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ABSTRACT OF THE DISSERTATION 

 

Continuous Semantic Inspection 

 

by 

 

Yan Yan 
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Professor William G. Griswold, Chair 

 

As testing is an incomplete validation of software changes, many developers 

review code changes before patching the system. Popular source code versioning systems 

aid review by showing the textual differences between the old and new versions of the 
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source code. This leaves developers with the difficult task of determining whether the 

differences produced the desired behavior. 

We introduce Continuous Semantic Inspection (CSI), which aids code review 

with inter-version differential semantic analysis. During inspection of a new commit, a 

developer is presented with not only code differences, but also changes to behaviors, as 

expressed by likely invariants inferred from testing. We hypothesize that with the extra 

semantic information developers can more easily determine whether the code changes 

produced the desired effect. 

This dissertation comprises four parts to demonstrate our hypothesis. (1) We 

present the design and implementation of GETTY, a highly automated tool to support the 

concept of CSI. (2) To scale the expensive invariant inferences for practical use, we 

divide GETTY’s analysis into multiple processes distributed to a 16-processor cluster. We 

achieve substantial performance improvement and show that our approach is feasible for 

open source projects by enabling a timely repair-compile-review feedback loop. (3) From 

applying CSI on six open source projects, we found inferred invariants contain the 

information required to help discover insufficient tests and inconsistent semantic changes 

at the time of their introduction. (4) We conducted a user study of reviewers using 

GETTY, which shows that invariant differentials draw attention to information that 

otherwise often escapes notice, helping developers formulate more focused questions that 

keep the review moving forward. 
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Chapter 1 

Introduction 

Code review is a software quality assurance practice of examining changed code 

for overlooked mistakes. Most code review processes fall into two categories: formal 

software inspection and lightweight code review [1]. Formal software inspection is the 

traditional method of review that mandates strict review criteria, including but not limited 

to specification checklists and in-person meetings [2]. By contrast, lightweight code 

review requires less overhead and is intended to be more cost-effective. Reviewers peruse 

the changed code and make judgments based on their own experience, and the form of 

conducting reviews is flexible. 

Nowadays most organizations and companies are adopting lightweight code 

review practice as part of team shipping processes [3]. For example, Google requires all 

code changes to be peer reviewed before deploying [4]. In a typical interaction cycle, 

developers submit a patch of reasonably small size for review [5]; reviewers (often other 

developers [6]) examine the code changes, check for implemented functionalities and 

possible mistakes, and either accept the patch or send feedback for a revision. The end 

result of fast development-review turnarounds is a development history of frequent, 

small, independent, and complete contributions by both developers and reviewers. 

In this dissertation, we are concerned with improving the quality and efficiency of 

lightweight code review process. 
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1.1 Challenges 

Today’s popular Version Control Systems (VCS, e.g., git [7]) integrate with 

textual differencing tools (e.g., git-diff [8]) to aid lightweight code review. A reviewer 

can start with a summary of changed code between two versions, then navigate to related 

code snippets at their own discretion. When developers are fixing a bug, for example, a 

reviewer expects the code changes to reflect changes to the software’s behavior such that 

the erroneous behavior is gone. 

However, the textual, program-level differences from current differencing tools 

provide only indirect information about the actual behavioral impact of code changes. 

The results of testing provide only a pass/fail view of that behavior, perhaps disguising 

subtle bugs. Reviewers have to read further into the source code to understand both the 

syntactic and semantic changes, and examine the related tests to verify that the changes 

are being properly tested. For certain cases, serious reviewers will have to compile the 

code, run the tests and manually observe their runtime behaviors to confirm the change 

delivers the desired result. 

This dissertation aims for an effective and efficient method to aid code review by 

bridging the gap between textual code differences and their actual behavioral impacts. 

There are existing solutions (as will be discussed in Chapter 2) in three categories: syntax 

differencing, semantic differencing, and natural language interpretation, with decreasing 

human efforts and increasing computational efforts. As code review activities are 

becoming more and more frequent [5], ideal methods should also be efficient for fast 

development iterations. However, the solutions that require less human efforts are 
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generally not efficient enough, while the efficient solutions may require more effort from 

reviewers. Therefore, it remains challenging to design a means that is both effective and 

efficient. 

1.2 Overview of Continuous Semantic Inspection 

We propose balancing the computational and human efforts so it is both effective 

for reviewers and efficient for fast software iterations. To this end we advocate inspecting 

program semantics during code review, with the assurance that crafted tooling will 

support the inspection in fast development cycles like nightly builds. 

To support and encourage semantic review of source code changes, we provide 

reviewers with direct summaries of the behavioral effects of those changes. The 

summaries would ideally be concise, comprehensive, presented in a familiar notation, and 

integrated into the existing reviewing infrastructure. Likewise, the production of the 

summaries should require little or no effort on the part of the developer or reviewer, just 

like Continuous Integration today supports effortless testing. We call the resulting 

infrastructure and process Continuous Semantic Inspection (CSI). 

In CSI, we suggest differencing semantics in order to produce a focused view of 

the important behavioral changes. The idea of differential assertion checking [9], [10] is a 

gesture in the right direction, but the requirement to manually add assertions is both 

labor-intensive [11] and does not provide a comprehensive view of semantic effects. 

However, applying this concept to the likely invariants extracted by a tool like Daikon 

[12] could provide the best of both worlds. Its invariants are reported in the terminology 

of the program itself at the method and class level, akin to software contracts. Although 
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Daikon can produce overwhelming volumes of likely invariants, differencing them can 

eliminate this problem. Because they are reported at the method level, it is easy to attach 

them to the code difference summaries provided by a tool like git. 

The approach is not without challenges, however. First, the behavioral effects of 

changed source code versus changed tests must be distinguished, or the reviewer could be 

misled. Second, changed code can have widespread effects on behaviors, affecting other 

parts of the code. Reviewers need help in finding paths where semantic effects propagate. 

Third, many compute-intensive steps are implied by this approach. For example, inferring 

invariants from runtime information can be costly because it may have to be done at 

whole-program mode. Given that more tests are more likely to ensure software quality, 

they may also deteriorate the performance and invalidate practical use of a tool.  

We propose isolating behavioral impacts to one part of the program by fixing the 

other parts of the program during check-in. For example, by running the same tests on 

both the old and the new source, all resulting invariant differences can be confidently 

attributed to the source. To help reviewers reason about behaviors, we build local-area 

call-graphs consisting of callers, immediate siblings and callees for each method of 

interest. We hypothesize that all semantic information is organized in a natural way for 

reviewers to digest: reviewers can isolate behavioral changes of interest, and they can 

explore the related behavioral changes by following the control flow displayed in the 

local-area call-graphs. 

For efficiency, we suggest parallelizing test executions to improve performance. 

We identified that the performance bottleneck of our approach is the invariant inference 
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process, whose massive cost is in turn due to memory pressure. Software testing is 

embarrassingly parallel, and so is dynamic invariant detection. We can distribute the load 

of inference processes to multiple processors to reduce the memory pressure. We also 

found this approach is highly scalable in that dispatching inference processes to a high-

performance cluster achieved substantial performance improvement. Therefore, we 

proved that our approach is efficient for practical use. 

1.3 Roadmap 

This dissertation presents our approach to aiding code review. We argue that our 

approach is both effective and efficient. The remainder of this dissertation is structured as 

follows. 

In Chapter 2, we discuss the related work. We discuss the existing differencing 

techniques that deal with different levels of program information. After comparing their 

computational and human costs, we discover that semantic differencing is the promising 

technique that better balances the trade-offs between effectiveness and efficiency. This 

observation motivated the overall design of our approach. After investigating into the 

existing, highly usable, invariant detection tool, Daikon [12], we decide to use 

dynamically inferred invariants to help reviewers better understand semantic changes. 

In Chapter 3, we define the concept of Continuous Semantic Inspection (CSI), 

which is enabled by augmenting code-change summaries with automatically extracted 

behavior-change summaries. We introduce CSI through a scenario of a reviewer using 

GETTY, our tool support for CSI, on an open source project. The scenario highlights the 

three most salient features of CSI: behavioral diffing, impact isolation, and exploration of 
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invocation flows. We present the design of our GETTY tool. GETTY differences likely 

invariant dynamically inferred by Daikon, isolates invariant changes due to single source 

by fixing other parts of the program before inference, and builds the local-area dynamic 

call-graph to organize gathered invariants. We finish this chapter with a three-layer 

implementation of GETTY. The infrastructure layer integrates Daikon and existing open 

source tools for Continuous Integration, like Maven [13] and git, which eliminates the 

human overhead of pulling check-ins and building source code [14]. The application 

layer follows the design of GETTY to extract likely invariants for diffing. It also computes 

all the information needed, including static change summary and dynamic invocation 

flows, for the top layer that generates User Interface (UI) for reviewers. 

In Chapter 4, we describe the improved implementation of GETTY for scalability. 

It automates and parallelizes the production of invariants for Java projects. We introduce 

and study different modes for the parallelization. We found that dividing inference 

processes at class level achieved most performance improvement on a single computer, 

and substantial performance boost when the processed were deployed to multiple cluster 

nodes. This reveals that although likely invariant inference is expensive in practice, it is 

possible to leverage the independent nature of test executions to distribute the inference 

process in the cloud and achieve the desired performance. 

We evaluate the effectiveness of GETTY in the next two chapters. In Chapter 5, we 

present a case study of Google’s JSON library (GSON) where we replayed a portion of 

its revision history, showing that employing CSI provides behavior-change summaries 

that can reveal bugs and other problems earlier than they were actually discovered. To 
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generalize our observation, we performed a retrospective quantitative analysis of six open 

source projects, where CSI as supported by GETTY helped find gaps in testing in 32 of 

100 commits. Furthermore, for one known bug in each of six projects, CSI’s invariant 

differentials made the bug evident at its point of introduction in 4 out of 6 cases. In 

Chapter 6 we evaluate the effectiveness of GETTY from a human perspective. We 

conducted a six-group user study to observe whether and how GETTY users achieved the 

desired goals in a code review setting where they inspect real issues and commits from 

GSON repository. We found that GETTY users generally outperformed the past reviewers 

of GSON in that they were able to more actively identify specific test inadequacies. The 

derived review patterns prove effective in discovering bugs at earlier times. 

In Chapter 7 we discuss other potential applications of using invariants, 

alternative inference techniques, and future work. We conclude in Chapter 8. 
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Chapter 2 

Related Work 

A large body of work has attempted to help reviewers understand the commits, 

known as patch comprehension. The techniques come with various computational and 

human costs. Care must be taken to balance the costs for better assisting code review. In 

this chapter, we will first discuss all the related techniques for patch comprehension in 

Section 2.1. 

Our proposed invariant-based technique depends on the tools we use for invariant 

inference and differencing. From the many options that exist we choose Daikon and 

textual differencing for our research. Daikon and the related invariant differencing 

techniques will be discussed in Section 2.2 of this chapter. 

At last, a number of research literatures are dedicated to improve the quality of 

lightweight code review by utilizing other code analysis tools. This will be discussed in 

Section 2.3. 

2.1 Patch Comprehension 

Software patches are mostly implemented and expressed by line-based, textual 

changes to source code. To help understand a patch, developers created a spectrum of 

techniques to translate its textual changes into more meaningful representations. Some of 

these techniques may not be designed for code reviews, but they can potentially bridge 

the gap between textual code changes to their semantic impact. 
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2.1.1 Syntax Differencing 

One step to better comprehend code change is to understand its underlying 

syntactical changes. GumTree [15] takes as input two versions of source code, computes 

differences between their Abstract Syntax Trees (ASTs), and derives a sequence of edit 

actions that well reflects developers’ intent. It uses an efficient differencing algorithm so 

as to scale for large ASTs in open source projects. In addition to element additions and 

deletions, GumTree is particularly helpful in detecting moved and renamed elements. 

Kim et al. apply structural changes project-wide (LSdiff [16]) and introduce the concept, 

systematic changes (similar, related changes to multiple contexts), into a code review 

tool, CRITICS [17]. Given a specified change, CRITICS prepares a context-aware AST edit 

template. As an effort to interact with the tool, reviewers iteratively customize its 

parameters, let it match against codebase, summarize systemic edits and locate 

potentially problematic edits. CRITICS scales to industry-scale projects and receives 

favorable feedback from professional engineers. Furthermore, the set of elements that are 

relevant or essential (for example, references of a changed method) but not presented 

directly in the textual code change can be computed to better understand the impact of 

code change [18], [19]. 

2.1.2 Semantic Differencing 

Static Semantic Differencing. Many researchers have appreciated the value of 

differencing static semantic information. Lahiri, Vaswani and Hoare from Microsoft 

Research discuss differential static analysis [20]. Several promising applications are 

highlighted, including semantic differencing and differential contract checking. Person et 
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al. proposes differential symbolic execution to detect and characterize the effects of 

program changes in terms of behavioral differences, then use a theorem prover to 

compare the symbolic summaries for such differences [21]. iProperty hits the similar idea 

[10]. SYMDIFF [9] presents differential assertion checking for comparing different 

versions of a program with respect to a set of assertions. The approach defines relative 

correctness: the second program version does not violate assertions the first one satisfies. 

Although it provides a weaker guarantee than outright correctness, it is more tractable 

than traditional assertion checking, and is still powerful: the authors of SYMDIFF were 

able to soundly verify null-pointer dereferencing bugs. 

Dynamic Impact Analysis. Chianti executes tests on two versions of the code 

and differentiates their runtime behaviors, then it decomposes the difference into a set of 

predefined atomic changes like “add a new class”, “remove a method”, “change 

definition of static initializer”, etc., and then relates those changes to affected tests [22]. 

Chianti is particularly helpful in isolating changes that lead to a test failure. iDiSE 

considers dynamic calling context information from inter-procedural analysis to 

categorizing impact behaviors, and extending notions of test coverage by chang impact 

information [23]. Although Chianti and iDiSE were designed as debugging tools, their 

underlying technologies could be applied to aid code reviews. 

Hybrid Differencing Techniques. Holmes and Notkin take a hybrid static-

dynamic approach to the differencing concept [24]. Their approach analyzes invocation 

dependencies based on their presence in each of four graphs: the static call graph and the 

dynamic call graph from each of the two versions given. A visualization of the 



11 

 

differences across the cross-product of graphs can reveal anomalies that motivate further 

inspection. For example, a developer who updated a third-party library and expected their 

system to behave the same would be surprised to find their control flow has changed at 

runtime, but in the static call graph. 

2.1.3 Interpreting Changes by Natural Language 

Another very broad area of related work that can help programmers understand 

semantic changes is program comprehension in natural languages [25], [26]. Recently, Su 

et al. [27] and Devanbu et al. [28] used statistic models to study software and buggy code 

and discovered their naturalness as human artifacts. This makes it possible to understand 

code changes by using natural languages processing techniques. For example, reviewers 

often read test cases to understand code changes between two versions [29]. A recent 

technique, TestDescriber can extract natural language phrases from test cases and 

generate natural language summaries [30]. 

2.1.4 Comparisons  

Computational cost vs. human effort. Syntax analysis itself does not imply any 

computational cost on semantic inference. Its main focus is to help developers understand 

editing activities. But to understand the resulted patch developers need to take their own 

efforts to understand the semantics. On the other hand, natural language interpretations 

can be much easier for human consumption. However, that implies significantly more 

computational cost on semantic inference and language translation. What is worse, 

natural languages are by their nature ambiguous so it is nearly impossible to ensure the 
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preciseness or even correctness of the result. Balancing computational cost and human 

effort, we favor the idea of semantic differencing. 

Static vs. dynamic techniques. Despite great potentials, the practical use of static 

differential analysis is limited because the approach generally requires users to write 

assertions, intermediate contracts, or worse, proof scripts, all of which impose very high 

overhead to programmers [20]. By contrast, dynamic differential analysis can be more 

accessible because it generally does not require extra annotations. Moreover, static 

analysis can be overly conservative, limiting the value of its inferences. By contrast, 

dynamic analysis provides insights from runtime information, which helps increase 

reviewer’s confidence. However, it is worth noting that dynamic semantic analysis could 

perform in whole-program mode so scalability problems of dynamic analysis tools could 

be more serious than static analysis tools [31]. Our approach is motivated by dynamic 

differencing ideas like [23] and [24], but uses differences of source-level likely program 

invariants rather than differences in the more abstract control flow. We also dealt with 

performance and scalability issues that could impede its practical use for code reviews. 

2.2 Invariant Inference and Differencing 

Runtime information is often named in the low-level binary code or machine 

language space. Such information from trace files can be hard for users to understand. In 

addition, runtime information can be unstable. For example, applications using system 

clock or random number generator may get different results from them each time. Using 

runtime information carelessly risks high rate of false positives or false negatives. [31] 
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2.2.1 Daikon 

Invariants, as a summary of runtime data from test execution, can be a powerful 

tool for reviewing semantic differences. Dynamic invariant inference was pioneered by 

the Daikon tool [12]. 

Daikon comprises a front-end and a back-end. The Daikon front-end (also known 

as an instrumenter or tracer) instruments the target program. During program execution, 

The Daikon front-end records information about variable values at entry- and exit- 

program points, and produces data trace files. One can choose to obtain traces for only 

part of the target program to avoid inundating onself with output, and can also improve 

performance. After recording data traces, Daikon passes it to its back-end (invariant 

detector) as input. The Daikon back-end applies machine-learning techniques to infer 

likely invariants, according to its set of invariant template library, from the traces. 

Figure 1 Likely invariants are a summary of test executions 

    boolean isEqual(int a, int b) { 
        return (a == b); 
    } 

(a) Method implementation 
    void testIsEqual() { 
        assert isEqual(2, 2); 
        assert isEqual(100, 100); 
        assert !isEqual(4, 5); 
        assert !isEqual(70, 60); 
    } 
 

(b) Tests for the method 

Entry-Point: 
    a > 0, b > 0, ... 
 
Exit-Point: 
    (return = true) → (a = b), ... 
 

(c) Inferred likely invariants 
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The inferred likely invariants can be considered a summary of the program 

executions. As an example, consider the isEqual method in Figure 1. Developers added 

four test cases (four pair of numbers) to verify the correctness of the implementation. 

From test execution, Daikon deduces that at the entry-point of the isEqual method, a 

and b are both positive numbers, and that at the exit-point, if the method returns true 

then a and b must be identical. The expected contract of the isEqual method should 

indicate that it returns true if and only if a and b are identical. Likely invariants are close 

to the expected contract in that they indicate the method is probably correct when 

comparing two positive numbers. As a summary of the test executions, the closer they are 

to the expected contract, the better quality of the test suite it can be. 

Daikon’s invariant template library supports a wide range of invariants for up to 

three scalar dimensions. For example, its FloatLessThan is an invariant type 

representing the “less than” relationship between two double scalars. Daikon is especially 

supportive for inferring invariants for arrays; for example, it can detect invariants 

regarding an array’s size, index, and even relationships between internal elements. 

Daikon is still under active development and is limited in certain ways. For 

example, Daikon does not have a strong invariant template for the String type. 

Optimistically, String is just an array of characters, so there is potential for 

improvement of Daikon by taking advantage its excellent array invariant templates. 

Likewise, currently Daikon does not support invariant inference for program points that 

throw exceptions. We use an improved version of Daikon that supports exceptional exit 

invariant inference [32]. 
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2.2.2 Invariant Differencing 

The number of invariants inferred by Daikon can be overwhelming, while they 

may not be all useful. However, we need not display all invariants to reviewers. Since our 

purpose is to help developers understand the change of semantics, we difference the 

invariants and display the changes only. We postulate the number of changed invariants 

is smaller than the number of all invariants, and consequently the number of invariants to 

display can be reduced. 

Our differencing method is based on the similarity of invariant texts. We 

discussed in Section 2.1.2 alternative methods that support some understanding of logic. 

As an application example, Randoop employs static invariant differencing to determine 

when random test case generation can halt, that is when adding tests stops improving the 

invariants [33]. Their differencing method is more sophisticated than our current textual 

approach. We will discuss our plan on improving our results by comparing logical 

formulae in Section 7.1. 

2.3 Improving Lightweight Code Review 

Researchers expended significant effort on understanding how developers 

understand the code and how code review quality can be improved. Y. Tao, et al. 

conducted an exploratory study at Microsoft and revealed the lack of tool support for 

acquiring information such as a patch’s completeness, consistency and risks [29]. O. 

Kononenko, et al. performed a qualitative analysis of a survey of 88 Mozilla developers, 

and concluded that code review quality is greatly influenced by the thoroughness of 

reviewers’ feedback and their familiarity with the code [5]. On this path, we believe that 
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tool support for helping developers understand behavioral aspects of the code base is a 

direct solution for improving code review quality. 

Unfortunately, most code review tools were not following the same path. For 

example, CRITICS [17] (discussed in Section 2.1.1) is designed to be a dedicated code 

review tool for helping understand developers’ editing behaviors, but program’s semantic 

differences. Gerrit, created by Google and integrated with git, supports distributed code 

review by providing a staging area for changes where they can be reviewed prior to 

committing to the repository [34]. Phabricator is a platform integrating many tools, 

including git-diff based code review [35]. Our code review tool, GETTY (to discuss in 

Section 3.3), generates results as HTML files and thus could be integrated into these 

existing platforms. However, different from textual-diff based tools, GETTY adds 

semantic information to aid code review and has its unique advantages in discovering test 

inadequacies and bugs (Chapter 5). 

Additionally, reviewers may use other tools for assessing code quality during 

review. For example, reviewers of Apache Commons Collections project use Checkstyle, 

FindBugs and EMMA [36]. Checkstyle is a tool to automate the process of checking 

whether the code adheres to a style standard [37]. Coding style issues are outside the 

scope of this paper, but it is more often integrated into the build process of a project so 

reviewers should mostly see the code clear of style issues at code review phase. FindBugs 

is a static analysis tool for detecting code patterns that could lead to bugs. It grants 

reviewers insights about bad code smells, according to a list of known bug patterns, by 

analyzing the syntactic structure of a program [38]. Such static bug detection technique 
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has the advantage of not being limited by the quality of tests and can be supplemental to 

our dynamic approach. EMMA is a Maven plugin for reporting code coverage by the test 

suite [39]. The quantitative evaluation of our tool on reviewing test cases (Section 5.3) 

corroborates recent results that popular test coverage tools are not always a good 

indicator of test suite effectiveness; and the user study (Chapter 6) demonstrates that our 

tool is stronger than EMMA for evaluating test suite during code review. 
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Chapter 3 

Continuous Semantic Inspection 

We propose that, during inspection of a new check-in, we present to a developer 

with not only code differences, but also changes to behaviors. Behavioral changes can be 

expressed by likely invariants, which can be dynamically inferred from test execution. As 

a result, developers can more easily determine that the code changes produced the desired 

effect, or introduced a bug. 

In this chapter, we first build a scenario from an open source project and 

introduce the most salient features of our approach, Continuous Semantic Inspection 

(CSI). After discussing CSI, we provide details on the design and implementation of its 

tool support, GETTY. We use GETTY to complete the case study of the open source project. 

3.1 “Hello CSI” – A GSON Case Study 

We introduce CSI through a scenario of a reviewer using our GETTY tool for Java 

on the GSON project [40]. The GSON project is a Google-sponsored open source Java 

library for conversions between Java Objects and their JSON representations. From the 

start of the project in 2008 until the writing of this dissertation, GSON has undergone 

1,302 commits by 44 contributors, with 33 software releases. All changes were peer 

reviewed. 

Of interest is the change history of the equals method in the JsonPrimitive 

class. JsonPrimitive represents a JSON primitive value that is a string, a Java primitive 
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(e.g., int), or a Java primitive wrapper type (e.g., Integer). The class has a value 

attribute that stores the value of the primitive. Its equals method takes as an argument 

another JsonPrimitive object and returns true if and only if both objects contain 

identical values of the value attribute. 

Figure 2 shows, in chronological order, all 12 commits in the history that affected 

the behavior of the equals method. To ease our presentation, we refer to a commit by its 

index number in the circle rather than the commit hash underneath. Our target method 

was firstly implemented in commit #1. After commit #12 the implementation stabilized 

and the feature is kept for all future versions. Notice that we highlight commit #10 that 

introduced a test comparing two JSON primitive integers: 264+5 and 5. As asserted the 

equals method should return false because the two integer values are different. However, 

Figure 2 The commit history for JsonPrimitive:equals 

public void testEqualsIntegerAndBigInteger() { 
    JsonPrimitive a = new JsonPrimitive(5L); 
    JsonPrimitive b = new JsonPrimitive( 
        new BigInteger(“18446744073709551621”)); // 2^64 + 5 
    assertFalse(a + “ equals ” + b, a.equals(b)); 
} 

 

#1 
f647a26 

#2 
cba564b 

#3 
1baaf56 

#4 
e89c949 

#5 
0a99075 

#6 
fd3b740 

#7 
704c0cb 

#8 
7d1fbeb 

#9 
abd6cef 

#10 

  903769e 

#11 

a263a3f 

#12 

423d18f 
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the test failed because our target method returns true instead. Apparently, it is a bug. The 

bug was never fixed: in the last related commit (#12) developers considered “the price is 

too much to pay” to fix the bug and manually passed the tests by changing its 

assertFalse to assertTrue. 

In this case study, a bug was not revealed until commit #10, despite the fact that 

all prior commits passed their code reviews. We are interested in which of the previous 

commits actually introduced the bug. We will answer this question in Section 5.1. Here, 

we “replay” the review of commit #7, supposing that the GSON team had access to 

GETTY. The reviewer is seeking to confirm that a bug in equals for comparing an NaN 

floating point value (not-a-number) has actually been corrected. The reviewer brings up 

the default view, comparing commit #7 to the previous commit, in which each version is 

run on all the test cases in its own commit (Figure 3). This provides a holistic view of 

what happened between the two commits, but does not distinguish the effects due to 

source changes versus test changes.  

The reviewer first peruses the upper box in the figure, which lists top-to-bottom 

(a) two commit hashes under compare and the common package name of all methods of 

the project, (b) the source code methods that have changed (highlighted in blue), (c) the 

testing methods that have been updated (also highlighted in blue) and (d) the methods for 

which their invariants have changed compared to previous commit (hidden by default, 

but highlighted in red in all boxes). 
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The reviewer has clicked the JsonPrimitive:equals method link (boxed in 

green) in the “Updated Source” section, causing it to be listed in the middle of the next 

section of dotted boxes, as well as listing its changed invariants at the bottom. 

The dotted boxes are a summary of the invocations closely related to equals. 

Above equals, the reviewer sees that there are just three direct callers of equals. The 

caller shown in red is an indication that there were changes to its invariants. The callers 

shown with underlines indicate that there were changes to its source code, which is 

consistent to the methods underlined in the above box. Notice that all callers of equals 

are tests. Reviewers can choose to hide them by clicking the toggle button that 

Figure 3 A screenshot of GETTY for commit #7 
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immediately follows the “Tests” option. To the left of equals are shown methods that 

one of equals’s caller called immediately before calling equals, and to the right 

methods that one of equals’s callers called immediately after equals returned. 

Similarly, methods in red indicate change of invariants and methods underlined change of 

source code. In addition, the methods in gray indicate their invariants remain unchanged 

after the commit. Reviewers can choose to hide such methods by clicking the toggle 

button that immediately follows the “More Methods” option. The reviewer does not see 

anything on the left that suggests that they would affect equals’s invariants because they 

all appear to be queries without any side-effects, so she is not motivated to click any of 

them to view their invariant or source code differences. The box below shows the 

methods that are called by the equals itself. The red highlighting on the two type tests 

were not modified for this check-in (they are not underlined, and do not appear in the 

modified source list above), so the reviewer surmises that other changes in commit #7 – 

test cases or changes to equals itself – have altered their invariants. 

The reviewer now turns her attention to the invariants displayed below the 

invocation summary. Removed invariants are highlighted in red, added invariants 

highlighted in green, and changed invariants highlighted in yellow (none in this figure), 

just as text changes are highlighted in git. The gray header closely above the removed 

invariants indicates that they are for the entry point of the method. The reviewer’s 

immediate observation is that commit #7 is an improvement since it is now testing for the 

case when other is equal to null, as well as for other cases that are not only for 
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JsonPrimitives, although she suspects that the latter is only due to checking for the null 

case.  

She might check into that issue later, but what is bothering her right now is that 

she cannot tell whether the NaN bug has been fixed. She suspects that is because both the 

code and the test cases have been changed, so she switches the view to a condition in 

which both commits were run on the same tests, choosing in particular the union of their 

two test suites (Figure 4). This view can be turned on by choosing from the tab labeled 

“Source Change Only” that indicates reviewers want to see invariant changes due to 

nothing but change to the method itself. She knows that some old test cases might not 

compile on the new code and vice versa, but that is fine with that, since a non-compiling 

(and hence non-running) test case will be useful behavioral information captured by the 

invariants that distinguishes the source code of the two versions. 

Figure 4 Source-impact isolated invariant differentials 



24 

 

When the results of the new testing condition are displayed, the reviewer 

immediately surmises that equals now returns true for the case when this.value and 

other.value are both NaN (the added invariant, in green), whereas before it returned 

false (the removed invariants just above it, in red). Their gray header shows that these 

invariants apply just to the return statement (i.e., exit point at line 361), which is where 

the floating-point cases are handled. 

The reviewer is pleased, but the fact that this exit point only ever returns true 

tells her that it is being under-tested. Before firing off a comment to the developer, she 

scrolls down to view the source code diff for the equals method by clicking the tab 

labeled “Source Diff” of “More Display Options” section. The output (Figure 5, cropped) 

displays code differentials starting from the first line of code change. Optionally, she 

could use the side bar to scroll up or down to view the full method body. She notes that it 

is fairly straightforward and probably correct. She still sends a comment to the developer 

Figure 5 Source code changes to JsonPrimitive:equals 
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asking for at least a failing test case, but frames it in terms of the test being useful for 

future regression testing. 

The above scenario highlights the three most salient features of CSI as embodied 

by GETTY: invariant differentials, impact isolation, and exploration of invocation flows. 

The display of just the changes in invariants provided the reviewer with a concise and 

focused view on commit #7, despite the fact that the commit had dozens of invariants. As 

a result, she could make quick inferences about the commit. The ability of the reviewer to 

explore different combinations of old and new tests helped her isolate the semantic 

affects due to the source changes. Finally, the summary of the application’s call structure 

around equals helped her quickly focus on a particular part of the program. In a more 

complicated case, she might have chosen to click on some of the invocations to further 

explore changes to invariants. In the following sections, we provide additional details on 

these three elements. 

3.2 Concepts 

3.2.1 Invariant Differentials 

CSI builds on a summary of a program version’s behavior. We use Daikon, but 

many similar tools could suffice. Key for our purposes, however, is summaries of the 

input-output behavior of methods. These can naturally be phrased in terms of observed 

invariants. For a dynamic tool like Daikon, these invariants are not absolute, but depend 

on executions, which we discuss more in the next subsection. 

The number of likely invariants for a method before and after a commit can be 

numerous, and reasoning about their differences can be mentally challenging. However, 
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because the behavioral changes between program versions can be quite small, so could 

the differences in their invariants. This motivates the creation of invariant difference sets 

between program versions to suppress the common invariants and help the reviewer focus 

her attention on just what’s changed since the last commit. For example, for the equals 

method in commit #7, with no isolation of effects (Figure 3), there were 26 invariants 

before commit and 32 after.  As shown in Figure 3, for just the changed invariants, there 

were just 12 – 3 removed and 9 added – an 80% reduction. With the isolation of effects to 

the source, there were 37 and 34, before and after commit, actually more than without 

isolation. Yet as shown in Figure 4 there are just 5 changed invariants – 4 removed and 1 

added – a notable 93% reduction. 

For each kind of program point of a method m – entry, exit, and exceptional exit – 

GETTY calculates the change in invariants between an older version a and a newer 

version b as two sets, the removed invariants and added invariants. For example, for the 

entry point invariants, the differences are calculated as: 

  removed(m, a, b) = I(m, a) − I(m, b)           (1) 

added(m, a, b) = I(m, b) − I(m, a)               (2) 

GETTY, following git’s style of code differencing, actually displays added, 

removed, and changed invariants. A changed invariant is merely a presentation of an 

added invariant paired with a removed invariant based on their overall similarity. For 

example, a removed invariant x < 5 would be paired with the added invariant x < 6 

because they involve the same variable, operator, and value type. GETTY currently uses 
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the minimality of text differences to infer changed invariants, but better results could be 

achieved by comparing the logical formulae [33]. 

3.2.2 Impact Isolation 

As seen in the GSON equals scenario, when developers modify application 

source code (abbrev. source) they often add test cases (abbrev. tests) as well, meaning 

that invariants can change due to either or both source and test changes. CSI must support 

a reviewer in isolating behavioral impacts to one or the other. 

GETTY can show the invariants for a check-in under a variety of conditions. For 

example, by running the same test cases on both the old and the new source, any resulting 

invariant differences can be confidently attributed to the source code. By intersecting the 

two versions’ test suites, they should be guaranteed to compile on both source code bases.  

However, this explicitly excludes test cases that were intentionally written to demonstrate 

the behavior of a particular version. The union of all tests, on the other hand, will 

oftentimes have some test cases that will not compile on one version or the other. As a 

simple example, if a new method is introduced in the new version and some tests are 

added to test the new method, then these new tests will not compile with the old source. 

This creates an asymmetry in which test cases run on which version, which seems to 

defeat the isolation of effects to the source. However, the failure of compilation is really 

just an early indicator of a failure to run. If our tool were designed for Python, for 

example, the compilability distinction would disappear into a runtime condition. The fact 

that a test case runs on one version but not the other reveals a property of the source code: 
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the behavior is attributable to the source. Thus, the default condition for isolating source 

effects is to run the union of the test cases, modulo compilability. 

To formalize what tests are actually run in the various conditions, we define the 

Compatible Set of Tests (CST) as a function that takes as input a set Γu of all test cases of 

version u and a set Σv of the source of version v, and returns all test cases in Γu that can 

compile with the source Σv. 

CST(Γu, Σv) = { τ ∈Γu | τ compiles with Σv }             (3) 

We denote the code of version v a pair (Σv, Γv), where the first element is the 

source and the second element the set of test cases. The second row in Table 1 lists the 

comparison strategy for exploring the effects of source changes. (A more conservative 

approach would be to use test cases that compile on both sources, i.e., CST(Γnew, Σold) ∪ 

CST(Γold, Σnew)). 

When we are interested in the impact due to changes in the test cases, we fix the 

source and execute different versions of the test suites. Since the source code bases 

cannot be unioned, there are two possible conditions here: running the two test suites on 

the old source, and running the two test suites on the new source. Figure 6 shows an 

example of test impact isolation for commit #7, using the old source. The invariant 

 Entry-Point: 
     other ≠ null 
     other is a JsonPrimitive object 
 
 Exit-Points: 
   point-359(361 in new source): 
     return = true 
     (return = false) → (this.value = NaN) 
     (return = false) → (other.value = NaN) 

Figure 6 Test change impact isolation for commit #7, for old source 
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Table 1 Behavior Comparison Strategies 

View Effects of old version: (Σold , Γold)   vs.   new version: (Σnew , Γnew) 
src tests src tests 

whole check-in Σold Γold Σnew Γnew 
source only Σold CST(Γnew, Σold) ∪ Γold Σnew CST(Γold, Σnew) ∪ Γnew 

tests for old src Σold Γold Σold CST(Γnew, Σold)  
tests for new src Σnew CST(Γold, Σnew)  Σnew Γnew 

 
differentials convey two pieces of information. First, at the entry-point the other object is 

not always non-null, so the reviewer can conclude that the new tests are indeed bringing 

in the corner case of testing equality of null. Second, after introducing the new test 

cases, at exit-point 359 (361 in the new source), the old equals does not always return 

true, but returns false on the new testcase when both this.value and other.value are 

NaN. The developers are expecting to see it fail here, since the passing behavior was 

introduced by the new source. The observation of a new test case’s impact on the old 

source demonstrates that the new test is not simply passing all the time, but also capable 

of revealing incorrect behavior. 

As a parting remark, we note that the performance implications of computing all 

these conditions on every check-in need not be overwhelming. Although we list four 

conditions, there is substantial overlap among the test runs, allowing for reuse of the 

logging data. For example, the source-only condition uses the same sources and all the 

test cases from the whole-check-in condition. Thus, the source-only condition requires 

new runs for only the compatible new tests on the old code and the compatible old tests 

on the new code. Moreover, as shown in commit #7, the change in test suites from 

version to version tends to be small, so the additional computation is minimal.  



30 

 

3.2.3 Invocation Flows 

A change of one method in the source code can have widespread effects on 

behavior, affecting numerous methods. This is the primary motivation for providing 

behavior change summaries, as the summaries directly articulate those widespread 

effects. Still, a reviewer needs help in finding her way around. Semantic effects are 

propagated directly by the control flow in the application: a variable or field is set in one 

method, and then its value is passed to another method, where it is used, set, returned, 

and so forth. Thus, a natural way for a reviewer to explore a source code base is to 

navigate its call graph, from caller to callee, from callee to caller, and so forth [29], [41]. 

Building on this insight, GETTY provides a local-area call-graph, as seen in the 

dotted boxes in Figure 3 and exhibited in the scenario at the beginning of this section. 

Only callers, immediate siblings, and callees whose invariants have changed are 

necessarily displayed. As screen space allows more local neighbors are displayed (in 

gray, to indicate their invariants were not affected by the commit). Clicking any method 

in the displayed local call-graph puts that method in the center and displays its callers, 

immediate siblings, and callees around it. In this way, it is possible to explore all the 

invariant changes through the program version’s control flow. 

GETTY computes all invocation flows from execution traces during testing. 

Because dynamic flows are the flows that actually occurred, a reviewer can compare the 

dynamic flows with the expected flows based on the code changes to identify problematic 

or unexpected results [24]. 
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3.3 Design and Implementation 

Central to CSI is the idea of semantic differencing. GETTY as the tool for CSI 

takes as input two versions of the target software project and delivers the semantic 

information to developers. For this purpose, GETTY needs to resolve project dependencies 

and build it, extract necessary static and dynamic information, collect invariants and 

incorporate their differentials into the display for developers. 

Currently, GETTY is a three-layer system (shown in Figure 7) implementing the 

above functionalities for analyzing Java projects. The bottom-layer provides 

infrastructural support for checking out different versions and building them. On top of it 

is the middle-layer for gathering information: villa and agent are two application 

components to extract static and dynamic facts, respectively, from the target project; 

center is the application component to infer invariants for the interested methods at 

runtime. All information gathered from middle-layer is sent to the top-layer, gallery, to 

be processed and presented to users. We provide more details for each layer in the 

following sections.  

3.3.1 Build Framework 

Build framework is the infrastructure layer of GETTY. It is a set of Python scripts 

that integrates Maven [13] for dependency and build management, and interacts with git 

[42] for version control. 

Maven is a software project management and comprehension tool for Java 

projects. All library dependencies in a Maven project are explicitly declared in the Project 

Object Model (POM). Build framework uses Maven to automatically retrieve all the 
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dependencies either from online repositories or from local cache, then integrate them into 

developers’ local environment and configure the project as is specified in “.pom” files. 

When everything is ready the build framework can automatically compile and test the 

project. 

git is a popular choice of VCS to store and manage versions. The finest unit of 

versions is a commit object with a distinguished SHA-1 hash value. Except for the initial 

commit, each commit documents all changes from its immediate previous commit. Build 

framework interacts with a project’s git repository for the following three tasks: 

1. Checkout the commits that GETTY needs to analyze and compare; 

2. Get file-based, program-level, textual change details via git-diff [8]; 

3. Use git-stash [43] to back up developers’ current work so after GETTY 

analysis all work will be restored; 

4. Retrieve developers’ comments by git-log [44]. 

The typical workflow by the build framework is: back up current work, checkout 

a specific commit of the project, download and/or integrate all dependent libraries, 

configure and build the project, send source code and binaries to upper layer for further 

Figure 7 Three-layer GETTY Architecture 

  
gallery 

  BUILD	FRAMEWORK 

src	&	tests 
+ 

version	info   villa 

change	set 

  agent 

impact	set 

                center 

likely	invariants 



33 

 

processing, clean up and restore developers’ work. All processes in the workflow are 

automatic after user specifies the project and the version commit hash. 

3.3.2 Fact Extraction 

The middle-layer is an application layer on top of the build framework. It collects 

all information needed for CSI, including static facts, dynamic facts and invariants. In 

this subsection we provide details for getting static and dynamic facts. 

villa is a Java component that extracts static facts from source code. Taking as 

input a textual patch file (output of git-diff), villa parses the differential information and 

records the updated source files and changed line numbers of the two versions. From the 

path of the changed files, build framework tells villa whether a change is made to source 

or tests. Then villa fetches the corresponding source code, perform analysis on its AST 

and correlates changed line numbers to specific methods or test cases. Repeating the 

above procedure, villa computes the set of all methods and test cases that have been 

changed. We define the computed set to be change set of the current patch. In addition, 

villa parses all source code of the project and gets the set of all methods and the set of all 

test cases for statistics purpose, the union of which is defined as project set. 

agent is a Java component that extracts dynamic invocation information from test 

executions for invocation flows. agent acquires information by Java instrumentation: it 

adds logging methods into byte codes right before/after each method invocation/return. 

Each log entry is one line specifying whether it is right before a method call or after. In 

order to support multi-threading programs, each log entry also records the thread ID of 

the current invocation so that each thread can be analyzed separately. During analysis, 
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agent maintains one call stack for each thread. It pushes a method onto the stack when it 

reads the logged method entry, and pops it out when it reads the logged method exit. 

agent counts the number of invocations and computes all invocation relations based on 

the stack activities. 

3.3.3 Dynamic Invariant Inference 

center is a Python component responsible for inferring invariants from test 

execution. It checks out two code versions and executes tests for invariants. Since a 

method can be exercised by any tests, directly or indirectly, we always execute the whole 

test suite so that no runtime data is missed. This implies a great performance overhead. 

center takes two measures to improve the performance. 

First, we need not infer invariants for all methods in project set. Notice that the 

invariants of a method may impact its neighbors (callers, callees, methods immediately 

called by callers before/after calling this method), so the interested targets include 

methods in change set and all their neighbors. We define the set of all changed methods 

and their neighbors (to a certain depth) to be the impact set of current patch. center takes 

as input the invocation flow information and computes such impact set. 

Second, notice that software testing is embarrassingly parallel, and so is invariant 

detection. center forks a set of processes to run Daikon and infer invariants from testing. 

Depending on the available computational resources the number of processes may vary. 

We will further evaluate factors we considered for penalization and their effects in 

Chapter 4. 



35 

 

For the purpose of impact isolation (Section 3.2.2), center checks out different 

(combinations of) versions, builds the project, runs all tests and infers invariants. After 

inferring invariants, center differences the result for future use. 

3.3.4 User Interface Generation 

The top-layer, gallery, synthesizes all information from middle-layer components 

and creates a user interface (UI) for reviewers. We discussed how a reviewer would 

interact with the UI in Section 3.1. In this section we provide details on how the UI is 

constructed. 

As shown in Figure 3, there are three zones in the user interface, displayed as 

three boxes from top to bottom:  

• Patch Summary Zone (Figure 8). The top zone is a change summary between 

two commits. The “Compare Commits” shows the two commits under compare. 

Clicking into the link reviewers will see all developers’ comments documented 

by git-log. “Common Package” to the upper right corner displays the common 

Figure 8 Patch Summary Zone 

Figure 9 Invocation Flow Zone 
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package name of all the methods and test cases displayed in the UI. “Updated 

Source” and “Updated Tests” lists the methods and test cases in change set, 

computed by villa. At last, reviewers have the option to display all methods and 

classes whose invariants might have been changed after the code change. 

• Invocation Flow Zone (Figure 9). The middle zone displays the invocation flow 

information computed by agent component. The zone is initially empty. After a 

reviewer clicks one of the methods listed in the Patch Summary Zone, that 

method will be placed in the center of Invocation Flow Zone with its four 

neighbors updated. gallery places two toggle buttons to the upper left corner, 

serving as two display options: clicking the “More Methods” toggle button 

shows/hides the methods with no invariant change; clicking the “Tests” toggle 

button shows/hides test cases. If the reviewer clicks any of the neighboring 

methods, that method will be place in the middle with all of its four neighbors 

updated. 

Figure 10 Semantic Inspection Zone 
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• Semantic Inspection Zone (Figure 10). The bottom zone displays invariant 

differentials (computed by center) for the method placed in the middle of 

Invocation Flow Zone. On top of the display, gallery lists all the isolation 

options, depending on which gallery loads and displays the corresponding 

invariant differentials. At the bottom are more display options, in case the 

reviewer needs to view the complete texts of invariants, or the source code. 
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Chapter 4 

Performance and Scalability 

We have discussed the design and implementation of our CSI tool, GETTY, and 

used it to complete one case study of GSON project. In this chapter, we discuss and 

evaluate our solution to scale GETTY for more projects. 

4.1 Challenges 

Like Continuous Integration (CI), CSI depends on heavy lifting by the back-end 

to support developers’ and reviewers’ work. Indeed, CSI not only requires the same 

compilation and testing support of CI, but also adds the often massive cost of inferring 

likely invariants with Daikon, even for a reduced set of targets (impact set, Section 3.3.3). 

More specifically, consider GSON project at the commit #4 of our previous case study. 

There were 676 methods and 707 test cases in the project. Under the environment of a 

Macbook Pro (Intel 2.53 GHz Dual-Core CPU, 4GB DDR3 RAM, Mac OS X Yosemite), 

one pass of the test suite execution, without any optimization or parallelization, takes 

over 10 seconds to complete. When we execute all tests for each method, one after 

another, the total execution time is nearly 7,121 seconds, nearly 2 hours. The overhead 

rises to over 5 hours after running Daikon instrumented tests and inferring invariants. 

Another open source project, Apache Commons Collections [36], contains more than 

3,000 methods with more than 1,500 tests. Under the same environment, running the 
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same analysis above for a random pair of commits in Collections project takes more than 

4 days to complete. 

However, an ideal CSI infrastructure like GETTY should support an overnight 

build. For example, a review of current practices at Apache and Mozilla show that 

developers typically perform code reviews 5 to 21 times per week [5]. Therefore, review 

tools that take over a day to complete invalidate their practical use for nightly builds. As 

a heuristic we estimate the analysis be completed in 12 hours. 

4.2 Methods to Improve Performance 

The unoptimized analysis in the previous section always executes the whole test 

suite for all methods at once. For reference, we call it the All-Test-All-Methods mode 

(ATAM). Notice that we only need the invariants that are relevant to the commit in 

question, so we only need to let GETTY analyze the impactset. We selected 10 random 

commit pairs from GSON, ran GETTY analysis in ATAM mode, collected performance 

data of the four components and summarized the average timespan for each component in 

Table 2. Because of the reduced inference workload, the total time span is reduced. 

However, the average time span is still over 3 hours. Of all the components, center takes 

over 95% of the total execution time, even when just focusing on impactset, so dynamic 

invariant inference is the performance bottleneck. 

GETTY components villa agent center gallery 
Avg. Timespan (seconds) 78.86 250.14 9716.01 89.74 
Avg. Percentage 0.78% 2.47% 95.86% 0.89% 

Environment: Intel 2.53 GHz Dual-Core, 4GB DDR3 RAM, Mac OS X Yosemite 

Table 2 Execution Time in ATAM Mode 
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To further study how we can improve performance of dynamic inference, we 

randomly selected five more projects from Apache Commons repositories [45] under 

directory “C”. We took 10 random commits of each project, executed the center analysis 

on them, and take the truncated mean (discarding two side outliers) of each group of data. 

Their characteristics and the results are summarized in Table 3. The total time taken by 

the inference process (last column) increases with the growing execution time of 

executing test suites. The cost of inference has no evident relationship with the other 

factors. The size of a commit will influence the size of the target set and hence the 

inference time, but we controlled for this by taking the truncated average of the 10 

commits per project. The cost is far too high for the last three projects. Various 

bottlenecks are in play, but the most persistent one is that inferring all the invariants at 

once requires far more memory than available RAM, causing Daikon to thrash in virtual 

memory.  

 To reduce memory pressure, we used a mode of Daikon in which the traces are 

piped directly to Daikon (less cost from disk I/O), and introduced two modes that track 

fewer methods at a time: 

Projects Commits KLoC Methods Tests TTE TIE (ATAM) 
GSONG 1,294 36.6 582 1,276 13.3s 3.22h 
CLIA 827 8.6 212 206 18.0s 5.98h 
CodecA 1,608 14.1 272 334 23.3s 11.64h 
CryptoA 550 9.9 183 20 49.5s 23.20h 
CollectionsA 2,881 100.1 3,177 1388 86.9s 55.51h 
ConfigurationA 2,730 92.3 2,121 1,962 127.5s  

G: Google Project; A: Apache Commons Project. TTE: total time for testing; TIE: total time for inference 
Environment: Intel 2.53 GHz Dual-Core, 4GB DDR3 RAM, Mac OS X Yosemite 

Table 3 Project Information and Execution Time of Dynamic Inference 
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• All-Tests-Single-Method (ATSM) mode – executing the whole test suite 

for a single method each time; 

• All-Tests-Single-Class (ATSC) mode – executing the whole test suite for a 

single class each time. 

The rationale behind the two modes is to release Daikon from processing too 

many data points at a time, though it could result in many more test suite executions. 

Theoretically, ATSM processes data points for one single method so the memory 

pressure each time should be minimal. ATSC processes all data points for a class (i.e., a 

group of methods), which imposes more memory pressure than one single method; 

however, it reduces the total number of repeated test executions. Moreover, since a 

method program point is dependent on its parent records (typically the containing class 

program points) [46], each method program point data processing involves its class 

program point data processing. ATSC processes class program point data once for all 

methods of that class; therefore it minimizes the repeated data processing for class 

program points. 

Table 4 records the average execution time of using different modes in the six 

open source projects, under the environment of a dual-core Macbook Pro with 4GB 

Projects ATAM ATSM ATSC PATSC 
GSON 3.22 3.94 2.70 2.32 
CLI 5.98 5.38 3.10 2.79 
Codec 11.64 14.90 3.67 3.52 
Crypto 23.20 39.53 9.43 7.99 
Collections 55.51 79.85 25.36 23.83 
Configuration  95.69 54.81 49.96 

Environment: Intel 2.53 GHz Dual-Core, 4GB RAM, Mac OS X Yosemite 

Table 4 Execution Time (Hours) of Different Modes (1) 



42 

 

RAM. The first three columns compare the performance impact among the three modes. 

All data in Table 4 is visualized in Figure 11 for comparison purpose. Compared to the 

unoptimized ATAM mode, ATSM mode got invariants for the Configuration project, but 

it also increased the total time of inference for most projects because the test suite was 

executed many more times repeatedly. ATSC results in an overall improvement, but 

Collections and Configuration are still processed too slowly. 

Noticing that invariant detection is embarrassingly parallel, our final improvement 

was to introduce the Parallel-ATSC mode (PATSC), which exploits the fact that most 

tests are naturally independent from each other. We partition each project’s class-

granularity inference processes into as many groups as there are cores on the machine, 

and distribute them to all cores. Each group for a project is executed concurrently on a 

separate core, and on each core the processes of the group are executed sequentially in 

batch. After all the groups finish, center merges all the invariants collected, a trivial step. 

Figure 11 Inference Execution Time of 6 Open Source Projects 
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The last column of Table 4 lists the execution time of PATSC mode. From Figure 

11, PATSC mode improved the performance in general; however, its average 

improvement was approximately only 10%, notably less than expected for dual-core 

environments. This confirms that the memory pressure is the key: it not only limits each 

single process of inference, but also impedes the potential speedup from parallelism. 

Fortunately, higher-performance hardware is reasonably common and affordable 

in today’s cloud or cluster environment; for example, as of 2016, the price of renting an 

Octa-core, 32GB RAM instance at Amazon EC2 is about 50 cents per hour. To evaluate 

the performance improvement by PATSC over plain ATSC, we moved our experiments 

to a higher-performance machine with an Octa-core processor, whose 2.66GHz clock 

speed is 5% higher than the 2.53GHz on the Macbook Pro used in the prior experiments, 

and has four times the RAM, 16GB. In this new environment, we executed the same 

center analysis in ATSC and PATSC modes, and recorded the time in Table 5. It shows 

that PATSC mode (parallelizing on 8 cores of one single node) achieved nearly 100% 

improvement over the plain ATSC condition. Its suboptimal speed-up is still due to the 

cores’ contention on the memory bus to the shared memory. However, compared to the 

previous environment (about 10% improvement with 4GB RAM), the speed-up by 

Projects ATSC PATSC 
GSON 2.14 1.09 
CLI 2.27 1.21 
Codec 3.02 1.75 
Crypto 7.85 3.02 
Collections 20.19 11.89 
Configuration 43.66 25.40 

Environment: Intel 2.66 GHz Octa-Core, 16GB RAM, Ubuntu Server 16.04 

Table 5 Execution Time (Hours) of Different Modes (2) 
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PATSC mode with more RAM is much more notable, demonstrating its potentially more 

performance improvement when the memory pressure is further released. 

4.3 Scalability 

While the ATSC mode is appropriate for a desktop environment, the highly 

parallel PATSC mode is more appropriate to a high-performance cluster. For evaluating 

PATSC’s scalability, we moved to a cluster with eight high-performance nodes (each 

with the same hardware and software environments as is in the previous section), typical 

of what can be found in a cloud deployment today. 

We conducted experiments for the six projects on 2, 4, 8 and 16 processors, and 

summarized their results in Table 6. The last column indicates that running on all eight 

nodes provides 6.8x average speedup over single-node computation. The first four 

projects, GSON, CLI, Codec and Crypto, all completed their analysis within 1 hour. 

Collections project completed in 2 hours. Configuration project took the longest time to 

complete; however, it still completed with approximately 3 hours, over 8x speedup over 

single-node analysis, and over 14x improvement over the plain ATSC mode. 

Projects  2 processors 
(1 node) 

4 processors 
(2 nodes) 

8 processors 
(4 nodes) 

16 processors 
(8 nodes) 

GSON 1.09 0.50 0.26 0.16 
CLI 1.21 0.70 0.34 0.20 
Codec 1.75 0.78 0.41 0.23 
Crypto 3.02 1.74 0.90 0.51 
Collections 11.89 8.75 4.94 1.89 
Configuration 25.40 11.65 6.14 3.03 

Environment: Intel 2.66 GHz 4 Dual-Core, 16GB RAM, Ubuntu Server 16.04 

Table 6 Execution Time (Hours) of PATSC Mode 
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Figure 12 plots running time against the number of processors used.  Overall the 

completion time decreases with increasing number of nodes used for each project. The 

single-processor condition runs plain ATSC, the rest PATSC. ATSC runs 1.2x faster on 

this machines processor compared to the Macbook Pro. PATSC running on the same 

single node (using both processors) achieved 1.8x speedup and 89% efficiency. Its 

suboptimal speed-up is due to memory contention. Running on all 16 processors (eight 

nodes) provides a total speedup is 13.1 with 82% efficiency, with a nearly linear speedup 

across the range, implying high scalability of invariant inference for CSR. 

Related is the cost of computing GETTY’s invariants in the cloud, say as part of an 

existing continuous integration process. Figure 13 plots the estimated additional CPU 

cost on Amazon EC2. The costs are modest, tracking project size.  The high efficiency of 

parallelization modestly increases the baseline, average 24%. 

Figure 12 Average running time versus number of processors 
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The scalability of PATSC is bounded by the number of classes in the impact set. 

For the 60 commits examined here, the average number of classes is 142, with a standard 

deviation of 148, suggesting generally ample parallelism.  At the low end there are a few 

commits that contain just 12 classes, for example commit c241318 in Collections. Its 

times for invariant inference are 0.57, 0.31, 0.23, and 0.21 hours, on 2, 4, 8, and 16 

processors, respectively. The overall speedup from 2 to 16 processors is 2.7x, with no 

discernable speedup from 8 to 16 processors since the maximum expected speedup is 12, 

and the net time is bounded by the longest running class. However, all the small commits 

also have short running times that don’t demand high levels of parallelization. 

In summary, by partitioning the traces sent to Daikon it is possible to reduce 

memory pressure and achieve high parallelism in inference, providing high scalability of 

CSI, sufficient for supporting its use as part of a Continuous Integration process. 

Figure 13 Cloud cost of invariant extraction against the number of CPUs used 
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Chapter 5 

Quantitative Evaluation 

In Section 3.1 we replayed part of the history of the JsonPrimitive:equals 

method in the GSON project. In this chapter, we finish the introduced case study and 

demonstrate that CSI with GETTY can help reveal insufficiency of testing and find bugs. 

For all 12 commits related to the target methods, we compare the number of changed 

invariants with the total number of invariants and evaluate the percentage of the invariant 

reduction which creates a more focused view for reviewers. By looking at a larger 

number of projects and commits, we further address the question of whether CSI is 

similarly effective on a regular basis. In addition to GSON, we studied the five open 

source projects introduced in the previous section: CLI, Codec, Crypto, Collections, and 

Configuration (Table 3). We first examine 100 of their commits to assess CSI’s ability to 

make judgments on test sufficiency. We then investigate whether CSI aids in finding 

bugs in the six projects. 

5.1 Finishing the GSON Case Study 

From Section 3.1, we have already seen that CSI with GETTY can both quickly 

reveal inadequate testing and successful revisions in GSON. Replaying the history of 

equals from the beginning repeatedly shows this ability (See Figure 14), so for the sake 

of brevity we focus here on whether CSI can aid in finding the introduction of the bugs. 
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We highlight commit #10 in Figure 15, which introduced a test comparing two 

JSON primitive integers: 264+5 and 5. As asserted, the equals method should return 

false because the two values are different. However, the test failed, revealing a bug. The 

bug was never fixed. (In the last commit, #12, the developers considered “the price is too 

much to pay” to fix the bug and overrode the test failure by changing its “assertFalse” 

to “assertTrue”.) 

It is interesting to note that the bug was not revealed until commit #10, despite all 

previous commits passing their code reviews. The question, then, is whether CSI could 

have aided in finding this bug sooner, preferably at the point of introduction, were it in 

use by this project at the time. 

Figure 14 Selected dynamic invariant differentials for commits #1 - #3 

Entry-Point: 
    other has only one instance 
    other = this 
 
Exit-Point: 
    return = true 

(a) Commit #1:equals method added, tested on just one value. 
Entry-Point: 
    other has only one instance 
    other ≠ null 
 
Exit-Point: 
    return = true 

(b) Commit #2: more tests improve the invariant differentials, but there is no testing 
for a null input. 

Exit-Points: (AFTER commit) 
   point-362: 
      this.value = null 
      (return = true)  ↔ (other.value = null) 
   point-364: 
      this.value ≠ null 
      (return = true)  → (this.value = other.value) 

(c) Commit #3: branch refactoring of equals; invariant differentials indicate that it is 
behaving as expected. 

� For presentation purposes, fully qualified names have been shortened. 



50 

 

In commit #4, developers introduced new features such that: (1) integers of 

different types (Byte, Short, Integer, Long, and BigInteger) are comparable to each 

other in equals, and (2) floating-point numbers of different types (Float, Double, 

BigDecimal) are comparable to each other. 

Figure 16 shows the two new if-branches added in equals to compare integers 

and floating-points. The predicate method isIntegral checks whether a 

JsonPrimitive object represents an integer, i.e., the type of value attribute is Byte, 

Short, Integer, Long, or BigInteger. If both this and other represent integers, the 

first branch is executed and both value attributes are converted to Long to compare for 

equality. Similarly, the predicate isFloatingPoint checks whether a JsonPrimitive 

object represents a decimal, i.e., the type of value attribute is Float, Double, or 

BigDecimal. If both this and other store decimals, the second branch is executed and 

value attributes are converted to Double to compare for equality. The two branches are 

public void testEqualsIntegerAndBigInteger() { 

    JsonPrimitive a = new JsonPrimitive(5L); 

    JsonPrimitive b = new JsonPrimitive(new BigInteger(“18446744073709551621”)); // 2^64 + 5 

    assertFalse(a + “ equals ” + b, a.equals(b)); 

} 

Figure 15 The failing test case in commit #10 

  374+  if(isIntegral(this) && isIntegral(other)) { 
  375+     return getAsNumber().longValue()== other.getAsNumber().longValue(); 
  376+  } 
  377+  if(isFloatingPoint(this) && isFloatingPoint(other)) { 
  378+     return getAsNumber().doubleValue()== other.getAsNumber().doubleValue(); 

  379+  } 

Figure 16 New feature to compare between integers in commit #4 
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independent from each other since the two predicates separate all input numbers into two 

disjoint sets. 

We first study the branch from line 374 to line 376 for integers. As reviewers we 

expect the branch returns true when both value attributes store the same integer values, 

regardless of the specific integer types. 

We examine dynamic invariant differentials in Figure 17. At exit-point of line 

375, where the new integer-comparison branch returns, this.value must be Long if the 

return value is false. This is surely an incorrect invariant because the type of 

this.value being Long is not a necessary condition for equals to return false. The 

new branch can return false as long as both value attributes are quantitatively unequal, 

even when one is or both are not Long. In this regard, we suspect a bug was introduced 

that created an incorrect dependency between the result of comparison and the types of 

value attributes. 

To verify if the bug actually exists, we need to add a test. The incorrect invariant 

grants the insight on how to write the test. We challenge the incorrect Long type 

dependency by creating and comparing BigInteger objects that cannot be precisely 

converted to Long. Java’s Long type is 64-big signed integer so any integer representation 

over 64 bits will be truncated when converting to Long. For example, 264+1 that takes (at 

least) 65 bits is converted to 1 because all bits beyond the 64th are lost after conversion. 

Exit-Points: 
  point-375: 
      (return = false) �→  (this.value is Long) 

  point-378: 
      return = true 

Figure 17 Commit #4: the invariant differential clearly indicates a bug. 
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We therefore create four JsonPrimitive objects: one for 1, lp1 for 264+1, lp1c for 

264+1 (a different object), and lp2 for 264+2, and assert that none of them are equal 

except for the pair of lp1 and lp1c. Our test in Figure 18 is stronger than the test in 

Figure 15 because that test only considers the case where other.value is BigInteger, 

but ours considers this.value being BigInteger as well.  

Since our test fails, we conclude that the bug discussed was introduced in commit 

#4. This is a typical case where a bug was introduced after the developers added a new 

feature. Notice that commit #4 is dated Sep 23, 2009, but commit #10 discovered the bug 

on Sep 9, 2011, nearly 2 years after the bug was introduced. Reviewers could have found 

the bug much earlier if they had been able to examine dynamic invariant differentials.  

Additionally, consider the branch from line 377 to line 379 in Figure 16 that deals 

with floating-point comparisons. Similarly to the previous integer branch, we expect this 

branch to return true when both represent the same decimal values, regardless of the 

specific decimal type of value attribute. 

public void testEqualsForBigIntegers() { 

    BigInteger limit = new BigInteger("18446744073709551616"); // 2^64 

    JsonPrimitive one = new JsonPrimitive(1L); 

    JsonPrimitive lp1 = new JsonPrimitive(limit.add(new BigInteger("1"))); // limit + 1 

    JsonPrimitive lp1c = new JsonPrimitive(limit.add(new BigInteger("1"))); // another limit + 1 

    JsonPrimitive lp2 = new JsonPrimitive(limit.add(new BigInteger("2"))); // limit + 2 

    // compare 1, limit + 1, limit + 2, etc. 

    assertFalse("limit + 1 = 1", lp1.equals(one)); 

    assertFalse("1 = limit + 1", one.equals(lp1)); 

    assertFalse("limit + 1 = limit + 2", lp1.equals(lp2)); 

    assertTrue("limit + 1 = limit + 1", lp1.equals(lp1c)); 

} 

Figure 18 Test case to confirm the integer-equality bug 
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In Figure 17, the dynamic invariant at exit-point 378 says the return value is 

always true, i.e., for all tests so far this branch returns true only. This indicates that 

either there is a lack of testing for unequal decimals, or unequal decimals are compared 

but there is a bug. 

Consequently, we add a test case (Figure 19) to compare unequal decimals to 

check for a bug. Building on previous experience, we consider not only unequal Double 

numbers but also unequal BigDecimal numbers. Our test case passes the first assertion 

but fails the second one. Passing the first assertion implies that equals behaves correctly 

given two small unequal decimals, confirming our hypothesis that the wrong invariant 

was due to lack of testing. The failure of the second assertion reveals a new bug when 

comparing large unequal numbers. This bug was never found or discussed in GSON 

project. In commit #11 (right after developers discovered the integer comparison bug in 

commit #10), the developers further modified the same decimal comparison branch; but 

Commit #11: invariant differential points to a similar bug as commit #4 

public void testUnequalDecimals() { 

    JsonPrimitive smaller = new JsonPrimitive(1.0); 

    JsonPrimitive larger = new JsonPrimitive(2.0); 

    assertFalse("smaller = larger", smaller.equals(larger)); 

    BigDecimal dmax = BigDecimal.valueOf(Double.MAX_VALUE); 

    JsonPrimitive smallBD = new JsonPrimitive(dmax.add(new BigDecimal("100.0"))); //dmax + 100.0 

    JsonPrimitive largeBD = new JsonPrimitive(dmax.add(new BigDecimal("200.0"))); //dmax + 200.0 

    assertFalse("smallBD = largeBD", smallBD.equals(largeBD)); 

} 

Figure 19 Test case to confirm the decimal-equality bug 

  Exit-Points: 
    point-348: 
      (return = false) �→  (this.value is LazilyParsedNumber) 

Figure 20 Commit #11: invariant differential points to a similar bug as commit #4 
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the invariant differential in Figure 20 shows that, similar to exit-point 375 in Figure 17, at 

the exit-point of the decimal branch the return value is incorrectly correlated to the 

specific type of value attribute. Up to the date of this paper’s writing, the developers did 

not add any tests to reveal this bug. As a byproduct of our research, we submitted the new 

bug report, along with the test in Figure 19, to the GSON project. 

Many of the problems identified here could in principle have been identified 

through test coverage reports. However, although standard test coverage tools confirm 

that the conditions of a branch were tested, they do not reveal coverage of the domain and 

range of methods. Invariant differentials directly state the anomalous properties of the 

input (e.g., other is never null) or output, pointing to what kinds of tests need to be 

added (inputs that include null). And coverage tools do not help in identifying bugs, just 

areas of the code that are insufficiently tested. For example, in commit #4 there were 65 

executions of equals for numeric equalities. Among them, 16 tested integer equalities 

 316   if(isIntegral(this) && isIntegral(other)) { 
 317-     return getAsNumber().longValue() == other.getAsNumber().longValue(); 
 318   } 

Before bug-fix 
 
 316   if(isIntegral(this) && isIntegral(other)) { 
 317+     return getAsBigInteger().equals(other.getAsBigInteger()); 
 318   } 

After bug-fix 

 
(a) Suggested fixing patch 

Exit-Points: 
  point-317:  (return = false) �→  (this.value is Long) 

(b) Incorrect invariant disappeared after bug-fix 

Figure 21 Fixing the introduced integer-equality bug 
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and 30 tested decimal equalities. We did not have to examine all test executions to 

identify the missing test cases, but we only examined dynamic invariant differentials and 

compared them with our expectation. We concluded not only were they insufficiently 

tested, but also both branches have bugs. 

Since the loss of precision in conversion is identified as the root cause of the 

integer comparison bug, we can fix it by converting each integral value attribute to 

BigInteger before comparing for equality. Figure 21-a shows our suggested fix. We 

reviewed our own commit using CSI and confirmed the incorrect invariant disappeared 

after the bug fix (Figure 21-b). Our real fix [47] submitted to GSON project was more 

comprehensive. To avoid introducing bugs into other parts of the program, we inspected 

more related invariant differentials and invocation flows. For example, we further 

examined the semantics of isIntegral and found that the only other method using this 

predicate was hashCode. We concluded this case study by adding tests to ensure 

hashCode was not affected by the bug fix. 

5.2 Reducing Inspection Load 

We surmise that, in most cases, not all invariants are changed after a patch. 

Invariant differentials are a subset of invariants that are changed. In the finished GSON 

case study, it was the invariant differentials, not the full list of invariants, that we needed 

to inspect for a lighter inspection load. In this section we study whether the size of 

invariant differentials is related to the size of the code diff, and how much invariant 

differentials shrink compared to the full list of invariants. 
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Among the 12 commits related to the target method, commit #1 is the one 

introducing the method so its invariant differential is exactly the full list of invariants 

inferred; commit #5 is the only commit that does not compile, so there are no invariants 

inferred and hence there are no invariant differentials. For our evaluation we exclude 

these two commits and study the other 10 commits for the more general case when a 

patch modifies part of the existing method and the patch compiles. 

In Table 7 we summarize the results of the 10 commits without impact isolation. 

For each commit, we count the number of related logical lines that were changed. For the 

source files, the related lines are the lines for the equals method, and all methods that the 

equals method calls, for example, the isIntegral method. For the test files, the related 

lines are the lines of test cases that invoked the equals method, either directly or 

indirectly. On average, at one commit developers updated 8.2 lines of code for equals 

method, and meanwhile updated 17.7 lines of code (3.6 test caess) for testing it. 

Similarly, comparing the invariants, we can observe some old invariants were removed in 

Table 7 Results of Invariant Reduction without Impact Isolation 

Diff Correlation ( (Added Invs + Deleted Invs), (RSL + RTL) ) = -0.169 

Commit RSL RTL Old  
Invs 

New 
Invs 

Added 
Invs 

Deleted 
Invs Reduction 

#2 0 25 23 25 2 0 95.83% 
#3 6 0 25 23 0 2 95.83% 
#4 15 65 23 26 3 0 93.87% 
#6 38 11 35 35 0 0 100% 
#7 3 25 26 34 12 4 73.33% 
#8 12 5 35 35 0 0 100% 
#9 1 41 35 35 0 0 100% 
#10 0 4 41 41 0 0 100% 
#11 7 0 41 42 2 1 96.38% 
#12 0 1 42 42 0 0 100% 

Average 8.2 17.7 32.6 33.8 1.9 0.7 95.52% 
RSL: # related source Logical Lines of Code changed; RTL: # related test Logical Lines of Code changed 
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the newer version, while some new invariants were introduced in the newer version. We 

thus compute the reduction of invariants by each invariant differential as follows: 

Reduction = 100% - (Added Invs + Deleted Invs) / (Old Invs + New Invs))       (4) 

For the 10 commits, we achieved on average 95.52% reduction without impact 

isolation, indicating that reviewers would need to inspect about every 20 invariants under 

this isolation condition, a evident reduction. Underneath Table 7 we also computed the 

correlation between the size of code diffs and that of invariant differentials. The 

correlation result of -0.169 indicates that the size of invariant differentials is not directly 

related to the size of a patch. 

We further study the 10 commits under different isolation conditions. Table 8 

shows the result under source impact isolation. We achieved on average 97.41% invariant 

reduction for inspection, a slightly higher reduction compared to the condition without 

impact isolation. The correlation between the size of source diffs and that of invariant 

Table 8 Results of Invariant Reduction under Source Impact Isolation 

Diff Correlation ( (Added Invs + Deleted Invs), RSL) = -0.201 

Commit RSL Old 
Invs 

New 
Invs 

Added 
Invs 

Deleted 
Invs Reduction 

#2 0 23 25 2 0 95.83% 
#3 6 25 23 0 2 95.83% 
#4 15 23 26 2 0 95.91% 
#6 38 35 35 0 0 100% 
#7 3 37 34 3 4 90.14% 
#8 12 35 35 0 0 100% 
#9 1 35 35 0 0 100% 
#10 0 41 41 0 0 100% 
#11 7 41 42 2 1 96.38% 
#12 0 42 42 0 0 100% 

Average 8.2 33.7 33.8 0.9 0.7 97.41% 
RSL: # related source Logical Lines of Code changed; RTL: # related test Logical Lines of Code changed 
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differentials is -0.201, which shows the size of invariant differentials under source impact 

isolation condition is not directly related to the size of source change. 

The results under test impact isolation condition are listed in Table 910 (for old 

source) and Table 10 (for new source). We achieved on average 97.30% and 97.13% 

Table 10 Results of Invariant Reduction under Test Impact Isolation for New Source 

Diff Correlation ( (Added Invs + Deleted Invs), RTL ) = 0.167 
Diff Correlation ( (Added Invs + Deleted Invs), RTC ) = -0.001 

Commit RTL RTC Old 
Invs 

New 
Invs 

Added 
Invs 

Deleted 
Invs Reduction 

#2 25 4 25 25 0 0 100% 
#3 0 0 23 23 0 0 100% 
#4 65 13 25 26 1 0 98.03% 
#6 11 3 35 35 0 0 100% 
#7 25 3 26 34 12 4 73.33% 
#8 5 2 35 35 0 0 100% 
#9 41 9 35 35 0 0 100% 
#10 4 1 41 41 0 0 100% 
#11 0 0 42 42 0 0 100% 
#12 1 1 42 42 0 0 100% 

Average 17.7 3.6 32.9 33.8 1.3 0.4 97.13% 
RTL: # related test Logical Lines of Code changed; RTC: # of related test cases updated 

Table 910Results of Invariant Reduction under Test Impact Isolation for Old Source 

Diff Correlation ( (Added Invs + Deleted Invs), RTL ) = 0.118 
Diff Correlation ( (Added Invs + Deleted Invs), RTC ) = -0.049 

Commit RTL RTC Old 
Invs 

New 
Invs 

Added 
Invs 

Deleted 
Invs Reduction 

#2 25 4 23 23 0 0 100% 
#3 0 0 25 25 0 0 100% 
#4 65 13 23 23 0 0 100% 
#6 11 3 35 35 0 0 100% 
#7 25 3 26 37 14 3 73.01% 
#8 5 2 35 35 0 0 100% 
#9 41 9 35 35 0 0 100% 
#10 4 1 41 41 0 0 100% 
#11 0 0 41 41 0 0 100% 
#12 1 1 42 41 0 0 100% 

Average 17.7 3.6 32.6 33.6 1.4 0.3 97.30% 
RTL: # related test Logical Lines of Code changed; RTC: # of related test cases updated 
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reduction of invariants for inspection, respectively. However, the correlations between 

the size of test change and that of invariant differentials are still low (0.118 and 0.167). 

Additionally, we attempted to correlate the number of updated test cases with the size of 

invariant differentials, but the results, -0.049 and -0.001, still show that the size of 

invariant differentials is not directly related to the size of test changes. 

As a summary, we make the following conclusions. First, there are not any 

evident correlations between the size of code diff and the size of invariant differentials, 

but it is not a surprising result. Developers update code for different purposes: adding 

new features, fixing bugs, refactoring code for readability, or more. Change of code does 

not necessarily lead to change of semantics. For example, a developer could break down 

a large method body into a set of smaller sub-procedures without changing its semantics. 

Therefore the size of code change is not strongly related to the semantic change, and 

hence the size of invariant differentials. Second, when there are invariant differentials, 

they usually are a great reduction of the full list of invariants. In our study, invariant 

differentials gave a minimum average reduction of 95.52%, which was under the 

condition without any impact isolation. This means a reviewer would only need to inspect 

every 20 invariants, a much smaller inspection load. The worst reduction (73.01% ) took 

place on commit #7 under the condition of test impact isolation for old source, where new 

tests were added for the previously under-tested branches of the equals method. It 

immediately improved the quality of invariants with more likely invariants inferred that 

are added to the full list. However, as we pointed out in Section 3.2.1, under the source 
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impact isolation condition shown in Figure 4, there were only 5 changed invariants – 4 

removed and 1 added – still a notable 93% reduction.  

5.3 Checking Test Sufficiency 

Using GETTY, we applied CSI on 100 test-only commits randomly selected from 

the 6 projects. Depending on the project size and history length, the number of commits 

chosen from each project varies (Appendix I). We then inspected the invariant 

differences of each commit to identify inadequacies in the testing of the methods under 

test in the commit. The question is whether or not the invariant differences were able to 

expose insufficiency, and why or why not. 

As a simple metric of insufficiency, we consider tests insufficient for a method if 

they do not cover all combinations of types that result in different behaviors of the 

method. More specifically, this means different classes for possible input Java objects or 

different value combinations that could lead to different outputs. For example, when 

testing equals for two integers (See Section 5.1), we want to see test cases for all 

combinations of regular and big integers, of equal and unequal value; and, if testing for a 

method doing modulo operation, we want to see test cases for different multiples of the 

divider with different remainders. Although this may overlook corner cases (i.e., it lowers 

our success rate), it is a straightforward, repeatable metric. We determined ground truth, 

then, by exhaustively inspecting the tests and source after making the first determination 

with GETTY. 
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We attach the detailed inspection result at Appendix I, and summarize the statistic 

result in Figure 22. Cumulatively, of the 100 testing commits, 32 were identified as being 

insufficient. For example, the commit #10 we discussed (Figure 2) was one of the testing 

commits we inspected. At the exit point of the integer comparison branch in 

JsonPrimitive:equals method, we observed the invariant “result = false à 

this.value is Integer”. This indicates that the testing commit, though captured the 

bug, was still inadequate because it only considered the unequal cases for when 

this.value is integer, but it is also important to test the unequal case when comparing 

two numbers that are both BigInteger. Another example from GSON project was the 

commit 7d7680f, where developers added tests to ensure any array of nulls are 

deserialized correctly [47]. The array deserializer branch implied that “size(arr) <= 

1”, indicating that developers tested the input JSON string like “[]” and “[null]”. 

However, we regarded this as insufficient because an array of more than one null will 

 

Figure 22 Test Sufficiency Inspection Result 
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introduce separator(s) into the string, like “[null,null,null]”, which could possibly 

alter the behaviors of the deserializer. 

CSI led us to incorrectly classify 4 commits as insufficiently tested, due to 

invariants derived from coincidental correlations in the data. For example, the commit 

f63e8e9 of the Codec project added a number of tests for Base-64 decoding [49]. The 

decode method returns an array of bytes as result. However, at the exit-point an invariant, 

“size(return) % 2 = 0”, indicates that the size of the return array always contains 

even number of bytes. This could be a bug, but for this commit this result is completely 

accidental. As a known issue, Daikon could over-generalize invariants since its inference 

is based on machine learning techniques, which could not guarantee 100% accuracy of 

the results. Incorrect could mislead reviewers to make wrong judgment, but reviewer 

experience might aid in better spotting these. 

We still consider 44 commits sufficiently tested. For example, the commit 

62e69cf of Collections project specifically tested the implemented map for setting null 

values for certain keys. The put method of the map takes the first argument key as the 

key and the second argument value as the value. The invariant differentials indicated that 

a previous entry-point invariant, “value ≠ null”, was removed after commit. Since this 

shows the effect of added tests is exactly for setting null values, we consider this commit 

sufficiently tested. 

20% of the commits did not produce sufficient invariant differentials for the task, 

mostly because the invariants did not provide useful information to reviewers. This is 

especially the case for testing multi-threaded programs. For example, commit ae90d56 of 
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Configuration project introduced a number of tests to prove a race condition was fixed; 

however the invariants did not change, and thus the invariant differential did not provide 

any useful information to reviewers. Furthermore, it was not unusual for Daikon to infer 

the same invariants despite more tests are added, and in those cases Getty delivers little 

semantic information to reviewers. 

Given the simple nature of our insufficiency metric, these results are quite 

positive. It is notable that all of the chosen testing commits were considered 100% 

covered by the branch coverage report obtained by Maven EMMA plugin [39]. Our 

results confirm recent results that popular test coverage tools are not always good 

indicator of test suite effectiveness [50]. 

As an aside, during this study we found two simple invariants that often gave 

away test insufficiency, both featured in the scenario in Section 5.1. One relates to the 

failure to test for null as in input value (e.g., other ≠ null). The other is a Boolean return 

value always being true or false. In addition, exceptional exit-point invariants were 

helpful in confirming behavior after a failure intentionally induced by a test case. 

5.4 Checking Semantic Change Consistency 

We randomly selected one confirmed bug from each project (including a new one 

from GSON), found the commit where the bug was introduced, and applied CSI to check 

whether the bugs could have been found at the time of their introduction. As ground 

truth, we checked out the commit confirming the existence of the bug, executed the failed 

test(s), traced the buggy method’s behaviors using Eclipse JDT Remote Debugger [51], 

and studied the root cause of the bug. Then we used git-blame [52] to trace back to the 
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editing history and find the commit that made the buggy edit. Finally, we applied CSI to 

inspect the semantic changes of the commit that introduced the bug. The results are 

summarized in Table 11. 

The commit from the CLI project fixed the bug documented in issue CLI-252 

[53], where the command line parser threw an exception when parsing an option that is 

the prefix of another. The bug was introduced when developers added partial matching to 

the parser. GETTY failed to identify this bug because Daikon did not infer useful 

invariants for the options. The bug in the Codec project regards the colognePhonetic 

method in the ColognePhonetic class. It takes a string and returns an encoded string, 

using the Kölner Phonetik algorithm [54]. The bug concerns an encoding with 

sequentially repeated digits. Both bugs went unrecognized, at the very least, because 

Daikon’s current String invariant templates do not consider string contents beyond 

equivalence. 

CSI granted insights for discovering the other four bugs listed for GSON, Crypto, 

Collections, and Configuration, between 1 day and 60 months before the bug was 

explicitly discovered and fixed. We discovered two typical patterns for deciding whether 

a commit is buggy: incorrect invariants, and missing expected invariants. 

Table 11 Results of Inspecting Buggy Commits 

Projects Introduction 
Commit 

Discovery 
Commit 

Time Between 
Commits 

Lends 
Insights? 

GSON b634804 60ef777 1 day Yes 
CLI 9b2b803 6c740e7 72 months No 
Codec 2405423 b9cab09 159 days No 
Crypto 9faf04e ee2136e 6 days Yes 
Collections 83226e1 9dbf838 19 months Yes 
Configuration c75a72c 821ccfa 60 months Yes 

Y/N: Whether CSI lended insights to discover the bug at the time of its introduction 
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5.4.1 Incorrect Invariants 

For the first pattern, incorrect invariants, we take the example from GSON project 

at commit b634804. The method of interest is findAndInvokeCustomerSerializer, 

shown in Figure 23. At line 186, it is expected that the return statement will always return 

a JsonElement object as the serialized result. From the invariant differential, however, 

we found that at this exit point it is possible for the method to return null. Java’s null is 

not a JsonElement object, and the fact that this exit point can return null indicates that 

this is likely a bug, which could cause more future bugs like null-pointer exceptions if the 

result were referenced and used by other parts of the program. This was actually the 

corner case developers had overlooked: when the serialized result is “null”, it should 

return JsonNull object (JsonNull is a subclass of JsonElement), instead of the Java’s 

177 private JsonElement findAndInvokeCustomerSerializer(ObjectTypePair objTypePair) { 

178    Pair<JsonSerializer, ObjectTypePair> pair = objTypePair.getMatchingSerializer(serializers); 

179    If (pair == null) { 

180        return null; 

181    } 

182    JsonSerializer serializer = pair.getFirst(); 

183    objTypePair = pair.getSecond(); 

184    start(objTypePair); 

185    try { 

186        return serializer.serialize(objTypePair.getObject(), objTypePair.getType(), context); 

187    } finally { 

188        end(objTypePair); 

189    } 

190 } 

Figure 23 GSON bug at commit b634804, indicated by the invariant diff 

    Exit-Points: 
       point-186: 
          (return = null) �→  (objectTypePair = orig(objTypePair)) 
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null. The developers did not find the bug until a later commit, 60ef777, where they 

specifically handled the case when return value is null, and returns a JsonNull object 

instead. 

Another incorrect invariant we found is for the bug from the Collections project at 

commit 83226e1. In this commit developers introduced AbstractPatriciaTrie, an abstract 

class that encapsulates Patricia Algorithm for tries [55]. Starting from line 1121 is the 

method of interest, subtree, which takes as input a prefix and additional parameters, 

and finds the subtree that contains the prefix as prefix. Figure 24 shows the full 

signature for subtree. As the two additional parameters, offsetInBits tells the method 

to start checking from this given offset in bits, and lengthInBits tells the method where 

to stop. For this initial implementation, the entry point invariant says that offsetInBits 

is always less than lengthInBits, indicating that the method will always start checking 

somewhere before it ends at a later position. However, this should be considered a bug 

because in reality it is quite possible to start and end at the same index. The developers 

did not find this bug until over a year later when they find the Patricia Tries they 

implemented could sometimes mismatch [56]. They fixed at commit 9dbf838, 19 months 

after the bug was introduced. 

1121 TrieEntry<K, V> subtree(final K prefix, final int offsetInBits, final int lengthInBits) { 

        // implementation of the algorithm ... 

Figure 24 Collections bug at commit 83226e1, indicated by the invariant diff 

    Entry-Point: 
         offsetInBits < lengthInBits 
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In the above two examples, invariant differentials are superior to test coverage 

metrics for catching bugs. Though the two interested methods were 100% tested in terms 

of branch coverage, the problems in the two buggy commits lie in either the domain 

(Collections example) or the range (GSON example) of the methods. Invariant 

differentials deliver more detailed information to help developers review the semantic 

impact of a commit. 

5.4.2 Missing Expected Invariants 

Sometimes, we inspected invariant differentials but failed to find the expected 

invariants, and we regarded that as being a sign of bug. We take the example from Crypto 

project at commit 9faf04e. Developers refactored the implementation of getInstance 

method for a clearer logical code structure. We inspected the invariant differentials, but 

did not find any invariants inferred for the exceptional exit point at line 138 (Figure 25). 

This turned out to be a bug. The branch covering line 138 would be executed only if the 

length of errorMessage is 0; however, earlier at line 120, errorMessage is initialized 

with a length greater than 0, and none of the code between line 120 and 137 would 

115 public static CryptoCipher getInstance(String transformation, 

116                                        Properties props) throws GeneralSecurityException { 

...    // implementation ... 

120    StringBuilder errorMessage = new StringBuilder(“CryptoCipher “); 

...    // implementation ... 

137    if (errorMessage.length() == 0) { 

138        throw new IllegalArgumentException(“No classname(s) provided”); 

139    } finally { 

...    // implementation ... 

Figure 25 Crypto bug at commit 9faf04e; no invariant diff for exit-point 138 



68 

 

decrease the length of errorMessage. Therefore line 138 resides in a dead branch. 

Developers did not find this problem until the commit ee2136e. 

The dead branch in the Crypto example could in principle be found by reading 

test coverage reports. Here we have another example from Configuration project at 

commit c75a72c, whose bug cannot be found by test coverage reports. In this commit, 

developers implemented the to method to convert a specified value (value) to a target 

class (cls) with additional parameters (params) to assist this conversion (Figure 26). The 

to method contains one dedicated branch for each possible target class, and developers 

intended to cover all primitive types, including Integer, Boolean, etc.. We inspected 

invariants inferred for each type’s conversion branch, but we did not see any invariants 

inferred for any handling String type, which is one of Java’s primitive types. We 

concluded that the developers forgot to handle the String type and the to method 

contains a bug. This bug was not fixed until 5 years later when developers found the to 

method cannot handle “a trivial conversion” [57, p. 48]. In this case, developers 

overlooked a specific branch. Test coverage report measures how the existing branches 

are covered, but it cannot lend any insights on overlooked branches. We were able to 

identify the overlooked branch because invariant differentials delivered the semantic 

information for us to better understand the intent of the program. 

5.5 Threats to Validity 

The author of this dissertation, who has over 10 years of programming 

experience, studied the cases discussed in this chapter. However, the validity of the data 

is still threatened by the researcher’s subjective judgments. The researcher is familiar 
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with invariants, which may be an unusual situation for reviewers in industry. The results 

in this chapter could therefore be overly optimistic. To obtain more objective opinions 

from realistic reviewers, we conducted a user study. We will discuss our user study in the 

next chapter. 

Another threat is the diversity of the selected projects for our study. Although the 

projects were randomly selected for research purposes, they may not be very 

representative. One of the six projects is from Google, while the other five are all from 

87  static Object to(Class cls, Object value, Object[] params) throws ConversionException { 

88     if (Boolean.class.equals(cls) || Boolean.TYPE.equals(cls)) 

89     { 

90         return PropertyConverter.toBoolean(value); 

91     } 

92     else if (Number.class.isAssignableFrom(cls) || cls.isPrimitive()) 

93     { 

...        // more conversions 

 

...     // more else-if branches 

 

144    else if (Color.class.equals(cls)) 

145    { 

146        return PropertyConverter.toColor(value); 

147    } 

148 

149    throw new ConversionException(“The value ‘” + value + “’ (“ + value.getClass() + “) 

                    can’t be converted to a “ + cls.getName() + “ object”); 

150 } 

Figure 26 Configuration bug at commit c75a72c, lack of invariants for String conversion 

    Exit-Points: 
        point-102: 
            return’s class is java.lang.Boolean, ... // more invariants 
        point-108: 
            return’s class is java.lang.Integer, ... // more invariants 
        ... // more exit-points 
        point-146: 
            return’s class is java.awt.Color, ... // more invariants 
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the Apache Foundation. Limited community cultures could lead to limited diversity, 

which might jeopardize the generality of our conclusions in this chapter. 
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Chapter 6 

User Study 

This chapter describes how six pairs of Java programmers performed review tasks 

using GETTY for CSI. We sought to answer the following research questions: 

• How do invariant differentials affect the review process? 

• What are reviewers’ attitudes and insights about Continuous Semantic 

Inspection and GETTY? 

From our analysis of the programmer’s work, we derived the following 

observations: 

• Invariant differentials altered the reviewers’ process. Generally, reviewers 

using GETTY used invariant differentials to generate a hypothesis about a 

patch. Then they read the code to verify the hypothesis they proposed, and 

use the hypothesis to further understand requirements. Because reviewers 

asked more focused questions during their review, the end result was the 

production of generally more focused review comments left for the 

developer. 

• Most of our reviewers had positive attitudes about CSI. They 

acknowledged that inspecting semantic changes is necessary and helpful 

to code review tasks, and that they would like to incorporate similar 
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procedures into their daily code review process. Additionally, they 

observed opportunities to improve GETTY.  

This chapter is organized as follows. We first describe our study design (Section 

6.1). Then, we analyze participants’ behaviors and study how the process of reviewers 

using GETTY was different from the reviewers not using it (Section 6.2). We discuss 

participants’ feedback (Section 6.3) on GETTY and CSI for their overall experiences and 

suggestions. After discussing threats to validity (Section 6.5) of the study, we conclude 

this chapter. 

6.1 Study Description 

To gain insights on patterns of using GETTY, we conduct a lab study to document 

the reviewers’ experience using GETTY and answer the research questions of this chapter. 

Our expectation was that CSI reviewers in our study could identify problems in 

inadequately tested commits from the changed invariants and code, and that they could 

interact with the developers in a consistent manner until the issues are fully resolved. 

6.1.1 Roles and Participants 

There were three roles in this study: developer, reviewer, and internet helper. All 

roles work together for resolving issues. We discuss the roles and participants we 

enrolled in this section, and will further describe issue workflow in Section 6.1.2. 

The developer is the programmer who implements the functionality or fixes the 

bug, and update the issue. It is typical that the developer creates an issue, constantly 

updates the issue, and closes the issue when it is resolved, so for simplicity we use one 

role, developer, to represent not only the programmer, but also the issue creator, reporter 
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and owner. A reviewer is a separate engineer who reviews the code changes and provides 

comments to the developer. It is also the role whose behaviors we study in this chapter. 

An internet helper plays the role of search engines (e.g., Google [58]), online Q&A 

communities (e.g., StackOverflow [59]), and more for GETTY, since the tool, being a  

prototype, has no online presence. In the study, our participants are the reviewers, while 

we play all the other roles. 

We enrolled 18 anonymous participants with 1 to 16 years of programming 

experience in academia or industry. All of our participants volunteered to fill out a 

questionnaire (Appendix II) regarding their programming background, so we can better 

interpret the results. We rate their experiences by three levels: novice, experienced, and 

advanced. Novice programmers are beginners who are new to programming. For 

example, two of our participants are undergraduate students with less than 2 years of 

programming experiences (all for their coursework), so we rate them as novice 

programmers. All other 16 participants are either graduate students or professional 

developers from industry, and they all have at least 4 years of programming experience. 

We consider participants with less than 10 years of experience as experienced, and those 

with 10+ years of experience as advanced. Based on this rating system, we have 8 

experienced and 8 advanced participants. 

We further divided the 18 participants into 6 study groups and 3 control groups, 

each of which comprises 2 participants of similar experience level (Table 12). The two 

participants in the same group performed the review tasks together. We set the pair-

programming style to avoid the negative impact of similar approaches like the Think-
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Aloud Protocol [60], where researchers may unintentionally influence what participants 

say and do [61]. 

For presentation purposes, we label each participant by his or her group number 

(experimental groups are from E1 to E6, and control groups are from C1 to C3), seat 

position (L for left, or R for right), and experience level (N for novice programmer; E for 

experienced programmer, or A for advanced programmer). For example, the reviewer of 

experimental group #5 sitting to the left is referred to as E5-LE, and the reviewer of 

control group #1 sitting to the right is referred to as C1-RA. Table 12 lists all of the 

participants for future reference. 

6.1.2 Issue Lifecycle and Reviewer Workflow 

Each issue in the study is in one of the three states: open, pending review, or 

closed. The state chart is shown in Figure 27. An issue is initially in an open state. When 

the first implementation is available, it becomes pending review. Reviewers will review 

the issue. Unless all reviewers are satisfied with the implementation, they will leave 

comments and move the issue back to open status. Developers have to continue to work 

on the issue based on reviewers’ comments. When a successive fix is available, again the 

Table 12 Participant Labels 

 E1 E2 E3 E4 E5 E6 C1 C2 C3 

Left LA LA LN LE LE LE LA LA LE 
Right RA RA RN RE RE RE RA RA RE 

Label: Group Number (1-9) + Seat Position (L, R) + Experience Level (A, E, N) 
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issue will be pending review and it will be reviewers’ turn to review the changes. The 

issue will be closed only if all reviewers agree to pass it. 

All of the issues reviewered in this study were not good enough to pass the initial 

review. We set up a two-phase review process for the bounded duration of our study. In 

the first phase, the reviewers review the original issue with the original patch. After 

reviewers finish their review, we assume that there were other reviewers, independent 

from the current ones, that also finished their code review and the issue owner will 

synthesize all review comments and propose a new patch. In the second phase, the 

reviewers review the new patch. If they are satisfied we close the issue; otherwise, we 

comment that the new suggestion for improvement will be moved to another issue and 

then we still close the issue 

For each review phase, to resolve an issue reviewers not only need to read the 

issue report and code base, but also may interact with related persons (developer, project 

manager, etc.) and other sources (search engine, web forums, etc.). For example, when 

reviewers are confused by some programming tricks used by developers, they can ask the 

developer for explanations; when they lack certain background knowledge, like integral 

Figure 27 User Study Issue Lifecycle 
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precision definitions for different integer types in Java, they can search Google or post 

questions to stackoverflow.com for answers. 

Figure 28 presents the workflow from reviewers’ standpoint. After the reviewers 

are notified to review an issue, they will read the issue report and review the report 

generated by GETTY. When any part of the program confuses the reviewers, they can ask 

the developer for an explanation. For any other related questions, reviewers may ask 

stackoverflow.com or Google; but in our study they cannot wait for the replies. 

Therefore, the experimental investigator plays the role of the web forums or search 

engine. Instead of issuing inquires online, reviewers can directly ask the experimental 

investigator questions and they can expect answers to be given promptly and correctly. 

The reviewers will gather any problems they find during review, and leave their 

comments in the issue tracking system. Developers will be notified of the new comments 

Figure 28 Reviewer Interactions 



77 

 

and update the code and issue report accordingly. After each update a new GETTY report 

will be generated for the reviewers. The reviewers will repeat their reviewing process 

until they are all satisfied with the update. 

6.1.3 Study Tasks 

We chose three real issues from the GSON project. All of the chosen issues had 

passed their original code review process, but, in fact, they either were insufficiently 

tested or suffered from undiscovered bugs. The three issues, their symptoms and our 

expected fixes are highlighted below: 

1. Issue-#1 [62]: The patch for this issue targets is to fix two methods, intValue 

and longValue, of LazilyParsedNumber class. The class contains a String 

attribute, value, which can be interpreted as a number. The two methods 

interpret value and output the corresponding number value as int and long, 

respectively. The issue was to fix the conversion failure when converting 

decimal number strings. It is expected that decimal numbers be converted to 

integers ignoring all digits after decimal points. Before the issue developers 

always used BigInteger to convert the value, but it would fail the conversion 

when value is a decimal number because the conversion method of 

BigInteger will raise a NumberFormatException. For this issue developers 

replaced BigInteger with BigDecimal so the two methods can handle floating-

point numbers without failures. The developers added only one simple test case, 

converting “1.0” to 1, for this fix, but did not consider other trickier conversion 

situations. We expect reviewers to react on this problem and give developers 
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some suggestions on testing; specifically, we believe the developers should at 

least consider the cases when value is a number that overflows the range of int 

or long, and when value is a decimal number whose digits after decimal point 

are not all 0’s. 

2. Issue-#2 [63]: The issue is to implement two new methods, equals and 

hashCode, of the same LazilyParsedNumber class. equals compares another 

LazilyParsedNumber and returns true if their value attributes are equal 

numbers. hashCode computes a hash value of value and returns the result as 

the Hash value of the LazilyParsedNumber class. In this issue the developers 

implemented both methods and added tests for them. For testing the equals 

method, developers added a test case that a LazilyParsedNumber object whose 

value is “1” is equal to another LazilyParsedNumber object whose value is 

also “1”; for testing the hashCode method they added the test case that the 

above two objects have identical Hash codes. Ideally, reviewers should find 

both tests were inadequate. For example, for equals developers should have 

considered the case when the two LazilyParsedNumber objects contain 

unequal value values. In addition, there is a subtle bug in the patch. According 

to Java’s specification, developers should test that the equals and the hashCode 

methods behave in a consistent way; i.e., two equal LazilyParsedNumber 

objects should have identical Hash values, but that was not accounted for in the 

patch. 
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3. Issue-#3 [64]: This issue contains two parts. In the first part, developers updated 

the application logic of the JsonNumber method in JsonParser class. 

JsonNumber is a helper method for the parser. Its purpose is to return a 

JsonPrimitive object (more specifically, a number primitive) if the object 

being parsed can be interpreted that way. During interpretation, developers used 

BigInteger to parse all integers to avoid precision loss, and used BigDecimal 

to keep all zero’s at the end of decimal point. This involves some semantic 

changes at the library methods, getAsBigInteger and getAsInt, in the 

JsonPrimitive class. In order to study whether reviewers can find 

unimplemented requirements, we added the second part that specifies the 

specification of the two methods, getAsInt and getAsBigInteger. More 

specificallym, getAsInt should only accept strings that can be interpreted as 

integer values; for other strings, it should raise exceptions. We expect reviewers 

to problems, either testing issues or bugs, in the patch. 

In our study, each issue is reported in the issue tracking system, BitBucket [65]. 

The issues are initially pending review. We use the implementation (or fix) from the 

original issue as the developer’s first response. The reviewers will then decide whether to 

pass or fail the code review. We will close the issue if all reviewers are satisfied, or if 

they already find all problems we expect them to find. If the reviewers are not satisfied, 

they will leave comments in the issue tracking system with specific reasons (and 

suggestions, optionally), and set the issue state to be open. We will discuss about the 

comments, fix them, update the issue promptly and set its state to be pending review 
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again. Reviewers continue to perform the review task on the updated commit. In our 

study, the above procedure repeated at most twice per issue. 

We simulated the real code review environment. Each group of participants was 

arranged in the same quiet lab room for their review tasks. We prepared two computers, 

both Apple’s 27-inch iMac (2016 Model). Reviewers used one of the machines for their 

code review tasks, while the experimental investigator used the other one to reply to 

reviewers comments, reset issue states and all other related tasks. We video-taped all 

reviewers’ behaviors during their code review. After they finished, we interviewed all 

participants for their experiences using GETTY and requested suggestions for 

improvement. 

6.2 Code Review Process 

We will answer the first research question in this section. How do invariant 

differentials affect the review process? 

As a baseline, the control groups used the Github code-diff page for their review. 

They did not have access to any extra semantic information. The experimental groups 

used GETTY, so they could not only view the same code-diff page displayed for control 

groups, but also the added semantic information like invariant differentials. To get a 

general understanding of how code review is performed without added semantic 

information, we first summarize the control groups’ behaviors and results. We then 

analyze the behaviors of the groups using GETTY. We compare the experimental groups’ 

review process and results with the control groups and study how the added semantic 

information altered their review process. 
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6.2.1 Control Group Review Process 

Figure 29 shows the typical review process of the control groups. Reviewers start 

by reading the requirements. Most requirements are vaguely written, which is expected. 

After roughly understanding the requirement, they open one file in code-diff page and try 

to understand the code change. The reviewers may need to expand the code context to 

further understand the code. Based on their understanding of the code change, they go 

back to the issue description and check if the code change is consistent with the 

requirement, as they understand it. Reviewers further examine related code, including 

tests, to check if the changed code is properly tested until they are fully satisfied with the 

changed file. The reviewers repeat the above process for each file listed in the code-diff 

Figure 29 Control Group Review Process 
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page. After they finish reviewing all files, they discuss about the issue and write down 

review comments. 

Take the issue #1 for example. As the first step, the reviewers read the following 

issue description: 

“Use BigDecimal to parse number string when requesting it as Integer – 

LasilyParsedNumber has the value of a string that can be interpreted as a number. Use 

BigDecimal to parse the number string to avoid precision loss in general. However, when 

requesting as an integer, it ignores all digits after decimal point if any, and ignores all 

bits that overflow the range of requested integer type.” 

The requirement as indicated in the description was vague to reviewers at first. 

For example, C1-LA read and complained about the requirement, “… ignores all bits that 

overflow the range of requested integer type … Oh, god that is not a good way of saying 

that!” C1-RA interpreted the requirement of precision as “truncate to reasonable integer 

length”.  

Figure 30 Code change in the intValue method 
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To understand the requirement, the reviewers started to review the actual code 

change. They noticed that more than one file was changed, so they chose to review the 

first file and jumped directly to the changed lines (Figure 30). Most often, the reviewers 

could not fully understand the changed code immediately. Like C1-RA mentioned, “why 

would we do a big decimal inside an int value? Wasn’t the whole point of the 

LazilyParsedNumber that we are using an integer type in the integer case?” So they 

needed to understand more code context by viewing the full method body in the context 

of its class (Figure 31). By reading the code, most reviewers felt the requirement clearer 

to them, and came up with specific questions. For example, conversion between C3-LE 

Figure 31 the intValue method with context 
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and C3-RE was “… the value is a double. In that case, would converting it into a 

BigInteger cause any exception? If a value is a double and if you convert it into a 

BigInteger instead of a BigDecimal, would it cause any exceptions or would it just round 

it up?” This was an excellent question because it was exactly the problem this issue was 

to address. 

With specific questions, the reviewers went back to the changed code and verified 

whether the code correctly addressed the issue, and whether the code is properly tested. 

For example, C1-LA found the tests were insufficient, and said the “test case does not 

exercise any of the interesting edge cases and frankly, you know, if someone actually 

submitted this for a project that I was working on, I wouldn’t say a ton more than that. I’d 

be like come on man!” This was eventually left as one of the review comments left by 

this group. 

The reviewers gradually understood the requirement, and kept on verifying their 

understanding of the changed code. For example, the issue report said to use BigDecimal 

to parse the number string to avoid precision loss “in general”, but never said what it 

meant. This raised C1-LA’s attention, and he asked whether it was necessary to 

“maintain decimal if it has it”. In addition to the intValue method and the longValue 

method, there were other similar methods, floatValue, doubleValue, etc., in the 

same class; but then C1-RA found developers “didn’t touch that code”. They were 

convinced that by “in general”, the developer meant the precision problem for integral 

numbers only, and believed that the precision problem for floating-point numbers was not 

part of the requirement. 
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The reviewers examined other changed files in a similar manner. As the last step, 

they discussed and wrote down their final review comments. We cite some of the review 

comments for issue #1 below: 

• “The test case does not cover either the new functionality or most potential 

edge cases. Please add additional test cases covering truncating, large values, 

and the intValue() code paths” (C1-LA) 

• “Functionality looks good. Consider removing import of BigInteger library.” 

(C2-LA) 

• “Instead of json = 1.0, … consider json = 1, …” (C3-LE) 

It is worth noting that the control groups ran into various additional problems with 

issue #1 while they were reviewing the code change. For example, group C2 identified 

that the BigInteger library import could have been removed after the developer made 

the change. This kind of style issue can be automatically addressed and reported by 

existing style check tools instead of wasting valuable reviewers’ time. In the third review 

comment, the reviewers suggested writing one test case, but that, in fact, was an incorrect 

suggestion. Because the  reviewers in control groups did not focus on the semantic 

impact of the code change, they developed random questions regarding code quality and 

that led to random review comments. We observed the similar review process and found 

the qualities of review comments for issue #2 and #3 also varied, and most of them were 

not useful to the issue. This corroborates with the conclusion drawn from Microsoft’s 

2015 survey on the current code review process that less than half of review comments 

are deemed useful by the author of a change [66]. 
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6.2.2 Experimental Group Review Process 

Next, we analyze experimental groups’ behaviors and study how GETTY altered 

their review process and what the consequences were from the change. 

Figure 32 shows the general process of the experimental groups. They begin by 

reading the requirements, which is the same with control groups. The requirements are 

vague, so they review the changed code to aid their understanding. However, in this 

process, they inspected the patch on a per-method basis, instead of files. While reviewing 

a method, they examined its invariant differentials and formulated hypothesis about the 

code or requirement. To verify each hypothesis, reviewers read related code and check if 

their interpretation of the invariants is supported by the code. Reviewers repeated the 

Figure 32 Experimental Group Review Process 
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above until all changed methods were inspected, then they leave review comments in the 

issue tracking system. 

To ease the comparison, we again take issue #1 as an example. After reading the 

vague issue description, reviewers opened the GETTY tool and started to review each 

changed method to better understand the requirements. Generally, reviewers tended to 

start their focus on a method with both syntactic and semantic changes. For example, E2-

LA suggested that they need to “agree on what has changed”, both the code and the 

invariants; then group E2 selected the longValue method to begin with because it was 

one of the changed methods whose invariants were also updated. 

Because of the way GETTY’s UI is designed, it was easier for reviewers to view 

invariant differentials before the code change (Figure 33), and most reviewers did so. 

They developed hypotheses from the invariants. For example, after reading the added 

invariants for the longValue method (Figure 33), E2-RA said “what this means is that 

the exception case is tested with only one test … and that also seems not necessarily 

great, right? You want at least a few tests for all branches. A couple of tests, at least, for 

Figure 33 Invariant and code diff for the longValue method in GETTY 
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all branches.” In this hypothesis he raised his concern about the tests, and he surmised 

that the tests might be inadequate. The same hypothesis was developed by the other 

experimental groups as well. 

The reviewers began to review the code change to verify their hypothesis. Using 

GETTY, reviewers found their way to the related methods or test cases. For example, for 

the same hypothesis (test inadequacy) developed by group E1, the reviewers took 

advantage of the invocation flow information in GETTY (Figure 34), and found one 

modified caller of longValue, which was the new test case introduced in the commit. 

After reading the updated tests, E1-L1 said to his partner “the key problem is exactly as 

you said. This type of test is not very, you know, capture the problem right.” As another 

example for the same hypothesis, group E6 used the impact isolation feature of GETTY 

(Figure 35) to verify it. Instead of locating the test case for the longValue method, they 

clicked the “Test Change (for Old Source)” tab and read the added invariants for the old 

source when running new tests. From the added invariants at exceptional program points, 

E6-LE realized that new tests failed the old source, as expected, and there was only one 

Figure 34 The test case for the longValue method 
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input value (“1.0”) introduced for that purpose. They took notes for the confirmed 

hypothesis for later use. 

Reviewers repeatedly verified each hypothesis they developed. The verified 

hypotheses helped them better understood the requirements. Reviewers still switched 

back to the issue description page and discussed if anything was missing. Similar to the 

control groups, the experimental groups were unclear on why they should use 

BigDecimal to parse the number string to avoid precision loss “in general”. But when 

they switched back to GETTY they found intValue and longValue were the only two 

methods changed in the Patch Summary Zone, so this requirement became clearer to 

them that the precision concern was for integral numbers only. 

Because the reviewers generated their hypotheses based on invariant differentials, 

their attention was focused on the semantic aspect of the code change. As a consequence, 

Figure 35 Use test impact isolation to verify the lack of tests 
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the experimental groups left more consistent review comments. We cite some of them for 

issue #1 as follows: 

• “I think you can add more tests that would show how the code behaves with a 

larger variety of decimal inputs, …” 

• “Would you please add test cases for longValue and intValue called with 

‘overflow’ values? …” 

• “Please add more tests using more than one number as input …” 

In the comments above, the reviewers pointed out that the tests were inadequate, 

and they suggested ways to improve the quality of tests, including testing corner cases 

like decimal inputs and overflowing values. The review comments uniformly focused on 

the semantic aspect of the code, and they clearly suggested to developers on how to 

improve their tests. 

The process was similar for issues #2 and #3. For example, in issue #2, group E2 

found at the exit-point of the equals method, an invariant indicates that its return value 

was always true. They developed the hypothesis that only equal values were tested for 

the method. There were two overloaded equals methods and one was the helper method 

for the other. They read the added test case and verified their hypothesis. Given that the 

true return was for equal values, they confirmed that the requirement of the equals 

method was to perform comparisons based on values, not references. At the end, E2 left 

review comments for more test cases for unequal number comparisons, just like the other 

experimental group did.  
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In summary, the new process is hypothesis-driven in that: (1) Reviewers use 

invariants to generate hypotheses; (2) Reviewers use code and other information provided 

by GETTY to verify their hypotheses; and,(3) Reviewers use the verified hypotheses to 

better understand the requirements. Compared to the review comments left by the control 

groups, the experimental groups captured more of the semantic aspects of the patch and 

their review comments are more consistent and informative. This result shows that the 

extra semantic information provided by GETTY can positively alter reviewers’ processes. 

6.3 Reviewer Feedback 

In this section, we will answer the second research question. What are 

reviewers’ attitudes and insights about Continuous Semantic Inspection and 

GETTY? 

After the study we interviewed all participants about their experiences. Compared 

to the control groups, all six groups using GETTY were excited when they learnt they 

discovered the problems that were missed by the original project reviewers. In addition, 

our participants commented on the helpfulness of invariant differentials and shared with 

us several points for improving the tool design. 

All Groups except for E5 explicitly expressed favorable opinions of GETTY and 

would like to integrate CSI into their code review process. Group #1 liked the tool 

because it “finds the errors using invariants not expected to see”, and believed that 

“invariant change is a plus and saves a lot of time in code review”. Group E2 said the tool 

is “overall pretty helpful” and they “enjoyed using the tool”. Group E3 believed 

reviewing invariant differentials are “necessary since it provided a way to view your code 
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and remind you if there is something lost”, and it is especially true “for others who may 

not be familiar with your code”. Group E3 also acknowledged that GETTY “helped find 

the lack of tests”. Group E4 said the tool was “very handy for reasoning about 

exceptions” and sometimes, they “did not have to look at all the code (to confirm their 

expectations)”, but just need to review the semantic changes. They had seen code review 

tools with syntax changes, but they felt excited to see the tool with semantic changes in 

the study, and was impressed that our experiments demonstrated such a tool being 

“approachable”. Group E6 was happy that the tool “provided unique information to help 

code review” and it is “necessary to view semantic changes in addition to textual 

changes” during code review. Group E5 liked the idea of inspecting semantic changes, 

but they pointed out that “invariant diff is not the actual semantic diff”. On the other 

hand, they still gave credit to GETTY with the comment that “invariant diff may give 

some insights”, because by using GETTY they were able to perform better than the 

original reviewers. 

The participants suggested a number of ways to improve GETTY. The suggestions 

fall into two categories: logical presentation and UI improvement. 

For the first category, reviewers would like the tool to logically understand the 

invariant differential information. Specifically, reviewers were interested in two kinds of 

information. The first is how/where a particular invariant was generated. Group E2, E4, 

and E6 wanted to know which test(s) generated a particular invariant. During the review, 

they frequently checked the callers of a method and were trying to find the tests that 

might be helpful to reason about the invariant differentials. In this scenario it could be 
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handy if, from each invariant, there were a way to tell which tests were related to it. In 

addition, the reviewers were interested in the logical difference between two versions of 

invariants. Currently, GETTY computes and displays only textual difference between two 

versions of invariants. Not only did this cause reviewers to expend more efforts (Group 

E3 and E5), but also it led to confusing differential information, especially when 

invariants of overloaded methods were displayed together (Group E2). Ideally, the tool 

should present reviewers logical differentials, and link each invariant differential to the 

particular set of tests that generated it. 

Another set of suggestions is for UI improvement. Group E3 and E5 would like a 

friendlier UI so that the invariants are easier to understand for beginners. This could be 

solved by clearer invariant syntax as Group E6 suggested. Group E2 liked the integrated 

layout of GETTY, but wanted invariants shown near the code that generated them so that 

there were less clicks and moves by reviewers. Moreover, since GETTY did not present 

invariants separately for overloaded methods, the invariant differentials were clustered 

for all versions of a method, causing confusion. Group E1 and E6 suggested improving 

the UI for invocation flows, where they would like interactions between finer 

granularities of code snippets other than methods. Last, Group E4 wanted useful 

components of UI to be more accessible. For example, the last group of methods 

displayed in Patch Summary Zone of GETTY shows all methods and classes whose 

invariants have changed after commit. This group could be handy for reviewers to 

quickly jump to the methods of interest without extensive reading, so ideally it should be 

displayed by default. 
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As a summary, most reviewers shared their favorable opinions on GETTY and 

CSI. Meanwhile we received a number of suggestions for improvement. At the time of 

this dissertation’s writing, we improved the UI of GETTY for clearer views. For example, 

the older version of GETTY was unable to differentiate invariants for overloaded methods; 

in the newer version, methods with the same name but different signature are treated as 

different semantic units and their invariants are inferred, differenced and displayed 

separately. 

6.4 Limitations 

From the study we also identified some limitations of GETTY. First is that GETTY 

failed to help reviewers find the subtle bug in issue #2, where the return values of the 

hashCode method of two LasilyParsedNumber objects should be identical as long as the 

equals method returns true when comparing the two objects (Section 6.1.3). Ideally, a 

class-level invariant correlating queries (methods without side-effects) could discover 

such bugs. Unfortunately, unlike Eiffel [67], Java does not distinguish queries and 

commands (methods with side-effects) at the language level, and therefore Daikon was 

not able to infer invariants of this kind. This also shows that CSI is highly dependent on 

the tools it uses and the languages supported, and it inherits their limitations as well. 

Another limitation is the limited exploratory space in invocation flows. As 

discussed in Section 3.3.2 and 4.2, we compute the local-area call graph for each method, 

and infer invariants only for the methods within a fixed number of steps away from the 

target method. While this reduced the load of inference process, it also shrank the 

exploratory space during inspection. For example, when a reviewer wanted to see all the 
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test cases testing an interested method, she might have to locate them in the source code. 

Care needs to be taken to balance the performance impact and the usability of the tool. 

6.5 Threats to Validity 

There are a number of factors in our study design that could threaten the validity 

of our results. In this section we talk about these threats to validity. 

The first threat is that our participants were not familiar with our tool and the code 

base they were reviewing. As a contrast, in real life reviewers are usually familiar with 

their toolset and the projects they review. Likewise, some of our participants (Group #1, 

#3, #5 and #6) were not even familiar with their own partners. This added an extra level 

of difficulty to our participants when they were working together. Therefore, all these in 

overall could lead to more pessimistic results in a real code review environment. 

The next threat is the representativeness of the selected issues. We aimed to 

choose three issues that are “problematic but moderately difficult”, which means that the 

issues were either under-tested, or have bugs that were not found by the original 

developers. The third issue was a combination of two issues for assessing unimplemented 

features. Albeit a common case in most software projects, it was not a realistic issue. 

Third, the participants we selected may not be representative because they are 

mostly graduate students and 4 of them have a background in programming language 

research. They are very likely to be more proficient in using the information like 

invariant differentials, than the average reviewers. Therefore, our results could be overly 

optimistic, perhaps offsetting the pessimistic impact of the first threat. 
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Finally, our study was conducted in a simulated code review environment. That is 

to say, the setting may be close to real code review, but it was not real. The issue tracker 

is less complicated than the popular Phabricator [35]. The issue life cycle is simplified. 

The two reviewers in each group were working in pairs, using one computer to review 

each issue assigned. Additionally, the experimental investigator played the role of 

internet helper and answered reviewers’ questions nearly instantly. This is not likely to 

occur in realistic code review, and moreover, the experimental investigators could deliver 

incorrect information and negatively impact the quality of the study. All of the above was 

a trade-off for performing the user study in a bounded duration, and they together could 

have indefinite impact to the validity of our results. 

6.6 Final Remarks 

This chapter demonstrated that CSI is a successful way of doing code review from 

the perspective of a user. With extra semantic information for code review, GETTY 

positively altered reviewers’ processes and led to more consistent and informative review 

comments. Our participants shared constructive comments to improve our tool. They 

liked GETTY and would like to integrate CSI into their daily code review process. 
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Chapter 7 

Future Work 

In previous chapters we evaluated GETTY and proved it to be helpful in code 

review tasks. On the other hand, there are limitations of our approach because of how it is 

designed and implemented. In this chapter, we will suggest ways to improve GETTY and 

explore more applications for future work. 

7.1 Quality of Invariant Differentials 

The core of our approach is to difference inferred invariants before and after 

commits to indicate how behaviors change. In this regard, we have concerns on the 

quality of the inferred invariants and the way we use them. GETTY uses a dynamic 

approach to infer invariants from test executions. Therefore, the quality of invariant 

differentials relies heavily on the test suite, the tool we used for inference, and the way 

we difference and use invariants. 

First of all, we can improve the test suite so that Daikon can infer better 

invariants. In our experiments (Chapter 5 and Chapter 6), we have observed that open 

source projects generally suffered from a lack of tests. Notably, developers paid great 

attention to the branch coverage of the code. For example, a method with one single 

branch (sequential flow) will be claimed tested with 100% code coverage as long as 

developers write one test case that executes the entire method body. In this case, at the 

beginning and ending program points we can observe at most one pair of data points. 
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However, invariant inference at each program point depends on sufficiently many data 

points, which can hardly be guaranteed by 100% branch-covered test suite. A potential 

solution is to use random test generator (e.g., Randoop [33]) to populate test suite with 

automatically generated tests, in the hope that the added tests may increase the diversity 

of data points and Daikon may therefore infer more accurate invariants. Additionally, we 

can improve Daikon by improving its inference algorithms and adding more template 

support, so that added data points can be better used during the inference process of 

Daikon. 

Invariants are not the only way to imply semantic change of a commit. For 

example, presenting trace differences can be simpler and more straightforward when 

Daikon has insufficient inputs for inferring invariants. Further analysis of the traces can 

add more potential value to GETTY. For example, by adding extra instructions to the 

Daikon front-end, it can track which test(s) generated the data for each program point, 

and thus for each invariant for that program point. This way it can make it easier for 

reviewers to track and reason about the invariants. 

Alternatively, changing the inference method to the one using static techniques 

could help without the hassle of coping with test insufficiency. Tools like Houdini [68] 

can help in this case, but most of them require extra annotation support and add extra 

burden for developers. Moreover, it could change the way CSI works because the 

invariant inference is no longer dependent on tests. We need to further investigate its 

applicability before carrying out this plan. 



99 

 

Last, we plan to present logical invariant differentials to reviewers. Daikon 

maintains its internal data structures for formal specification and has the capability to 

print invariants in flexible formats [69]. For example, we can add the Z3 format [70] so 

the invariants can be interpreted and differenced by the Z3 theorem prover. 

7.2 Tool Integration 

For now GETTY is integrated with a version control tool (git), build automation 

tool (Maven) and dynamic invariant detector (Daikon). As a prototype tool, GETTY is 

stand-alone for research purposes. However, for future interaction with more software 

tools it would be beneficial to integrate GETTY’s UI into an existing tool suite. 

For desktop environments we suggest creating GETTY components for existing 

IDEs. Specifically, we could create a GETTY plugin for Eclipse [71], one of the most 

popular Java IDEs. Eclipse’s open marketplace provides a myriad of software 

engineering tools. The integration makes it easier for GETTY to interact with those 

existing tools. For example, GETTY is currently unable to identify method renaming and 

infers invariants for the renamed method as if it were newly created; working with 

Eclipse’s refactoring tool could help GETTY resolve this issue. 

For web-based environments we suggest integrating GETTY into DCPs, like 

Phabricator [35], which includes a suite of online software tools for developer 

collaborations like issue tracker, code review tool, Continuous Integration (CI) portal, 

and more. For each commit, Phabricator’s code review tool displays not only its textual 

code difference but also the associated issue ID and testing results from CI. This also 

provides the opportunity to display GETTY’s result. After submitting each commit, we 
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can run GETTY offline, and when the result is available we display it in the code review 

page to assist reviewers to apply CSI. 

7.3 More Applications 

GETTY’s success uncovered the power of invariants, and we believe there are 

more potential applications as a result of future research on invariants. We envision the 

following two applications as promising for future work: 

• Mining invariant database for software maintenance. As software project 

evolves, so does the invariants implied for each component. CSI compares 

invariants between a pair of commits; one further step is to infer invariants for 

all commits and observe how invariants evolve. Our hypothesis is that each time 

invariants of a method change, it should correspond to updates of either 

semantics (due to change of requirements) or the test suite; other cases can be 

considered a sign of introducing bugs. Mining backwards (into past commits) is 

a way to discover undetected bugs, while mining forwards (for the new commit) 

is to predict vulnerability of the new patch.  

• Mining invariant database for software reuse. We postulate that similar 

software components should have similar invariants. By studying enough 

projects and their invariants, we can cluster similar components based on their 

invariants. Machine learning techniques may help during the process. We 

propose to abstract the clustered, similar components so they become reusable 

coding template and reduce the cost of software development. 
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Still, the applications proposed above are speculative. We plan a small user study 

to investigate the feasibility of each listed application before development. 
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Chapter 8 

Conclusion 

As a widely agreed-upon practice in software engineering, reviewers manually 

assess software code before it is merged into version repository or deployed to 

production. Aside from coding styles, etc., reviewers are interested in how the modified 

code affects software behaviors. The written tests may shed some light on it, but a gap 

still exists between the textual difference of two versions of the code and its actual 

impact. 

Software patch comprehension focuses on tools to shorten that gap. Existing tools 

assist reviewers at syntax, semantic, and natural language levels. Syntax differences 

require the least cost to compute, but reviewers are left with the most efforts for 

understanding the resulted semantic impact. In contrast, understanding the patch in 

natural languages reduces the reviewer’s burden, but it requires the highest computational 

cost and the result can hardly be accurate. As a balance of the costs we advocate 

presenting semantic differences to reviewers. 

In this dissertation we proposed Continuous Semantic Inspection for code review. 

The core idea behind CSI is to infer invariants from concrete executions, and use the 

difference between two versions of the invariants to indicate behavioral changes. We 

implemented the tool, GETTY, to support our concept of CSI and applied it to Java open 

source projects. Because invariants may change due to various parts of the program, we 

isolate their impact to help reviewers better understand the cause of the changes. We infer 
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invariants with the method-level granularity. Reviewers may check invariant differentials 

of related methods, following the control flow in the pre-computed local-area call graph. 

All information is integrated in the interactive user interface of GETTY. 

Our approach relied heavily on the costly dynamic invariant inference. For 

practical use, we scaled our approach by parallelizing test executions to relieve the 

memory pressure of invariant inference. The substantial performance improvement 

achieved enabled us to conduct a series of studies to evaluate the effectiveness of CSI by 

GETTY. We reached the following conclusions: 

1. CSI is a feasible approach. With careful implementation the computational cost 

can be managed for practical use. The presence of an implementation like 

GETTY (Chapter 3) shows an example of a CSI tool for Java open source 

projects. The performance and scalability assessment of GETTY in our cluster 

(Chapter 4) demonstrates that CSI is especially suitable for internet-based 

computing environments, like clouds, for the sake of increased computational 

power. 

2. From our quantitative study of applying GETTY on open source projects for test 

sufficiency and bug discovery (Chapter 5), we found invariant differentials are a 

compact behavioral summary with useful information for reviewers to identify 

problems. First, we were able to use GETTY and fail approximately one third of 

the inadequately tested commits, which had otherwise passed original 

reviewers’ screening process. Second, we tracked back to the history of several 

randomly chosen bug-fix issues and applied CSI for each of the associated 
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commits, and were able to find most bugs as early as they were introduced. The 

experiment shows the realization of CSI is powerful in that it can grant insights 

for finding inadequately tested and/or buggy commits during review tasks. 

3. CSI is a successful way of doing code review from reviewers’ perspective. We 

proved this by showing how reviewers using GETTY perform their review tasks 

for inadequately tested commits (Chapter 6). Our user study of 12 participants 

using GETTY reviewing 3 realistic issues shows that GETTY positively altered 

reviewers’ process and that most reviewers were able to leave consistent and 

insightful review comments.  

Overall, we proposed and argued that inspecting semantic differences during code 

review is both helpful and cost-effective. Our approach shows an example of the concept, 

CSI, by differencing dynamically inferred invariants to indicate how semantic changes. 

We contributed GETTY, an extendable framework and implementation of CSI. GETTY 

alters reviewers’ process so they can ask more focused questions during review and leave 

quality comments for developers. GETTY’s success also shows that CSI has the potential 

for more applications than a code review tool. 
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Appendix I  

Inspection Result of 100 Testing Commits 

 
SUF = Deemed sufficient; INS = Deem insufficient; NEI = Not Enough Information 
INS (FN) = Deemed insufficient, but was incorrect 

 
Google GSON 

Commit	 Result	 Commit	
ef2f731	 SUF	 drawback:	we	can	do	for	parameterized		token	

58dc987	 INS	 1/2	invalid	bug	-	more	integer	types	expected	

7d7680f	 INS	 not	considered	array	of	more	than	one	nulls	

e8477b7	 SUF	 no	change	of	entry-point	invariants	

27f9716	 SUF	 enough	demensions	

657688c	 NEI	 	
ea6f779	 INS	 only	tested	one	single	digit	case	

903769e	 INS	 our	case	study	

881ee54	 INS	(FN)	 expect	invariant	changes	but	no.	Daikon	did	not	find	it	

a137944	 NEI	 	
1bf627c	 SUF	 It	should	fail	in	the	try	block	

8b852fe	 SUF	 TypeToken.get()	can	be	null	or	not	null,	both	tested	

52179a3	 SUF	 yes,	double	deserialization	

752522b	 SUF	 trivial	case	

5911ac4	 INS	 test	one	class	with	one	specific	setup	

fe55a8c	 NEI	 	
eb583ca	 SUF	 Daikon	failed	to	provide	more	information	for	multi-D	arraies	
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Apache Commons Crypto 

Commit	 Result	 Commit	
99cae98	 INS	 just	one	input	for	enums	is	not	enough	

aef15f4	 INS	 no	logging	called	

e4156da	 SUF	 expected	exception	

0fa9f0a	 NEI	 multithreading	supported	badly	

d4c6b9f	 SUF	 minor	change	no	semantic	impact	

8e3c24e	 NEI	 more	 positions	 possible,	 we	 did	 not	 handle	 inner	 class	 well	
enough	

8d41191	 INS	 doFinal	needs	more	multiples	of	8	

e692c56	 INS	 lack	of	more	multiples	of	8	

6b6c35a	 SUF	 move	all	tests	for	recognization,	too	large	to	fail	

2bdd4f7	 INS	 getCryptoInputStream	impacted	

58ab6e7	 INS	 writeChannel	only	false	case	tested	

7bed857	 SUF	 lack	 of	 testing	 this.padding==0,	 but	 whether	 that	 should	 be	
the	case	needs	more	domain	knowledge	
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Apache Commons CLI 

Commit	 Result	 Commit	
535beb1	 INS	 did	not	consider	option	with	-	or	--	

d89e42a	 INS	 Forgot	argument	name=null	

1042ba3	 NEI	 no	useful	invariants	

0f964c6	 SUF	 Minor	one,	but	interesting	to	know	what	will	change/unchage	

6c740e7	 SUF	 the	same	purpose	had	beeb	verified	already	

4745ade	 INS	 Does	getting	rid	of	unnecessary	tests	change	anything	--	what	
if	this.numberOfArgs=0	

4141904	 NEI	 Did	not	consider	same	width	with	screen,	but	that	was	a	tough	
case	

eed2561	 INS	 what	if	arguments	are	empty	

94f50c0	 SUF	

When	 option	 list	 is	 long	 a	 partial	 option	matching	 is	 tested.	
From	CSI	reviews	may	notice	that	the	callee	(flatten)	of	parse	
method	 as	 well	 as	 the	 hasOptionalArg	 method	 of	
OptionBuilder	 both	 changed	 invariants,	 and	 their	 invariants	
discovered	 the	 partially	 matched	 options,	 "--ver"	 and	
"verbose",	respectively.	

0cebfb4	 SUF	 indeed	considered	more	than	one	-D	flags,	good	job	

f588f55	 INS	 how	about	this.args	!=	[]	

83770d8	 SUF	 refactoring:	break	one	test	into	smaller	ones	

0cbe335	 SUF	 trivial	case.	No	change.	suppress	warnings	-	interesting	if	there	
are	any	semantic	changes	

1fcf87d	 SUF	 expected	

22576c1	 SUF	 side	effects	of	tests		--	not	catched	by	invariants	

f6af623	 SUF	 annotation	 changes	 of	 tests	 --	 no	 semantic	 changes	 as	
expected	
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Apache Commons Collections 

Commit	 Result	 Commit	
5d83e4d	 SUF	 all	tested	

3b69171	 SUF	 tested	

c33d396	 SUF	 basically	all	methods	of	FluentIterable	class	

c241318	 SUF	 moving	tests	

9e8b370	 SUF	 considered	both	non-null	and	null	cases	

11ddae0	 SUF	 they	 considered	 empty,	 non-empty,	 full	 queues,	 basically,	 all	
of	them…	

62e69cf	 SUF	 both	 non-null	 and	 null	 cases	 considered	 for	
ListOrderedMap.put	

fbb81a3	 INS	 less	tests	executed	after	commit	

15ee56b	 INS	 did	not	consider	underflow	or	overflow	

80e9621	 SUF	 trivial	case	

7d2532b	 NEI	 no	useful	invariants	inferred	

bb684e9	 SUF	 all	tested	

7c55e29	 NEI	 no	interesting	invariants	inferred	

13c8e44	 NEI	 no	 tests	 for	 deterministic	 order,	 but	 we	 don't	 have	 the	 hint	
from	invariants	

07d84c5	 SUF	 existed	tests	no	change	of	invariants	

04af9bc	 INS	 HashedMap:clear	 some	 old	 tests	 tested	 null	 at	 max	 index,	
which	was	gone	after	deletion	

a06a726	 SUF	 tested	more	than	expected	
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Apache Commons Configuration 

Commit	 Result	 Commit	
7e92e57	 NEI	 no	invariants	inferred	

227c59b	 NEI	 no	invariants	inferred	

9c726bf	 NEI	 no	invariants	inferred	

66690eb	 NEI	 no	invariants	inferred,	but	added	methods	are	not	tested	

39e0246	 NEI	 no	invariants	inferred,	but	no	test	cases	were	added	for	it	

d2274ba	 INS	 Configuration:size()	this.throwExceptionMissing	=	true	missing	
tests	

e22e2c1	 INS	 missing	testing	default	config	file	not	exist	or	null	case	

e3cfba3	 INS	 lack	of	tesint	this.result	!=	null	for	configuration	builder	

aef15bf	 SUF	 reverse	of	the	above	

c88169a	 INS	 system	 default	 line	 separater	 varies.	 This	 should	 be	 mocked	
and	tested.	

d496d7c	 NEI	 get	 test	 file	can	be	null	one,	which	was	not	 tested,	however,	
we	do	not	have	its	invariants	

0db44b7	 INS	(FN)	 The	 only	 this.config	 is	 good	 enough	 for	 the	 purpose,	 in	 fact.	We	just	can't	see	why	from	invariants.	
e2b5ec7	 INS	 did	not	consider	outfile	abnormaly	
77d022e	 INS	 QueryResult:equals	forgot	the	case	null=null	
60e232b	 SUF	 our	invariants	did	not	show	for	equals,	but	it	was	under	tested	
a6c3230	 SUF	 BeanHelper	initialized	more	instances,	good	

ae90d56	 NEI	 our	 tool	 did	 not	 discover	 interesting	 invariants	 for	 race	
conditions	
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Apache Commons Codec 

Commit	 Result	 Commit	
0f1e8c3	 SUF	 4	cases	

3b8cd11	 SUF	 more	than	needed,	but	we	cannot	tell	from	invariants	

d7b0185	 INS	 index	 >=	 0	 is	 correct,	 and	 the	 only	 metaPhone	 is	 indeed	
necessary	

cbe33f0	 SUF	 overkill	but	to	the	point.	However	it	is	a	bad	coding	practice	

9535a94	 SUF	 with	 one	 _random	 may	 not	 be	 fine	 as	 it	 is	 used	 across	
different	test	cases	

f63e8e9	 INS	(FN)	 Base64:decodeBase64	 return[]	 over-generalized	 incorrect	
invariants	

03d0f6c	 INS	(FN)	 incorrect	Daikon	invariants	

758111e	 NEI	 no	interesting	invariants	

b1561e9	 SUF	 data	correction	seen	in	invariants	

1e81451	 SUF	 ditto.	

2d76aa8	 NEI	 bad	invariants	that	hint	nothing	

54f7ca3	 INS	 bmpm	could	be	null	

26951aa	 INS	 BeiderMorseEncoder:encode	could	face	null	input	
805103c	 SUF	 After	both	src	and	test	are	added	previously	
bc1c22b	 SUF	 lack	of	Long.MAX	
2cb3bbd	 INS	 encoder	input	arg	can	be	null	

ab25ca7	 INS	 B64:b64from24bit:	b0	=	0	case 	
1e531f7	 NEI	 In	fact	not	fully	tested	

4a6c364	 INS	 tests	not	executed	

2101593	 SUF	 Long	skipped	

59c42b1	 INS	 Base32	emptyTest	with	chunkSize	of	32	
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Appendix II 

User Study Questionnaire 

 

The following questionnaire is intended to give us an idea of your programming 

background, so that we can better interpret the results. Feel free to write in the margins to 

explain your answers, if necessary. 

 

1. What	is	your	current	job	title	(if	student,	indicate	so	here)?	
 

 

2. How	many	years	have	you	been	programming?	
 

 

3. Over	the	last	year,	about	how	many	hours	per	week	would	you	say	you	spend	
programming,	on	average?	

 

 

4. When	programming,	do	you	typically	use	debugging	tools?	(		Y		/		N		)		
If Y, which tool(s) do you use? 
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5. When	programming,	do	you	typically	use	testing	frameworks?	(		Y		/		N		)	
If	Y,	which	framework(s)	do	you	use?	If	N,	can	you	tell	me	the	reason(s)	why	
you	don’t	use	testing	frameworks?	

 

 

6. Did	you	do	code	review,	or	read	others’	code?	(		Y		/		N		)	
If	Y,	how	often	do	you	perform	review	tasks,	or	read	other’	code?	

 

 

For	7	–	10,	on	a	scale	from	1	to	5	(1	=	not	at	all,	to	5	=	very	familiar):	
	
	
7. How	familiar	are	you	with	Java?	

	
1	 2	 3	 4	 5	
	
	
	

8. How	familiar	are	you	with	JUnit?	
	
1	 2	 3	 4	 5	
	
	
	

9. How	familiar	are	you	with	program	invariants?	
	
1	 2	 3	 4	 5	
	
	
	

10. How	familiar	are	you	with	Design	by	Contract?	
	
1	 2	 3	 4	 5	
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