping developers understand behavioral aspects of the code base is a

direct solution for improving code review quality.

Unfortunately, most code review tools were not following the same path. For

example, CRITICS [17] (discussed in Section 2.1.1) is designed to be a dedicated code

review tool for helping understand developers’ editing behaviors, but program’s semantic

differences. Gerrit, created by Google and integrated with git, supports distributed code

review by providing a staging area for changes where they can be reviewed prior to

committing to the repository [34]. Phabricator is a platform integrating many tools,

including git-diff based code review [35]. Our code review tool, GETTY (to discuss in

Section 3.3), generates results as HTML files and thus could be integrated into these

existing platforms. However, different from textual-diff based tools, GETTY adds

semantic information to aid code review and has its unique advantages in discovering test

inadequacies and bugs (Chapter 5).

Additionally, reviewers may use other tools for assessing code quality during

review. For example, reviewers of Apache Commons Collections project use Checkstyle,

FindBugs and EMMA [36]. Checkstyle is a tool to automate the process of checking

whether the code adheres to a style standard [37]. Coding style issues are outside the

scope of this paper, but it is more often integrated into the build process of a project so

reviewers should mostly see the code clear of style issues at code review phase. FindBugs

is a static analysis tool for detecting code patterns that could lead to bugs. It grants

reviewers insights about bad code smells, according to a list of known bug patterns, by

analyzing the syntactic structure of a program [38]. Such static bug detection technique

17

has the advantage of not being limited by the quality of tests and can be supplemental to

our dynamic approach. EMMA is a Maven plugin for reporting code coverage by the test

suite [39]. The quantitative evaluation of our tool on reviewing test cases (Section 5.3)

corroborates recent results that popular test coverage tools are not always a good

indicator of test suite effectiveness; and the user study (Chapter 6) demonstrates that our

tool is stronger than EMMA for evaluating test suite during code review.

18

Chapter 3

Continuous Semantic Inspection

We propose that, during inspection of a new check-in, we present to a developer

with not only code differences, but also changes to behaviors. Behavioral changes can be

expressed by likely invariants, which can be dynamically inferred from test execution. As

a result, developers can more easily determine that the code changes produced the desired

effect, or introduced a bug.

In this chapter, we first build a scenario from an open source project and

introduce the most salient features of our approach, Continuous Semantic Inspection

(CSI). After discussing CSI, we provide details on the design and implementation of its

tool support, GETTY. We use GETTY to complete the case study of the open source project.

3.1 “Hello CSI” – A GSON Case Study

We introduce CSI through a scenario of a reviewer using our GETTY tool for Java

on the GSON project [40]. The GSON project is a Google-sponsored open source Java

library for conversions between Java Objects and their JSON representations. From the

start of the project in 2008 until the writing of this dissertation, GSON has undergone

1,302 commits by 44 contributors, with 33 software releases. All changes were peer

reviewed.

Of interest is the change history of the equals method in the JsonPrimitive

class. JsonPrimitive represents a JSON primitive value that is a string, a Java primitive

19

(e.g., int), or a Java primitive wrapper type (e.g., Integer). The class has a value

attribute that stores the value of the primitive. Its equals method takes as an argument

another JsonPrimitive object and returns true if and only if both objects contain

identical values of the value attribute.

Figure 2 shows, in chronological order, all 12 commits in the history that affected

the behavior of the equals method. To ease our presentation, we refer to a commit by its

index number in the circle rather than the commit hash underneath. Our target method

was firstly implemented in commit #1. After commit #12 the implementation stabilized

and the feature is kept for all future versions. Notice that we highlight commit #10 that

introduced a test comparing two JSON primitive integers: 264+5 and 5. As asserted the

equals method should return false because the two integer values are different. However,

Figure 2 The commit history for JsonPrimitive:equals

public void testEqualsIntegerAndBigInteger() {
 JsonPrimitive a = new JsonPrimitive(5L);
 JsonPrimitive b = new JsonPrimitive(
 new BigInteger(“18446744073709551621”)); // 2^64 + 5
 assertFalse(a + “ equals ” + b, a.equals(b));
}

#1
f647a26

#2
cba564b

#3
1baaf56

#4
e89c949

#5
0a99075

#6
fd3b740

#7
704c0cb

#8
7d1fbeb

#9
abd6cef

#10

 903769e

#11

a263a3f

#12

423d18f

20

the test failed because our target method returns true instead. Apparently, it is a bug. The

bug was never fixed: in the last related commit (#12) developers considered “the price is

too much to pay” to fix the bug and manually passed the tests by changing its

assertFalse to assertTrue.

In this case study, a bug was not revealed until commit #10, despite the fact that

all prior commits passed their code reviews. We are interested in which of the previous

commits actually introduced the bug. We will answer this question in Section 5.1. Here,

we “replay” the review of commit #7, supposing that the GSON team had access to

GETTY. The reviewer is seeking to confirm that a bug in equals for comparing an NaN

floating point value (not-a-number) has actually been corrected. The reviewer brings up

the default view, comparing commit #7 to the previous commit, in which each version is

run on all the test cases in its own commit (Figure 3). This provides a holistic view of

what happened between the two commits, but does not distinguish the effects due to

source changes versus test changes.

The reviewer first peruses the upper box in the figure, which lists top-to-bottom

(a) two commit hashes under compare and the common package name of all methods of

the project, (b) the source code methods that have changed (highlighted in blue), (c) the

testing methods that have been updated (also highlighted in blue) and (d) the methods for

which their invariants have changed compared to previous commit (hidden by default,

but highlighted in red in all boxes).

21

The reviewer has clicked the JsonPrimitive:equals method link (boxed in

green) in the “Updated Source” section, causing it to be listed in the middle of the next

section of dotted boxes, as well as listing its changed invariants at the bottom.

The dotted boxes are a summary of the invocations closely related to equals.

Above equals, the reviewer sees that there are just three direct callers of equals. The

caller shown in red is an indication that there were changes to its invariants. The callers

shown with underlines indicate that there were changes to its source code, which is

consistent to the methods underlined in the above box. Notice that all callers of equals

are tests. Reviewers can choose to hide them by clicking the toggle button that

Figure 3 A screenshot of GETTY for commit #7

22

immediately follows the “Tests” option. To the left of equals are shown methods that

one of equals’s caller called immediately before calling equals, and to the right

methods that one of equals’s callers called immediately after equals returned.

Similarly, methods in red indicate change of invariants and methods underlined change of

source code. In addition, the methods in gray indicate their invariants remain unchanged

after the commit. Reviewers can choose to hide such methods by clicking the toggle

button that immediately follows the “More Methods” option. The reviewer does not see

anything on the left that suggests that they would affect equals’s invariants because they

all appear to be queries without any side-effects, so she is not motivated to click any of

them to view their invariant or source code differences. The box below shows the

methods that are called by the equals itself. The red highlighting on the two type tests

were not modified for this check-in (they are not underlined, and do not appear in the

modified source list above), so the reviewer surmises that other changes in commit #7 –

test cases or changes to equals itself – have altered their invariants.

The reviewer now turns her attention to the invariants displayed below the

invocation summary. Removed invariants are highlighted in red, added invariants

highlighted in green, and changed invariants highlighted in yellow (none in this figure),

just as text changes are highlighted in git. The gray header closely above the removed

invariants indicates that they are for the entry point of the method. The reviewer’s

immediate observation is that commit #7 is an improvement since it is now testing for the

case when other is equal to null, as well as for other cases that are not only for

23

JsonPrimitives, although she suspects that the latter is only due to checking for the null

case.

She might check into that issue later, but what is bothering her right now is that

she cannot tell whether the NaN bug has been fixed. She suspects that is because both the

code and the test cases have been changed, so she switches the view to a condition in

which both commits were run on the same tests, choosing in particular the union of their

two test suites (Figure 4). This view can be turned on by choosing from the tab labeled

“Source Change Only” that indicates reviewers want to see invariant changes due to

nothing but change to the method itself. She knows that some old test cases might not

compile on the new code and vice versa, but that is fine with that, since a non-compiling

(and hence non-running) test case will be useful behavioral information captured by the

invariants that distinguishes the source code of the two versions.

Figure 4 Source-impact isolated invariant differentials

24

When the results of the new testing condition are displayed, the reviewer

immediately surmises that equals now returns true for the case when this.value and

other.value are both NaN (the added invariant, in green), whereas before it returned

false (the removed invariants just above it, in red). Their gray header shows that these

invariants apply just to the return statement (i.e., exit point at line 361), which is where

the floating-point cases are handled.

The reviewer is pleased, but the fact that this exit point only ever returns true

tells her that it is being under-tested. Before firing off a comment to the developer, she

scrolls down to view the source code diff for the equals method by clicking the tab

labeled “Source Diff” of “More Display Options” section. The output (Figure 5, cropped)

displays code differentials starting from the first line of code change. Optionally, she

could use the side bar to scroll up or down to view the full method body. She notes that it

is fairly straightforward and probably correct. She still sends a comment to the developer

Figure 5 Source code changes to JsonPrimitive:equals

25

asking for at least a failing test case, but frames it in terms of the test being useful for

future regression testing.

The above scenario highlights the three most salient features of CSI as embodied

by GETTY: invariant differentials, impact isolation, and exploration of invocation flows.

The display of just the changes in invariants provided the reviewer with a concise and

focused view on commit #7, despite the fact that the commit had dozens of invariants. As

a result, she could make quick inferences about the commit. The ability of the reviewer to

explore different combinations of old and new tests helped her isolate the semantic

affects due to the source changes. Finally, the summary of the application’s call structure

around equals helped her quickly focus on a particular part of the program. In a more

complicated case, she might have chosen to click on some of the invocations to further

explore changes to invariants. In the following sections, we provide additional details on

these three elements.

3.2 Concepts

3.2.1 Invariant Differentials

CSI builds on a summary of a program version’s behavior. We use Daikon, but

many similar tools could suffice. Key for our purposes, however, is summaries of the

input-output behavior of methods. These can naturally be phrased in terms of observed

invariants. For a dynamic tool like Daikon, these invariants are not absolute, but depend

on executions, which we discuss more in the next subsection.

The number of likely invariants for a method before and after a commit can be

numerous, and reasoning about their differences can be mentally challenging. However,

26

because the behavioral changes between program versions can be quite small, so could

the differences in their invariants. This motivates the creation of invariant difference sets

between program versions to suppress the common invariants and help the reviewer focus

her attention on just what’s changed since the last commit. For example, for the equals

method in commit #7, with no isolation of effects (Figure 3), there were 26 invariants

before commit and 32 after. As shown in Figure 3, for just the changed invariants, there

were just 12 – 3 removed and 9 added – an 80% reduction. With the isolation of effects to

the source, there were 37 and 34, before and after commit, actually more than without

isolation. Yet as shown in Figure 4 there are just 5 changed invariants – 4 removed and 1

added – a notable 93% reduction.

For each kind of program point of a method m – entry, exit, and exceptional exit –

GETTY calculates the change in invariants between an older version a and a newer

version b as two sets, the removed invariants and added invariants. For example, for the

entry point invariants, the differences are calculated as:

 removed(m, a, b) = I(m, a) − I(m, b) (1)

added(m, a, b) = I(m, b) − I(m, a) (2)

GETTY, following git’s style of code differencing, actually displays added,

removed, and changed invariants. A changed invariant is merely a presentation of an

added invariant paired with a removed invariant based on their overall similarity. For

example, a removed invariant x < 5 would be paired with the added invariant x < 6

because they involve the same variable, operator, and value type. GETTY currently uses

27

the minimality of text differences to infer changed invariants, but better results could be

achieved by comparing the logical formulae [33].

3.2.2 Impact Isolation

As seen in the GSON equals scenario, when developers modify application

source code (abbrev. source) they often add test cases (abbrev. tests) as well, meaning

that invariants can change due to either or both source and test changes. CSI must support

a reviewer in isolating behavioral impacts to one or the other.

GETTY can show the invariants for a check-in under a variety of conditions. For

example, by running the same test cases on both the old and the new source, any resulting

invariant differences can be confidently attributed to the source code. By intersecting the

two versions’ test suites, they should be guaranteed to compile on both source code bases.

However, this explicitly excludes test cases that were intentionally written to demonstrate

the behavior of a particular version. The union of all tests, on the other hand, will

oftentimes have some test cases that will not compile on one version or the other. As a

simple example, if a new method is introduced in the new version and some tests are

added to test the new method, then these new tests will not compile with the old source.

This creates an asymmetry in which test cases run on which version, which seems to

defeat the isolation of effects to the source. However, the failure of compilation is really

just an early indicator of a failure to run. If our tool were designed for Python, for

example, the compilability distinction would disappear into a runtime condition. The fact

that a test case runs on one version but not the other reveals a property of the source code:

28

the behavior is attributable to the source. Thus, the default condition for isolating source

effects is to run the union of the test cases, modulo compilability.

To formalize what tests are actually run in the various conditions, we define the

Compatible Set of Tests (CST) as a function that takes as input a set Γu of all test cases of

version u and a set Σv of the source of version v, and returns all test cases in Γu that can

compile with the source Σv.

CST(Γu, Σv) = { τ ∈Γu | τ compiles with Σv } (3)

We denote the code of version v a pair (Σv, Γv), where the first element is the

source and the second element the set of test cases. The second row in Table 1 lists the

comparison strategy for exploring the effects of source changes. (A more conservative

approach would be to use test cases that compile on both sources, i.e., CST(Γnew, Σold) ∪

CST(Γold, Σnew)).

When we are interested in the impact due to changes in the test cases, we fix the

source and execute different versions of the test suites. Since the source code bases

cannot be unioned, there are two possible conditions here: running the two test suites on

the old source, and running the two test suites on the new source. Figure 6 shows an

example of test impact isolation for commit #7, using the old source. The invariant

 Entry-Point:
 other ≠ null
 other is a JsonPrimitive object

 Exit-Points:
 point-359(361 in new source):
 return = true
 (return = false) → (this.value = NaN)
 (return = false) → (other.value = NaN)

Figure 6 Test change impact isolation for commit #7, for old source

29

Table 1 Behavior Comparison Strategies

View Effects of old version: (Σold , Γold) vs. new version: (Σnew , Γnew)
src tests src tests

whole check-in Σold Γold Σnew Γnew
source only Σold CST(Γnew, Σold) ∪ Γold Σnew CST(Γold, Σnew) ∪ Γnew

tests for old src Σold Γold Σold CST(Γnew, Σold)
tests for new src Σnew CST(Γold, Σnew) Σnew Γnew

differentials convey two pieces of information. First, at the entry-point the other object is

not always non-null, so the reviewer can conclude that the new tests are indeed bringing

in the corner case of testing equality of null. Second, after introducing the new test

cases, at exit-point 359 (361 in the new source), the old equals does not always return

true, but returns false on the new testcase when both this.value and other.value are

NaN. The developers are expecting to see it fail here, since the passing behavior was

introduced by the new source. The observation of a new test case’s impact on the old

source demonstrates that the new test is not simply passing all the time, but also capable

of revealing incorrect behavior.

As a parting remark, we note that the performance implications of computing all

these conditions on every check-in need not be overwhelming. Although we list four

conditions, there is substantial overlap among the test runs, allowing for reuse of the

logging data. For example, the source-only condition uses the same sources and all the

test cases from the whole-check-in condition. Thus, the source-only condition requires

new runs for only the compatible new tests on the old code and the compatible old tests

on the new code. Moreover, as shown in commit #7, the change in test suites from

version to version tends to be small, so the additional computation is minimal.

30

3.2.3 Invocation Flows

A change of one method in the source code can have widespread effects on

behavior, affecting numerous methods. This is the primary motivation for providing

behavior change summaries, as the summaries directly articulate those widespread

effects. Still, a reviewer needs help in finding her way around. Semantic effects are

propagated directly by the control flow in the application: a variable or field is set in one

method, and then its value is passed to another method, where it is used, set, returned,

and so forth. Thus, a natural way for a reviewer to explore a source code base is to

navigate its call graph, from caller to callee, from callee to caller, and so forth [29], [41].

Building on this insight, GETTY provides a local-area call-graph, as seen in the

dotted boxes in Figure 3 and exhibited in the scenario at the beginning of this section.

Only callers, immediate siblings, and callees whose invariants have changed are

necessarily displayed. As screen space allows more local neighbors are displayed (in

gray, to indicate their invariants were not affected by the commit). Clicking any method

in the displayed local call-graph puts that method in the center and displays its callers,

immediate siblings, and callees around it. In this way, it is possible to explore all the

invariant changes through the program version’s control flow.

GETTY computes all invocation flows from execution traces during testing.

Because dynamic flows are the flows that actually occurred, a reviewer can compare the

dynamic flows with the expected flows based on the code changes to identify problematic

or unexpected results [24].

31

3.3 Design and Implementation

Central to CSI is the idea of semantic differencing. GETTY as the tool for CSI

takes as input two versions of the target software project and delivers the semantic

information to developers. For this purpose, GETTY needs to resolve project dependencies

and build it, extract necessary static and dynamic information, collect invariants and

incorporate their differentials into the display for developers.

Currently, GETTY is a three-layer system (shown in Figure 7) implementing the

above functionalities for analyzing Java projects. The bottom-layer provides

infrastructural support for checking out different versions and building them. On top of it

is the middle-layer for gathering information: villa and agent are two application

components to extract static and dynamic facts, respectively, from the target project;

center is the application component to infer invariants for the interested methods at

runtime. All information gathered from middle-layer is sent to the top-layer, gallery, to

be processed and presented to users. We provide more details for each layer in the

following sections.

3.3.1 Build Framework

Build framework is the infrastructure layer of GETTY. It is a set of Python scripts

that integrates Maven [13] for dependency and build management, and interacts with git

[42] for version control.

Maven is a software project management and comprehension tool for Java

projects. All library dependencies in a Maven project are explicitly declared in the Project

Object Model (POM). Build framework uses Maven to automatically retrieve all the

32

dependencies either from online repositories or from local cache, then integrate them into

developers’ local environment and configure the project as is specified in “.pom” files.

When everything is ready the build framework can automatically compile and test the

project.

git is a popular choice of VCS to store and manage versions. The finest unit of

versions is a commit object with a distinguished SHA-1 hash value. Except for the initial

commit, each commit documents all changes from its immediate previous commit. Build

framework interacts with a project’s git repository for the following three tasks:

1. Checkout the commits that GETTY needs to analyze and compare;

2. Get file-based, program-level, textual change details via git-diff [8];

3. Use git-stash [43] to back up developers’ current work so after GETTY

analysis all work will be restored;

4. Retrieve developers’ comments by git-log [44].

The typical workflow by the build framework is: back up current work, checkout

a specific commit of the project, download and/or integrate all dependent libraries,

configure and build the project, send source code and binaries to upper layer for further

Figure 7 Three-layer GETTY Architecture

gallery

 BUILD	FRAMEWORK

src	&	tests
+

version	info villa

change	set

 agent

impact	set

 center

likely	invariants

33

processing, clean up and restore developers’ work. All processes in the workflow are

automatic after user specifies the project and the version commit hash.

3.3.2 Fact Extraction

The middle-layer is an application layer on top of the build framework. It collects

all information needed for CSI, including static facts, dynamic facts and invariants. In

this subsection we provide details for getting static and dynamic facts.

villa is a Java component that extracts static facts from source code. Taking as

input a textual patch file (output of git-diff), villa parses the differential information and

records the updated source files and changed line numbers of the two versions. From the

path of the changed files, build framework tells villa whether a change is made to source

or tests. Then villa fetches the corresponding source code, perform analysis on its AST

and correlates changed line numbers to specific methods or test cases. Repeating the

above procedure, villa computes the set of all methods and test cases that have been

changed. We define the computed set to be change set of the current patch. In addition,

villa parses all source code of the project and gets the set of all methods and the set of all

test cases for statistics purpose, the union of which is defined as project set.

agent is a Java component that extracts dynamic invocation information from test

executions for invocation flows. agent acquires information by Java instrumentation: it

adds logging methods into byte codes right before/after each method invocation/return.

Each log entry is one line specifying whether it is right before a method call or after. In

order to support multi-threading programs, each log entry also records the thread ID of

the current invocation so that each thread can be analyzed separately. During analysis,

34

agent maintains one call stack for each thread. It pushes a method onto the stack when it

reads the logged method entry, and pops it out when it reads the logged method exit.

agent counts the number of invocations and computes all invocation relations based on

the stack activities.

3.3.3 Dynamic Invariant Inference

center is a Python component responsible for inferring invariants from test

execution. It checks out two code versions and executes tests for invariants. Since a

method can be exercised by any tests, directly or indirectly, we always execute the whole

test suite so that no runtime data is missed. This implies a great performance overhead.

center takes two measures to improve the performance.

First, we need not infer invariants for all methods in project set. Notice that the

invariants of a method may impact its neighbors (callers, callees, methods immediately

called by callers before/after calling this method), so the interested targets include

methods in change set and all their neighbors. We define the set of all changed methods

and their neighbors (to a certain depth) to be the impact set of current patch. center takes

as input the invocation flow information and computes such impact set.

Second, notice that software testing is embarrassingly parallel, and so is invariant

detection. center forks a set of processes to run Daikon and infer invariants from testing.

Depending on the available computational resources the number of processes may vary.

We will further evaluate factors we considered for penalization and their effects in

Chapter 4.

35

For the purpose of impact isolation (Section 3.2.2), center checks out different

(combinations of) versions, builds the project, runs all tests and infers invariants. After

inferring invariants, center differences the result for future use.

3.3.4 User Interface Generation

The top-layer, gallery, synthesizes all information from middle-layer components

and creates a user interface (UI) for reviewers. We discussed how a reviewer would

interact with the UI in Section 3.1. In this section we provide details on how the UI is

constructed.

As shown in Figure 3, there are three zones in the user interface, displayed as

three boxes from top to bottom:

• Patch Summary Zone (Figure 8). The top zone is a change summary between

two commits. The “Compare Commits” shows the two commits under compare.

Clicking into the link reviewers will see all developers’ comments documented

by git-log. “Common Package” to the upper right corner displays the common

Figure 8 Patch Summary Zone

Figure 9 Invocation Flow Zone

36

package name of all the methods and test cases displayed in the UI. “Updated

Source” and “Updated Tests” lists the methods and test cases in change set,

computed by villa. At last, reviewers have the option to display all methods and

classes whose invariants might have been changed after the code change.

• Invocation Flow Zone (Figure 9). The middle zone displays the invocation flow

information computed by agent component. The zone is initially empty. After a

reviewer clicks one of the methods listed in the Patch Summary Zone, that

method will be placed in the center of Invocation Flow Zone with its four

neighbors updated. gallery places two toggle buttons to the upper left corner,

serving as two display options: clicking the “More Methods” toggle button

shows/hides the methods with no invariant change; clicking the “Tests” toggle

button shows/hides test cases. If the reviewer clicks any of the neighboring

methods, that method will be place in the middle with all of its four neighbors

updated.

Figure 10 Semantic Inspection Zone

37

• Semantic Inspection Zone (Figure 10). The bottom zone displays invariant

differentials (computed by center) for the method placed in the middle of

Invocation Flow Zone. On top of the display, gallery lists all the isolation

options, depending on which gallery loads and displays the corresponding

invariant differentials. At the bottom are more display options, in case the

reviewer needs to view the complete texts of invariants, or the source code.

Acknowledgments

Section 3.3 contains the material as it appears in “Mining Software Contracts for

Software Evolution”. Yan, Yan; Menarini, Massimiliano; Griswold, William G. IEEE

International Conference on Software Maintenance and Evolution, 2014. The dissertation

author was the primary investigator and author of this paper.

This chapter, in part, is currently being prepared for submission for publication of

the material, Yan, Yan; Menarini, Massimiliano; Griswold, William G. “Mining Code

Repositories for Semantics-Assisted Code Review” The dissertation author was the

primary investigator and author of this material.

38

Chapter 4

Performance and Scalability

We have discussed the design and implementation of our CSI tool, GETTY, and

used it to complete one case study of GSON project. In this chapter, we discuss and

evaluate our solution to scale GETTY for more projects.

4.1 Challenges

Like Continuous Integration (CI), CSI depends on heavy lifting by the back-end

to support developers’ and reviewers’ work. Indeed, CSI not only requires the same

compilation and testing support of CI, but also adds the often massive cost of inferring

likely invariants with Daikon, even for a reduced set of targets (impact set, Section 3.3.3).

More specifically, consider GSON project at the commit #4 of our previous case study.

There were 676 methods and 707 test cases in the project. Under the environment of a

Macbook Pro (Intel 2.53 GHz Dual-Core CPU, 4GB DDR3 RAM, Mac OS X Yosemite),

one pass of the test suite execution, without any optimization or parallelization, takes

over 10 seconds to complete. When we execute all tests for each method, one after

another, the total execution time is nearly 7,121 seconds, nearly 2 hours. The overhead

rises to over 5 hours after running Daikon instrumented tests and inferring invariants.

Another open source project, Apache Commons Collections [36], contains more than

3,000 methods with more than 1,500 tests. Under the same environment, running the

39

same analysis above for a random pair of commits in Collections project takes more than

4 days to complete.

However, an ideal CSI infrastructure like GETTY should support an overnight

build. For example, a review of current practices at Apache and Mozilla show that

developers typically perform code reviews 5 to 21 times per week [5]. Therefore, review

tools that take over a day to complete invalidate their practical use for nightly builds. As

a heuristic we estimate the analysis be completed in 12 hours.

4.2 Methods to Improve Performance

The unoptimized analysis in the previous section always executes the whole test

suite for all methods at once. For reference, we call it the All-Test-All-Methods mode

(ATAM). Notice that we only need the invariants that are relevant to the commit in

question, so we only need to let GETTY analyze the impactset. We selected 10 random

commit pairs from GSON, ran GETTY analysis in ATAM mode, collected performance

data of the four components and summarized the average timespan for each component in

Table 2. Because of the reduced inference workload, the total time span is reduced.

However, the average time span is still over 3 hours. Of all the components, center takes

over 95% of the total execution time, even when just focusing on impactset, so dynamic

invariant inference is the performance bottleneck.

GETTY components villa agent center gallery
Avg. Timespan (seconds) 78.86 250.14 9716.01 89.74
Avg. Percentage 0.78% 2.47% 95.86% 0.89%

Environment: Intel 2.53 GHz Dual-Core, 4GB DDR3 RAM, Mac OS X Yosemite

Table 2 Execution Time in ATAM Mode

40

To further study how we can improve performance of dynamic inference, we

randomly selected five more projects from Apache Commons repositories [45] under

directory “C”. We took 10 random commits of each project, executed the center analysis

on them, and take the truncated mean (discarding two side outliers) of each group of data.

Their characteristics and the results are summarized in Table 3. The total time taken by

the inference process (last column) increases with the growing execution time of

executing test suites. The cost of inference has no evident relationship with the other

factors. The size of a commit will influence the size of the target set and hence the

inference time, but we controlled for this by taking the truncated average of the 10

commits per project. The cost is far too high for the last three projects. Various

bottlenecks are in play, but the most persistent one is that inferring all the invariants at

once requires far more memory than available RAM, causing Daikon to thrash in virtual

memory.

 To reduce memory pressure, we used a mode of Daikon in which the traces are

piped directly to Daikon (less cost from disk I/O), and introduced two modes that track

fewer methods at a time:

Projects Commits KLoC Methods Tests TTE TIE (ATAM)
GSONG 1,294 36.6 582 1,276 13.3s 3.22h
CLIA 827 8.6 212 206 18.0s 5.98h
CodecA 1,608 14.1 272 334 23.3s 11.64h
CryptoA 550 9.9 183 20 49.5s 23.20h
CollectionsA 2,881 100.1 3,177 1388 86.9s 55.51h
ConfigurationA 2,730 92.3 2,121 1,962 127.5s

G: Google Project; A: Apache Commons Project. TTE: total time for testing; TIE: total time for inference
Environment: Intel 2.53 GHz Dual-Core, 4GB DDR3 RAM, Mac OS X Yosemite

Table 3 Project Information and Execution Time of Dynamic Inference

41

• All-Tests-Single-Method (ATSM) mode – executing the whole test suite

for a single method each time;

• All-Tests-Single-Class (ATSC) mode – executing the whole test suite for a

single class each time.

The rationale behind the two modes is to release Daikon from processing too

many data points at a time, though it could result in many more test suite executions.

Theoretically, ATSM processes data points for one single method so the memory

pressure each time should be minimal. ATSC processes all data points for a class (i.e., a

group of methods), which imposes more memory pressure than one single method;

however, it reduces the total number of repeated test executions. Moreover, since a

method program point is dependent on its parent records (typically the containing class

program points) [46], each method program point data processing involves its class

program point data processing. ATSC processes class program point data once for all

methods of that class; therefore it minimizes the repeated data processing for class

program points.

Table 4 records the average execution time of using different modes in the six

open source projects, under the environment of a dual-core Macbook Pro with 4GB

Projects ATAM ATSM ATSC PATSC
GSON 3.22 3.94 2.70 2.32
CLI 5.98 5.38 3.10 2.79
Codec 11.64 14.90 3.67 3.52
Crypto 23.20 39.53 9.43 7.99
Collections 55.51 79.85 25.36 23.83
Configuration 95.69 54.81 49.96

Environment: Intel 2.53 GHz Dual-Core, 4GB RAM, Mac OS X Yosemite

Table 4 Execution Time (Hours) of Different Modes (1)

42

RAM. The first three columns compare the performance impact among the three modes.

All data in Table 4 is visualized in Figure 11 for comparison purpose. Compared to the

unoptimized ATAM mode, ATSM mode got invariants for the Configuration project, but

it also increased the total time of inference for most projects because the test suite was

executed many more times repeatedly. ATSC results in an overall improvement, but

Collections and Configuration are still processed too slowly.

Noticing that invariant detection is embarrassingly parallel, our final improvement

was to introduce the Parallel-ATSC mode (PATSC), which exploits the fact that most

tests are naturally independent from each other. We partition each project’s class-

granularity inference processes into as many groups as there are cores on the machine,

and distribute them to all cores. Each group for a project is executed concurrently on a

separate core, and on each core the processes of the group are executed sequentially in

batch. After all the groups finish, center merges all the invariants collected, a trivial step.

Figure 11 Inference Execution Time of 6 Open Source Projects

43

The last column of Table 4 lists the execution time of PATSC mode. From Figure

11, PATSC mode improved the performance in general; however, its average

improvement was approximately only 10%, notably less than expected for dual-core

environments. This confirms that the memory pressure is the key: it not only limits each

single process of inference, but also impedes the potential speedup from parallelism.

Fortunately, higher-performance hardware is reasonably common and affordable

in today’s cloud or cluster environment; for example, as of 2016, the price of renting an

Octa-core, 32GB RAM instance at Amazon EC2 is about 50 cents per hour. To evaluate

the performance improvement by PATSC over plain ATSC, we moved our experiments

to a higher-performance machine with an Octa-core processor, whose 2.66GHz clock

speed is 5% higher than the 2.53GHz on the Macbook Pro used in the prior experiments,

and has four times the RAM, 16GB. In this new environment, we executed the same

center analysis in ATSC and PATSC modes, and recorded the time in Table 5. It shows

that PATSC mode (parallelizing on 8 cores of one single node) achieved nearly 100%

improvement over the plain ATSC condition. Its suboptimal speed-up is still due to the

cores’ contention on the memory bus to the shared memory. However, compared to the

previous environment (about 10% improvement with 4GB RAM), the speed-up by

Projects ATSC PATSC
GSON 2.14 1.09
CLI 2.27 1.21
Codec 3.02 1.75
Crypto 7.85 3.02
Collections 20.19 11.89
Configuration 43.66 25.40

Environment: Intel 2.66 GHz Octa-Core, 16GB RAM, Ubuntu Server 16.04

Table 5 Execution Time (Hours) of Different Modes (2)

44

PATSC mode with more RAM is much more notable, demonstrating its potentially more

performance improvement when the memory pressure is further released.

4.3 Scalability

While the ATSC mode is appropriate for a desktop environment, the highly

parallel PATSC mode is more appropriate to a high-performance cluster. For evaluating

PATSC’s scalability, we moved to a cluster with eight high-performance nodes (each

with the same hardware and software environments as is in the previous section), typical

of what can be found in a cloud deployment today.

We conducted experiments for the six projects on 2, 4, 8 and 16 processors, and

summarized their results in Table 6. The last column indicates that running on all eight

nodes provides 6.8x average speedup over single-node computation. The first four

projects, GSON, CLI, Codec and Crypto, all completed their analysis within 1 hour.

Collections project completed in 2 hours. Configuration project took the longest time to

complete; however, it still completed with approximately 3 hours, over 8x speedup over

single-node analysis, and over 14x improvement over the plain ATSC mode.

Projects 2 processors
(1 node)

4 processors
(2 nodes)

8 processors
(4 nodes)

16 processors
(8 nodes)

GSON 1.09 0.50 0.26 0.16
CLI 1.21 0.70 0.34 0.20
Codec 1.75 0.78 0.41 0.23
Crypto 3.02 1.74 0.90 0.51
Collections 11.89 8.75 4.94 1.89
Configuration 25.40 11.65 6.14 3.03

Environment: Intel 2.66 GHz 4 Dual-Core, 16GB RAM, Ubuntu Server 16.04

Table 6 Execution Time (Hours) of PATSC Mode

45

Figure 12 plots running time against the number of processors used. Overall the

completion time decreases with increasing number of nodes used for each project. The

single-processor condition runs plain ATSC, the rest PATSC. ATSC runs 1.2x faster on

this machines processor compared to the Macbook Pro. PATSC running on the same

single node (using both processors) achieved 1.8x speedup and 89% efficiency. Its

suboptimal speed-up is due to memory contention. Running on all 16 processors (eight

nodes) provides a total speedup is 13.1 with 82% efficiency, with a nearly linear speedup

across the range, implying high scalability of invariant inference for CSR.

Related is the cost of computing GETTY’s invariants in the cloud, say as part of an

existing continuous integration process. Figure 13 plots the estimated additional CPU

cost on Amazon EC2. The costs are modest, tracking project size. The high efficiency of

parallelization modestly increases the baseline, average 24%.

Figure 12 Average running time versus number of processors

46

The scalability of PATSC is bounded by the number of classes in the impact set.

For the 60 commits examined here, the average number of classes is 142, with a standard

deviation of 148, suggesting generally ample parallelism. At the low end there are a few

commits that contain just 12 classes, for example commit c241318 in Collections. Its

times for invariant inference are 0.57, 0.31, 0.23, and 0.21 hours, on 2, 4, 8, and 16

processors, respectively. The overall speedup from 2 to 16 processors is 2.7x, with no

discernable speedup from 8 to 16 processors since the maximum expected speedup is 12,

and the net time is bounded by the longest running class. However, all the small commits

also have short running times that don’t demand high levels of parallelization.

In summary, by partitioning the traces sent to Daikon it is possible to reduce

memory pressure and achieve high parallelism in inference, providing high scalability of

CSI, sufficient for supporting its use as part of a Continuous Integration process.

Figure 13 Cloud cost of invariant extraction against the number of CPUs used

47

Acknowledgments

This chapter, in part, is currently being prepared for submission for publication of

the material, Yan, Yan; Menarini, Massimiliano; Griswold, William G. “Mining Code

Repositories for Semantics-Assisted Code Review” The dissertation author was the

primary investigator and author of this material.

48

Chapter 5

Quantitative Evaluation

In Section 3.1 we replayed part of the history of the JsonPrimitive:equals

method in the GSON project. In this chapter, we finish the introduced case study and

demonstrate that CSI with GETTY can help reveal insufficiency of testing and find bugs.

For all 12 commits related to the target methods, we compare the number of changed

invariants with the total number of invariants and evaluate the percentage of the invariant

reduction which creates a more focused view for reviewers. By looking at a larger

number of projects and commits, we further address the question of whether CSI is

similarly effective on a regular basis. In addition to GSON, we studied the five open

source projects introduced in the previous section: CLI, Codec, Crypto, Collections, and

Configuration (Table 3). We first examine 100 of their commits to assess CSI’s ability to

make judgments on test sufficiency. We then investigate whether CSI aids in finding

bugs in the six projects.

5.1 Finishing the GSON Case Study

From Section 3.1, we have already seen that CSI with GETTY can both quickly

reveal inadequate testing and successful revisions in GSON. Replaying the history of

equals from the beginning repeatedly shows this ability (See Figure 14), so for the sake

of brevity we focus here on whether CSI can aid in finding the introduction of the bugs.

49

We highlight commit #10 in Figure 15, which introduced a test comparing two

JSON primitive integers: 264+5 and 5. As asserted, the equals method should return

false because the two values are different. However, the test failed, revealing a bug. The

bug was never fixed. (In the last commit, #12, the developers considered “the price is too

much to pay” to fix the bug and overrode the test failure by changing its “assertFalse”

to “assertTrue”.)

It is interesting to note that the bug was not revealed until commit #10, despite all

previous commits passing their code reviews. The question, then, is whether CSI could

have aided in finding this bug sooner, preferably at the point of introduction, were it in

use by this project at the time.

Figure 14 Selected dynamic invariant differentials for commits #1 - #3

Entry-Point:
 other has only one instance
 other = this

Exit-Point:
 return = true

(a) Commit #1:equals method added, tested on just one value.
Entry-Point:
 other has only one instance
 other ≠ null

Exit-Point:
 return = true

(b) Commit #2: more tests improve the invariant differentials, but there is no testing
for a null input.

Exit-Points: (AFTER commit)
 point-362:
 this.value = null
 (return = true) ↔ (other.value = null)
 point-364:
 this.value ≠ null
 (return = true) → (this.value = other.value)

(c) Commit #3: branch refactoring of equals; invariant differentials indicate that it is
behaving as expected.

� For presentation purposes, fully qualified names have been shortened.

50

In commit #4, developers introduced new features such that: (1) integers of

different types (Byte, Short, Integer, Long, and BigInteger) are comparable to each

other in equals, and (2) floating-point numbers of different types (Float, Double,

BigDecimal) are comparable to each other.

Figure 16 shows the two new if-branches added in equals to compare integers

and floating-points. The predicate method isIntegral checks whether a

JsonPrimitive object represents an integer, i.e., the type of value attribute is Byte,

Short, Integer, Long, or BigInteger. If both this and other represent integers, the

first branch is executed and both value attributes are converted to Long to compare for

equality. Similarly, the predicate isFloatingPoint checks whether a JsonPrimitive

object represents a decimal, i.e., the type of value attribute is Float, Double, or

BigDecimal. If both this and other store decimals, the second branch is executed and

value attributes are converted to Double to compare for equality. The two branches are

public void testEqualsIntegerAndBigInteger() {

 JsonPrimitive a = new JsonPrimitive(5L);

 JsonPrimitive b = new JsonPrimitive(new BigInteger(“18446744073709551621”)); // 2^64 + 5

 assertFalse(a + “ equals ” + b, a.equals(b));

}

Figure 15 The failing test case in commit #10

 374+ if(isIntegral(this) && isIntegral(other)) {
 375+ return getAsNumber().longValue()== other.getAsNumber().longValue();
 376+ }
 377+ if(isFloatingPoint(this) && isFloatingPoint(other)) {
 378+ return getAsNumber().doubleValue()== other.getAsNumber().doubleValue();

 379+ }

Figure 16 New feature to compare between integers in commit #4

51

independent from each other since the two predicates separate all input numbers into two

disjoint sets.

We first study the branch from line 374 to line 376 for integers. As reviewers we

expect the branch returns true when both value attributes store the same integer values,

regardless of the specific integer types.

We examine dynamic invariant differentials in Figure 17. At exit-point of line

375, where the new integer-comparison branch returns, this.value must be Long if the

return value is false. This is surely an incorrect invariant because the type of

this.value being Long is not a necessary condition for equals to return false. The

new branch can return false as long as both value attributes are quantitatively unequal,

even when one is or both are not Long. In this regard, we suspect a bug was introduced

that created an incorrect dependency between the result of comparison and the types of

value attributes.

To verify if the bug actually exists, we need to add a test. The incorrect invariant

grants the insight on how to write the test. We challenge the incorrect Long type

dependency by creating and comparing BigInteger objects that cannot be precisely

converted to Long. Java’s Long type is 64-big signed integer so any integer representation

over 64 bits will be truncated when converting to Long. For example, 264+1 that takes (at

least) 65 bits is converted to 1 because all bits beyond the 64th are lost after conversion.

Exit-Points:
 point-375:
 (return = false) �→ (this.value is Long)

 point-378:
 return = true

Figure 17 Commit #4: the invariant differential clearly indicates a bug.

52

We therefore create four JsonPrimitive objects: one for 1, lp1 for 264+1, lp1c for

264+1 (a different object), and lp2 for 264+2, and assert that none of them are equal

except for the pair of lp1 and lp1c. Our test in Figure 18 is stronger than the test in

Figure 15 because that test only considers the case where other.value is BigInteger,

but ours considers this.value being BigInteger as well.

Since our test fails, we conclude that the bug discussed was introduced in commit

#4. This is a typical case where a bug was introduced after the developers added a new

feature. Notice that commit #4 is dated Sep 23, 2009, but commit #10 discovered the bug

on Sep 9, 2011, nearly 2 years after the bug was introduced. Reviewers could have found

the bug much earlier if they had been able to examine dynamic invariant differentials.

Additionally, consider the branch from line 377 to line 379 in Figure 16 that deals

with floating-point comparisons. Similarly to the previous integer branch, we expect this

branch to return true when both represent the same decimal values, regardless of the

specific decimal type of value attribute.

public void testEqualsForBigIntegers() {

 BigInteger limit = new BigInteger("18446744073709551616"); // 2^64

 JsonPrimitive one = new JsonPrimitive(1L);

 JsonPrimitive lp1 = new JsonPrimitive(limit.add(new BigInteger("1"))); // limit + 1

 JsonPrimitive lp1c = new JsonPrimitive(limit.add(new BigInteger("1"))); // another limit + 1

 JsonPrimitive lp2 = new JsonPrimitive(limit.add(new BigInteger("2"))); // limit + 2

 // compare 1, limit + 1, limit + 2, etc.

 assertFalse("limit + 1 = 1", lp1.equals(one));

 assertFalse("1 = limit + 1", one.equals(lp1));

 assertFalse("limit + 1 = limit + 2", lp1.equals(lp2));

 assertTrue("limit + 1 = limit + 1", lp1.equals(lp1c));

}

Figure 18 Test case to confirm the integer-equality bug

53

In Figure 17, the dynamic invariant at exit-point 378 says the return value is

always true, i.e., for all tests so far this branch returns true only. This indicates that

either there is a lack of testing for unequal decimals, or unequal decimals are compared

but there is a bug.

Consequently, we add a test case (Figure 19) to compare unequal decimals to

check for a bug. Building on previous experience, we consider not only unequal Double

numbers but also unequal BigDecimal numbers. Our test case passes the first assertion

but fails the second one. Passing the first assertion implies that equals behaves correctly

given two small unequal decimals, confirming our hypothesis that the wrong invariant

was due to lack of testing. The failure of the second assertion reveals a new bug when

comparing large unequal numbers. This bug was never found or discussed in GSON

project. In commit #11 (right after developers discovered the integer comparison bug in

commit #10), the developers further modified the same decimal comparison branch; but

Commit #11: invariant differential points to a similar bug as commit #4

public void testUnequalDecimals() {

 JsonPrimitive smaller = new JsonPrimitive(1.0);

 JsonPrimitive larger = new JsonPrimitive(2.0);

 assertFalse("smaller = larger", smaller.equals(larger));

 BigDecimal dmax = BigDecimal.valueOf(Double.MAX_VALUE);

 JsonPrimitive smallBD = new JsonPrimitive(dmax.add(new BigDecimal("100.0"))); //dmax + 100.0

 JsonPrimitive largeBD = new JsonPrimitive(dmax.add(new BigDecimal("200.0"))); //dmax + 200.0

 assertFalse("smallBD = largeBD", smallBD.equals(largeBD));

}

Figure 19 Test case to confirm the decimal-equality bug

 Exit-Points:
 point-348:
 (return = false) �→ (this.value is LazilyParsedNumber)

Figure 20 Commit #11: invariant differential points to a similar bug as commit #4

54

the invariant differential in Figure 20 shows that, similar to exit-point 375 in Figure 17, at

the exit-point of the decimal branch the return value is incorrectly correlated to the

specific type of value attribute. Up to the date of this paper’s writing, the developers did

not add any tests to reveal this bug. As a byproduct of our research, we submitted the new

bug report, along with the test in Figure 19, to the GSON project.

Many of the problems identified here could in principle have been identified

through test coverage reports. However, although standard test coverage tools confirm

that the conditions of a branch were tested, they do not reveal coverage of the domain and

range of methods. Invariant differentials directly state the anomalous properties of the

input (e.g., other is never null) or output, pointing to what kinds of tests need to be

added (inputs that include null). And coverage tools do not help in identifying bugs, just

areas of the code that are insufficiently tested. For example, in commit #4 there were 65

executions of equals for numeric equalities. Among them, 16 tested integer equalities

 316 if(isIntegral(this) && isIntegral(other)) {
 317- return getAsNumber().longValue() == other.getAsNumber().longValue();
 318 }

Before bug-fix

 316 if(isIntegral(this) && isIntegral(other)) {
 317+ return getAsBigInteger().equals(other.getAsBigInteger());
 318 }

After bug-fix

(a) Suggested fixing patch

Exit-Points:
 point-317: (return = false) �→ (this.value is Long)

(b) Incorrect invariant disappeared after bug-fix

Figure 21 Fixing the introduced integer-equality bug

55

and 30 tested decimal equalities. We did not have to examine all test executions to

identify the missing test cases, but we only examined dynamic invariant differentials and

compared them with our expectation. We concluded not only were they insufficiently

tested, but also both branches have bugs.

Since the loss of precision in conversion is identified as the root cause of the

integer comparison bug, we can fix it by converting each integral value attribute to

BigInteger before comparing for equality. Figure 21-a shows our suggested fix. We

reviewed our own commit using CSI and confirmed the incorrect invariant disappeared

after the bug fix (Figure 21-b). Our real fix [47] submitted to GSON project was more

comprehensive. To avoid introducing bugs into other parts of the program, we inspected

more related invariant differentials and invocation flows. For example, we further

examined the semantics of isIntegral and found that the only other method using this

predicate was hashCode. We concluded this case study by adding tests to ensure

hashCode was not affected by the bug fix.

5.2 Reducing Inspection Load

We surmise that, in most cases, not all invariants are changed after a patch.

Invariant differentials are a subset of invariants that are changed. In the finished GSON

case study, it was the invariant differentials, not the full list of invariants, that we needed

to inspect for a lighter inspection load. In this section we study whether the size of

invariant differentials is related to the size of the code diff, and how much invariant

differentials shrink compared to the full list of invariants.

56

Among the 12 commits related to the target method, commit #1 is the one

introducing the method so its invariant differential is exactly the full list of invariants

inferred; commit #5 is the only commit that does not compile, so there are no invariants

inferred and hence there are no invariant differentials. For our evaluation we exclude

these two commits and study the other 10 commits for the more general case when a

patch modifies part of the existing method and the patch compiles.

In Table 7 we summarize the results of the 10 commits without impact isolation.

For each commit, we count the number of related logical lines that were changed. For the

source files, the related lines are the lines for the equals method, and all methods that the

equals method calls, for example, the isIntegral method. For the test files, the related

lines are the lines of test cases that invoked the equals method, either directly or

indirectly. On average, at one commit developers updated 8.2 lines of code for equals

method, and meanwhile updated 17.7 lines of code (3.6 test caess) for testing it.

Similarly, comparing the invariants, we can observe some old invariants were removed in

Table 7 Results of Invariant Reduction without Impact Isolation

Diff Correlation ((Added Invs + Deleted Invs), (RSL + RTL)) = -0.169

Commit RSL RTL Old
Invs

New
Invs

Added
Invs

Deleted
Invs Reduction

#2 0 25 23 25 2 0 95.83%
#3 6 0 25 23 0 2 95.83%
#4 15 65 23 26 3 0 93.87%
#6 38 11 35 35 0 0 100%
#7 3 25 26 34 12 4 73.33%
#8 12 5 35 35 0 0 100%
#9 1 41 35 35 0 0 100%
#10 0 4 41 41 0 0 100%
#11 7 0 41 42 2 1 96.38%
#12 0 1 42 42 0 0 100%

Average 8.2 17.7 32.6 33.8 1.9 0.7 95.52%
RSL: # related source Logical Lines of Code changed; RTL: # related test Logical Lines of Code changed

57

the newer version, while some new invariants were introduced in the newer version. We

thus compute the reduction of invariants by each invariant differential as follows:

Reduction = 100% - (Added Invs + Deleted Invs) / (Old Invs + New Invs)) (4)

For the 10 commits, we achieved on average 95.52% reduction without impact

isolation, indicating that reviewers would need to inspect about every 20 invariants under

this isolation condition, a evident reduction. Underneath Table 7 we also computed the

correlation between the size of code diffs and that of invariant differentials. The

correlation result of -0.169 indicates that the size of invariant differentials is not directly

related to the size of a patch.

We further study the 10 commits under different isolation conditions. Table 8

shows the result under source impact isolation. We achieved on average 97.41% invariant

reduction for inspection, a slightly higher reduction compared to the condition without

impact isolation. The correlation between the size of source diffs and that of invariant

Table 8 Results of Invariant Reduction under Source Impact Isolation

Diff Correlation ((Added Invs + Deleted Invs), RSL) = -0.201

Commit RSL Old
Invs

New
Invs

Added
Invs

Deleted
Invs Reduction

#2 0 23 25 2 0 95.83%
#3 6 25 23 0 2 95.83%
#4 15 23 26 2 0 95.91%
#6 38 35 35 0 0 100%
#7 3 37 34 3 4 90.14%
#8 12 35 35 0 0 100%
#9 1 35 35 0 0 100%
#10 0 41 41 0 0 100%
#11 7 41 42 2 1 96.38%
#12 0 42 42 0 0 100%

Average 8.2 33.7 33.8 0.9 0.7 97.41%
RSL: # related source Logical Lines of Code changed; RTL: # related test Logical Lines of Code changed

58

differentials is -0.201, which shows the size of invariant differentials under source impact

isolation condition is not directly related to the size of source change.

The results under test impact isolation condition are listed in Table 910 (for old

source) and Table 10 (for new source). We achieved on average 97.30% and 97.13%

Table 10 Results of Invariant Reduction under Test Impact Isolation for New Source

Diff Correlation ((Added Invs + Deleted Invs), RTL) = 0.167
Diff Correlation ((Added Invs + Deleted Invs), RTC) = -0.001

Commit RTL RTC Old
Invs

New
Invs

Added
Invs

Deleted
Invs Reduction

#2 25 4 25 25 0 0 100%
#3 0 0 23 23 0 0 100%
#4 65 13 25 26 1 0 98.03%
#6 11 3 35 35 0 0 100%
#7 25 3 26 34 12 4 73.33%
#8 5 2 35 35 0 0 100%
#9 41 9 35 35 0 0 100%
#10 4 1 41 41 0 0 100%
#11 0 0 42 42 0 0 100%
#12 1 1 42 42 0 0 100%

Average 17.7 3.6 32.9 33.8 1.3 0.4 97.13%
RTL: # related test Logical Lines of Code changed; RTC: # of related test cases updated

Table 910Results of Invariant Reduction under Test Impact Isolation for Old Source

Diff Correlation ((Added Invs + Deleted Invs), RTL) = 0.118
Diff Correlation ((Added Invs + Deleted Invs), RTC) = -0.049

Commit RTL RTC Old
Invs

New
Invs

Added
Invs

Deleted
Invs Reduction

#2 25 4 23 23 0 0 100%
#3 0 0 25 25 0 0 100%
#4 65 13 23 23 0 0 100%
#6 11 3 35 35 0 0 100%
#7 25 3 26 37 14 3 73.01%
#8 5 2 35 35 0 0 100%
#9 41 9 35 35 0 0 100%
#10 4 1 41 41 0 0 100%
#11 0 0 41 41 0 0 100%
#12 1 1 42 41 0 0 100%

Average 17.7 3.6 32.6 33.6 1.4 0.3 97.30%
RTL: # related test Logical Lines of Code changed; RTC: # of related test cases updated

59

reduction of invariants for inspection, respectively. However, the correlations between

the size of test change and that of invariant differentials are still low (0.118 and 0.167).

Additionally, we attempted to correlate the number of updated test cases with the size of

invariant differentials, but the results, -0.049 and -0.001, still show that the size of

invariant differentials is not directly related to the size of test changes.

As a summary, we make the following conclusions. First, there are not any

evident correlations between the size of code diff and the size of invariant differentials,

but it is not a surprising result. Developers update code for different purposes: adding

new features, fixing bugs, refactoring code for readability, or more. Change of code does

not necessarily lead to change of semantics. For example, a developer could break down

a large method body into a set of smaller sub-procedures without changing its semantics.

Therefore the size of code change is not strongly related to the semantic change, and

hence the size of invariant differentials. Second, when there are invariant differentials,

they usually are a great reduction of the full list of invariants. In our study, invariant

differentials gave a minimum average reduction of 95.52%, which was under the

condition without any impact isolation. This means a reviewer would only need to inspect

every 20 invariants, a much smaller inspection load. The worst reduction (73.01%) took

place on commit #7 under the condition of test impact isolation for old source, where new

tests were added for the previously under-tested branches of the equals method. It

immediately improved the quality of invariants with more likely invariants inferred that

are added to the full list. However, as we pointed out in Section 3.2.1, under the source

60

impact isolation condition shown in Figure 4, there were only 5 changed invariants – 4

removed and 1 added – still a notable 93% reduction.

5.3 Checking Test Sufficiency

Using GETTY, we applied CSI on 100 test-only commits randomly selected from

the 6 projects. Depending on the project size and history length, the number of commits

chosen from each project varies (Appendix I). We then inspected the invariant

differences of each commit to identify inadequacies in the testing of the methods under

test in the commit. The question is whether or not the invariant differences were able to

expose insufficiency, and why or why not.

As a simple metric of insufficiency, we consider tests insufficient for a method if

they do not cover all combinations of types that result in different behaviors of the

method. More specifically, this means different classes for possible input Java objects or

different value combinations that could lead to different outputs. For example, when

testing equals for two integers (See Section 5.1), we want to see test cases for all

combinations of regular and big integers, of equal and unequal value; and, if testing for a

method doing modulo operation, we want to see test cases for different multiples of the

divider with different remainders. Although this may overlook corner cases (i.e., it lowers

our success rate), it is a straightforward, repeatable metric. We determined ground truth,

then, by exhaustively inspecting the tests and source after making the first determination

with GETTY.

61

We attach the detailed inspection result at Appendix I, and summarize the statistic

result in Figure 22. Cumulatively, of the 100 testing commits, 32 were identified as being

insufficient. For example, the commit #10 we discussed (Figure 2) was one of the testing

commits we inspected. At the exit point of the integer comparison branch in

JsonPrimitive:equals method, we observed the invariant “result = false à

this.value is Integer”. This indicates that the testing commit, though captured the

bug, was still inadequate because it only considered the unequal cases for when

this.value is integer, but it is also important to test the unequal case when comparing

two numbers that are both BigInteger. Another example from GSON project was the

commit 7d7680f, where developers added tests to ensure any array of nulls are

deserialized correctly [47]. The array deserializer branch implied that “size(arr) <=

1”, indicating that developers tested the input JSON string like “[]” and “[null]”.

However, we regarded this as insufficient because an array of more than one null will

Figure 22 Test Sufficiency Inspection Result

62

introduce separator(s) into the string, like “[null,null,null]”, which could possibly

alter the behaviors of the deserializer.

CSI led us to incorrectly classify 4 commits as insufficiently tested, due to

invariants derived from coincidental correlations in the data. For example, the commit

f63e8e9 of the Codec project added a number of tests for Base-64 decoding [49]. The

decode method returns an array of bytes as result. However, at the exit-point an invariant,

“size(return) % 2 = 0”, indicates that the size of the return array always contains

even number of bytes. This could be a bug, but for this commit this result is completely

accidental. As a known issue, Daikon could over-generalize invariants since its inference

is based on machine learning techniques, which could not guarantee 100% accuracy of

the results. Incorrect could mislead reviewers to make wrong judgment, but reviewer

experience might aid in better spotting these.

We still consider 44 commits sufficiently tested. For example, the commit

62e69cf of Collections project specifically tested the implemented map for setting null

values for certain keys. The put method of the map takes the first argument key as the

key and the second argument value as the value. The invariant differentials indicated that

a previous entry-point invariant, “value ≠ null”, was removed after commit. Since this

shows the effect of added tests is exactly for setting null values, we consider this commit

sufficiently tested.

20% of the commits did not produce sufficient invariant differentials for the task,

mostly because the invariants did not provide useful information to reviewers. This is

especially the case for testing multi-threaded programs. For example, commit ae90d56 of

63

Configuration project introduced a number of tests to prove a race condition was fixed;

however the invariants did not change, and thus the invariant differential did not provide

any useful information to reviewers. Furthermore, it was not unusual for Daikon to infer

the same invariants despite more tests are added, and in those cases Getty delivers little

semantic information to reviewers.

Given the simple nature of our insufficiency metric, these results are quite

positive. It is notable that all of the chosen testing commits were considered 100%

covered by the branch coverage report obtained by Maven EMMA plugin [39]. Our

results confirm recent results that popular test coverage tools are not always good

indicator of test suite effectiveness [50].

As an aside, during this study we found two simple invariants that often gave

away test insufficiency, both featured in the scenario in Section 5.1. One relates to the

failure to test for null as in input value (e.g., other ≠ null). The other is a Boolean return

value always being true or false. In addition, exceptional exit-point invariants were

helpful in confirming behavior after a failure intentionally induced by a test case.

5.4 Checking Semantic Change Consistency

We randomly selected one confirmed bug from each project (including a new one

from GSON), found the commit where the bug was introduced, and applied CSI to check

whether the bugs could have been found at the time of their introduction. As ground

truth, we checked out the commit confirming the existence of the bug, executed the failed

test(s), traced the buggy method’s behaviors using Eclipse JDT Remote Debugger [51],

and studied the root cause of the bug. Then we used git-blame [52] to trace back to the

64

editing history and find the commit that made the buggy edit. Finally, we applied CSI to

inspect the semantic changes of the commit that introduced the bug. The results are

summarized in Table 11.

The commit from the CLI project fixed the bug documented in issue CLI-252

[53], where the command line parser threw an exception when parsing an option that is

the prefix of another. The bug was introduced when developers added partial matching to

the parser. GETTY failed to identify this bug because Daikon did not infer useful

invariants for the options. The bug in the Codec project regards the colognePhonetic

method in the ColognePhonetic class. It takes a string and returns an encoded string,

using the Kölner Phonetik algorithm [54]. The bug concerns an encoding with

sequentially repeated digits. Both bugs went unrecognized, at the very least, because

Daikon’s current String invariant templates do not consider string contents beyond

equivalence.

CSI granted insights for discovering the other four bugs listed for GSON, Crypto,

Collections, and Configuration, between 1 day and 60 months before the bug was

explicitly discovered and fixed. We discovered two typical patterns for deciding whether

a commit is buggy: incorrect invariants, and missing expected invariants.

Table 11 Results of Inspecting Buggy Commits

Projects Introduction
Commit

Discovery
Commit

Time Between
Commits

Lends
Insights?

GSON b634804 60ef777 1 day Yes
CLI 9b2b803 6c740e7 72 months No
Codec 2405423 b9cab09 159 days No
Crypto 9faf04e ee2136e 6 days Yes
Collections 83226e1 9dbf838 19 months Yes
Configuration c75a72c 821ccfa 60 months Yes

Y/N: Whether CSI lended insights to discover the bug at the time of its introduction

65

5.4.1 Incorrect Invariants

For the first pattern, incorrect invariants, we take the example from GSON project

at commit b634804. The method of interest is findAndInvokeCustomerSerializer,

shown in Figure 23. At line 186, it is expected that the return statement will always return

a JsonElement object as the serialized result. From the invariant differential, however,

we found that at this exit point it is possible for the method to return null. Java’s null is

not a JsonElement object, and the fact that this exit point can return null indicates that

this is likely a bug, which could cause more future bugs like null-pointer exceptions if the

result were referenced and used by other parts of the program. This was actually the

corner case developers had overlooked: when the serialized result is “null”, it should

return JsonNull object (JsonNull is a subclass of JsonElement), instead of the Java’s

177 private JsonElement findAndInvokeCustomerSerializer(ObjectTypePair objTypePair) {

178 Pair<JsonSerializer, ObjectTypePair> pair = objTypePair.getMatchingSerializer(serializers);

179 If (pair == null) {

180 return null;

181 }

182 JsonSerializer serializer = pair.getFirst();

183 objTypePair = pair.getSecond();

184 start(objTypePair);

185 try {

186 return serializer.serialize(objTypePair.getObject(), objTypePair.getType(), context);

187 } finally {

188 end(objTypePair);

189 }

190 }

Figure 23 GSON bug at commit b634804, indicated by the invariant diff

 Exit-Points:
 point-186:
 (return = null) �→ (objectTypePair = orig(objTypePair))

66

null. The developers did not find the bug until a later commit, 60ef777, where they

specifically handled the case when return value is null, and returns a JsonNull object

instead.

Another incorrect invariant we found is for the bug from the Collections project at

commit 83226e1. In this commit developers introduced AbstractPatriciaTrie, an abstract

class that encapsulates Patricia Algorithm for tries [55]. Starting from line 1121 is the

method of interest, subtree, which takes as input a prefix and additional parameters,

and finds the subtree that contains the prefix as prefix. Figure 24 shows the full

signature for subtree. As the two additional parameters, offsetInBits tells the method

to start checking from this given offset in bits, and lengthInBits tells the method where

to stop. For this initial implementation, the entry point invariant says that offsetInBits

is always less than lengthInBits, indicating that the method will always start checking

somewhere before it ends at a later position. However, this should be considered a bug

because in reality it is quite possible to start and end at the same index. The developers

did not find this bug until over a year later when they find the Patricia Tries they

implemented could sometimes mismatch [56]. They fixed at commit 9dbf838, 19 months

after the bug was introduced.

1121 TrieEntry<K, V> subtree(final K prefix, final int offsetInBits, final int lengthInBits) {

 // implementation of the algorithm ...

Figure 24 Collections bug at commit 83226e1, indicated by the invariant diff

 Entry-Point:
 offsetInBits < lengthInBits

67

In the above two examples, invariant differentials are superior to test coverage

metrics for catching bugs. Though the two interested methods were 100% tested in terms

of branch coverage, the problems in the two buggy commits lie in either the domain

(Collections example) or the range (GSON example) of the methods. Invariant

differentials deliver more detailed information to help developers review the semantic

impact of a commit.

5.4.2 Missing Expected Invariants

Sometimes, we inspected invariant differentials but failed to find the expected

invariants, and we regarded that as being a sign of bug. We take the example from Crypto

project at commit 9faf04e. Developers refactored the implementation of getInstance

method for a clearer logical code structure. We inspected the invariant differentials, but

did not find any invariants inferred for the exceptional exit point at line 138 (Figure 25).

This turned out to be a bug. The branch covering line 138 would be executed only if the

length of errorMessage is 0; however, earlier at line 120, errorMessage is initialized

with a length greater than 0, and none of the code between line 120 and 137 would

115 public static CryptoCipher getInstance(String transformation,

116 Properties props) throws GeneralSecurityException {

... // implementation ...

120 StringBuilder errorMessage = new StringBuilder(“CryptoCipher “);

... // implementation ...

137 if (errorMessage.length() == 0) {

138 throw new IllegalArgumentException(“No classname(s) provided”);

139 } finally {

... // implementation ...

Figure 25 Crypto bug at commit 9faf04e; no invariant diff for exit-point 138

68

decrease the length of errorMessage. Therefore line 138 resides in a dead branch.

Developers did not find this problem until the commit ee2136e.

The dead branch in the Crypto example could in principle be found by reading

test coverage reports. Here we have another example from Configuration project at

commit c75a72c, whose bug cannot be found by test coverage reports. In this commit,

developers implemented the to method to convert a specified value (value) to a target

class (cls) with additional parameters (params) to assist this conversion (Figure 26). The

to method contains one dedicated branch for each possible target class, and developers

intended to cover all primitive types, including Integer, Boolean, etc.. We inspected

invariants inferred for each type’s conversion branch, but we did not see any invariants

inferred for any handling String type, which is one of Java’s primitive types. We

concluded that the developers forgot to handle the String type and the to method

contains a bug. This bug was not fixed until 5 years later when developers found the to

method cannot handle “a trivial conversion” [57, p. 48]. In this case, developers

overlooked a specific branch. Test coverage report measures how the existing branches

are covered, but it cannot lend any insights on overlooked branches. We were able to

identify the overlooked branch because invariant differentials delivered the semantic

information for us to better understand the intent of the program.

5.5 Threats to Validity

The author of this dissertation, who has over 10 years of programming

experience, studied the cases discussed in this chapter. However, the validity of the data

is still threatened by the researcher’s subjective judgments. The researcher is familiar

69

with invariants, which may be an unusual situation for reviewers in industry. The results

in this chapter could therefore be overly optimistic. To obtain more objective opinions

from realistic reviewers, we conducted a user study. We will discuss our user study in the

next chapter.

Another threat is the diversity of the selected projects for our study. Although the

projects were randomly selected for research purposes, they may not be very

representative. One of the six projects is from Google, while the other five are all from

87 static Object to(Class cls, Object value, Object[] params) throws ConversionException {

88 if (Boolean.class.equals(cls) || Boolean.TYPE.equals(cls))

89 {

90 return PropertyConverter.toBoolean(value);

91 }

92 else if (Number.class.isAssignableFrom(cls) || cls.isPrimitive())

93 {

... // more conversions

... // more else-if branches

144 else if (Color.class.equals(cls))

145 {

146 return PropertyConverter.toColor(value);

147 }

148

149 throw new ConversionException(“The value ‘” + value + “’ (“ + value.getClass() + “)

 can’t be converted to a “ + cls.getName() + “ object”);

150 }

Figure 26 Configuration bug at commit c75a72c, lack of invariants for String conversion

 Exit-Points:
 point-102:
 return’s class is java.lang.Boolean, ... // more invariants
 point-108:
 return’s class is java.lang.Integer, ... // more invariants
 ... // more exit-points
 point-146:
 return’s class is java.awt.Color, ... // more invariants

70

the Apache Foundation. Limited community cultures could lead to limited diversity,

which might jeopardize the generality of our conclusions in this chapter.

Acknowledgments

This chapter, in part, is currently being prepared for submission for publication of

the material, Yan, Yan; Menarini, Massimiliano; Griswold, William G. “Mining Code

Repositories for Semantics-Assisted Code Review” The dissertation author was the

primary investigator and author of this material.

71

Chapter 6

User Study

This chapter describes how six pairs of Java programmers performed review tasks

using GETTY for CSI. We sought to answer the following research questions:

• How do invariant differentials affect the review process?

• What are reviewers’ attitudes and insights about Continuous Semantic

Inspection and GETTY?

From our analysis of the programmer’s work, we derived the following

observations:

• Invariant differentials altered the reviewers’ process. Generally, reviewers

using GETTY used invariant differentials to generate a hypothesis about a

patch. Then they read the code to verify the hypothesis they proposed, and

use the hypothesis to further understand requirements. Because reviewers

asked more focused questions during their review, the end result was the

production of generally more focused review comments left for the

developer.

• Most of our reviewers had positive attitudes about CSI. They

acknowledged that inspecting semantic changes is necessary and helpful

to code review tasks, and that they would like to incorporate similar

72

procedures into their daily code review process. Additionally, they

observed opportunities to improve GETTY.

This chapter is organized as follows. We first describe our study design (Section

6.1). Then, we analyze participants’ behaviors and study how the process of reviewers

using GETTY was different from the reviewers not using it (Section 6.2). We discuss

participants’ feedback (Section 6.3) on GETTY and CSI for their overall experiences and

suggestions. After discussing threats to validity (Section 6.5) of the study, we conclude

this chapter.

6.1 Study Description

To gain insights on patterns of using GETTY, we conduct a lab study to document

the reviewers’ experience using GETTY and answer the research questions of this chapter.

Our expectation was that CSI reviewers in our study could identify problems in

inadequately tested commits from the changed invariants and code, and that they could

interact with the developers in a consistent manner until the issues are fully resolved.

6.1.1 Roles and Participants

There were three roles in this study: developer, reviewer, and internet helper. All

roles work together for resolving issues. We discuss the roles and participants we

enrolled in this section, and will further describe issue workflow in Section 6.1.2.

The developer is the programmer who implements the functionality or fixes the

bug, and update the issue. It is typical that the developer creates an issue, constantly

updates the issue, and closes the issue when it is resolved, so for simplicity we use one

role, developer, to represent not only the programmer, but also the issue creator, reporter

73

and owner. A reviewer is a separate engineer who reviews the code changes and provides

comments to the developer. It is also the role whose behaviors we study in this chapter.

An internet helper plays the role of search engines (e.g., Google [58]), online Q&A

communities (e.g., StackOverflow [59]), and more for GETTY, since the tool, being a

prototype, has no online presence. In the study, our participants are the reviewers, while

we play all the other roles.

We enrolled 18 anonymous participants with 1 to 16 years of programming

experience in academia or industry. All of our participants volunteered to fill out a

questionnaire (Appendix II) regarding their programming background, so we can better

interpret the results. We rate their experiences by three levels: novice, experienced, and

advanced. Novice programmers are beginners who are new to programming. For

example, two of our participants are undergraduate students with less than 2 years of

programming experiences (all for their coursework), so we rate them as novice

programmers. All other 16 participants are either graduate students or professional

developers from industry, and they all have at least 4 years of programming experience.

We consider participants with less than 10 years of experience as experienced, and those

with 10+ years of experience as advanced. Based on this rating system, we have 8

experienced and 8 advanced participants.

We further divided the 18 participants into 6 study groups and 3 control groups,

each of which comprises 2 participants of similar experience level (Table 12). The two

participants in the same group performed the review tasks together. We set the pair-

programming style to avoid the negative impact of similar approaches like the Think-

74

Aloud Protocol [60], where researchers may unintentionally influence what participants

say and do [61].

For presentation purposes, we label each participant by his or her group number

(experimental groups are from E1 to E6, and control groups are from C1 to C3), seat

position (L for left, or R for right), and experience level (N for novice programmer; E for

experienced programmer, or A for advanced programmer). For example, the reviewer of

experimental group #5 sitting to the left is referred to as E5-LE, and the reviewer of

control group #1 sitting to the right is referred to as C1-RA. Table 12 lists all of the

participants for future reference.

6.1.2 Issue Lifecycle and Reviewer Workflow

Each issue in the study is in one of the three states: open, pending review, or

closed. The state chart is shown in Figure 27. An issue is initially in an open state. When

the first implementation is available, it becomes pending review. Reviewers will review

the issue. Unless all reviewers are satisfied with the implementation, they will leave

comments and move the issue back to open status. Developers have to continue to work

on the issue based on reviewers’ comments. When a successive fix is available, again the

Table 12 Participant Labels

 E1 E2 E3 E4 E5 E6 C1 C2 C3

Left LA LA LN LE LE LE LA LA LE
Right RA RA RN RE RE RE RA RA RE

Label: Group Number (1-9) + Seat Position (L, R) + Experience Level (A, E, N)

75

issue will be pending review and it will be reviewers’ turn to review the changes. The

issue will be closed only if all reviewers agree to pass it.

All of the issues reviewered in this study were not good enough to pass the initial

review. We set up a two-phase review process for the bounded duration of our study. In

the first phase, the reviewers review the original issue with the original patch. After

reviewers finish their review, we assume that there were other reviewers, independent

from the current ones, that also finished their code review and the issue owner will

synthesize all review comments and propose a new patch. In the second phase, the

reviewers review the new patch. If they are satisfied we close the issue; otherwise, we

comment that the new suggestion for improvement will be moved to another issue and

then we still close the issue

For each review phase, to resolve an issue reviewers not only need to read the

issue report and code base, but also may interact with related persons (developer, project

manager, etc.) and other sources (search engine, web forums, etc.). For example, when

reviewers are confused by some programming tricks used by developers, they can ask the

developer for explanations; when they lack certain background knowledge, like integral

Figure 27 User Study Issue Lifecycle

76

precision definitions for different integer types in Java, they can search Google or post

questions to stackoverflow.com for answers.

Figure 28 presents the workflow from reviewers’ standpoint. After the reviewers

are notified to review an issue, they will read the issue report and review the report

generated by GETTY. When any part of the program confuses the reviewers, they can ask

the developer for an explanation. For any other related questions, reviewers may ask

stackoverflow.com or Google; but in our study they cannot wait for the replies.

Therefore, the experimental investigator plays the role of the web forums or search

engine. Instead of issuing inquires online, reviewers can directly ask the experimental

investigator questions and they can expect answers to be given promptly and correctly.

The reviewers will gather any problems they find during review, and leave their

comments in the issue tracking system. Developers will be notified of the new comments

Figure 28 Reviewer Interactions

77

and update the code and issue report accordingly. After each update a new GETTY report

will be generated for the reviewers. The reviewers will repeat their reviewing process

until they are all satisfied with the update.

6.1.3 Study Tasks

We chose three real issues from the GSON project. All of the chosen issues had

passed their original code review process, but, in fact, they either were insufficiently

tested or suffered from undiscovered bugs. The three issues, their symptoms and our

expected fixes are highlighted below:

1. Issue-#1 [62]: The patch for this issue targets is to fix two methods, intValue

and longValue, of LazilyParsedNumber class. The class contains a String

attribute, value, which can be interpreted as a number. The two methods

interpret value and output the corresponding number value as int and long,

respectively. The issue was to fix the conversion failure when converting

decimal number strings. It is expected that decimal numbers be converted to

integers ignoring all digits after decimal points. Before the issue developers

always used BigInteger to convert the value, but it would fail the conversion

when value is a decimal number because the conversion method of

BigInteger will raise a NumberFormatException. For this issue developers

replaced BigInteger with BigDecimal so the two methods can handle floating-

point numbers without failures. The developers added only one simple test case,

converting “1.0” to 1, for this fix, but did not consider other trickier conversion

situations. We expect reviewers to react on this problem and give developers

78

some suggestions on testing; specifically, we believe the developers should at

least consider the cases when value is a number that overflows the range of int

or long, and when value is a decimal number whose digits after decimal point

are not all 0’s.

2. Issue-#2 [63]: The issue is to implement two new methods, equals and

hashCode, of the same LazilyParsedNumber class. equals compares another

LazilyParsedNumber and returns true if their value attributes are equal

numbers. hashCode computes a hash value of value and returns the result as

the Hash value of the LazilyParsedNumber class. In this issue the developers

implemented both methods and added tests for them. For testing the equals

method, developers added a test case that a LazilyParsedNumber object whose

value is “1” is equal to another LazilyParsedNumber object whose value is

also “1”; for testing the hashCode method they added the test case that the

above two objects have identical Hash codes. Ideally, reviewers should find

both tests were inadequate. For example, for equals developers should have

considered the case when the two LazilyParsedNumber objects contain

unequal value values. In addition, there is a subtle bug in the patch. According

to Java’s specification, developers should test that the equals and the hashCode

methods behave in a consistent way; i.e., two equal LazilyParsedNumber

objects should have identical Hash values, but that was not accounted for in the

patch.

79

3. Issue-#3 [64]: This issue contains two parts. In the first part, developers updated

the application logic of the JsonNumber method in JsonParser class.

JsonNumber is a helper method for the parser. Its purpose is to return a

JsonPrimitive object (more specifically, a number primitive) if the object

being parsed can be interpreted that way. During interpretation, developers used

BigInteger to parse all integers to avoid precision loss, and used BigDecimal

to keep all zero’s at the end of decimal point. This involves some semantic

changes at the library methods, getAsBigInteger and getAsInt, in the

JsonPrimitive class. In order to study whether reviewers can find

unimplemented requirements, we added the second part that specifies the

specification of the two methods, getAsInt and getAsBigInteger. More

specificallym, getAsInt should only accept strings that can be interpreted as

integer values; for other strings, it should raise exceptions. We expect reviewers

to problems, either testing issues or bugs, in the patch.

In our study, each issue is reported in the issue tracking system, BitBucket [65].

The issues are initially pending review. We use the implementation (or fix) from the

original issue as the developer’s first response. The reviewers will then decide whether to

pass or fail the code review. We will close the issue if all reviewers are satisfied, or if

they already find all problems we expect them to find. If the reviewers are not satisfied,

they will leave comments in the issue tracking system with specific reasons (and

suggestions, optionally), and set the issue state to be open. We will discuss about the

comments, fix them, update the issue promptly and set its state to be pending review

80

again. Reviewers continue to perform the review task on the updated commit. In our

study, the above procedure repeated at most twice per issue.

We simulated the real code review environment. Each group of participants was

arranged in the same quiet lab room for their review tasks. We prepared two computers,

both Apple’s 27-inch iMac (2016 Model). Reviewers used one of the machines for their

code review tasks, while the experimental investigator used the other one to reply to

reviewers comments, reset issue states and all other related tasks. We video-taped all

reviewers’ behaviors during their code review. After they finished, we interviewed all

participants for their experiences using GETTY and requested suggestions for

improvement.

6.2 Code Review Process

We will answer the first research question in this section. How do invariant

differentials affect the review process?

As a baseline, the control groups used the Github code-diff page for their review.

They did not have access to any extra semantic information. The experimental groups

used GETTY, so they could not only view the same code-diff page displayed for control

groups, but also the added semantic information like invariant differentials. To get a

general understanding of how code review is performed without added semantic

information, we first summarize the control groups’ behaviors and results. We then

analyze the behaviors of the groups using GETTY. We compare the experimental groups’

review process and results with the control groups and study how the added semantic

information altered their review process.

81

6.2.1 Control Group Review Process

Figure 29 shows the typical review process of the control groups. Reviewers start

by reading the requirements. Most requirements are vaguely written, which is expected.

After roughly understanding the requirement, they open one file in code-diff page and try

to understand the code change. The reviewers may need to expand the code context to

further understand the code. Based on their understanding of the code change, they go

back to the issue description and check if the code change is consistent with the

requirement, as they understand it. Reviewers further examine related code, including

tests, to check if the changed code is properly tested until they are fully satisfied with the

changed file. The reviewers repeat the above process for each file listed in the code-diff

Figure 29 Control Group Review Process

82

page. After they finish reviewing all files, they discuss about the issue and write down

review comments.

Take the issue #1 for example. As the first step, the reviewers read the following

issue description:

“Use BigDecimal to parse number string when requesting it as Integer –

LasilyParsedNumber has the value of a string that can be interpreted as a number. Use

BigDecimal to parse the number string to avoid precision loss in general. However, when

requesting as an integer, it ignores all digits after decimal point if any, and ignores all

bits that overflow the range of requested integer type.”

The requirement as indicated in the description was vague to reviewers at first.

For example, C1-LA read and complained about the requirement, “… ignores all bits that

overflow the range of requested integer type … Oh, god that is not a good way of saying

that!” C1-RA interpreted the requirement of precision as “truncate to reasonable integer

length”.

Figure 30 Code change in the intValue method

83

To understand the requirement, the reviewers started to review the actual code

change. They noticed that more than one file was changed, so they chose to review the

first file and jumped directly to the changed lines (Figure 30). Most often, the reviewers

could not fully understand the changed code immediately. Like C1-RA mentioned, “why

would we do a big decimal inside an int value? Wasn’t the whole point of the

LazilyParsedNumber that we are using an integer type in the integer case?” So they

needed to understand more code context by viewing the full method body in the context

of its class (Figure 31). By reading the code, most reviewers felt the requirement clearer

to them, and came up with specific questions. For example, conversion between C3-LE

Figure 31 the intValue method with context

84

and C3-RE was “… the value is a double. In that case, would converting it into a

BigInteger cause any exception? If a value is a double and if you convert it into a

BigInteger instead of a BigDecimal, would it cause any exceptions or would it just round

it up?” This was an excellent question because it was exactly the problem this issue was

to address.

With specific questions, the reviewers went back to the changed code and verified

whether the code correctly addressed the issue, and whether the code is properly tested.

For example, C1-LA found the tests were insufficient, and said the “test case does not

exercise any of the interesting edge cases and frankly, you know, if someone actually

submitted this for a project that I was working on, I wouldn’t say a ton more than that. I’d

be like come on man!” This was eventually left as one of the review comments left by

this group.

The reviewers gradually understood the requirement, and kept on verifying their

understanding of the changed code. For example, the issue report said to use BigDecimal

to parse the number string to avoid precision loss “in general”, but never said what it

meant. This raised C1-LA’s attention, and he asked whether it was necessary to

“maintain decimal if it has it”. In addition to the intValue method and the longValue

method, there were other similar methods, floatValue, doubleValue, etc., in the

same class; but then C1-RA found developers “didn’t touch that code”. They were

convinced that by “in general”, the developer meant the precision problem for integral

numbers only, and believed that the precision problem for floating-point numbers was not

part of the requirement.

85

The reviewers examined other changed files in a similar manner. As the last step,

they discussed and wrote down their final review comments. We cite some of the review

comments for issue #1 below:

• “The test case does not cover either the new functionality or most potential

edge cases. Please add additional test cases covering truncating, large values,

and the intValue() code paths” (C1-LA)

• “Functionality looks good. Consider removing import of BigInteger library.”

(C2-LA)

• “Instead of json = 1.0, … consider json = 1, …” (C3-LE)

It is worth noting that the control groups ran into various additional problems with

issue #1 while they were reviewing the code change. For example, group C2 identified

that the BigInteger library import could have been removed after the developer made

the change. This kind of style issue can be automatically addressed and reported by

existing style check tools instead of wasting valuable reviewers’ time. In the third review

comment, the reviewers suggested writing one test case, but that, in fact, was an incorrect

suggestion. Because the reviewers in control groups did not focus on the semantic

impact of the code change, they developed random questions regarding code quality and

that led to random review comments. We observed the similar review process and found

the qualities of review comments for issue #2 and #3 also varied, and most of them were

not useful to the issue. This corroborates with the conclusion drawn from Microsoft’s

2015 survey on the current code review process that less than half of review comments

are deemed useful by the author of a change [66].

86

6.2.2 Experimental Group Review Process

Next, we analyze experimental groups’ behaviors and study how GETTY altered

their review process and what the consequences were from the change.

Figure 32 shows the general process of the experimental groups. They begin by

reading the requirements, which is the same with control groups. The requirements are

vague, so they review the changed code to aid their understanding. However, in this

process, they inspected the patch on a per-method basis, instead of files. While reviewing

a method, they examined its invariant differentials and formulated hypothesis about the

code or requirement. To verify each hypothesis, reviewers read related code and check if

their interpretation of the invariants is supported by the code. Reviewers repeated the

Figure 32 Experimental Group Review Process

87

above until all changed methods were inspected, then they leave review comments in the

issue tracking system.

To ease the comparison, we again take issue #1 as an example. After reading the

vague issue description, reviewers opened the GETTY tool and started to review each

changed method to better understand the requirements. Generally, reviewers tended to

start their focus on a method with both syntactic and semantic changes. For example, E2-

LA suggested that they need to “agree on what has changed”, both the code and the

invariants; then group E2 selected the longValue method to begin with because it was

one of the changed methods whose invariants were also updated.

Because of the way GETTY’s UI is designed, it was easier for reviewers to view

invariant differentials before the code change (Figure 33), and most reviewers did so.

They developed hypotheses from the invariants. For example, after reading the added

invariants for the longValue method (Figure 33), E2-RA said “what this means is that

the exception case is tested with only one test … and that also seems not necessarily

great, right? You want at least a few tests for all branches. A couple of tests, at least, for

Figure 33 Invariant and code diff for the longValue method in GETTY

88

all branches.” In this hypothesis he raised his concern about the tests, and he surmised

that the tests might be inadequate. The same hypothesis was developed by the other

experimental groups as well.

The reviewers began to review the code change to verify their hypothesis. Using

GETTY, reviewers found their way to the related methods or test cases. For example, for

the same hypothesis (test inadequacy) developed by group E1, the reviewers took

advantage of the invocation flow information in GETTY (Figure 34), and found one

modified caller of longValue, which was the new test case introduced in the commit.

After reading the updated tests, E1-L1 said to his partner “the key problem is exactly as

you said. This type of test is not very, you know, capture the problem right.” As another

example for the same hypothesis, group E6 used the impact isolation feature of GETTY

(Figure 35) to verify it. Instead of locating the test case for the longValue method, they

clicked the “Test Change (for Old Source)” tab and read the added invariants for the old

source when running new tests. From the added invariants at exceptional program points,

E6-LE realized that new tests failed the old source, as expected, and there was only one

Figure 34 The test case for the longValue method

89

input value (“1.0”) introduced for that purpose. They took notes for the confirmed

hypothesis for later use.

Reviewers repeatedly verified each hypothesis they developed. The verified

hypotheses helped them better understood the requirements. Reviewers still switched

back to the issue description page and discussed if anything was missing. Similar to the

control groups, the experimental groups were unclear on why they should use

BigDecimal to parse the number string to avoid precision loss “in general”. But when

they switched back to GETTY they found intValue and longValue were the only two

methods changed in the Patch Summary Zone, so this requirement became clearer to

them that the precision concern was for integral numbers only.

Because the reviewers generated their hypotheses based on invariant differentials,

their attention was focused on the semantic aspect of the code change. As a consequence,

Figure 35 Use test impact isolation to verify the lack of tests

90

the experimental groups left more consistent review comments. We cite some of them for

issue #1 as follows:

• “I think you can add more tests that would show how the code behaves with a

larger variety of decimal inputs, …”

• “Would you please add test cases for longValue and intValue called with

‘overflow’ values? …”

• “Please add more tests using more than one number as input …”

In the comments above, the reviewers pointed out that the tests were inadequate,

and they suggested ways to improve the quality of tests, including testing corner cases

like decimal inputs and overflowing values. The review comments uniformly focused on

the semantic aspect of the code, and they clearly suggested to developers on how to

improve their tests.

The process was similar for issues #2 and #3. For example, in issue #2, group E2

found at the exit-point of the equals method, an invariant indicates that its return value

was always true. They developed the hypothesis that only equal values were tested for

the method. There were two overloaded equals methods and one was the helper method

for the other. They read the added test case and verified their hypothesis. Given that the

true return was for equal values, they confirmed that the requirement of the equals

method was to perform comparisons based on values, not references. At the end, E2 left

review comments for more test cases for unequal number comparisons, just like the other

experimental group did.

91

In summary, the new process is hypothesis-driven in that: (1) Reviewers use

invariants to generate hypotheses; (2) Reviewers use code and other information provided

by GETTY to verify their hypotheses; and,(3) Reviewers use the verified hypotheses to

better understand the requirements. Compared to the review comments left by the control

groups, the experimental groups captured more of the semantic aspects of the patch and

their review comments are more consistent and informative. This result shows that the

extra semantic information provided by GETTY can positively alter reviewers’ processes.

6.3 Reviewer Feedback

In this section, we will answer the second research question. What are

reviewers’ attitudes and insights about Continuous Semantic Inspection and

GETTY?

After the study we interviewed all participants about their experiences. Compared

to the control groups, all six groups using GETTY were excited when they learnt they

discovered the problems that were missed by the original project reviewers. In addition,

our participants commented on the helpfulness of invariant differentials and shared with

us several points for improving the tool design.

All Groups except for E5 explicitly expressed favorable opinions of GETTY and

would like to integrate CSI into their code review process. Group #1 liked the tool

because it “finds the errors using invariants not expected to see”, and believed that

“invariant change is a plus and saves a lot of time in code review”. Group E2 said the tool

is “overall pretty helpful” and they “enjoyed using the tool”. Group E3 believed

reviewing invariant differentials are “necessary since it provided a way to view your code

92

and remind you if there is something lost”, and it is especially true “for others who may

not be familiar with your code”. Group E3 also acknowledged that GETTY “helped find

the lack of tests”. Group E4 said the tool was “very handy for reasoning about

exceptions” and sometimes, they “did not have to look at all the code (to confirm their

expectations)”, but just need to review the semantic changes. They had seen code review

tools with syntax changes, but they felt excited to see the tool with semantic changes in

the study, and was impressed that our experiments demonstrated such a tool being

“approachable”. Group E6 was happy that the tool “provided unique information to help

code review” and it is “necessary to view semantic changes in addition to textual

changes” during code review. Group E5 liked the idea of inspecting semantic changes,

but they pointed out that “invariant diff is not the actual semantic diff”. On the other

hand, they still gave credit to GETTY with the comment that “invariant diff may give

some insights”, because by using GETTY they were able to perform better than the

original reviewers.

The participants suggested a number of ways to improve GETTY. The suggestions

fall into two categories: logical presentation and UI improvement.

For the first category, reviewers would like the tool to logically understand the

invariant differential information. Specifically, reviewers were interested in two kinds of

information. The first is how/where a particular invariant was generated. Group E2, E4,

and E6 wanted to know which test(s) generated a particular invariant. During the review,

they frequently checked the callers of a method and were trying to find the tests that

might be helpful to reason about the invariant differentials. In this scenario it could be

93

handy if, from each invariant, there were a way to tell which tests were related to it. In

addition, the reviewers were interested in the logical difference between two versions of

invariants. Currently, GETTY computes and displays only textual difference between two

versions of invariants. Not only did this cause reviewers to expend more efforts (Group

E3 and E5), but also it led to confusing differential information, especially when

invariants of overloaded methods were displayed together (Group E2). Ideally, the tool

should present reviewers logical differentials, and link each invariant differential to the

particular set of tests that generated it.

Another set of suggestions is for UI improvement. Group E3 and E5 would like a

friendlier UI so that the invariants are easier to understand for beginners. This could be

solved by clearer invariant syntax as Group E6 suggested. Group E2 liked the integrated

layout of GETTY, but wanted invariants shown near the code that generated them so that

there were less clicks and moves by reviewers. Moreover, since GETTY did not present

invariants separately for overloaded methods, the invariant differentials were clustered

for all versions of a method, causing confusion. Group E1 and E6 suggested improving

the UI for invocation flows, where they would like interactions between finer

granularities of code snippets other than methods. Last, Group E4 wanted useful

components of UI to be more accessible. For example, the last group of methods

displayed in Patch Summary Zone of GETTY shows all methods and classes whose

invariants have changed after commit. This group could be handy for reviewers to

quickly jump to the methods of interest without extensive reading, so ideally it should be

displayed by default.

94

As a summary, most reviewers shared their favorable opinions on GETTY and

CSI. Meanwhile we received a number of suggestions for improvement. At the time of

this dissertation’s writing, we improved the UI of GETTY for clearer views. For example,

the older version of GETTY was unable to differentiate invariants for overloaded methods;

in the newer version, methods with the same name but different signature are treated as

different semantic units and their invariants are inferred, differenced and displayed

separately.

6.4 Limitations

From the study we also identified some limitations of GETTY. First is that GETTY

failed to help reviewers find the subtle bug in issue #2, where the return values of the

hashCode method of two LasilyParsedNumber objects should be identical as long as the

equals method returns true when comparing the two objects (Section 6.1.3). Ideally, a

class-level invariant correlating queries (methods without side-effects) could discover

such bugs. Unfortunately, unlike Eiffel [67], Java does not distinguish queries and

commands (methods with side-effects) at the language level, and therefore Daikon was

not able to infer invariants of this kind. This also shows that CSI is highly dependent on

the tools it uses and the languages supported, and it inherits their limitations as well.

Another limitation is the limited exploratory space in invocation flows. As

discussed in Section 3.3.2 and 4.2, we compute the local-area call graph for each method,

and infer invariants only for the methods within a fixed number of steps away from the

target method. While this reduced the load of inference process, it also shrank the

exploratory space during inspection. For example, when a reviewer wanted to see all the

95

test cases testing an interested method, she might have to locate them in the source code.

Care needs to be taken to balance the performance impact and the usability of the tool.

6.5 Threats to Validity

There are a number of factors in our study design that could threaten the validity

of our results. In this section we talk about these threats to validity.

The first threat is that our participants were not familiar with our tool and the code

base they were reviewing. As a contrast, in real life reviewers are usually familiar with

their toolset and the projects they review. Likewise, some of our participants (Group #1,

#3, #5 and #6) were not even familiar with their own partners. This added an extra level

of difficulty to our participants when they were working together. Therefore, all these in

overall could lead to more pessimistic results in a real code review environment.

The next threat is the representativeness of the selected issues. We aimed to

choose three issues that are “problematic but moderately difficult”, which means that the

issues were either under-tested, or have bugs that were not found by the original

developers. The third issue was a combination of two issues for assessing unimplemented

features. Albeit a common case in most software projects, it was not a realistic issue.

Third, the participants we selected may not be representative because they are

mostly graduate students and 4 of them have a background in programming language

research. They are very likely to be more proficient in using the information like

invariant differentials, than the average reviewers. Therefore, our results could be overly

optimistic, perhaps offsetting the pessimistic impact of the first threat.

96

Finally, our study was conducted in a simulated code review environment. That is

to say, the setting may be close to real code review, but it was not real. The issue tracker

is less complicated than the popular Phabricator [35]. The issue life cycle is simplified.

The two reviewers in each group were working in pairs, using one computer to review

each issue assigned. Additionally, the experimental investigator played the role of

internet helper and answered reviewers’ questions nearly instantly. This is not likely to

occur in realistic code review, and moreover, the experimental investigators could deliver

incorrect information and negatively impact the quality of the study. All of the above was

a trade-off for performing the user study in a bounded duration, and they together could

have indefinite impact to the validity of our results.

6.6 Final Remarks

This chapter demonstrated that CSI is a successful way of doing code review from

the perspective of a user. With extra semantic information for code review, GETTY

positively altered reviewers’ processes and led to more consistent and informative review

comments. Our participants shared constructive comments to improve our tool. They

liked GETTY and would like to integrate CSI into their daily code review process.

Acknowledgments

This chapter, in part, is currently being prepared for submission for publication of

the material, Yan, Yan; Menarini, Massimiliano; Griswold, William G. “Mining Code

Repositories for Semantics-Assisted Code Review” The dissertation author was the

primary investigator and author of this material.

97

Chapter 7

Future Work

In previous chapters we evaluated GETTY and proved it to be helpful in code

review tasks. On the other hand, there are limitations of our approach because of how it is

designed and implemented. In this chapter, we will suggest ways to improve GETTY and

explore more applications for future work.

7.1 Quality of Invariant Differentials

The core of our approach is to difference inferred invariants before and after

commits to indicate how behaviors change. In this regard, we have concerns on the

quality of the inferred invariants and the way we use them. GETTY uses a dynamic

approach to infer invariants from test executions. Therefore, the quality of invariant

differentials relies heavily on the test suite, the tool we used for inference, and the way

we difference and use invariants.

First of all, we can improve the test suite so that Daikon can infer better

invariants. In our experiments (Chapter 5 and Chapter 6), we have observed that open

source projects generally suffered from a lack of tests. Notably, developers paid great

attention to the branch coverage of the code. For example, a method with one single

branch (sequential flow) will be claimed tested with 100% code coverage as long as

developers write one test case that executes the entire method body. In this case, at the

beginning and ending program points we can observe at most one pair of data points.

98

However, invariant inference at each program point depends on sufficiently many data

points, which can hardly be guaranteed by 100% branch-covered test suite. A potential

solution is to use random test generator (e.g., Randoop [33]) to populate test suite with

automatically generated tests, in the hope that the added tests may increase the diversity

of data points and Daikon may therefore infer more accurate invariants. Additionally, we

can improve Daikon by improving its inference algorithms and adding more template

support, so that added data points can be better used during the inference process of

Daikon.

Invariants are not the only way to imply semantic change of a commit. For

example, presenting trace differences can be simpler and more straightforward when

Daikon has insufficient inputs for inferring invariants. Further analysis of the traces can

add more potential value to GETTY. For example, by adding extra instructions to the

Daikon front-end, it can track which test(s) generated the data for each program point,

and thus for each invariant for that program point. This way it can make it easier for

reviewers to track and reason about the invariants.

Alternatively, changing the inference method to the one using static techniques

could help without the hassle of coping with test insufficiency. Tools like Houdini [68]

can help in this case, but most of them require extra annotation support and add extra

burden for developers. Moreover, it could change the way CSI works because the

invariant inference is no longer dependent on tests. We need to further investigate its

applicability before carrying out this plan.

99

Last, we plan to present logical invariant differentials to reviewers. Daikon

maintains its internal data structures for formal specification and has the capability to

print invariants in flexible formats [69]. For example, we can add the Z3 format [70] so

the invariants can be interpreted and differenced by the Z3 theorem prover.

7.2 Tool Integration

For now GETTY is integrated with a version control tool (git), build automation

tool (Maven) and dynamic invariant detector (Daikon). As a prototype tool, GETTY is

stand-alone for research purposes. However, for future interaction with more software

tools it would be beneficial to integrate GETTY’s UI into an existing tool suite.

For desktop environments we suggest creating GETTY components for existing

IDEs. Specifically, we could create a GETTY plugin for Eclipse [71], one of the most

popular Java IDEs. Eclipse’s open marketplace provides a myriad of software

engineering tools. The integration makes it easier for GETTY to interact with those

existing tools. For example, GETTY is currently unable to identify method renaming and

infers invariants for the renamed method as if it were newly created; working with

Eclipse’s refactoring tool could help GETTY resolve this issue.

For web-based environments we suggest integrating GETTY into DCPs, like

Phabricator [35], which includes a suite of online software tools for developer

collaborations like issue tracker, code review tool, Continuous Integration (CI) portal,

and more. For each commit, Phabricator’s code review tool displays not only its textual

code difference but also the associated issue ID and testing results from CI. This also

provides the opportunity to display GETTY’s result. After submitting each commit, we

100

can run GETTY offline, and when the result is available we display it in the code review

page to assist reviewers to apply CSI.

7.3 More Applications

GETTY’s success uncovered the power of invariants, and we believe there are

more potential applications as a result of future research on invariants. We envision the

following two applications as promising for future work:

• Mining invariant database for software maintenance. As software project

evolves, so does the invariants implied for each component. CSI compares

invariants between a pair of commits; one further step is to infer invariants for

all commits and observe how invariants evolve. Our hypothesis is that each time

invariants of a method change, it should correspond to updates of either

semantics (due to change of requirements) or the test suite; other cases can be

considered a sign of introducing bugs. Mining backwards (into past commits) is

a way to discover undetected bugs, while mining forwards (for the new commit)

is to predict vulnerability of the new patch.

• Mining invariant database for software reuse. We postulate that similar

software components should have similar invariants. By studying enough

projects and their invariants, we can cluster similar components based on their

invariants. Machine learning techniques may help during the process. We

propose to abstract the clustered, similar components so they become reusable

coding template and reduce the cost of software development.

101

Still, the applications proposed above are speculative. We plan a small user study

to investigate the feasibility of each listed application before development.

102

Chapter 8

Conclusion

As a widely agreed-upon practice in software engineering, reviewers manually

assess software code before it is merged into version repository or deployed to

production. Aside from coding styles, etc., reviewers are interested in how the modified

code affects software behaviors. The written tests may shed some light on it, but a gap

still exists between the textual difference of two versions of the code and its actual

impact.

Software patch comprehension focuses on tools to shorten that gap. Existing tools

assist reviewers at syntax, semantic, and natural language levels. Syntax differences

require the least cost to compute, but reviewers are left with the most efforts for

understanding the resulted semantic impact. In contrast, understanding the patch in

natural languages reduces the reviewer’s burden, but it requires the highest computational

cost and the result can hardly be accurate. As a balance of the costs we advocate

presenting semantic differences to reviewers.

In this dissertation we proposed Continuous Semantic Inspection for code review.

The core idea behind CSI is to infer invariants from concrete executions, and use the

difference between two versions of the invariants to indicate behavioral changes. We

implemented the tool, GETTY, to support our concept of CSI and applied it to Java open

source projects. Because invariants may change due to various parts of the program, we

isolate their impact to help reviewers better understand the cause of the changes. We infer

103

invariants with the method-level granularity. Reviewers may check invariant differentials

of related methods, following the control flow in the pre-computed local-area call graph.

All information is integrated in the interactive user interface of GETTY.

Our approach relied heavily on the costly dynamic invariant inference. For

practical use, we scaled our approach by parallelizing test executions to relieve the

memory pressure of invariant inference. The substantial performance improvement

achieved enabled us to conduct a series of studies to evaluate the effectiveness of CSI by

GETTY. We reached the following conclusions:

1. CSI is a feasible approach. With careful implementation the computational cost

can be managed for practical use. The presence of an implementation like

GETTY (Chapter 3) shows an example of a CSI tool for Java open source

projects. The performance and scalability assessment of GETTY in our cluster

(Chapter 4) demonstrates that CSI is especially suitable for internet-based

computing environments, like clouds, for the sake of increased computational

power.

2. From our quantitative study of applying GETTY on open source projects for test

sufficiency and bug discovery (Chapter 5), we found invariant differentials are a

compact behavioral summary with useful information for reviewers to identify

problems. First, we were able to use GETTY and fail approximately one third of

the inadequately tested commits, which had otherwise passed original

reviewers’ screening process. Second, we tracked back to the history of several

randomly chosen bug-fix issues and applied CSI for each of the associated

104

commits, and were able to find most bugs as early as they were introduced. The

experiment shows the realization of CSI is powerful in that it can grant insights

for finding inadequately tested and/or buggy commits during review tasks.

3. CSI is a successful way of doing code review from reviewers’ perspective. We

proved this by showing how reviewers using GETTY perform their review tasks

for inadequately tested commits (Chapter 6). Our user study of 12 participants

using GETTY reviewing 3 realistic issues shows that GETTY positively altered

reviewers’ process and that most reviewers were able to leave consistent and

insightful review comments.

Overall, we proposed and argued that inspecting semantic differences during code

review is both helpful and cost-effective. Our approach shows an example of the concept,

CSI, by differencing dynamically inferred invariants to indicate how semantic changes.

We contributed GETTY, an extendable framework and implementation of CSI. GETTY

alters reviewers’ process so they can ask more focused questions during review and leave

quality comments for developers. GETTY’s success also shows that CSI has the potential

for more applications than a code review tool.

105

Appendix I

Inspection Result of 100 Testing Commits

SUF = Deemed sufficient; INS = Deem insufficient; NEI = Not Enough Information
INS (FN) = Deemed insufficient, but was incorrect

Google GSON

Commit	 Result	 Commit	
ef2f731	 SUF	 drawback:	we	can	do	for	parameterized		token	

58dc987	 INS	 1/2	invalid	bug	-	more	integer	types	expected	

7d7680f	 INS	 not	considered	array	of	more	than	one	nulls	

e8477b7	 SUF	 no	change	of	entry-point	invariants	

27f9716	 SUF	 enough	demensions	

657688c	 NEI	 	
ea6f779	 INS	 only	tested	one	single	digit	case	

903769e	 INS	 our	case	study	

881ee54	 INS	(FN)	 expect	invariant	changes	but	no.	Daikon	did	not	find	it	

a137944	 NEI	 	
1bf627c	 SUF	 It	should	fail	in	the	try	block	

8b852fe	 SUF	 TypeToken.get()	can	be	null	or	not	null,	both	tested	

52179a3	 SUF	 yes,	double	deserialization	

752522b	 SUF	 trivial	case	

5911ac4	 INS	 test	one	class	with	one	specific	setup	

fe55a8c	 NEI	 	
eb583ca	 SUF	 Daikon	failed	to	provide	more	information	for	multi-D	arraies	

106

Apache Commons Crypto

Commit	 Result	 Commit	
99cae98	 INS	 just	one	input	for	enums	is	not	enough	

aef15f4	 INS	 no	logging	called	

e4156da	 SUF	 expected	exception	

0fa9f0a	 NEI	 multithreading	supported	badly	

d4c6b9f	 SUF	 minor	change	no	semantic	impact	

8e3c24e	 NEI	 more	 positions	 possible,	 we	 did	 not	 handle	 inner	 class	 well	
enough	

8d41191	 INS	 doFinal	needs	more	multiples	of	8	

e692c56	 INS	 lack	of	more	multiples	of	8	

6b6c35a	 SUF	 move	all	tests	for	recognization,	too	large	to	fail	

2bdd4f7	 INS	 getCryptoInputStream	impacted	

58ab6e7	 INS	 writeChannel	only	false	case	tested	

7bed857	 SUF	 lack	 of	 testing	 this.padding==0,	 but	 whether	 that	 should	 be	
the	case	needs	more	domain	knowledge	

107

Apache Commons CLI

Commit	 Result	 Commit	
535beb1	 INS	 did	not	consider	option	with	-	or	--	

d89e42a	 INS	 Forgot	argument	name=null	

1042ba3	 NEI	 no	useful	invariants	

0f964c6	 SUF	 Minor	one,	but	interesting	to	know	what	will	change/unchage	

6c740e7	 SUF	 the	same	purpose	had	beeb	verified	already	

4745ade	 INS	 Does	getting	rid	of	unnecessary	tests	change	anything	--	what	
if	this.numberOfArgs=0	

4141904	 NEI	 Did	not	consider	same	width	with	screen,	but	that	was	a	tough	
case	

eed2561	 INS	 what	if	arguments	are	empty	

94f50c0	 SUF	

When	 option	 list	 is	 long	 a	 partial	 option	matching	 is	 tested.	
From	CSI	reviews	may	notice	that	the	callee	(flatten)	of	parse	
method	 as	 well	 as	 the	 hasOptionalArg	 method	 of	
OptionBuilder	 both	 changed	 invariants,	 and	 their	 invariants	
discovered	 the	 partially	 matched	 options,	 "--ver"	 and	
"verbose",	respectively.	

0cebfb4	 SUF	 indeed	considered	more	than	one	-D	flags,	good	job	

f588f55	 INS	 how	about	this.args	!=	[]	

83770d8	 SUF	 refactoring:	break	one	test	into	smaller	ones	

0cbe335	 SUF	 trivial	case.	No	change.	suppress	warnings	-	interesting	if	there	
are	any	semantic	changes	

1fcf87d	 SUF	 expected	

22576c1	 SUF	 side	effects	of	tests		--	not	catched	by	invariants	

f6af623	 SUF	 annotation	 changes	 of	 tests	 --	 no	 semantic	 changes	 as	
expected	

108

Apache Commons Collections

Commit	 Result	 Commit	
5d83e4d	 SUF	 all	tested	

3b69171	 SUF	 tested	

c33d396	 SUF	 basically	all	methods	of	FluentIterable	class	

c241318	 SUF	 moving	tests	

9e8b370	 SUF	 considered	both	non-null	and	null	cases	

11ddae0	 SUF	 they	 considered	 empty,	 non-empty,	 full	 queues,	 basically,	 all	
of	them…	

62e69cf	 SUF	 both	 non-null	 and	 null	 cases	 considered	 for	
ListOrderedMap.put	

fbb81a3	 INS	 less	tests	executed	after	commit	

15ee56b	 INS	 did	not	consider	underflow	or	overflow	

80e9621	 SUF	 trivial	case	

7d2532b	 NEI	 no	useful	invariants	inferred	

bb684e9	 SUF	 all	tested	

7c55e29	 NEI	 no	interesting	invariants	inferred	

13c8e44	 NEI	 no	 tests	 for	 deterministic	 order,	 but	 we	 don't	 have	 the	 hint	
from	invariants	

07d84c5	 SUF	 existed	tests	no	change	of	invariants	

04af9bc	 INS	 HashedMap:clear	 some	 old	 tests	 tested	 null	 at	 max	 index,	
which	was	gone	after	deletion	

a06a726	 SUF	 tested	more	than	expected	

109

Apache Commons Configuration

Commit	 Result	 Commit	
7e92e57	 NEI	 no	invariants	inferred	

227c59b	 NEI	 no	invariants	inferred	

9c726bf	 NEI	 no	invariants	inferred	

66690eb	 NEI	 no	invariants	inferred,	but	added	methods	are	not	tested	

39e0246	 NEI	 no	invariants	inferred,	but	no	test	cases	were	added	for	it	

d2274ba	 INS	 Configuration:size()	this.throwExceptionMissing	=	true	missing	
tests	

e22e2c1	 INS	 missing	testing	default	config	file	not	exist	or	null	case	

e3cfba3	 INS	 lack	of	tesint	this.result	!=	null	for	configuration	builder	

aef15bf	 SUF	 reverse	of	the	above	

c88169a	 INS	 system	 default	 line	 separater	 varies.	 This	 should	 be	 mocked	
and	tested.	

d496d7c	 NEI	 get	 test	 file	can	be	null	one,	which	was	not	 tested,	however,	
we	do	not	have	its	invariants	

0db44b7	 INS	(FN)	 The	 only	 this.config	 is	 good	 enough	 for	 the	 purpose,	 in	 fact.	We	just	can't	see	why	from	invariants.	
e2b5ec7	 INS	 did	not	consider	outfile	abnormaly	
77d022e	 INS	 QueryResult:equals	forgot	the	case	null=null	
60e232b	 SUF	 our	invariants	did	not	show	for	equals,	but	it	was	under	tested	
a6c3230	 SUF	 BeanHelper	initialized	more	instances,	good	

ae90d56	 NEI	 our	 tool	 did	 not	 discover	 interesting	 invariants	 for	 race	
conditions	

110

Apache Commons Codec

Commit	 Result	 Commit	
0f1e8c3	 SUF	 4	cases	

3b8cd11	 SUF	 more	than	needed,	but	we	cannot	tell	from	invariants	

d7b0185	 INS	 index	 >=	 0	 is	 correct,	 and	 the	 only	 metaPhone	 is	 indeed	
necessary	

cbe33f0	 SUF	 overkill	but	to	the	point.	However	it	is	a	bad	coding	practice	

9535a94	 SUF	 with	 one	 _random	 may	 not	 be	 fine	 as	 it	 is	 used	 across	
different	test	cases	

f63e8e9	 INS	(FN)	 Base64:decodeBase64	 return[]	 over-generalized	 incorrect	
invariants	

03d0f6c	 INS	(FN)	 incorrect	Daikon	invariants	

758111e	 NEI	 no	interesting	invariants	

b1561e9	 SUF	 data	correction	seen	in	invariants	

1e81451	 SUF	 ditto.	

2d76aa8	 NEI	 bad	invariants	that	hint	nothing	

54f7ca3	 INS	 bmpm	could	be	null	

26951aa	 INS	 BeiderMorseEncoder:encode	could	face	null	input	
805103c	 SUF	 After	both	src	and	test	are	added	previously	
bc1c22b	 SUF	 lack	of	Long.MAX	
2cb3bbd	 INS	 encoder	input	arg	can	be	null	

ab25ca7	 INS	 B64:b64from24bit:	b0	=	0	case 	
1e531f7	 NEI	 In	fact	not	fully	tested	

4a6c364	 INS	 tests	not	executed	

2101593	 SUF	 Long	skipped	

59c42b1	 INS	 Base32	emptyTest	with	chunkSize	of	32	

111

Appendix II

User Study Questionnaire

The following questionnaire is intended to give us an idea of your programming

background, so that we can better interpret the results. Feel free to write in the margins to

explain your answers, if necessary.

1. What	is	your	current	job	title	(if	student,	indicate	so	here)?	

2. How	many	years	have	you	been	programming?	

3. Over	the	last	year,	about	how	many	hours	per	week	would	you	say	you	spend	
programming,	on	average?	

4. When	programming,	do	you	typically	use	debugging	tools?	(Y		/		N)		
If Y, which tool(s) do you use?

112

5. When	programming,	do	you	typically	use	testing	frameworks?	(Y		/		N)	
If	Y,	which	framework(s)	do	you	use?	If	N,	can	you	tell	me	the	reason(s)	why	
you	don’t	use	testing	frameworks?	

6. Did	you	do	code	review,	or	read	others’	code?	(Y		/		N)	
If	Y,	how	often	do	you	perform	review	tasks,	or	read	other’	code?	

For	7	–	10,	on	a	scale	from	1	to	5	(1	=	not	at	all,	to	5	=	very	familiar):	
	
	
7. How	familiar	are	you	with	Java?	

	
1	 2	 3	 4	 5	
	
	
	

8. How	familiar	are	you	with	JUnit?	
	
1	 2	 3	 4	 5	
	
	
	

9. How	familiar	are	you	with	program	invariants?	
	
1	 2	 3	 4	 5	
	
	
	

10. How	familiar	are	you	with	Design	by	Contract?	
	
1	 2	 3	 4	 5	

113

Bibliography

[1] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The Impact of Code Review
Coverage and Code Review Participation on Software Quality: A Case Study of the
Qt, VTK, and ITK Projects,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, New York, NY, USA, 2014, pp. 192–201.

[2] M. E. Fagan, “Advances in Software Inspections,” in Pioneers and Their

Contributions to Software Engineering, M. Broy and E. Denert, Eds. Springer Berlin
Heidelberg, 2001, pp. 335–360.

 [3] A. Bacchelli and C. Bird, “Expectations, Outcomes, and Challenges of Modern Code

Review,” in Proceedings of the 2013 International Conference on Software
Engineering, Piscataway, NJ, USA, 2013, pp. 712–721.

 [4] C. Sadowski, “Developer Workflow at Google (Showcase),” in Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, New York, NY, USA, 2016, pp. 26–26.

 [5] Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey, “Code Review Quality:

How Developers See It,” in IEEE/ACM 38th IEEE International Conference on
Software Engineering, Austin, TX, USA, 2016.

 [6] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu Iida,

“Revisiting Code Ownership and its Relationship with Software Quality in the Scope
of Modern Code Review,” in IEEE/ACM 38th IEEE International Conference on
Software Engineering, Austin, TX, USA, 2016.

 [7] “Git.” [Online]. Available: https://git-scm.com/.

 [8] “Git - git-diff Documentation.” [Online]. Available: https://git-scm.com/docs/git-diff.

 [9] S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel, “Differential Assertion

Checking,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, New York, NY, USA, 2013, pp. 345–355.

 [10] G. Yang, S. Khurshid, S. Person, and N. Rungta, “Property Differencing for

Incremental Checking,” in Proceedings of the 36th International Conference on
Software Engineering, New York, NY, USA, 2014, pp. 1059–1070.

114

 [11] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer, “Inferring better contracts,” in
Proceedings of the 33rd International Conference on Software Engineering, New
York, NY, USA, 2011, pp. 191–200.

 [12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically

discovering likely program invariants to support program evolution,” IEEE
Transactions on Software Engineering, vol. 27, no. 2, pp. 99–123, 2001.

 [13] “Apache Maven Project.” [Online]. Available: http://maven.apache.org/.

 [14] Y. Yan, M. Menarini, and W. Griswold, “Mining Software Contracts for Software

Evolution,” in 2014 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2014, pp. 471–475.

 [15] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-

grained and Accurate Source Code Differencing,” in Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, New
York, NY, USA, 2014, pp. 313–324.

 [16] M. Kim and D. Notkin, “Discovering and Representing Systematic Code

Changes,” in Proceedings of the 31st International Conference on Software
Engineering, Washington, DC, USA, 2009, pp. 309–319.

 [17] T. Zhang, M. Song, J. Pinedo, and M. Kim, “Interactive Code Review for

Systematic Changes,” in Proceedings of the 37th International Conference on
Software Engineering - Volume 1, Piscataway, NJ, USA, 2015, pp. 111–122.

 [18] D. Kawrykow and M. P. Robillard, “Non-essential Changes in Version Histories,”

in Proceedings of the 33rd International Conference on Software Engineering, New
York, NY, USA, 2011, pp. 351–360.

 [19] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri, “Helping Developers Help

Themselves: Automatic Decomposition of Code Review Changesets,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, 2015, vol.
1, pp. 134–144.

 [20] S. Lahiri, K. Vaswani, and T. Hoare, “Differential Static Analysis: Opportunities,

Applications, and Challenges,” Microsoft Research, Nov. 2010.

 [21] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu, “Differential Symbolic

Execution,” in Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, New York, NY, USA, 2008, pp. 226–237.

115

 [22] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: A Tool for
Change Impact Analysis of Java Programs,” in Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, New York, NY, USA, 2004, pp. 432–448.

 [23] N. Rungta, S. Person, and J. Branchaud, “A Change Impact Analysis to

Characterize Evolving Program Behaviors,” in 2012 28th IEEE International
Conference on Software Maintenance (ICSM), 2012, pp. 109–118.

 [24] R. Holmes and D. Notkin, “Identifying Program, Test, and Environmental

Changes That Affect Behaviour,” in Proceedings of the 33rd International
Conference on Software Engineering, New York, NY, USA, 2011, pp. 371–380.

 [25] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the Comprehension of

Program Comprehension,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 23, no. 4, p. 31:1–31:37, Sep. 2014.

 [26] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke, “A

Systematic Survey of Program Comprehension through Dynamic Analysis,” IEEE
Transactions on Software Engineering, vol. 35, no. 5, pp. 684–702, 2009.

 [27] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness of

software,” in Proceedings of the 2012 International Conference on Software
Engineering, Piscataway, NJ, USA, 2012, pp. 837–847.

 [28] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu, “On

the ‘Naturalness’ of Buggy Code,” in Proceedings of the 38th International
Conference on Software Engineering, New York, NY, USA, 2016, pp. 428–439.

 [29] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How Do Software Engineers

Understand Code Changes?: An Exploratory Study in Industry,” in Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, New York, NY, USA, 2012, p. 51:1–51:11.

 [30] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall, “The Impact

of Test Case Summaries on Bug Fixing Performance: An Empirical Investigation,” in
Proceedings of the 38th International Conference on Software Engineering, New
York, NY, USA, 2016, pp. 547–558.

 [31] T. Xie and D. Notkin, “An Empirical Study of Java Dynamic Call Graph

Extractors,” University of Washington Department of Computer Science and
Engineering, Seattle, WA, USA, UW-CSE-02-12-03, Dec. 2002.

116

 [32] Philipp Hirch, “Automatic inference of JML-based security specifications with
exception handling.,” Master Thesis, Universität Bremen, 2016.

 [33] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-Directed Random

Test Generation,” in 29th International Conference on Software Engineering
(ICSE’07), 2007, pp. 75–84.

 [34] “Gerrit Code Review.” [Online]. Available: https://www.gerritcodereview.com/.

 [35] “Phacility - Phabricator.” [Online]. Available:

https://www.phacility.com/phabricator/.

 [36] “apache/commons-collections,” GitHub. [Online]. Available:

https://github.com/apache/commons-collections.

 [37] “checkstyle – Checkstyle 7.5.1.” [Online]. Available:

http://checkstyle.sourceforge.net/.

 [38] D. Hovemeyer and W. Pugh, “Finding Bugs is Easy,” SIGPLAN Not., vol. 39, no.

12, pp. 92–106, Dec. 2004.

 [39] “Maven - Maven EMMA plugin.” [Online]. Available:

http://emma.sourceforge.net/maven-emma-plugin/.

 [40] “google/gson,” GitHub. [Online]. Available: https://github.com/google/gson.

 [41] G. C. Murphy, W. G. Griswold, M. P. Robillard, J. Hannemann, and W. Leong,

“Design Recommendations for Concern Elaboration Tools,” in Aspect-Oriented
Software Development, R. Filman, T. Elrad, S. Clarke, and M. Aksit, Eds. Addison-
Wesley, 2004, p. pp.507-530.

 [42] “Git.” [Online]. Available: http://git-scm.com/. [Accessed: 06-Aug-2014].

 [43] “Git - git-stash Documentation.” [Online]. Available: https://git-

scm.com/docs/git-stash.

 [44] “Git - git-log Documentation.” [Online]. Available: https://git-scm.com/docs/git-

log.

 [45] “Apache Commons – Apache Commons.” [Online]. Available:

https://commons.apache.org/.

 [46] J. H. Perkins and M. D. Ernst, “Efficient Incremental Algorithms for Dynamic

Detection of Likely Invariants,” in Proceedings of the 12th ACM SIGSOFT Twelfth

117

International Symposium on Foundations of Software Engineering, New York, NY,
USA, 2004, pp. 23–32.

 [47] “Fix BigInteger equals bug, and its tests. by ybank · Pull Request #903 ·

google/gson,” GitHub. [Online]. Available: https://github.com/google/gson/pull/903.

 [48] “Added tests for issue 249 · google/gson@7d7680f,” GitHub. [Online].

Available:
https://github.com/google/gson/commit/7d7680fd2f1e63e28cbf1b844831b91a953ac4
20. [Accessed: 06-Apr-2017].

 [49] “New test methods testRfc4648 based on RFC 4648 that show our inconsis… ·

apache/commons-codec@f63e8e9,” GitHub. [Online]. Available:
https://github.com/apache/commons-
codec/commit/f63e8e9a4cd509e3073a2db90e39e985ac7bcf67. [Accessed: 06-Apr-
2017].

 [50] L. Inozemtseva and R. Holmes, “Coverage Is Not Strongly Correlated with Test

Suite Effectiveness,” in ICSE ’14, Hyderabad, India, 2014.

 [51] D. Team, “Eclipse Debug Project.” [Online]. Available:

https://www.eclipse.org/eclipse/debug/.

 [52] “Git - git-blame Documentation.” [Online]. Available: https://git-

scm.com/docs/git-blame.

 [53] “[CLI-252] LongOpt falsely detected as ambiguous - ASF JIRA.” [Online].

Available: https://issues.apache.org/jira/browse/CLI-252.

 [54] H. J. Postel, “Die Kölner Phonetik–Ein Verfahren zur Identifizierung von

Personennamen auf der Grundlage der Gestaltanalyse,” IBM-Nachrichten, vol. 19,
pp. 925–931, 1969.

 [55] D. R. Morrison, “PATRICIA—Practical Algorithm To Retrieve Information

Coded in Alphanumeric,” J. ACM, vol. 15, no. 4, pp. 514–534, Oct. 1968.

 [56] “[COLLECTIONS-525] PatriciaTrie - ASF JIRA.” [Online]. Available:

https://issues.apache.org/jira/browse/COLLECTIONS-525. [Accessed: 05-Apr-
2017].

 [57] “[CONFIGURATION-487] DataConfiguration.get() cannot handle a trivial

conversion - ASF JIRA.” [Online]. Available:
https://issues.apache.org/jira/browse/CONFIGURATION-487. [Accessed: 05-Apr-
2017].

118

 [58] “Google Search Engine.” [Online]. Available: https://www.google.com/.

 [59] “Stack Overflow.” [Online]. Available: http://stackoverflow.com/.

 [60] A. H. JØRGENSEN, “Thinking-aloud in user interface design: a method

promoting cognitive ergonomics,” Ergonomics, vol. 33, no. 4, pp. 501–507, Apr.
1990.

 [61] N. Miyake, “Constructive Interaction and the Iterative Process of Understanding,”

Cognitive Science, vol. 10, no. 2, pp. 151–177, Apr. 1986.

 [62] “google/gson@e450822,” GitHub. [Online]. Available:

https://github.com/google/gson/commit/e4508227c53749b48318366c127211903185
1887.

 [63] “Issue #627 · google/gson,” GitHub. [Online]. Available:

https://github.com/google/gson/issues/627. [Accessed: 05-Jan-2017].

 [64] “google/gson@d5319d9,” GitHub. [Online]. Available:

https://github.com/google/gson/commit/d5319d9e840b2c7237ca435f50c50ffbe7dce5
07.

 [65] “Bitbucket.” [Online]. Available: https://bitbucket.org/.

 [66] J. Czerwonka, M. Greiler, and J. Tilford, “Code Reviews Do Not Find Bugs: How

the Current Code Review Best Practice Slows Us Down,” in Proceedings of the 37th
International Conference on Software Engineering - Volume 2, Piscataway, NJ, USA,
2015, pp. 27–28.

 [67] B. Meyer, “Applying ‘design by contract,’” Computer, vol. 25, no. 10, pp. 40–51,

Oct. 1992.

 [68] J. W. Nimmer and M. D. Ernst, “Invariant Inference for Static Checking:,” in

Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software
Engineering, New York, NY, USA, 2002, pp. 11–20.

 [69] “The Daikon Invariant Detector Developer Manual.” [Online]. Available:

https://plse.cs.washington.edu/daikon/download/doc/developer.html.

 [70] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Tools and

Algorithms for the Construction and Analysis of Systems, 2008, pp. 337–340.

119

 [71] E. F. Inc, “Eclipse - The Eclipse Foundation open source community website.”
[Online]. Available: https://eclipse.org/.

