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Abstréctﬁ ‘

A déscription is given of'thé nuéleaf-densit& distributidns_énd.éingle
barficié ﬁqténtiéi weils ﬁhat arise_in.the_coﬁrsé‘of ThomasfFermi_calculatiohé
of gveragé.nuCleéf;perefties. Simplelexpréssions are gi#en_fbr*thegpalculah
 £ioh of tﬁe esséﬁtiél-charaéteristics ofifhese diStfibﬁtioné,'and it 1is shqwn
.how the résultsfpbtéined here may be uséd'fo épproximatg'the.densifies and - :

‘potential wells in terms of Fermi functions.

vTWOrk performed under the auspices of the U. S. Atomic Energy Commission;

+Present_addresét
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1. Introductionw

The prinary'purpOSe cf fnisvﬁcrk.is'to.bresent elnethod for determining
‘the single partlcle potential wells appropriate for use 1n Snell Model calcula—
tions. The study is based on a calculation (in terms of the Thomas-Ferml
statistical_method)vof average nnclear prOperties using a phenomenolcgical _
veloc1ty dependent‘force. |

In ref. l we found that the Thomas-Fermi method of Seyler and
Blancharde) could be applied with proflt to the calculatlon of nuclear bindlng
energies and dens1ty distributions. It also predicts veloc1ty dependent neutron -
and proton s1ngle particle potential wells;vand the potentials obtained.in this p
way for particles at the Fermi surface may be compared with the static wells
normally employeddfor 1nvest1gat1ng energy leyels in that.reglon; Howeveri;in
'spite of its brcad applicability,.fne Thcmés—ﬁermi Model has tWO‘major dréw:
backs (which alsc_epply to Hartree-Fockicalcnlations),vone in préctice'and cne
.in principle. . | | ‘ |

The.prectical drawback: is tnatvsince.the'coupled integral equaticns:which
‘arise in tnis nethod cannot be_solved-analytically the determination of the
properties of each:separate nncleus requires'a somennat complex computer calcu-
lafion. Fnrthermore, the nunericaliresulfs which are_cbfained for some of the
'qnantities of inﬁerest (suchvas the densify distributicnS‘Or the potential wells)v
are given as nnmerical functions which, in practicel applicetions, do notipcssessv
the flexibility:Of*closed algebraic expressions.

The objection in principle is fhat the mcdel gives, as a rule, liftle
-ingight into the physical origin of the nuclear properties that it predicts.

* The connection between the nature of the two body force assumed and the final
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results isfobscure.and'all that-can usuallyroe.ealdbwith Certainty‘le that if
one uses the forceesPecifiedland the.giVenncalculationalfprocedurevthen‘a certaln
reeult.will oe obtalned. | | |

In our work these obJectlons have been overcome through the derelopment
of an approach we have called the Droplet Model ~This simple algebralc theory,
which is descrlbed 1n detall in ref 1, glves the’ propertles of- flnlte nuclel »
'15 ternsvof a setrof cOefflc1ents'that are deduced‘from.Thomas—Ferml calcula—

tions of infinite and semi-infinite nuclear matter. In place of complex,

Thomas-Fermi Model computer calculations'for»tne-propertleslof’finitevnuclei'
one has merelyito:deal wlth algebralc ekpreseions in terms of N'and Z.E.More?
over, the physical origin of the.reeulte.can;be déterainéd from the algebrAic“'
structure of the'Droplet Model expressione. I o |

- In the next two sectlons of this paper the Thomas Ferml method is .
:aapplied to 1nf;n1te and eeml—lnflnlte nuclear matter respectluelyl' The prop-
erties of the neutron and proton ﬁotential wells which are deduced-in'tnese
ﬁsections are thenecombined with previouely-determined‘Droélet'Model expreeSlons
in a third Sectionjin order to'provideia descrl@tion'of the’potentialbwells:to
be expécted'for finite nuclei. The'fourth'eection is concerned wlth-compariné
the predlctlons of ‘this method w1th 51ngle parti cle potentlal wells deduced

from fitting energyllevels. The flnal section is a dlscuss1on ‘of. the results
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2. Volume Propertles
As the flrst step in our formulatlon of a macroscoplc theory of 51ngle
partlcle potentlal ‘wells we used the Thomas Ferml Model descrlbed 1n the appendlx
‘to estimate the numerical values.of_the potentlals felt by neutrons end protons
in-infinite huolear matter.
’ ' i
In terms of»the‘notatiOn of eq. (k. 28) of ref. 1 an exPressioh
” can be, derlved for the potentlal felt by a neutron at the Ferml

surface Wthh 1s

This expression, Whioh,is_in dimensionless form,'and a similarf-
_one for'thevproton potentiel may be converted to.a'form that
' can beiapplied'directly The resultlng expre351on for the
fpotentlal may ‘then be wrltten as an expan51on in terms of small
ereV1atlons of the neutron and proton den51t1es from thelr equl—

~llbr1um values

l_We fimd that theipotential well depths (N\fOrfneutrons;and'Z for pro-"

tons):are given by

) V(g) = ;:glgh (i).h6.2'6 - 28.3 ¢+ 1.9'52:Mev , PR (2)

' where N
e=-Z(o-p)/e, DT (3;)'.')}'
5= (py = og)/p - : o NOR
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 ; As uséd hefei éNi:ié'phélngutfgﬁ;densi£y; §Z vfhé pr§t§ﬁ:dénsi£y; b_ the tbtalv
density 'apd pO the e‘c'iﬁ_i_l_ib;«i'um‘vdensny'o'f 'stg.naa'ra nﬁcl-ea_r. ﬁ;a_tter., The first
'ﬁefm‘on thg'righﬁ_;idezof‘eq;v(2)»is.tﬁe éomméﬁ_pofenfial depth'felt by both
héUﬁrons and ﬁrétbns'ét-theJFér@i';uffa;é of'éymmeﬁric'gpN =’pzbﬁ‘%-pc) nuclear
matter. The $é§é£d term (+ fof;héutfons énd ;;fbf prthﬁ#) iS the‘isospin.
dependence of 41‘.;-'1_1‘_é?'§otentia1._' The ».'las:t;, tifo £ei~ﬁ;s'_; 'whichvrarre of higher order. and
_are noﬁ uéed.inifhé'féiléwiﬁg disCuséidn;;ére the‘denéityvdépéédence ana qﬁédra-
ftic isospin depéhdence of the'potentiél. | |
- 3. Sufface Properties’

The sﬁffaée prépertiés to‘bé‘eXﬁeCtedffor-the Siné1é particle pdtéhtial
méy 5e détermiﬁéd;By soi&ing the nﬁdlearwméttgr probléﬁ:injﬁhe'semi—infiﬁife |
ipase. vUSing.théﬁsémé.Thomés—Fermi method as ih'the 1ast.secti§h we can.find |
'the'sﬁrfaééﬁdéésify’distributidnsfof.thé #eﬁtrons and protgns'a$ a”fuhct£§ﬁvof‘
”3'(the bﬁlk vaiuévof §, which dééériﬂés.fhe s&éfem away froﬁ:thevsﬁrfac¢ |
Qfegion).‘ The poténtial wells, whiéh.afe'self éonsisteﬁt with_thése;densitya
distributibns éﬁd are épprépriate forbparticles at.théineufroﬁ‘dr proton Férﬁi-
surfadés, Eap élso be calcuiated. Figures l.and42 are‘éxaﬁbleé of such séﬁé—
infinite densityaané potentiél well distribuﬁions.

The meﬁhod.used.to charactefizé_the "location" L and "widthﬁ‘w of t£e,
surfaces in these figures is discﬁsséd'in thé appendix. The dependence-dffthgse
‘quantities, which characterize the neutrén and'protpn denéities and single
.particle pbtential wells, on th? bulk asjmmetry S iSSShownﬂip_fig..3.' Hefe
Twé>see thét the_ﬁidths'of‘the;surfacesiof the neutron and pfotbn poﬁehtial=Wells
WV(N) and WV(Zjuab.ﬁot depend 1ineariy%on vE. The same is true of the wiaﬁhs_
of the surfaces of the density distrib;ﬁtions‘ théms‘elves_f wp(N') and wp(z)'.f ‘The
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.. Fig. 1. ‘The Thomas-Fermi density distribution p plotted relative to the .~
' "effective location of the surface" as defined in the appendix. In. this
case (the case of particle number symmetry where & = 0) the neutron and
proton density distributions are equal and are both represented by the

curve labeled p.

The potential felt by particles at the Fermi surface

is also plotted. -This curve, which is labeled V, has ‘the effective 1ocgf
tion of its surface outside that of the density, at'a point that is

indicated by a vertical bar.




=T UCRI-18997

]
on T T T T v T T T 1 T T T T
< T T
> 051 ; ‘—/' S, B
A .
[
()
§ 4/ ]
o o .
> .
o ]
QO ‘ '
> —20 N
(3}
=
£ -
B
§ "40 VN -
O
a.
. - | vz |
- 60} { - v =
3 . ‘ i » 1 - A 1 H 1 i l : H i M
5 0 | -5 -G

Norma! distance in im

XBL6%ii-6082

Fig. 2. The Thomas-Fermi density distributions and single particle potential
wells for a case of non-vanishing asymmetry 8. As in fig. 1 the curves
are plotted relative to the effective location of the surface of the total
density. In addition, the locations of the neutron and proton surfaces are
"indicated by small vertical bars. The separate locations of the neutron
and proton potential surfaces are given by the smaller bars on either side
of the long vertical bar that indicates their average position.
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Fig. 3. The widths W and locations L of the neutron and proton density '
' .distributions and potential wells for semi-infinite Th‘omaS—Fermi systems
of the kind shown in figs. 1 and 2 are plotted against the value of the.
‘bulk asymmetry O. - ‘ : S
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distance betweeh.thé'avergge-ldcations of the surfaces-of the potential and-

density L ;Lp is also Seen,to.be'linearly'independent of §.- However, the .

v

distanc¢ betwéeﬁ the locations of the ﬁeutronfand proton surfaces ,ALp does -
. depend'linearlj_oh 8. This dependence is foundvto be exac£lyvthat-predicted'

by the Droplet Model in the equation preceding eq. (2.20) of ref.'l, which is

A

c+
oo
V[

rO.

‘where . t is the neutron skin thicknéss (t =.ALO) and fo, J and Q aré_Droplet- :
fModeI'cOéfficiént$¢Whose values are given in (17) below. Substitution of the

numerical values of these coefficients into (5) yields
t = 2,458 m , P ' ()

' er semi—infinite $ystems (and for finite systems withOut.Coulme'energy);{ For
Treél nuclei Coulomb effects must be taken into account and then according to -
‘sec. 2 of ref. 1 eq. (5) becomes
=3 (1-3) rat/3 R ST
2 of o - o |

where § is ﬁhe average value of § over the bulk central region of thelngcleus'
(its value can be obtained from the Droplet Model expression which is eq;_(i6)

below) and the definition of I, which is
I=(N-Z)/A . - o (8)

The distance'by Which the neutron'potenfial well lies outside the proton well

ALV also depends linearly on 6. This dependence may be deduced from fig.v3 to be
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AL, = = 0438 . gy
-.Wé can'also_See_from the figure:that for'small Valueé of s

0.99 fm + terms’qf order GA . o v(lO)ig

=

S

1 .
g .
1}

1,19 fm + terms of order: 6v;',_ : (1)

-
<
=

oo

=
S
i

- and

Ly - L, =0.82 fm + terms of order & .. 0. (12)
‘This last quantityfdepends 1ineafly_onzthe cufvatufe.of thé_sﬁrfaqevaé Qnéjgoes
‘- from'éemi—infipite1t9 finite systémsvbecausevthe,potential feit'at a givép'ais—‘
tapcevbutside-a convex”éurche i5 smaller than it would be if ﬁhe'surfa¢e:Were_'
flat. This causes the éffectifevlqcétiqn of the potential well surface to move
_;finward.“For'thé_Thomas—Fermi Mbdel being investigated here this‘dependencé was

“found to be

Ly - L, = [0.62 - Of28»(2/R9)J | '(yi)

:,Where l2/Rp. is'the curvature of the surface of the density‘distributibn{7,
b, Drdplet_Model
In order to make use of these relationships for predicting the prop- -
1erties of finite nuclei we must first calculate the radius of an‘équivalent
- sharp sphere which represents the density distribution. This radius, which

is the analog for spherically symmetric finite systems of the'quantity we have
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called the location of the surface in'the semi-infinite case, is given by the

Droplet Model expression_,v'

RerarD W

The 'quantities € :(whiCh'appeéfs above) and § (which finds applicatlon 1n

~ the folloﬁing discussion) are the average values over the central region of the

nucleus of'thepquantities € and & deflned in eqs. (3) andl(h). 'Thé values

of these quantities approprlate for a nucleus Wlth N neutrons and Z- protons,

l:where A=N+ Z and I= (N~ Z)/A, are given by the Droplet Model expres51ons

;= (-gagAfl/3'; 18 + ¢ 2% “/3)/ . an

[og)
Il

T (3, /82)2° 5/31/[1 ‘ <9J/uQ>A'1/3J L ae

These.éxpfeSsions (whichjare discussed'in detail in sec. 2 of ref. 1) make use

of coefficients which describe various properties of infinite and semi-infinite

nuclear matter. These coefficients have been calculated'with the aid of the -

Thomas-Fermi Model used in the last two sections and are found to have the’

values

:a = 225Mev;'suffeCe energy coefficient

J =35 Mev; symmetry_energy-coefficient

K = 306 MeV, compressibility coefficient>
L = 99 MeV, density-symmetry coefficient
Q ='25-MeV,‘effective surface stiffness

c, = 0.T45 MeV, Coulomb energy coefficient



where ¢ 362/Sr0 and -

H

r, _1,16 fm; thé:nucléaf-radiusvconstant;

TheSe coéfficiéﬁﬁg_differ_siightly”frdm-those ihvréf. i fdrrréasoﬁs thaﬁ,afé ‘ “

.'givép_in cbqnegpidé"with Taﬁle 3 in the éppendix‘  ' | | e v
. A.once thg*rédigs df_ﬁhebdénsity 'Rp is knbyp'frém:eq.;(ih) then thé

separate radii;éfvthe héutrbn ané broton-@istributions_c;ﬁ_ﬁe éalculated frdm

’the.expfeSSionli"'
(£)

R
R = R
Rolg) = B,

o=
-
"

s
‘where t 1is obtained from_eq. (7). The mean radius of thejneutron'and'pfo£0n  .
~potential wells is given by .

RV= Rp_fr, (:LV —_,Lp‘), , o -, o SRR »(vl?g)“

where (LV —-Lp) is’obtained from eq.v(13), and.the>sepapate'radii’of the neutron

éhd proton potential;wells.are given byA.v
- (+) = . . . . . :
_ ._RV(Z). R, (£) 3 AL, . _ S (_29)_

ALV being given by egq. (9).

o
e}

The spatial distributions of the densities or potentials may be apﬁrox-_
‘imated by a Fermi function of the form
aI¥ T L I (21)

f(r) =g{l + exp[(r - Rl/2
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.‘In this connecfion; it cah-be”shOWn that the'relationship between the sUrfaee
‘+diffuseness pérameter' a and the width W of the eurfacé region:is given by

- the expression:_f'*i
=R e

Tt eheuidhalsolbe.nofed thah for/iarge systems the-hélf Valﬁe redius pareﬁeter
.in»the.Fefmi fuhction Rl/é' is approx1mately the same as the equ1valent sharp
-redius fR' For flnlte systems, however there is a geometrlc correctlon whlch
eah be shown to‘.lead t§ the r_elatlonshlp o
"~ In Tabie"lhthe most useful efhthe-relétienshipe derived here are sum- -
marized. fhe numerical Values‘of thelvarious parameters which enter have heen
inserted .so as hb make therexpreseions»convenient to use. |
5. 1cempefison_
- In ordef'tO‘facilitate comparisen with experiment fhe Droplet Model e"

' predietions.(calculated according to the expressions 1n Table 1) for varlous
fhﬁclear‘propertles of interest are plotted in fig. k. That the predlcted
Tprotoh radii eofrespond closely to the experimental results is not surprising
.since ﬁhe parameters of the theory were chosen partly to insure this agreement;
No péfameters wefe adjueted fo give the agreement which is seen to exist betweeh
the predlcted potentlal well radii and depths and the values of these quantltles
'determlned by flttlng 51ngle.part1cle energy levels. The neutron potentlal well

depth of ref. 5 differs from the predicted values because that authpr chose not

‘to include the isospin dependence of the well. The radius of the neutron
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R ; L &
Table 1. Droplet Model formulae..:

"

proton number,

FN-=.heutrqn nuﬁbgr;, . . o 7
» =N+z L = R v 1=
T = (1 +o0.0112 2% -5/3) 01+ ERER -1/3y E
€= -0.147 A 1/3 + o_-,33o 52 4 Q_.oogug. 22 A-_-?«‘“/B_‘-
' Density _
<”Rp $ 1;16 AL/3 (1 4 g)
t = 0.773 Al/3 ( | E‘)

Ny Ly L
For a Ferm1 functlon

Ro/e = % [l - (0. 99/R )2 ]

0%

Potentlal

_RV = Rp + 0. 82 - 0. 56/R

» Ny _
RV(Z) = RV(+) Qf22 6

: For a Fermi functlon '

Ry T [1 = (1 19/R )2 ]
ay = 0.66' - ,
‘V(g) = -51.4 (t);h6,2 §'Mev
;

A1l distances are in fm.




- | I  UGRL-18997

N

-10'f 4
ER, .
LEe
£ -30F =

Q .
3
| _40_ .A.
g & Vi
E " 060 000004000 .“....oao.t
g T
‘ éé . : V‘Z)
- 60 =

- i i '|-= .i : i

v700‘ 100 200 300

A
X8L89II- 6087

Fig. 4. The predictions of the algebraic theory, (as summarized in Table 1)
~ are plotted as solid lines against the mass number A for nuclei along
Green's approximation to beta stability,? which is I = 0.4 A/(200 + A).
The various symbols represent experimental determindtions of these same -
quantities as itemized in Table 2, o i



.Taﬁleia. .Experimental radii and potgnfial'Welinépths.a

Symbol '_'Referenqé B _v . o Values :

o ' Ref. _ Rp l/°(Z) and_ap detérmined.éébaraﬁely for each
| e e v - | X ;

"'nucleué v
By, 1/2( N) = 1. 16 A
= 0. 62

Rer. 5 . R 1/3 0.6
&y
(N) -_-h6 0 MeV

2 ; 1/3
Rv’l/2 (W and z) 1. 2& A

sy mo63 _.
.V<§> = =52 (t) 27.5 I MeV -

+++4+ . Ref. 6

.forVQQBPb“only“f';::

*r_El' | Ref; 7» R (N and z) 7 52 .

CV(N) =,;hh.d MeV“‘V(Z) = —58 0 MeV

(N) = 7 98 fm R (') = 7 55

V 1/2 v, 1/2

=0.70

A~f"-‘ Ref.f8- R

V(N) = -40.6 MeV, V(Z) = -58.7 MeV

: All the "half. value radll Rl/2

radii R by means ‘of the expression R:= Rl/2

being plotted in fig. L. All distﬂnces are in‘fm.

given here were converted to equivalent sharp

11+ (P/3)(a7m; )] vetore

{

Zs

«
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pdﬁénﬁial QellugiVén:inrfef. 8 is larger*thaﬁ thé’pfeaicted value.and.the .
 pofentiéi is lgsé:deep than is predicfed;" Since there is a well known éiieg
depth{émbigﬁit&:infthe determinatiothf'sinéle-péftiéle wells thesébrésuité“'
may be ¢onsistéﬁt;”fﬂ | |
6. Diécussion

_Thé Dp6pleanodel usedvhere, which is develQpea-in detail in ref;rl, is
'a'genéréi.aﬁproachvté the desc?iption of certain average nuélear'propértiesf‘v‘
 itvis reiaﬁed to:fhe specific methods sﬁch as Hartree-Fock and‘Thomas;Féfmi-in
_much the same Wéy.as.thermodynamicé is related to statistical ﬁechaniés.%vin thé
.D}oplet”Modél,:jﬁst as in thefﬁod&namicé, the behavior of the systéﬁ is. given
ihiterms of Simpié relationships which inVoiﬁe-coefficiehts Qescfibing,ifé 
‘macrbécopic pfbﬁefﬁiés. :For e#émple, in.fhérmodynémics‘é nuﬁ5er of-céeffiéientsv
vsﬂéh aslthe specific.héét, thermalbéipanéion éoeffiéiént, aﬁd compressiﬁiiitY_
: must_bé specified. Ih'analogy tﬁeva0pletvMoéel makes use of ; humb;f of:éQéf—
ficieﬁts such és‘the volume‘binding enérgy and syhmetrj.eneréy, the,Surfacev
"energj, and thefﬁuglear fadius’éonétant. 'Neither1théory cbntaihs ény proVis?dn
- for determining fhe values of these.coéfficients but éﬁce they are known thé
“general behaviér.of:the syétem follows; In applying thefmodypamics one'may 
obtain values of the necessaryvCOeffiéients either from eXperiment or from
- detailed statisfiéal mechanics calculations. In principlé the Dropleﬁ_Model'“
‘céefficients:cén-also bé determined.either from-experiment or from détaiied,
aéélculatioﬁs,vbﬁtfin practice it seems that a combined apfroach ié requiredf':

Iﬂ thé;liquid Drop Modél, which ié a restricted form of thé Drop}et_»
Model, the fourtcoeffiéients that enter the theory ére eaSily'obtained.ff§ﬁ. |

expériment by fitting the Liquid Drop Model mass fdrmula tqféxperimental nuclear
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massesQ The f1ve addltlonal parameters whlch enter the theory at the Droplet
Model level could, ‘in prlnc1ple, also be determlned in thls way In practlce
this may prove dlfflcult for two reasons. The first is that there is.a great
deal of scatter in the values of the experlmental masses because of shell
effects, Wthh makes 1t dlfflcult to determlne flne détallslln the smooth part“
sof the_mass formula. The second problem is that the effects of some of thehn
coefficientsﬁmay be correlated so that the1r 1nd1v1dual_values,are'dlfflcult to
’determine; Infrefs.-lvand.Qvahd:in the preseht vork a combined approach has
vbeen used. . Flrst “the values of the four ba31c coeff1c1ents (volume energy;
'symmetry energy,-surfacevenergy, ahd.radlus constant) were decided upon ln
-r‘ref 1 these were taken from 8, L1qu1d Drop Model‘mass formula Wthh had been
fitted to experlmental masses. In ref. 9 and here they were chosen partly as
-before, partly SO as to reflect new.understand1ng of nuclear propertles galned
,1n.ref l and partly SO as to glve a better flt to nuclear charge rad11 | Wlth
these four coeff1c1ents flxed it vas then hecessary to find a way of estlmatlng:
kthe values of thetothers. The Thomas—Ferml Model Wthh is descrlbed brlefly
uin the appendix was Ch0senvfor thls purpose. ‘The two. body interaction used

in th1s model has four parameters and these were adJusted so as to reproduce

the four Droplet Model coeff1c1ents we had already fixed. The Thomas-Ferml Model

- was then usedxto-calculate the_values of the other coeff1c1ents. ‘Of course, the
.values determihed in this way»depend to some extent_on the model used. |
. The Thomas—Fermi Model that we found so useful:for determining Droplet
! Model coefficients_is also useful for investigatihg other aspects of macroscopic
'huclear properties, some of which may be outside the scopevof the’Droplet Model‘

approach, For ekample, this paper presents the results of applying the

.
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Thomas~Ferm1 Model to nuclear 51ngle partlcle potentlal wells. Figure L4 shows
how successful thls approach haS'been. In splte of the fact that the Thomas—

Fermi. Model used here has only four parameters, and the fact .that these are flxed

- by other‘con51deratlons,.the agreement between_the potentlal wells predlcted

here and those determined in other ways is quite good.

- In addition to the agreementlobtained the method'of:caloulation is also

of interest. Even'though the results presented here are those of the Thomas—

. Fermi Model ne.have.not found it'necessary to actually perform Thomas-Fermi

calculations for finite nuclei. This is because we have employed'a,macroseopic

vapproach to the. problem The DrOplet Model nas.used to calcnlate some.of theb
:nuclear propertles such as the bulk asynmetry and thevneutron and proton radll.
”These results are»then’comblned with lnformatlon about the’Thomas—Ferml potent;alh
‘wells (dednced,fromlthe infinite and semi-infinite oases> to_éive andalgebraic‘

theory. This algebraic theory; which is summarized in'Table 1, is .an excellent

approximation to the exact Thomas-Fermi calculations‘but_it‘is much more con-

. venient to work with and it provides mOre insight into how the various nuclear

properties are related.

The Droplet Model approach has found application in an improved-semi;

.empirical nuclear mass formulal), and in the prediction of isotope shifts'and

_the neutron skin'thicknessg) " In thls paper it has been successfully applled to

predlctlng 51ngle particle potentlal wells, and there is work in prOgress to.

“apply it to the calculatlon of fission barrlerle). ‘It'seems as(lf 1t may.be
-possible to eneompass most-macroscopic nuclear properties within a single‘

-algebralc theory which has at its heart the Droplet Model and which makes use

of statistical methods such as the Thomas-Fermi Model for extendlng the theory

to new applicatons.
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'Appendix
| The Thomas—Ferm1 Model
The Thomas Ferm1 Model used here is that of Seyler and Blanchardg) as‘
delaborated in ref.”l.v In this statistical approach to nuclear_propert;estlt
is assumed that the kinetic energies of particles at each point ih'fhe'SYStem_

are the same-asTthey wonld be.for'afFermi'gas atfthe‘same:density. .Seyler and

Blanchard go;on_toiuse, in'addition.to ~this basic asSumption, a phenomenological;

Tmomentum dependent two body 1nteract10n Wlth four adgustable parameters » This'

1nteract10n con31sts of a Yukawa force whose strength decreases w1th 1ncrea51ng

rrelatlve.momentum_of the partlcles, and is of*d;fferent magn;tude between_"llke"

.and "unlike" particles. The "like" strength applies to the neutron—nentron;
‘*and proton-proton interactions, while thev"unlike' strength applles to the ﬂ
;neutron-proton'interaction.v This 1nteractlon can be wrltten

o  elr/a) SR
V(r,p) = - Cy. —~—~[1-@m)],*: R (2k)

“like r/a
(or unlike) - ‘

]

‘where V =fthe potentlal energy of two partlcles,'
C = the strength of the 1nteract10n (dlfferent for "llke” and "unllke"

palrs), .

r= the_distance between‘the_particles,

a =vthe-range of  the Yukawa force,'

fp-e the magnitude of the relatiﬁe momentum of_the‘particies,.

b= the critica]_-value of the relatitre_ momentum at which the attrac- -
tive force (whose strength decreases withdincreasing reiative;rfj-

momentum) vanishes and beyond which the force becomes repuisive.
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‘The four quantities a, b, C,, and C_ are the adjustable parameters of the

Thomas-Fermi treatment. The four pieces of data used to determine them and .
their resulting values arevlisted in Table 3.

Once the kinetic and potential energieé of the system have been speéified

a standard variational procedure may be applied to find the spatial distribution

of particles fof'which the total energy is stationary. This approaéh leads to

'.a pair of coupled integral equations for the neutron and proton density distri-

butions, which may be solved by computer iteration.

The density.distribdtions found in this way may be used in conjuncfion-

.with the two bgayvinteractipn:to caléulate the_éelf—consisteht Single_particle
 §o€ential7wé1l;; the tbtél biﬁding energy and'otﬁer nuclear.pfopértieé. _in7
‘addiﬁion; when thevintegral equations are solved in the infinite and sémié'
uinfinife'cases the methodé of ref. 1 can be applied to deduc§ the coefficients '~

required in the Droplet Model.

. SURFACE MOMENTS

"For distributions (of density, potential, or other properties) that are

“encountered in the surface region of a saturating system an "equivalent sharp -
surface" or "the effective location of the surface' can be defined. These .
_distributions are characterized by the face that they_have a constant value in

.fhe bulk region.and they go smoothly to zero in the viéinity of the surface.

The "location" L of the surface of such a distribution f(X), where x is the

‘measured along a normai to the surface, m&y.be defined by the relation

_ J[- [fov— f(x)] dx = ‘/.- f(x) dx ... o - - (25)
-0 . L : o _ ‘ : SRR
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Table 3. Input quantities and interaction parametefs.a

vValue

Input quantities
' - Property

15.677 MeV®
,ﬁ35 MéV?

~1.16 fermid

C2. fermie_ ,.;

a5 thé volume energy coefficient
J, the Symmetry:énergy’coefficient o

ro, the huclear radius constant

th 90,_the nuclear surfa&é diffusenessv10590% distance -

...Resuiting Valués of the'adjus%able pérametefs

Value . Description
159 -MeV Cy» the "like interaction.étrehgth_'
285 MeV C,» the "unlike" interaction strength . ‘1
(b2/2M), the'énergy.bf a partic1e’with the:gritical L

89.& MeV

0.69k formi |

momentum b

- a, the range of the interaction

aSome of thé'values given here'differ from those giyén'in_ref. 1. '(See thé_ 

:folldwing footnotes to this table for details,)

bTh_is value 1
formula fit o
(1966) 1.

°In ref. 1 it

s the same as that used in ref. 1, its origin is in the mass

£ William D. Myers and Wladyslaw J. Swiatecki, Nucl. Phys. 81 '

was discovered that previous wvalues of this quantity whicﬁgwete

determined from Liquid Drop Model fits to»ﬁuélear masses were too small -and:

that the value given here is probably closer to the correct one.

.dThis valﬁe o

K .
.properties of

f the radius constant is better suited toipredicting.the:spaﬁialxif»

nuclei than the one used in ref. 1.

.(continued)g',
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Table 3. ' Continued. .

eSince a.paramete?'set’best suitedvfor,diséussing'spatial‘properties.of nuclei

. was neéded forvthis;work and that of Ref. 9O the decision was made to use
_parameters which féproduce the . experimentally observed sﬁrface diffusenéss,of
2.4 fermi rather.ﬁhan the surface energy as in ref. 1. This choice results.in

a surface energy ¢oefficiént‘bf 22 MeV.
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*In this expression it is assumed that the function fills the half space =

'ito -L . and has-the_value fo over most of this fegiqn,.and that ﬁhe half-spgée
L to +» is mostiy empty except for the-tranéition-région localized'aﬁout Lo
| For the density aigtribuﬁién,-L- is simply the location of the sharp surface
which'would'contaiﬁ the same'number of ﬁarticles atvthe given bulk density{:

- This ¢oncépt of théi"lodatiqn" of a surfaqe.is a'géneralizétion of the
'ﬁeffectivé sharp'radius" of a finite sy;teﬁ;"ohé usually thiﬁks only of the

~density distribution in this connection, where thevlocation-»L_.becomes'thélj

radius Rp and eq. (25) becomes

o P : o S L
4 T R3 o= Um p(r) rlar . o (26)
-3 p 0 Jo : . s . o -
One mgy_also'definé an quivalent_sharp'radius'forvthe pdtential Weli‘usingf7:

- the relation
b T 3.V .=:hn i v(r) r2d; | S | L R (27)'
IR Vo= f ar . _ = T

Férifhe oﬁe-dimensional case.of semi-infinite syétéms the lOCétion}:L A
1of ﬁhe surface may:bé‘defined‘in another way, which is éguivalént to eq. (25)
_Bﬁt which may be_generalized to.inélude higher order moments'of the surfaééﬁ.
‘distribution; if,-for example, wg_differentia#e fhé distribution f(k) ana .

‘define g(x) by the expression

o) = - e
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where x is the outward normal distance from‘some point in thé surface then

‘the moments of g(x). are the quantities of interest. We can define the ﬁioéa—_

tion" L of the surface to be

'L =-/-" g(x) xdx f g(x) dx ' . : - (29)
An integration'by_parts is sufficient to show that this point in the ‘surface
corresponds to the point where an equivalent sharp surface.would be”lqcated.

In a similar way the "width" W of the surface region can be defined as

- i . 2 _ e R R
W =[/ g(x) (x-L) dxf g(x) dx] L . (30)

Higher moments of f(x) such as the skewness and the kurtbsis, may also

be ‘of interest in some special cases.
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