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ABSTRACT OF THE DISSERTATION

Stochastic Modeling of Stem Cells

By

Jienian Yang

Doctor of Philosophy in Mathematics

University of California, Irvine, 2017

Professor Natalia L. Komarova, Chair

Stem cells (SCs) are the body’s raw materials - cells from which all other cells with specialized

functions are generated. Understanding the dynamics of SC lineages is of central importance

both for healthy and cancerous tissues. We study stochastic population dynamics of the

two-compartment (stem and differentiated cells) system and the three-compartment (SCs,

intermediate cell type and differentiated cells) model. Cell decisions such as proliferation vs.

differentiation decisions are under regulation from surrounding cells. Successful maintenance

of cellular lineages depends on the fate decision dynamics of SCs upon division. There

are three possible strategies with respect to SC fate decision symmetry: (a) asymmetric

mode, (b) symmetric mode and (c) mixed mode. Theoretically, either of these strategies

can achieve lineage homeostasis. We start the whole project by only considering symmetric

mode for the two-compartment system. We derive simple explicit expressions for the means

and the variances of SC and differentiated cell number. The methodology is formulated

without any specific assumptions on the functional form of the controls, and thus can be

used for any biological system. We then extend the study of the two-compartment system

to include asymmetric mode. In particular, we focus on minimal control mechanisms and

networks of the two-compartment system. Through stochastic analysis and simulations

we show that asymmetric divisions can either stabilize or destabilize the lineage system,

depending on the underlying control network. Next, we propose an algorithm to identify a set

xi



of candidate control networks that are compatible with (1) measured means and variances of

cell populations, (2) qualitative information on cell population dynamics, and (3) statistical

information on intra-crypt cell type correlations. We apply the algorithm on the data of

human colon crypts, where lineages are an example of the three-compartment model. We

start with 32 minimal control networks compatible with tissue stability, and zero in on only

three networks that are most compatible with the measurements.
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Chapter 1

Introduction

The stem cell lineage is a basic unit of hierarchical tissues and as such it has attracted the

attention of many researchers. The question of stem cell control is at the center of our

understanding of tissue functioning. Everyday, cells in hierarchical tissues perform their

specific functions and die to be replaced by new cell divisions. This process is stochastic in

nature and involves very large numbers of cellular events. The cells involved in the functioning

and renewal of an organ differ from each other by their division and apoptosis capabilities, as

well as the types of signals they send and the kinds of cell fate decisions they make. They

organize into distinct phylogenetic lineages. At the end of each lineage are the non-dividing,

terminally differentiated cells. Usually these cells, such as neurons, adipocytes or muscle

fibers, are highly specialized and endow tissues with their respective functions. The origin of

all differentiated cells can be traced back to their progenitors, the so-called stem cells (SCs)

[2, 3].

Successful maintenance and repair of cellular lineages critically depends on the fate decision

dynamics of SCs upon division. Long-term steady-state maintenance of lineages requires that

only 50% of all SCs progenies remain as SCs, and even slight shift in fate outcomes over time

1



can lead to lineage exhaustion or uncontrolled expansion. For example, in the hair follicle,

melanocyte SCs are more susceptible to exhaustion compared to epithelial SCs; therefore,

commonly hair graying occurs faster than hair loss [4–6]. On the other hand, uncontrolled

lineage expansion occurs upon myelodysplastic syndrome, a type of blood maligancy when

mutated hematopoietic SCs increase their self-renewal rate to more than 50%. Over time,

mutated SCs outcompete normal SCs, and accumulation of defective progeny cells leads to the

loss of blood function and results in acute myeloid leukemia, a life-threatening complication

of the myelodysplastic syndrome [7–9].

From these examples it is evident that tight control of SC fate decision dynamics is of

paramount importance. In principle, steady-state maintenance of SCs can be achieved with

three strategies [10], see figure 1.1:

a) Asymmetric mode, when each and every SC division produces one SC and one non-SC

progeny [11–16];

b) Symmetric mode, when 50% of all divisions produce two SCs and another 50% – two

non-SC progeny. In this case SC expansion is precisely balanced by SC exhaustion, and

the long-term net balance of SCs and their lineages remains unchanged [10, 17, 18];

c) Mixed mode, when both the asymmetric and two types of symmetric SC divisions

co-exist and are partitioned so that long-term net balance of the lineage output stays

constant. As in (b), stability critically depends on the ratio of symmetric divisions: SC

generating events should be precisely counterbalanced by SC exhaustion.

Assuming that individual cell division decisions are stochastic, at the tissue level, modes (b)

and (c) result in neutral clone competition phenomenon, when some SC clones expand, some

contract, while others stay constant [10, 19–22]. Theoretically, either one of the strategies

(a-c) can achieve lineage homeostasis. However, it remains unclear which strategies are more

2



Asymmetric
Division

Proliferation

Differentiation

Symmetric
Division

Figure 1.1: Symmetric and asymmetric SC divisions. In the asymmetric division model, a SC produces one
differentiated cell and one SC. In the symmetric division model, a SC produces two differentiated cells or two
SCs.

advantageous and under what specific circumstances, and what minimal control mechanisms

are required to operate them.

1.1 Symmetric Mode

In the simplest lineage, there are SCs capable of self-renewing and regenerating the tissue,

and differentiated cells which can perform the tissue’s specific functions. We call this the

two-compartment (stem and differentiated cells) system.

Differentiated cells are subject to relatively frequent cell death and need to be replenished

by SC divisions. These divisions can be of several types. Specifically, a SC can divide

symmetrically: a SC can differentiate by dividing into two differentiated cells, or it can

proliferate, by dividing into two stem cells. Differentiation/proliferation decisions are thought

to be under regulation coming from surrounding cells in the tissue. Various control loops

help maintain a roughly constant overall tissue size, and keep variations in the numbers of

stem and differentiated cells to a minimum.

3



We develop a general, analytical methodology for studying the behavior of two-compartment

system with nonlinear control. We assume that division, death, and differentiation/proliferat-

ion decisions are given by some (unspecified) functions of the numbers of stem and differenti-

ated cells, and provide tools to calculate the moments of the cell numbers, and importantly,

the means and the variances of the numbers of cells. Our approach differs from previous

theoretical literature on the subject because we do not make any prior assumptions on the

type and direction of control loops, apart from the fact that a stable equilibrium exists, which

biologically corresponds to the existence of homeostatic control.

The method developed here is algorithmically different, and simpler, than the linear noise

approximation [23]. We studied the connection between the two methods and proved that they

give the same result to all orders of accuracy. Therefore, our method could be considered a

short-cut compared with the Van Kampen power series expansion. We developed a computer

program which allows to apply our method to any two-compartment system with given control

functions. In other words, if we assign the rates of divisions, differentiation/proliferation,

and death to be some functions of the numbers of stem and differentiated cells, our tools

allow to calculate analytically the means and the variances of the stem and differentiated cell

numbers as functions of the system parameters, and to study stability and robustness of the

system. The details will be covered in Chapter 2.

1.2 Asymmetric Mode

We then extend the study of the two-compartment system to include asymmetric mode: each

and every SC division produces one SC and one differentiated cell. We focus on investigating

how symmetric and asymmetric divisions contribute to lineage homeostasis/turnover. We

provide analysis that allows to quantify the ability of these two types of divisions to main-

tain homeostasis. What SC division strategy is better at maintaining the nearly constant

4



population size? Quoting [10], “Asymmetric divisions are a key mechanism to ensure tissue

homeostasis. In normal stem and progenitor cells, asymmetric cell division balances prolif-

eration and self-renewal with cell-cycle exit and differentiation.” At the intuitive level, it

appears that asymmetric SC divisions should be associated with a more robust homeostatic

maintenance. It can be argued that purely asymmetric SC divisions do not change the total

number of SCs and therefore ensure the maintenance of a constant cell population, see e.g.

[12]. It turns out however that tight homeostatic maintenance of the lineage (including

differentiated cells) is not necessarily associated with purely asymmetric divisions. We show

that asymmetric divisions can either stabilize or destabilize the lineage system, depending on

the underlying control network. The details will be covered in Chapter 3.

We address the questions of SC division symmetry by means of mathematical modeling.

Our approach is based on that developed in Chapter 2, and it contributes to the large

theoretical literature on SC dynamics, see e.g. theoretical work of [24–27], and a review in

[28]. Some of the important areas of mathematical modeling in the context of SCs include

discrete and continuous models in the context of carcinogenesis [29–41]; modeling of SC

in the hematopoietic system [42–46]; deterministic modeling of two-, three-, and multi-

compartmental systems under various regulation functions [47–51]; stochastic modeling of

SC systems and the analysis of fluctuations [52–57].

1.3 Application

Similar analysis can be extended to three compartments in a set cell lineage: SCs, transit

amplifying cells (TACs) and differentiated cells (DCs). In the colon and intestinal crypts,

as well as other structures, these are linearly ordered with SC at the bottom, DC cells at

the top, and TAC in between. In order to maintain the number of each cell type, the rate of

removal of the DCs from the top is balanced by division and differentiation of the SCs and

5



TACs below.

Theoretically, each cell population may influence (in a negative or positive way) each of the

processes that happen in the system, which gives rise to a very large number of networks

of cellular control. [1] examined such controls from the (linear) stability point of view and

called the stable networks with the smallest possible number of loops the “minimal networks”.

In a three-compartment system, assume that the following five processes can be controlled:

divisions of SCs and TACs, differentiations of SCs and TACs, and death of DCs. It turns

out that in this case, the smallest number of control loops is three, and there are exactly 32

different three-loop control networks that are stable, see figures 4.2 and 4.3. These 32 stable

networks have different topologies and different signs of control loops (positive or negative).

For our application, we are interested in determining the most likely control network(s) that

govern the regulation of human colon crypt stem cell lineages. While the analysis of [1]

restricts the total number of possibilities to 20 (plus additional 12 networks with non-constant

DC death terms), the analysis did not indicate which of the 32 were most likely to describe

the regulation in a real biological system.

Our approach determined the most likely regulatory network(s), among the 32 three-

compartment stable networks, by using actual measurements of the number of SCs, TACs,

and DCs in biopsies of human colon crypts, and additional mathematical methodology. [58]

performed detailed measurements of the number of each of the three cell types (SCs, TACs,

DCs) in 49 colon crypts in human biopsy specimens. We examined each of the 32 possible

networks of [1] to determine whether it can produce the correct measured means and variances

of cell population numbers. In addition to this static information we have also used data on

the dynamics of injury recovery, as well as experimentally obtained intra-crypt correlations.

Using these criteria, a selection algorithm was devised that identified three of the 32 possible

control networks as most likely the ones corresponding to the regulation of homeostasis of

human colon crypts. The details will be covered in Chapter 4.
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This work demonstrates how theoretical analysis of control networks combined with only

static biological data can shed light onto the inner workings of stem cell lineages, in the

absence of direct experimental assessment of regulatory signaling mechanisms. The work

contributes to the growing literature on the theory of stem cells, which ranges from ODE

modeling [49, 51] to stochastic modeling [52–55, 57], and includes research of stem cells in

the context of feedback mechanisms [59–62], carcinogenesis [35–37, 40, 63–67], modeling

hematopoietic SC dynamics [41, 46, 68, 69], and cancer stem cells [40, 70–74].
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Chapter 2

Symmetric Division of Stem Cells

2.1 General approach: modeling non-constant total

cell populations

In a general setting, the total number of cells in the system is not a constant number. The

number of stem cells, I, and the number of differentiated cells, J , vary independently, giving

rise to a 2D Markov process. Let us suppose that in an infinitesimal time-interval, ∆t, the

following events can occur:

• With probability LI,J∆t a stem cell divides. Two types of division are possible.

– With probability LI,JPI,J∆t a stem cell differentiation takes place resulting in a

creation of two differentiated cells, (I, J)→ (I − 1, J + 2).

– With probability LI,J(1− PI,J)∆t a stem cell proliferation takes place resulting in

a creation of a stem cell, (I, J)→ (I + 1, J).

• With probability DI,J∆t, a differentiated cell dies, (I, J)→ (I, J − 1).
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Figure 2.1: A non-constant total population process. A schematics showing the cellular processes and
their probabilities. Circles represent stem cells (“S”) and differentiated cells (“D”). A stem cell divides with
probability LI,J , where I and J are the current populations of stem and differentiated cells respectively.
The division can be a differentiation event (with probability PI,J) or a proliferation event (with probability
1− PI,J). A differentiated cell dies with the rate DI,J .

All other events are assumed to happen with zero probability. The processes described

above are illustrated schematically in figure 2.1. Let us denote by ϕIJ(t) the probability to

have I stem cells and J differentiated cells at time t. The Kolmogorov forward equation

corresponding to the above processes is given by:

ϕ̇I,J = ϕI,J+1DI,J+1 + ϕI−1,JLI−1,J(1− PI−1,J) + ϕI+1,J−2LI+1,J−2PI+1,J−2

− ϕI,J(LI,J +DI,J). (2.1)

2.1.1 Previous results for a specific case

A specific form of this process was studied in [75], where we assumed

LI,J =
b

1 + h(I + J)
, PI,J =

r

1 + gJ
, DI,J = 1− LI,J , (2.2)
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and parameters h and g are small. In this case, the probabilities of divisions and deaths are

functions of the variable N = I + J , and the probability of differentiation is a function of the

number of differentiated cells, J , only. The resulting means and variances are listed below:

E[N ] =
1

2
+

2b− 1

h
, (2.3)

V ar[N ] =
1

4
+
b

h
, (2.4)

E[J ] =
2bg − 8h+ 7gh+ 20hr −

√
4b2g2 + h2(g − 4r)2 + 4bgh(4r − 5g)

8gh
,

V ar[J ] =
23

32
− b2

8h2
− b

8h
− r

4g
+

br

2gh
+

3r2

2g2

+
2gb+ 7gh− 12hr

32g2h2

√
4b2g2 + h2(g − 4r)2 + 4bgh(4r − 5g).

It is easier to interpret the results for the differentiated cells if we consider the behavior in

the limit of weak control, that is when h→ 0 or g → 0. We have

If h→ 0 : E[J ] =
2r − 1

g
+ 1 +O(h), V ar[J ] =

b

h
+
r

g
+

1

2
+O(h), (2.5)

If g → 0 : E[J ] =
2r − 1

g
+

3

2
+O(g), V ar[J ] =

3r

g
− 3

4
+O(g). (2.6)

In the following we will develop a general method of calculating the means and the variances

of non-constant population systems. It will be demonstrated how the above results can be

obtained in a way much simpler than that of [75].
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2.1.2 The general 2D model of control

Let us define the steady state of the system, (i0, j0), by the the following equations:

Li0,j0 = Di0,j0 ≡ L0, Pi0,j0 =
1

2
. (2.7)

Similar to the previous section, we will use lower-case letters to measure the difference between

the current cell numbers and their equilibrium numbers: i = I − i0, j = J − j0.

Define ϕ̃ such that ϕ̃i,j = ϕI,J , and Z̃i,j = ZI,J , where ZI,J denotes any of the functions

LI,J , PI,J , DI,J . Then equation (2.1) can be expressed as:

˙̃ϕi,j = ϕ̃i,j+1D̃i,j+1 + ϕ̃i−1,jL̃i−1,j(1− P̃i−1,j) + ϕ̃i+1,j−2L̃i+1,j−2P̃i+1,j−2

− ϕ̃i,j(L̃i,j + D̃i,j). (2.8)

Let us use the following short-hand notation for the moments:

xαβ ≡ E[iαjβ] :=
∑
i,j

ϕ̃i,ji
αjβ. (2.9)

Then, we obtain:

E[I] ≡
∑
I,J

I · ϕI,J =
∑
i,j

(i+ i0)ϕ̃i,j = x10 + i0; (2.10)

E[I2] ≡
∑
I,J

I2 · ϕI,J =
∑
i,j

(i+ i0)2ϕ̃i,j = x20 + 2i0x10 + i20; (2.11)

V ar[I] = E[I2]− E[I]2 = x20 − x2
10. (2.12)
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Similarily, we have:

E[J ] = x01 + j0; V ar[J ] = x02 − x2
01. (2.13)

Our goal now is to find the quantities x01, x10, x02, x20, which are essential for calculating the

expectation and variance for I and J . In order to derive equations for these quantities, we

multiply equation (2.8) by iαjβ with α+ β ≤ 2, and perform the summation in i and j in the

quasi-stationary state. Each of the resulting 5 moment equations involve higher moments,

which means that the number of the unknowns is larger than the number of equations. More

precisely, these 5 equations involve 20 unknown variables, xαβ, with 1 ≤ α + β ≤ 5. In order

to proceed, we need to implement a truncation methods to close the system. In other words,

we need to derive the missing equations for the higher moments, xαβ, 3 ≤ α + β ≤ 5.

As in the 1D case, there are at least 3 different truncation methods that can be readily

implemented to solve this system:

• Simple truncation method assumes that all the higher moments are 0, that is,

xαβ = 0, for α+ β ≥ 3. This method requires the least amount of calculations, because

by assuming that all the higher moments are 0, we get a 5×5 linear system of equations.

• Central moment truncation method assumes that the central moments are equal

to 0 for higher orders, that is, E[(i− E[i])α(j − E[j])β] = 0, where α + β ≥ 3.

• Cumulant truncation method assumes that the higher order multivariate cumulants

are equal to 0, that is, κα,β = 0, where α + β ≥ 3.

The three methods are compared and contrasted in Appendix C.

In order to solve the resulting system of algebraic equations, we use the approximation of

weak dependencies of the control functions on the cell numbers. Let us suppose that we
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can represent the functions LI,J , DI,J , and PI,J near the equilibrium as LI,J = L(εI, εJ),

PI,J = P (εI, εJ), and DI,J = D(εI, εJ), where the parameter ε� 1 defines the weakness of

the dependence. It is convenient to denote x = εI, y = εJ . Then we can expand the functions

LI,J , PI,J and DI,J around the steady state in Taylor series:

L̃i,j ≡ LI,J = L(εi0 + ε(I − i0), εj0 + ε(J − j0)) = L0 + lxi+ lyj +

1

2
(lxxi

2 + lyyj
2 + 2lxyij) + · · · , (2.14)

D̃i,j ≡ DI,J = L0 + dxi+ dyj +
1

2
(dxxi

2 + dyyj
2 + 2dxyij) + · · · , (2.15)

P̃i,j ≡ PI,J =
1

2
+ pxi+ pyj +

1

2
(pxxi

2 + pyyj
2 + 2pxyij) + · · · , (2.16)

where the subscripts denote the partial derivatives of the functions with respect to its

argument, evaluated at the equilibrium, (I, J) = (i0, j0), and I = i0 + i, J = j0 + j. We

further adopt the following convention: lx = Lxε, lxx = Lxxε
2, etc. In this description, the

upper case constants Lx = O(1), Lxx = O(1), etc are all of order one, and all the derivatives

expressed by lower-case letters contain a power of ε. In particular, the first derivatives lx, ly,

px, etc contain a factor ε, and all the second derivatives lxx, lxy, lyy, pxx, etc contain a factor

ε2. In Appendix C we demonstrate that all three truncation methods give the same result in

the highest order of expansion in terms of ε.

2.1.3 Results for the cell number means and variances

Here we present the results for the means and the variances of the cell numbers. Let use define

the pair (i0, j0) by equation (2.7), and derive the equations for the moments (the summation

equations) by expanding the probability functions around this point, see Appendix A. By

the simple truncation method we set xαβ = 0 for all α + β > 2 and obtain the following five
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equations for the first and second moments:

(1, 0) L0Pxx10 + L0Pyx01 + εLxPxx20 + ε(LyPx + LxPy)x11

+εLyPyx02 = 0, (2.17)

(0, 1) (−Dx + Lx + 2L0Px)x10 + (−Dy + Ly + 2L0Py)x01 + 2εLxPxx20

+2ε(LyPx + LxPy)x11 + 2εLyPyx02 = 0, (2.18)

(2, 0) L0 + εLxx10 + εLyx01 − 4εL0Pxx20 − 4εL0Pyx11 = 0, (2.19)

(1, 1) L0 + ε(Lx + 2L0Px)x10 + ε(Ly + 2L0Py)x01

+ε(Dx − Lx − 2L0Px + 2εLxPx)x20 + ε(Dy − Ly + 2L0(Px − Py)

+2ε(LyPx + LxPy))x11 + 2ε(L0Py + εLyPy)x02 = 0, (2.20)

(0, 2) 3L0 + ε(Dx + 2Lx + 4L0Px)x10 + ε(Dy + 2Ly + 4L0Py)x01 + 4ε2LxPxx20

+2ε(−Dx + Lx + 2L0Px + 2ε(LyPx + LxPy))x11

+2ε(−Dy + Ly + 2L0Py + 2εLyPy)x02 = 0. (2.21)
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Solving these to the highest order terms in ε and using (2.10), (2.12), and (2.13), we obtain

the following result:

E[I] = i0 +O(ε0), (2.22)

E[J ] = j0 +O(ε0), (2.23)

V ar[I] =
q2
y + 8L2

0p
2
y + 2L0∆

4B∆
+O(ε0), (2.24)

V ar[J ] =
q2
x + 8L2

0p
2
x + 6L0∆

4B∆
+O(ε0), (2.25)

where we used the following notations:

qx = lx − dx, qy = ly − dy,

∆ = pyqx − pxqy, B = 2L0(px − py)− qy. (2.26)

Appendix B demonstrates the application of our methods to system (2.2). As discussed, all

three methods yield the same result in the highest order of expansion, and the results coincide

with the ones previously obtained. The correction terms are different in different methods.

Quantities ∆ and B, equation (2.26), are key for determining the stability properties of

the stem cell lineage. It was shown in [1] that conditions ∆ > 0, B > 0 are necessary and

sufficient for stability. Furthermore, equations (2.24) and (2.25) relate these quantities with

the size of variance experienced by the cells in the stem and differentiated compartment.

Expressions (2.26) define a subset in the four-dimensional parameter space, (qx, qy, px, py),

that is compatible with stability. Minimizing the variance in expressions (2.24, 2.25) restricts

this subset further to identify the most general parameter region that is consistent with

stable homeostasis. Note that only local properties (the derivatives at the steady state) of
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the control functions are needed to characterize homeostasis.

2.2 Numerical Simulations

In this section, we will demonstrate that the formulas given by equations (2.22-2.25) agree

with the results from numerical simulations via two examples on two different types of control.

Throughout this section, let us denote x = εI, y = εJ, q̂x = Lx −Dx, q̂y = Ly −Dy. Thus,

q̂x and q̂y are the partial derivatives of the net growth rate, L −D, with respect to x and

y. To clarify the biological meaning of these parameters, consider the quantity Ly. If it is

nonzero, it means that the probability of stem cell division is controlled by the differentiated

cell population. Moreover, if Ly < 0, this means that the control is negative (the more

differentiated cells in the system, the less likely the stem cells are to divide); Ly > 0 means

the existence of a positive control loop. The other three quantities can be interpreted in a

similar manner. Below are two examples.

Negative control of differentiation and division. Consider the following functional

forms of negatively controlled rates of division and differentiation:

LI,J = L(εI, εJ) = e−εI , PI,J = P (εI, εJ) = e−εJ ,

DI,J = D(εI, εJ) = 1− LI,J . (2.27)

We therefore have Px = 0, Py = −e−εJ < 0, q̂x = −2e−εI < 0, q̂y = 0. The steady state of

the system can be obtained by solving P (x, y) = 1
2
, and L(x, y) = D(x, y):

i0 = j0 =
log 2

ε
.
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Figure 2.2: A numerical simulation of the system in (2.27) with ε = 0.01 ran for 105 time steps. (‘I’) stands
for the stem cell population, and (‘J’) stands for the differentiated cell population.

By equations (2.22-2.25), we can obtain the means and the variances of the system:

E[I] = i0, (2.28)

E[J ] = j0, (2.29)

V ar[I] =
8L2

0P
2
y + 2L0Py q̂x

−8L0P 2
y q̂x

· 1

ε
, (2.30)

V ar[J ] =
q̂2
x + 6L0Py q̂x
−8L0P 2

y q̂x
· 1

ε
, (2.31)

where all the partial derivatives are evaluated at (i0, j0), and L0 = L(εi0, εj0) = 1/2.

For each value of ε, we ran numerical simulations starting at the expected values of the cell

population given above, and finishing either when the number of time-steps reached 2 · 105,

or if any of the cell types went extinct. We then computed the means and the variances of

the cell population over the time-course of each simulation. A typical run for a particular

value of ε is presented in figure 2.2.

From figure 2.3, we observe that the theoretical results for the means and the variances show
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Figure 2.3: The behavior of the means and the variances of the cell population described by equation
(2.27). The analytical results given by equations (2.28-2.31) (X’s) are compared with the values obtained
by numerical simulations (stars), for different values of ε. (‘T’) stands for the theoretical results, and (‘N’)
stands for the numerical results.

a good agreement with the numerical results for smaller values of ε, which is what we expect.

Also, the means and the variances of the cell population decrease as the value of ε increases,

which is already predicted by the formulas given by equations (2.28-2.31).

Positive control of differentiation and negative regulation of division. The second

example is given by equations:

LI,J = L(εI, εJ) =
1

1 + εJ
, PI,J = P (εI, εJ) = 0.7 · tanh(εI),

DI,J = D(εI, εJ) = 1− L(εI, εJ). (2.32)

A typical stochastic simulation of system (2.32) for a particular value of ε is presented in

figure 2.4.

To calculate the variances, we calculate Px = 0.7 · sech2(εI) > 0, Py = 0, q̂x = 0, q̂y =

−2(1 + εJ)−2 < 0. The steady state of the system can be obtained by solving P (x, y) = 1
2
,
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Figure 2.4: A typical numerical simulation of example (2.32) with ε = 10−4 and 3 · 106 time steps. (‘I’)
stands for the stem cell population, and (‘J’) stands for the differentiated cell population.

10
−4

10
−2

10
0

10
−2

10
0

10
2

10
4

epsilon

E
(I

)

2*106 time steps

 

 
T
N

10
−4

10
−2

10
0

10
0

10
1

10
2

10
3

epsilon

E
(J

)

2*106 time steps

 

 
T
N

10
−4

10
−2

10
0

10
−2

10
0

10
2

10
4

epsilon

V
ar

(I
)

2*106 time steps

 

 
T
N

10
−4

10
−2

10
0

10
0

10
1

10
2

10
3

epsilon

V
ar

(J
)

2*106 time steps

 

 
T
N

Figure 2.5: Same as in figure 2.3, except the means and variances are calculated of system (2.32).
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Figure 2.6: The behavior of the relative error of the means and the variances for different values of ε. We

used the relative error = |theoretical result−numerical result|
numerical result × 100%.

and L(x, y) = D(x, y):

i0 =
log 6

2ε
, j0 =

1

ε
.

By equations (2.22-2.25), we can obtain the means and the variances of the system:

E[I] = i0, (2.33)

E[J ] = j0, (2.34)

V ar[I] =
q̂2
y + 2L0∆̂

4B̂∆̂
· 1

ε
, (2.35)

V ar[J ] =
8L2

0P
2
x + 6L0∆̂

4B̂∆̂
· 1

ε
, (2.36)

where all the partial derivatives are evaluated at (i0, j0), and L0 = 1/2, ∆̂ = Py q̂x − Pxq̂y =

−Pxq̂y, B̂ = 2L0(Px − Py)− q̂y = 2L0Px − q̂y.

We used the same numerical scheme as in the previous example with 2 · 106 time steps. As

observed in figure 2.5, the theoretical results are in good agreement with the numerical results
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for smaller values of ε, which is consistent with the previous example. The means and the

variances of the cell population decrease as the value of ε increases, which is foretold by

equations (2.33-2.36). From figure 2.6, we can see the overall pattern of the relative error:

the smaller the value of ε, the smaller the relative error, which is what we expect.

2.3 Connection with the power series expansion

method of Van Kampen

In this section, we will show that the simple truncation method described here and the

well-known power series expansion method of Van Kampen [23] give exactly the same results,

up to any order of expansion. First, we demonsrate how the Van Kampen method can be

used for our system of stem and differentiated cells, and then argue that the two methods

give the same results.

2.3.1 The method of Van Kampen: review and notations

Let us introduce the operators Ek
I and Ek

J , such that

Ek
I [fI,J ] = fI+k,J , Ek

J [fI,J ] = fI,J+k.

Then equation (2.1) can be rewritten more conveniently,

ϕ̇I,J = (E+1
J −1)[ϕI,JDI,J ]+(E−1

I −1)[ϕI,JLI,J(1−PI,J)]+(E+1
I E−2

J −1)[ϕI,JLI,JPI,J ]. (2.37)

Equation (2.37) is nonlinear, and a general solution cannot be found. Therefore, we will

use approximate methods to solve it. Let us assume that the functions LI,J , PI,J , and DI,J
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depend weakly on their arguments:

LI,J = L(εI, εJ), PI,J = P(εI, εJ), DI,J = D(εI, εJ),

where ε � 1. We will use this parameter to perform the Van Kampen master equation

expansion, in order to formulate the linear noise approximation [76]. We expect that in the

long run, the probability distribution, ϕI,J , will have a peak somewhere around the (large)

values

i0 =
φI
ε
, j0 =

φJ
ε
,

with φI ∼ ε0, φJ ∼ ε0. Let us suppose that the width of those peaks scales with 1/ε1/2. This

is expressed in the following change of variables,

I =
φI(t)

ε
+
ξ(t)

ε1/2
, J =

φJ(t)

ε
+
η(t)

ε1/2
. (2.38)

This change of variables will be used in the master equation (2.37). First of all, the probability

function ϕI,J(t) is now a function of ξ and η:

ϕI,J(t) = Π(ξ, η; t).

Its time-derivative can be written as follows,

dϕI,J(t)

dt
=
∂Π

∂t
+
∂Π

∂ξ
ξ̇ +

∂Π

∂η
η̇.

Because the left hand sides of expressions (2.38) are time-independent, we have ξ̇ = −φ̇I/ε1/2,

η̇ = −φ̇J/ε1/2. Also, we will introduce a slow time-scale,

τ = εt
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(the necessity for this rescaling will become apparent once all the terms at different orders of

ε are collected in the master equation). Therefore, we have for the time-derivative of ϕI,J :

ϕ̇I,J = ε
∂Π

∂τ
− ε1/2

(
∂Π

∂ξ

∂φI
∂τ

+
∂Π

∂η

∂φJ
∂τ

)
. (2.39)

Next, we evaluate the shift operators. A jump of size k in the value of I is reflected by the

jump of size kε1/2 in the value of ξ:

I + k =
φI(t)

ε
+
ξ(t)

ε1/2
+ k =

1

ε

(
φI + ε1/2(ξ + kε1/2)

)
.

Similar arguments hold for the values of J . This allows us to express the shift operators Ek
I

and Ek
J in terms of a (Taylor) series of differential operators,

Ek
I = 1 + kε1/2

∂

∂ξ
+
k2ε

2

∂2

∂ξ2
+ . . . , (2.40)

and similarly for the shift in the J-direction.

Finally, we use ansatz (2.38) to expand the functions LI,J , PI,J , and DI,J . We have

L(εI, εJ) = L(φI + ε1/2ξ, φJ + ε1/2η).

It is convenient to denote x = εI, y = εJ , such that LI,J = L(x, y), and denote by the

subscripts the derivatives of this function with respect to its argument, evaluated at (φI , φJ):

Lx = ∂L/∂x, Ly = ∂L/∂y, etc. We have

L(φI + ε1/2ξ, φJ + ε1/2η) = L(φI , φJ) + ε1/2ξLx + ε1/2ηLy +
ε

2
ξ2Lxx +

ε

2
η2Lyy + εξηLxy + . . . .

Similarly, we expand the functions P and D. These expressions, together with the operator

expansions (2.40) and the time-derivative (2.39), are substituted into the master equation
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(2.37). Then the terms in different orders of ε are equated. At order ε1/2 we have

∂Π

∂ξ

dφI
dτ

+
∂Π

∂η

dφJ
dτ

=
∂Π

∂ξ
L(φI , φJ)(1− 2P(φI , φJ)) +

∂Π

∂η
(2L(φI , φJ)P(φI , φJ)−D(φI , φJ)).

This equation gives rise to two “macroscopic laws”,

dφI
dτ

= L(φI , φJ)(1− 2P(φI , φJ)),
dφJ
dτ

= 2L(φI , φJ)P(φI , φJ)−D(φI , φJ). (2.41)

or in steady state simply

P(φI , φJ) = 1/2, D(φI , φJ) = L(φI , φJ) ≡ L0. (2.42)

Let us introduce the notations

q̃x =
Lx −Dx

L0

=
qx
εL0

, q̃y =
Ly −Dy

L0

=
qy
εL0

;

where qx, qy are defined in section 2.1.3. At order ε of the master equation expansion, after

rescaling time once more by

T = L0τ = L0εt,

we obtain the following linear Fokker-Planck equation:

∂Π

∂T
= −(q̃y + 2Py)(ηΠ)η − (q̃x + 2Px)(ξΠ)η

+ 2Px(ξΠ)ξ + 2Py(ηΠ)ξ +
1

2
(3Πηη − 2Πξη + Πξξ). (2.43)

This is the linear noise approximation of Van Kampen [76]. The validity of this approximation

has been studied extensively, see e.g. [77, 78]. Here we mention that the relative size of

typical fluctuations scales with ε1/2, and thus for sufficiently small values of ε, the system
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will remain near the equilibrium and stochastic extinction is an unlikely event, at least for a

time-duration which grows with 1/ε. For a rigorous study of extinction times of birth-death

processes see e.g. [79, 80].

From equation (2.43) we can obtain the equations for the first and second moments in a

standard way:

d〈ξ〉
dT

= −2(Px〈ξ〉+ Py〈η〉), (2.44)

d〈η〉
dT

= (q̃y + 2Py)〈η〉+ (q̃x + 2Px)〈ξ〉, (2.45)

d〈ξ2〉
dT

= −4(Px〈ξ2〉+ Py〈ξη〉) + 1, (2.46)

d〈η2〉
dT

= 2(q̃y + 2Py)〈η2〉+ 2(q̃x + 2Px)〈ξη〉+ 3, (2.47)

d〈ξη〉
dT

= (q̃y + 2Py)〈ξη〉+ (q̃x + 2Px)〈ξ2〉 − 2(Px〈ξη〉+ Py〈η2〉)− 1. (2.48)

As we will show in the next section, the above moment equations are exactly the same as the

summation equations (2.17)-(2.21) if we only keep the leading order terms, and hence Van

Kampen method and simple truncation method give the same results to the leading order,

see (2.22)-(2.25).

2.3.2 Comparison of the simple truncation method and the Van

Kampen method

Before we illustrate the equivalence of the two methods, we state for convenience some

fundamental facts that we will use later:

• Taylor series expansion. We know the Taylor expansion of f(j) = jn center at j = a is:

jn = an + nan−1(j − a) + ...+ na(j − a)n−1 + (j − a)n. Notice that the second to the
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last term is a product of the jump size a and the derivative of the last term (j − a)n.

• Integration by parts. When we compute
∫
ηn (·)η dη, integration by parts will give

ηn (·)−
∫
n ηn−1 (·) dη.

The leading order. By using the ansatz (2.38) in the previous section, we have in steady

states:

xαβ =
∑
I,J

ϕI,J(I − i0)α(J − j0)β =
〈ξαηβ〉
ε(α+β)/2

; (2.49)

where xαβ is defined in (2.9).

By using (2.49), we can rewrite the summation equations from section 2.1.3 in terms of

〈ξαηβ〉. It turns out that they are the same as moment equations (2.44-2.48) if we only keep

the leading order terms. Since the moment equations agree to the leading order, the two

methods give the same results to the leading order.

The next order. Next, we investigate if the two methods provide the same result in the

next order of accuracy. To this end, we will investigate the structure of a moment equation

in depth from both methods by looking at a particular term. For illustration, we will analyze

the first term in equation (2.47) and its counterpart in equation (2.21) from section 2.1.3:

d〈η2〉
dT

= 2(q̃y + 2Py)〈η2〉+ ... (2.50)
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dx02

dt
= 2ε(−Dy + Ly + 2L0Py)x02 + ... (2.51)

If we trace back the terms which contribute to 2(q̃y + 2Py)〈η2〉 in (2.50), we will have the

following diagram:

2(q̃y + 2Py)〈η2〉

−(q̃y + 2Py)(ηΠ)η

−2ε1/2 ∂
∂η

(ΠP(φI , φJ)ε1/2ηLy)−2ε1/2 ∂
∂η

(ΠL(φI , φJ)ε1/2ηPy)ε1/2 ∂
∂η

(Πε1/2ηDy)

∫∫
η2(·)dηdξ

Let us focus on the third term at the first level, we have the following observation: −2ε1/2 ∂
∂η

is

the second term of Taylor series of E−2
J ; P(φI , φJ) is the first term of PI,J in Taylor expansion;

ε1/2ηLy is the third term of Taylor series of LI,J .

To draw comparison, we will also trace back the terms which contribute to 2ε(−Dy + Ly +

2L0Py)x02 in (2.51). We obtain the following picture:

2ε(−Dy + Ly + 2L0Py)x02

∑
i,j ϕ̃i+1,j−2

1
2
Lyε(j − 2)4(j − 2)

∑
i,j ϕ̃i+1,j−2L0Pyε(j − 2)4(j − 2)

∑
i,j ϕ̃i,j+1Dyε(j + 1)[−2(j + 1)]

Let us look at the corresponding counterpart at the first level. Observe that 1/2 is the

first term of Taylor expansion of Pi+1,j−2; Lyε(j − 2) is the third term of Li+1,j−2 in Taylor
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expansion; 4(j − 2) is the second to the last term of Taylor expansion of j2 centered at j = 2.

It is not hard to see that the term 4(j − 2) “captures” the jump size of E−2
J ; namely 2, and

the derivative of η2 (obtained from integration by parts in the first diagram); moreover, the

differential operator − ∂
∂η

will be offset after integration by parts. Hence, the two terms are

exactly the same. In fact, it can be shown that any two corresponding terms at the first level

(from both diagrams) are the same by similar analysis, which are due to the fundamental

properties mentioned at the beginning of this section. This methodology is essentially carried

over in any two corresponding terms in a homologous pair of moment equations.

To see whether the two methods agree to the next order corrections, we need to assume γ

is sufficiently large, where γ is the constant for which xαβ = 0 for α + β ≥ γ in the simple

truncation method. It turns out that the moment equations that are used to compute the

next order correction are the same for the two methods if we set γ = 5, see Appendix E for

details.

Generalization to higher orders of accuracy. By the methodology presented in the

previous section, we can deduce that the two methods will produce the same moment equations

for computing any order corrections if we set γ sufficiently large, hence the two methods give

exactly the same results (up to any order) to the general two-step model as stated at the

beginning. However, as the value of γ increases, the computation of moment equations will

become more and more tedious. So, there is a trade off between efficiency and accuracy.

Under the same value of γ, cumulant truncation method is the most accurate among the three

truncation methods presented in section 2.1.2. To see this, set γ = 3 and look at the leading

order of the terms xαβ for α + β = 4. From Appendix D, we see that the leading order is

O(1
ε
) and O( 1

ε2
) from central moment truncation and cumulant closure method, respectively.

On the other hand, we can obtain the leading order of 〈ξαηβ〉 is O(1) for α+ β = 4 from Van

Kampen method, as shown in E of appendix. By (2.49), the leading order of xαβ is O( 1
ε2

)
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for α + β = 4. Therefore, cumulant truncation method is the most accurate though it’s the

most expensive in terms of computation, which verdicts the trade off between efficiency and

accuracy.

In conclusion, simple truncation method produces the same results as Van Kampen method

up to any order by setting γ sufficiently large. The advantage of simple truncation method is

the straightforward calculations that it involves. To see this, we can compare the steps used

to obtain the moment/summation equations in each method. For simple truncation method,

we only use Taylor expansion on the probability functions of the master equation. On the

other hand, Van Kampen method uses integration besides the master equation expansion in

Taylor series. Our method could be regarded as a short-cut compared to the Van Kampen

derivation. To see this, recall that we multiplied the equation (2.43) by ξαηβ, and then

integrated to obtain the moment equations given by (2.44-2.48), for α+ β ≤ 2. This extra

step requires more computational work. Clearly, there will be more terms to integrate in

order to compute the moment equations for the next order corrections, since we extend the

equation (2.43) to order O(ε1/2), see appendix E.1.
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Chapter 3

Asymmetric Division of Stem Cells

In this chapter, we address the questions of SC division symmetry by means of mathematical

modeling. Our approach is based on that developed in Chapter 2. The focus is to investigate

how different division types contribute to lineage homeostasis/turnover. We provide analysis

that allows to quantify the ability of two types of divisions (symmetric and asymmetric) to

maintain homeostasis. Intuitively, Asymmetric SC division appears to be more associated

with a robust homeostatic maintenance. It can be argued that purely asymmetric SC divisions

do not change the total number of SCs and therefore ensure the maintenance of a constant

cell population, see e.g. [12]. However, in this chapter we show that it is not necessarily the

case: asymmetric divisions can either stabilize or destabilize the lineage system, depending

on the underlying control network. In the remaining chapter, the results of our findings are

stated at first, followed by the methodology.
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3.1 Results

We study a stochastic model with various control loops that distinct cell populations impose

on the prevalence of different processes. For example, consider the simplest lineage, which

only consists of SCs and one type of daughter cells. We postulate that such a system consists

of two compartments, that of SCs and the differentiated cells. We further assume that the

rate of SC divisions, and also the probability of differentiation/proliferation (see figure 1.1),

are controlled by chemical factors (such as morphogenetic growth factors) secreted by cells

of different compartments, as well as exogenous factors coming from outside of the lineage

(such as distinct niche cells). In figure 3.1, the endogenous controls are illustrated by using

a simple example of symmetric divisions of SCs. An individual decision tree of a SCs is

depicted schematically. It consists of the decision to undergo a division, followed by the

decision about the nature of this division (that is, whether daughter cells will maintain SC

fate or undergo differentiation). In the example in figure 3.1, the probability to divide is

limited by the population of daughter cells. If there are too many of them, this will reduce

the chances of further divisions. In the same system, the probability of differentiation is

influenced by the number of SCs. The more SCs there are, the more likely they will be to

differentiate, thus reducing the total SC number. We refer to this system (which in the case

of figure 3.1 consists of only two controls) as a control network. In the above scenario, one

control is positive, and the other is negative.

It is possible to construct many other control networks that consist of different numbers of

positive and/or negative controls. [1] shows that the control network in figure 3.1 (along with

many other networks) is compatible with stable maintenance of a constant cell population size.

The resulting system of cells is characterized by a stochastic behavior, where the numbers of

stem and daughter cells fluctuate around certain mean values. The size of these fluctuations

is an important characteristic of a biological system. If these fluctuations are too large

(compared to the means) then the population is running a danger of going extinct, which will
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Stem Cells Differentiated Cells

Division

Figure 3.1: An example of endogenous control loops regulating SC decisions with the all symmetric division
mode. Division events are negatively regulated by daughter cells and differentiation decisions are positively
regulated by SCs.

be a catastrophic outcome for a biological system. The smaller the fluctuations, the more

robust is the system and the tighter is homeostatic maintenance. We are interested in the

general question of design: what features of control improve the robustness of the system in

the sense described above.

In figure 3.1, only symmetric divisions are considered. At the next level of complexity we also

consider the possibility of asymmetric divisions. Thus, we can assume that SCs can divide

both symmetrically and asymmetrically, with a given relative probability. Here we study

how the balance between symmetric and asymmetric SC divisions can change the robustness

properties of the lineage. What percentage of divisions should be symmetric to minimize

fluctuations for tighter homeostatic control?

Qualitative intuitive reasoning suggests that asymmetric divisions must be associated with
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the highest level of stability of SC lineages. In the case of asymmetric divisions, the number

of SCs does not change, because every time a SC divides, it replaces itself with exactly

one SC, and also produces a differentiated cell. Therefore, it might seem that under fully

asymmetric divisions, as long as the production of differentiated cells is balanced on average

by their deaths, the system will be stable. It turns out however (see the Methods section)

that depending on the exact control loops acting in the system of SCs and non-SC daughter

cells, asymmetric divisions might either increase or decrease lineage size fluctuations. This is

what we demonstrate next.

3.1.1 The role of division symmetry in stable homeostasis: the

case of minimal control systems

Let us suppose that the lineage consists of two types of cells (two compartments), SCs and

daughter (differentiated) cells. Let us denote by I and J the current number of stem and

daughter cells, respectively. The processes of division (including differentiation/proliferation

decisions) and death are dictated by probabilities and rates defined in table 3.1(a). Next, we

need to quantify the control loops that exist in a given system.

We assume that LI,J = L(εI, εJ), DI,J = D(εI, εJ), etc, where ε measures the strength of

dependence of the probabilities and rates on the cell population numbers. It is convenient to

introduce the continuous variables x = εI, y = εJ . To define the control network, we consider

the partial derivatives of the rates and probabilities with respect to x and y, evaluated at the

equilibrium. We will use the subscripts x and y to denote such partial derivatives, see table

3.1(b). A two-compartment system is characterized by the following four derivatives: px, py,

qx, and qy, which we call controls. To clarify the biological meaning of these parameters,

consider the quantity py. If it is nonzero, it means that the probability of SC differentiation

is controlled by the differentiated cell population. Moreover, if py < 0, this means that the
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Table 3.1: Notations used in the models

(a) Processes

LI,J Division rate of SCs
SI,J Probability that the division is symmetric
PI,J Probability that a symmetric division is a differentiation event
DI,J Death rate of differentiated cells

(b) Controls

qx (qy) Partial derivative of LI,J −DI,J with respect to the argument
I (J), evaluated at the equilibrium

px (py) Partial derivative of PI,J with respect to the argument
I (J), evaluated at the equilibrium

(a) Definitions of rates and probabilities. Subscripts denote functional dependence on the cell populations I
and J . (b) The four partial derivatives evaluated at the equilibrium comprise the four controls in a
two-compartment system.

control is negative (the more differentiated cells in the system, the less likely the SCs are

to differentiate); py > 0 means the existence of a positive control loop. The other three

quantities can be interpreted in a similar manner.

It was shown in [1] that at least two of the four controls must be nonzero in order for the

system to have a stable homeostatic equilibrium. Minimal control systems are defined as

models with a restricted number of nonzero controls, and are presented in figure 3.2. In the

schematic, round cells and star-like cells represent stem and differentiated cells respectively.

The first horizontal arrow in each diagram indicates the division decision, and the second

horizontal arrow the differentiation decision. Arch-like positive and negative arrows depict

the dependence of the two decisions on each population. For example, if a negative arrow

originates at SCs and points at the divisions decision, this means that the divisions are

negatively controlled by the SC numbers, qx < 0 (see diagram #1 in figure 3.2). It was shown

in [1] that with two compartments, there are two distinct minimal control systems with two

controls, and three systems with three controls (see also Appendix F).

The first two models (#1 and #2) in figure 3.2 are the only two systems that can be stable in
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𝑑𝑉𝑎𝑟[𝐼]

𝑑𝑆
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𝑑𝑆
= 0, 

𝑑𝑉𝑎𝑟[𝐽]
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> 0

#1 S
div diff

D

#2 S
div diff

D

#3 S
div diff

D

#4 S
div diff

D

#5 S
div diff

D

Figure 3.2: Classification of minimal control systems in two-compartment models. Symbol “div” refers to
the rate of symmetric stem cell divisions (both proliferations and differentiations). Symbol “diff” refers to the
probability of differentiation; the probability of proliferation is 1-Prob(diff). Models #1–2 are the two-control
systems. Models #3–5 are three-control systems. Division and differentiation decisions can be positively or
negatively controlled by the population sizes of SCs or differentiated cells, as indicated by arch-like arrows
that originate at the relevant cell population and point toward the process that this population controls. The
rightmost column indicates how cell number variances depend on the symmetry of divisions, as obtained
from the analysis of section 3.2.3.

the presence of no more than two controls. The other three models (#3–5 in figure 3.2) are

the only three irreducible three-control systems, that is, they cannot be reduced to models

#1 or #2 by setting one of the controls to zero. While from the point of view of stability, all

five of the networks are possible, further biological considerations are required to identify

which control network is relevant for a particular tissue. Some of those considerations may

include the matching of various moments of compartment sizes with the observations, robust

recovery dynamics, etc.

Next we demonstrate how by varying the proportion of symmetric vs asymmetric SC divisions,

one can change homeostatic properties of the system in the context of models #1–5. We will

focus on the analysis of variance of the cell populations. A relatively small variance indicates

stable, robust homeostasis. A large variance increases the probability of extreme events, such

as extinction or growing out of control. By using stochastic analysis (see section 3.2.2) we

can calculate the variance of the number of SCs, V ar[I], and the variance in the number of
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differentiated cells, V ar[J ], as functions of the parameters. In particular, it is possible to

determine how these quantities depend on the four controls (Table 3.1(b)) and the frequency

of symmetric SC divisions, S. It turns out that in two out of five control systems in figure

3.2, the variance increases with S. Namely, in systems #2 and #3, V ar[J ] increases with

S, and in addition, in #3 V ar[I] also increases with S (in #2, the variance of SC numbers

is independent of the symmetry), see equations (3.31) and (3.32). Therefore, in these two

control systems, purely asymmetric divisions are optimal from the viewpoint of minimizing

fluctuations in cell numbers at homeostasis.

The opposite result is observed for systems #1, #4, and #5. There, purely symmetric divisions

turn out to be the optimal choice. In those three systems, the variance of differentiated

cell numbers is a decreasing function of S, and in addition, in #4, the variance of SC

numbers is also a decreasing function of S, see equations (3.30), (3.33), and (3.34). In these

three qualitatively different control networks, symmetric divisions are associated with the

most stable homeostatic state. Next, we demonstrate this theoretical finding by numerical

simulations.

3.1.2 Application to two control systems

The results reported in the previous section hold for any functional forms of controls. Here

we illustrate these findings by considering two specific examples. Some technical details about

the simulation setup are provided in Appendix I. Recall that ε measures the strength of

control of the various processes by the cell population, and x = εI, y = εJ ; we further denote

∆ = qxpy − qypx, and B = 2L∗S∗(px − py)− qy, where the partial derivatives with respect to

x and y are defined in table 3.1(b) and the star indicates that the quantity is evaluated at

the equilibrium. The quantities ∆ and B appear in the expressions for the variances (see

section 3.2.2). Throughout this section, we will assume SI,J takes some constant value c,
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where 0 < c ≤ 1. Although SI,J is not necessarily constant, its derivatives do not enter the

stability conditions or expressions for population variances (as explained in section 3.2.2),

and therefore we make the simplest assumption on this function. Below are two examples,

where in order to illustrate the theory numerically, we chose some specific functional forms

for the controls.

Model #3. Consider three-control model #3 from figure 3.2, which is characterized by

negative regulation of division (by differentiated cells) and positive regulation of division (by

SCs) and differentiation (by differentiated cells). As an example of this kind of a model, we

assign the following functional forms of the controls:

LI,J = L(εI, εJ) =
1− e−εI

1− e−εI + εJ
, PI,J = P (εI, εJ) = 1− e−3εJ ,

DI,J = D(εI, εJ) = 1− LI,J , SI,J = c. (3.1)

We therefore have px = 0, py = ε3e−3y > 0, qx = ε2ye−x · (1 − e−x + y)−2 > 0, qy =

ε 2e−x−2
(1−e−x+y)2

< 0. The steady state of the system can be obtained by solving P (x, y) = 1/2,

L(x, y) = D(x, y) (system (3.14) in Methods):

i0 = − log(1− log 21/3)

ε
, j0 =

log 2

3ε
.
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Figure 3.3: Typical numerical simulations of cell dynamics. (a) System (3.1) with ε = 0.005 and S∗ = S = 0.5;
(b) system (3.6) with ε = 0.005 and S∗ = S = 0.8. Simulations are run for 2 · 105 time steps.

By equations (3.22), we can obtain the means and the variances of the system:

E[I] = i0, (3.2)

E[J ] = j0, (3.3)

V ar[I] =
2L∗S∗∆ + q2

y + 8L2
∗S∗p

2
y

4B∆
, (3.4)

V ar[J ] =
2L∗(2 + S∗)∆ + q2

x

4B∆
, (3.5)

where all the partial derivatives are evaluated at (i0, j0), and L∗ = 1/2, ∆ = qxpy, B =

−2L∗S∗py − qy.

For each fixed pair (ε, S∗), we ran numerical simulations starting at the (rounded up) expected

values of the cell population given above, and finishing either when the number of time-steps

reached 2 · 105, or if any of the cell types went extinct. We then computed the means and

the variances of the cell population over the time-course of each simulation. A typical run for

a particular parameter set is presented in figure 3.3(a). In other simulations, both ε and S∗

varied between 10−3 and 100.

From figure 3.4, we observe that the theoretical results for the means and the variances show
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Figure 3.4: The behavior of the means and the variances of the cell population described by equations
(3.1). The analytical results given by equation (3.2-3.5) (solid line) are compared with the values obtained by
numerical simulations (stars), for different values of ε with the fixed value of S: S = 0.5. The choice of S
should satisfy: S = S∗ < Sc, where Sc is given by (3.27). (‘T’) stands for the theoretical results, and (‘N’)
stands for the numerical results.

a good agreement with the numerical results for smaller values of ε, which is what we expect.

We further observe that the means and the variances of the cell population decrease as the

value of ε increases, exactly as predicted by equations (3.2-3.5). From figure 3.5, we can

see that the variances of the cell population increase as the value of S increases, which is

consistent with the analytical results given by (3.32).

Model #5. As the second example, we consider three control model #5 in figure 3.2,

which is characterized by positive control of differentiation and division. We will assign the

following equations to the probability and rate functions:

LI,J = L(εI, εJ) =
2 tanh(εI)

2 tanh(εI) + 0.4
, PI,J = P (εI, εJ) = tanh(εI + 0.1εJ),

DI,J = D(εI, εJ) = 1− LI,J , SI,J = c. (3.6)
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Figure 3.5: The behavior of the variances of the cell population described by equations (3.1) with ε = 0.005,
for different values of S. The analytical results given by equations (3.2-3.5) (solid line) are compared with
the values obtained by numerical simulations (stars). (‘T’) stands for the theoretical results, and (‘N’) stands
for the numerical results.

A typical stochastic simulation of system (3.6) for a particular parameter set is presented

in figure 3.3(b). To calculate the variances, we find px = ε sech2(x + 0.1y) > 0, py =

ε0.1 sech2(x + 0.1y) > 0, qx = ε1.6 sech2(x) · (2 tanh(x) + 0.4)−2 > 0, qy = 0, and hence

px > py > 0. The steady state of the system is

i0 =
log 1.5

2ε
, j0 =

log 3− log 1.5

0.2ε
.

By equations (3.22), we can obtain the means and the variances of the system:

E[I] = i0, (3.7)

E[J ] = j0, (3.8)

V ar[I] =
2L∗S∗∆ + 8L2

∗S∗p
2
y

4B∆
, (3.9)

V ar[J ] =
2L∗(2 + S∗)∆ + q2

x + 8L2
∗S∗p

2
x

4B∆
, (3.10)
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Figure 3.6: The behavior of the means and the variances of the cell population described by equations
(3.6). The analytical results given by equation (3.7-3.10) (solid line) are compared with the values obtained
by numerical simulations (stars), for different values of ε with the fixed value of S: S = 0.5. The choice of S
should satisfy: S > Sc = 0 in this case, where Sc is given by (3.27). (‘T’) stands for the theoretical results,
and (‘N’) stands for the numerical results.

where all the partial derivatives are evaluated at (i0, j0), and L∗ = 1/2, ∆ = qxpy, B =

2L∗S∗(px − py). Note that S∗ in equation (3.9) cancels out.

We used the same numerical scheme as in the previous example. As observed in figure 3.6,

the theoretical results are again in good agreement with the numerical results for smaller

values of ε. The means and the variances of the cell population decrease as the value of ε

increases, which is foretold by equations (3.7-3.10). From figure 3.7, we observe that V ar[I]

stays approximately constant, whereas V ar[J ] decreases as S increases. The first two points

in figure 3.7 that appear to be inconsistent with the theory are explained by the analysis of

the purely asymmetric divisions solution for smaller values of S, see Appendix H. The results

of both numerical experiments are summarized in figure 3.8, which shows that:

• Increasing the fraction of symmetric division destabilizes the system given by equations

(3.1);

41



Figure 3.7: The behavior of the variances of the cell population described by equations (3.6) with ε = 0.005
and time steps = 2 · 106, for different values of S. The analytical results given by equations (3.7-3.10) (solid
line) are compared with the values obtained by numerical simulations (stars). (‘T’) stands for the theoretical
results, and (‘N’) stands for the numerical results.

Figure 3.8: The behavior of the two systems described by equations (3.1) and (3.6) with S = 0.1 and S = 1.
The top two diagrams, (a) and (b) correspond to the first example, and the bottom two diagrams, (c) and
(d), correspond to the second example. In Panels (a) and (c), S = 0.1 (mostly asymmetric divisions). In (b)
and (d), S = 1 (symmetric divisions).
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• Increasing the fraction of asymmetric division destabilizes the system given by equations

(3.6).

3.2 Methods

3.2.1 Stochastic model formulation

A stochastic model of cell population renewal is considered (see Chapter 2). The cells

are subject to the following changes in a Poisson process with an infinitesimally small

time-increment, ∆t:

• With probability LI,J∆t a SC divides. Divisions can be symmetric (with probability

SI,J) or asymmetric (with probability 1− SI,J).

– With probability LI,JSI,JPI,J∆t a SC differentiation takes place resulting in a

creation of two differentiated cells, (I, J)→ (I − 1, J + 2).

– With probability LI,JSI,J(1− PI,J)∆t a SC proliferation takes place resulting in a

creation of a SC, (I, J)→ (I + 1, J).

– With probability LI,J(1−SI,J)∆t a SC undergoes an asymmetric division resulting

in a creation of a differentiated cell, (I, J)→ (I, J + 1).

• With probability DI,J∆t, a differentiated cell dies, (I, J)→ (I, J − 1).

A deterministic model that captures these events can be expressed as the following system of
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ordinary differential equations:

ẋ = LS(1− P )− LSP = LS(1− 2P ), (3.11)

ẏ = 2LSP + L(1− S)−D, (3.12)

where x and y refer to the numbers of stem and differentiated cells, and L, P , and S are all

functions of x and y.

The stochastic description in terms of the Kolmogorov forward equation is given by the

following equation for the variable ϕI,J(t), the probability to find the system in state (I, J)

at time t:

ϕ̇I,J = ϕI+1,J−2LI+1,J−2SI+1,J−2PI+1,J−2 + ϕI−1,JLI−1,JSI−1,J(1− PI−1,J)

+ ϕI,J−1LI,J−1(1− SI,J−1) + ϕI,J+1DI,J+1 − ϕI,J(LI,J +DI,J), (3.13)

where the processes of the right hand side are presented in the same order as they appear in

the list above. Note that system (3.11-3.12) is the “macroscopic law” obtained at the zeroth

order of the “linear noise approximation”, see equation (2.41).

We are interested in deriving equations for the mean values of the cell populations and their

variances. To do this, we first define the steady states of the system, (i0, j0), by the following
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equations (which are obtained by solving (3.11) and (3.12)) :

Li0,j0 = Di0,j0 = L∗, Pi0,j0 =
1

2
, S∗ = Si0,j0 . (3.14)

( mixed divisions steady state)

Li0,j0 = Di0,j0 = L∗, Si0,j0 = 0, P∗ = Pi0,j0 . (3.15)

( purely asymmetric divisions steady state)

Both equilibria are characterized by a balance between divisions and deaths (the first

equation in (3.14) and (3.15)). In the first (mixed divisions) equilibrium, the probability of

differentiation events is equal to the probability of proliferation events, thus ensuring that the

expected change in the number of SCs is zero. The first two equations in (3.14) define the

equilibrium population sizes i0 and j0. The fraction of symmetric divisions, SI,J , does not

influence the solution for i0 and j0, but, as shown below, can affect its stability properties

and the size of fluctuations in the system.

The second (purely asymmetric) equilibrium is attained if the fraction of symmetric divisions

can be made zero. The population sizes are determined by the first two equations in (3.15), and

the probability of differentiations, formally defined by the last equation, becomes irrelevant

at equilibrium. Below we focus on the mixed divisions steady state. Calculations pertaining

to steady state (3.15) can be found in Appendix H.

3.2.2 Stability analysis and variance calculations

The methodology presented here is based on the assumption of weak dependencies of the

functions LI,J , DI,J , etc on their variables. It is developed in [1] and justified rigorously in

Chapter 2. Let us use the symbol ZI,J to denote any of the functions LI,J , PI,J , DI,J , and SI,J .
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Suppose that we can represent the functions ZI,J near the equilibrium as ZI,J = Z(εI, εJ),

where the parameter ε� 1 defines the weakness of the dependence. It is convenient to denote

x = εI, y = εJ, i = I − i0, j = J − j0, then we can expand the functions ZI,J around the

steady state in Taylor series:

ZI,J = Zi0,j0 + zxi+ zyj +
1

2
(zxxi

2 + zyyj
2 + 2zxyij) + · · · , (3.16)

where the subscripts x and y denote partial derivative of the function with respect to its

argument, evaluated at (i0, j0), and zx = Zxε, zxx = Zxxε
2, etc. In this description, while

constants Zx = O(1), Zxx = O(1), etc are all of order one, all the first derivatives zx, zy

contain a factor ε, and all the second derivatives zxx, zxy, zyy contain a factor ε2.

Define ϕ̃i,j = ϕi+i0,j+j0 = ϕI,J , and Z̃i,j = Zi+i0,j+j0 = ZI,J , then (3.13) can be reformulated

as:

˙̃ϕi,j = ϕ̃i+1,j−2L̃i+1,j−2S̃i+1,j−2P̃i+1,j−2 + ϕ̃i−1,jL̃i−1,jS̃i−1,j(1− P̃i−1,j)

+ ϕ̃i,j−1L̃i,j−1(1− S̃i,j−1) + ϕ̃i,j+1D̃i,j+1 − ϕ̃i,j(L̃i,j + D̃i,j). (3.17)

Using expansion (3.16) in equation (3.17), we can derive the moment equations for this

system. In what follows, we use the following notations for the moments:

Xαβ =
∑
i,j

iαjβϕ̃i,j(t). (3.18)

Multiplying equation (3.17) by i and by j, performing a summation in the two indices, and

keeping only the highest order terms in ε, we obtain equations for the first moments in
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steady-state:

0 = −2L∗S∗(pyX01 + pxX10), (3.19)

0 = (2L∗S∗px + qx)X10 + (2L∗S∗py + qy)X01. (3.20)

For the second moments we have:

0 = (S∗lx + L∗sx)X10 + (S∗ly + L∗sy)X01 − 4L∗S∗(pyX11 + pxX20) + L∗S∗,

0 = −(S∗lx + L∗sx + 2L∗S∗px)X10 − (S∗ly + L∗sy + 2L∗S∗py)X01

+ 2L∗S∗[pxX20 − pyX02 + (py − px)X11 − 1/2] + qyX11 + qxX20,

0 = [S∗(4L∗px + lx) + lx + dx + L∗sx]X10 + [S∗(4L∗py + ly) + ly + dy + L∗sy]X01

+ (4L∗S∗px + 2qx)X11 + (4L∗S∗py + 2qy)X02 + L∗(2 + S∗). (3.21)

Solving this system, we can obtain the expressions for the means and variances: E[I] =

X10 + i0 = i0, E[J ] = X01 + j0 = j0;V ar[I] = X20 −X2
10, V ar[J ] = X02 −X2

01. The highest

order terms for the variances are given by

V ar[I] =
Kx

4B∆
, V ar[J ] =

Ky

4B∆
, (3.22)
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where we defined the quantities:

∆ = qxpy − qypx, (3.23)

B = 2L∗S∗(px − py)− qy, (3.24)

Kx = 2L∗S∗∆ + q2
y + 8L2

∗S∗p
2
y, (3.25)

Ky = 2L∗(2 + S∗)∆ + q2
x + 8L2

∗S∗p
2
x. (3.26)

Details of stability analysis are given in Appendix H.2. It follows that mixed division steady

state is stable as long as ∆ > 0 and B > 0; constants Kx and Ky are always positive

quantities. Increasing ∆ and B makes the system more robust by decreasing the variation of

population sizes.

Notes. There are two important conclusions from the above analysis.

• The numbers of stem and differentiated cells at the equilibrium does not depend on

the quantity S (the fraction of symmetric divisions). This is because regardless of the

proportion of symmetric divisions, there are only two requirements for the constancy of

the population: (1) Probability of differentiation under symmetric divisions is 1/2 (this

keeps the number of stem cells constant), and (2) The rate of divisions equals to the

rate of death (this keeps the number of differentiated cells constant). Both conditions

are independent of S.

• Related to this, the fraction of symmetric divisions, S, only enters the expressions for

the cell number variances. In the first order analysis above, only the equilibrium value,

S∗, and not the derivatives, appear in the expressions for the second moments.

Below we explore how the probability of symmetric divisions affects the homeostatic control.
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3.2.3 The role of asymmetric divisions in cell number regulation

The equilibrium values for the numbers of stem and differentiated cells are unaffected by

the presence of asymmetric divisions, as illustrated by equations (3.14). On the other hand,

the probability of symmetric divisions, S∗, can influence two important properties of the

SC system: (a) stability of the equilibrium and (b) the size of fluctuations (the amount of

variance), which is related to the robustness of homeostatic control.

Stability. The only way in which the fraction of symmetric divisions can influence stability

of the system is by changing the sign of the quantity B, equation (3.24). From equation

(3.24):

B > 0 ⇐⇒ S∗ > Sc ≡
qy

2L∗(px − py)
(3.27)

If the value Sc is between 0 and 1, then we have the following trends:

• Increasing the fraction of asymmetric divisions can destabilize the system if qy <

2L∗(px − py) and px > py;

• Increasing the fraction of symmetric divisions can destabilize the system if qy < 0 and

px < py.

The size of fluctuations (robustness). In order to study the influence of asymmetric

divisions on the behavior of cell populations, we consider the derivatives of the variances of I
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and J with respect to parameter S∗:

d V ar[I]

dS∗
=

L∗
2B2∆

pyqy(qy − qx − 4L∗py), (3.28)

d V ar[J ]

dS∗
=

L∗
2B2∆

(pxqx −∆)(qy − qx − 4L∗py). (3.29)

The signs of these derivatives can be different, depending on parameters. For a fixed set of

parameters, the dependence on S∗ is monotonic, that is, each of the variances either grows or

decays with S∗.

Application to the five minimal controls.

• Two-control model #1, figure 3.2. In this case, Sc = 0 from (3.27), therefore the steady

state is stable for any S∗ > 0. Further, we have

d V ar[I]

dS∗
= 0,

d V ar[J ]

dS∗
=

L∗
2B2

(qx + 4L∗py) < 0. (3.30)

In other words, increasing the share of symmetric divisions reduces the fluctuation size

in the system. Thus, symmetric divisions (i.e. S∗ = 1) will be optimal for this system.

• Two-control model #2, figure 3.2. In this case, Sc < 0 from (3.27), therefore the steady

state is stable for any value of S∗. Further, we have

d V ar[I]

dS∗
= 0,

d V ar[J ]

dS∗
=

L∗
2B2

(−qy) > 0. (3.31)

That is, increasing the share of asymmetric divisions makes the fluctuations smaller.

Thus, purely asymmetric divisions (i.e. S∗ → 0) will be optimal.
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• Three-control model #3, figure 3.2. In this case, we have

d V ar[I]

dS∗
> 0,

d V ar[J ]

dS∗
> 0. (3.32)

For the first three-control minimal system, px < py and qy < 0. From the viewpoint

of stability, it is disadvantageous to increase the value of S∗. From the perspective of

robustness, small values of S∗ are best, since V ar[I] and V ar[J ] grow with it. Thus,

asymmetric divisions will be optimal.

• Three-control model #4, figure 3.2. In this case, we have px > py and qy < 2L∗(px−py).

Therefore, decreasing the value of S∗ may destabilize the system. Further, we have

d V ar[I]

dS∗
< 0,

d V ar[J ]

dS∗
< 0, (3.33)

that is, fluctuations decay with S∗. Thus, symmetric divisions will be optimal.

• Three-control model #5, figure 3.2. Again, px > py and qy < 2L∗(px − py), and

d V ar[I]

dS∗
= 0,

d V ar[J ]

dS∗
< 0. (3.34)

Therefore, as in the previous case, symmetric divisions will be optimal.
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Chapter 4

Application in Colonic Crypts

In human colon crypts, the stem cell lineage is ordered with SCs at the bottom, DCs at

the top, and TAC in bettween. In order to maintain the number of each cell type, the rate

of removal of the DCs from the top is balanced by division and differentiation of the SCs

and TACs below. As mentioned in chapter 1, we are interested in determining the most

likely control network(s) given in figures 4.2 and 4.3 that govern the regulation of human

colon crypt stem cell lineages. In this chapter, we determined the most likely regulatory

network(s), using actual measurements of the number of SCs, TACs, and DCs in 49 colon

crypts in human biopsy specimens. We examined each of the 32 possible networks in figures

4.2 and 4.3 to determine whether it can produce the measured means and variances of the

cell population. In addition, we also used data on the dynamics of injury recovery, as well as

experimentally obtained intra-crypt correlations. Using these criteria, a selection algorithm

was devised that identified three of the 32 possible control networks as most likely the ones

corresponding to the regulation of homeostasis of human colon crypts.
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4.1 Materials and Methods

4.1.1 Data Description

In [58] Bravo and Axelrod measured the number and location of dividing cells (Ki-67 positively

stained cells) and non-dividing cells (Ki-67 non-stained cells) in 49 colon crypts in human

biopsy specimens. The non-dividing cells at the bottom of the crypt are considered quiescent

stem cells, the non-dividing cells in the top two-thirds of the crypt are considered differentiated

cells. The dividing cells near the bottom third of the crypt are considered to consist of transient

amplifying cells and active stem cells [81]. The experimental details of the source of the

specimens, measurement of each cell type, and determination of reliability of measurements,

have previously been described [58].

For our model we need an approximate distribution of active cells into active stem cells and

transit amplifying cells. This can be done by using experimental observations, as described

below. [81] have reviewed evidence for the existence of quiescent stem cells at the bottom of

the crypt and, in addition, of active stem cells among the dividing cells above the bottom.

The existence of a quiescent stem cell population is consistent with the observation that

mTert-expressing slowly cycling cells are resistant to intestinal injury and function in intestinal

regeneration [82]. And the existence of an active stem cells population is consistent with

the observation that rapidly cycling Lgr5+ cells are highly sensitive to intestinal damage

[83]. We will denote the fraction of dividing cells that are active stem cells as W , and true

fraction of active cells that are transient amplifying cells as (1−W ). The value of W can be

estimated using the following considerations.

Cells staining positive for various stem cell markers (Musashi-1, Bmi1, Lgr5, Lrig1) have

been observed in the region of dividing cells in the small intestine of the mouse [83–86].

W , the proportion of active stem cells among all of the dividing cells in human colon crypts,
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can be determined from data available about human colon crypts stained with the stem cell

marker Musashi-1, and stained separately with the proliferating cell marker Ki-67.

The percentages of Musashi-1 positively staining cells at different positions in the human

colon crypt were reported in [87] figure 4. According to this study, 69% of all positively

staining cells are in positions 1-7 at the bottom of the crypt, and 31% of all positively

staining cells are in positions 8 and above. [58] have reported, in Table 1, the number of

Ki-67 positively and negatively staining cells at different positions of the human colon crypt.

The average number of negatively staining cells in positions 1-7, is 35.7± 36.3 s.d. 1, and the

average number of positively stained cells in positions 8 and above is 623.9± 234.1 s.d. The

negatively stained cells at the bottom of the crypt are considered quiescent stem cells. The

positively stained cells are considered to comprise all of the dividing cells, including both

active stem cells and transient amplifying cells.

Table 4.1: Notations used to calculate W , the fraction of active SCs.

%SCq The percentage of all of the stem cells that are at the bottom of the crypt,
e.g. quiescent stem cells

%SCa The percentage of all of the stem cells that are above the bottom of the crypt,
e.g. active stem cells in the region of dividing cells

#SCq The number of quiescent stem cells at the bottom of the crypt
#SCa The number of active stem cells above the bottom of the crypt

in the region of dividing cells
#Ki67+ The total number of dividing cells

The probability distribution for the values of W , as well as the lower and upper bounds of

W , can be determined. Using the notations defined in table 4.1, the number of active stem

cells is given by

#SCa = #SCq
%SCa

%SCq
,

1The considerable variation in the number of quiescent stem cells has previously been noted (Table 1,
[58]). The method of measuring cell numbers and the measurement reliability has been described in detail
in (Additional File 5, [58]). The experimental error in the measurement of the number of stem cells was
determined by 49 repeated measurements of one crypt, C.V. = 7.7%. Since the experimental error in repeated
measurements of one crypt was much less than the measured variation between 49 adjacent crypts, C.V.=
102%, it is likely that the measured variation between adjacent crypts is really indicative of a large variation
between crypts, and not just due to experimental error.
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Figure 4.1: Estimating cell numbers. (a) Histogram of the experimentally calculated values of W , equation
(4.1). (b) Histograms showing the distribution of cell numbers per crypt, by cell type, where W = 0.03 was
assumed.

and the parameter W can be calculated as follows:

W =
#SCa

#Ki67+
=

#SCq

#Ki67+

%SCa

%SCq
. (4.1)

The first quotient in the right hand side of this expression can be calculated from the data of

[58], and the second quotient from [87]. The probability distribution of the estimated values

of W are shown in figure 4.1(a). It was approximated numerically using all the realizations of

the cell numbers measured experimentally in [58]. The mean of this distribution corresponds

to W = 0.03, the value used in the calculations presented here, unless otherwise noted. In

figure 4.1(b) we show the frequency histograms of the three cell types obtained from the

data by [58] using W = 0.03; again, this was created using all the experimentally obtained

values of the cell numbers. We also investigated the effect of W = 0, as discussed in the last

paragraph of section 4.2.
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4.1.2 Stochastic model formulation

Consider a three-compartment model consisting of stem cells (SCs), transient amplifying

cells (TACs), and differentiated cells (DCs). We will refer to the number of stem cells as

I1, the number of transient amplifying cells as I2, and the number of differentiated cells as

I3. We assume only symmetric divisions of stem cells, see section 4.3, and employ a Poisson

process to describe the dynamics (Poisson processes, and a related birth-death process, are

conventionally used to describe cellular processes, see e.g. [88, 89]). The cells are subject to

the following changes in a Poisson process with an infinitesimally small time-increment, ∆t:

• With probability L1(I1, I2, I3)∆t a stem cell (SC) divides.

– With probability L1(I1, I2, I3)P1(I1, I2, I3)∆t a SC differentiation takes place re-

sulting in a creation of two transient amplifying cells (TACs), (I1, I2, I3) →

(I1 − 1, I2 + 2, I3).

– With probability L1(I1, I2, I3)(1− P1(I1, I2, I3))∆t a SC proliferation takes place

in a creation of SC, (I1, I2, I3)→ (I1 + 1, I2, I3).

• With probability L2(I1, I2, I3)∆t a transient amplifying cell (TA) divides.

– With probability L2(I1, I2, I3)P2(I1, I2, I3)∆t a TA differentiation takes place result-

ing in a creation of two differentiated cells (DCs), (I1, I2, I3)→ (I1, I2 − 1, I3 + 2).

– With probability L2(I1, I2, I3)(1− P2(I1, I2, I3))∆t a TA proliferation takes place

resulting in a creation of a TA, (I1, I2, I3)→ (I1, I2 + 1, I3).

• With probability D(I1, I2, I3)∆t, a differentiated cell dies, (I1, I2, I3)→ (I1, I2, I3 − 1).

A deterministic model that captures these events can be expressed as the following system of

56



ordinary differential equations:

İ1 = −L1P1 + L1(1− P1), (4.2)

İ2 = 2L1P1 − L2P2 + L2(1− P2), (4.3)

İ3 = 2L2P2 −D. (4.4)

The equilibrium of this system, (Ī1, Ī2, Ī3), can be obtained by solving equations (4.2) - (4.4)

in steady state:

L1(Ī1, Ī2, Ī3) = L0, D(Ī1, Ī2, Ī3) = D0, L2(Ī1, Ī2, Ī3) = D0 − L0, (4.5)

P1(Ī1, Ī2, Ī3) =
1

2
, P2(Ī1, Ī2, Ī3) =

D0

2(D0 − L0)
. (4.6)

4.1.3 Stochastic analysis

There are five distinct processes that can take place in this system: differentiation divisions

of SCs (Q1), proliferation divisions of SCs (Q2), differentiation divisions of TACs (Q3),

proliferation divisions of TACs (Q4), and death (Q5). The rates of these processes are given

by:

Q1 = L1P1;Q2 = L1(1− P1);Q3 = L2P2;Q4 = L2(1− P2);Q5 = D. (4.7)

The stochastic description in terms of the Kolmogorov forward equation is given by the

following equation for the variable ϕI1,I2,I3 , the probability to find the system in state (I1, I2, I3)
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at time t:

ϕ̇I1,I2,I3 = ϕI1+1,I2−2,I3 ∗Q1(I1 + 1, I2 − 2, I3) + ϕI1−1,I2,I3 ∗Q2(I1 − 1, I2, I3)

+ ϕI1,I2+1,I3−2 ∗Q3(I1, I2 + 1, I3 − 2) + ϕI1,I2−1,I3 ∗Q4(I1, I2 − 1, I3)

+ ϕI1,I2,I3+1 ∗Q5(I1, I2, I3 + 1)− ϕI1,I2,I3 ∗
5∑

n=1

Qn(I1, I2, I3), (4.8)

where the processes of the right hand side are presented in the same order as they appear in

section 4.1.2.

The methodology presented here was developed in Chapter 2 and [1], and is related to the

linear noise approximation of [76]. A detailed derivation and justification can be found in

[90]. Let us use the symbol HI1,I2,I3 to denote any of the functions L1(I1, I2, I3), L2(I1, I2, I3),

P1(I1, I2, I3), P2(I1, I2, I3), and D(I1, I2, I3). Suppose that we can represent the functions

HI1,I2,I3 near the equilibrium as HI1,I2,I3 = H(εI1, εI2, εI3), where the parameter ε� 1 defines

the weakness of the dependence of these rates on the populations that control them. Note

that in this methodology, the peak of the probability distribution of the number of cells is

assumed to be located near population sizes of the order 1/ε and has a width of the order

of 1/ε1/2, see the derivation in [1]. While the validity of this approach has been studied

extensively, see e.g. [77, 78], in our context it is important to note that typical fluctuations (of

size 1/ε1/2) must remain sufficiently small compared with the typical population size (∼ 1/ε),

such that the system will remain near the equilibrium and stochastic extinction is an unlikely

event (for a time-duration which grows with 1/ε). These are conditions of homeostasis in a

biological system; our approximation will technically break down outside the homeostatic

regime.
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It is convenient to denote the continuous variables

x1 = εI1, x2 = εI2, x3 = εI3,

and further shift the cell counts to be equal to zero at the equilibrium:

i1 = I1 − Ī1, i2 = I2 − Ī2, i3 = I3 − Ī3. (4.9)

We can expand the functions HI1,I2,I3 around the equilibrium (Ī1, Ī2, Ī3) in Taylor series:

HI1,I2,I3 = HĪ1,Ī2,Ī3 +Hx1εi1 +Hx2εi2 +Hx3εi3 + . . . , (4.10)

where the subscripts x1, x2, and x3 denote the partial derivative of the function with respect

to its argument, evaluated at (Ī1, Ī2, Ī3).

To obtain the equations for the means and variances, we will follow the stochastic calculus of

stem cells methodology developed in [90]. The stochastic processes defined in section 4.1.2

can be characterized by the following cell number changes:

Q1: Differentiation of SCs, ∆1I1 = −1,∆1I2 = 2,∆1I3 = 0,

Q2: Proliferation of SCs, ∆2I1 = 1,∆2I2 = 0,∆2I3 = 0,

Q3: Differentiation of TACs , ∆3I1 = 0,∆3I2 = −1,∆3I3 = 2,

Q4: Proliferation of TACs, ∆4I1 = 0,∆4I2 = 1,∆4I3 = 0,

Q5: Death of DCs, ∆5I1 = 0,∆5I2 = 0,∆5I3 = −1.
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Then equation (4.8) can be expressed as:

ϕ̇I1,I2,I3 =
5∑

k=1

ϕI1−∆kI1,I2−∆kI2,I3−∆kI3Qk(I1 −∆kI1, I2 −∆kI2, I3 −∆kI3)

− ϕI1,I2,I3

5∑
k=1

Qk(I1, I2, I3). (4.11)

Define ϕ̃im,in = ϕIm,In , and Q̃k(im, in) = Qk(Im, In), then equation (4.11) can be rewritten as:

˙̃ϕi1,i2,i3 =
5∑

k=1

ϕ̃i1−∆kI1,i2−∆kI2,i3−∆kI3Q̃k(i1 −∆kI1, i2 −∆kI2, i3 −∆kI3)

− ϕ̃i1,i2,i3

5∑
k=1

Q̃k(i1, i2, i3). (4.12)

Here we use a standard technique to derive equations for the moments. Let us adopt the

following notations for the first moments and the second moments of cell numbers:

ym =
∑
i1,i2,i3

ϕ̃i1,i2,i3im, yqp =
∑
i1,i2,i3

ϕ̃i1,i2,i3iqip.

We multiply both sides of Kolmogorov forward equation (4.12) by im and by ipiq, and sum

over the indices i1, i2, i3, to obtain:

5∑
k=1

∑
i1,i2,i3

ϕ̃i1,i2,i3Q̃k(i1, i2, i3)(im + ∆kIm)−
5∑

k=1

∑
i1,i2,i3

ϕ̃i1,i2,i3Q̃k(i1, i2, i3)im = 0, (4.13)

5∑
k=1

∑
i1,i2,i3

ϕ̃i1,i2,i3Q̃k(i1, i2, i3)(ip + ∆kIp)(iq + ∆kIq)−
5∑

k=1

∑
i1,i2,i3

ϕ̃i1,i2,i3Q̃k(i1, i2, i3)ipiq = 0, (4.14)

where m = 1, 2, 3 and p, q = 1, 2, 3. The right hand side of the equations is zero because we
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consider the equilibrium state and the time-derivatives in the Kolmogorov forward equation

are zero.

Next, we use expansions (4.10) in equations (4.13-4.14), and truncate the expressions by

keeping terms of order ε and ε2 in equations for the first and second moments respectively.

This results in the following moment equations of the cell numbers:

am1y1 + am2y2 + am3y3 = 0, m = 1, 2, 3, (4.15)
3∑
j=1

apjyjq +
3∑
j=1

aqjypj = −spq, p, q = 1, 2, 3, (4.16)

where amj =
∑5

k=1
∂Qk
∂xj

∆kIm, spq =
∑5

k=1 Qk∗∆kIp∆kIq, and Qk∗ is the equilibrium of Qk.

Because of definition (4.9), the means ym are all zero, and solving equations (4.16), we can

obtain the expressions for the second moments, which are equal to the cell number variances,

V ar[Im] = ymm, m = 1, 2, 3.

4.2 Selection Algorithm

[1] has identified 20 different 3-compartment minimal control networks that are compatible

with stable homeostatic control, see figure 4.2. These networks are characterized by constant

death terms. In addition, there are 12 minimal control networks with non-constant death

terms, see figure 4.3. All of these networks have exactly three controls (it was shown that

this is the minimal number of controls compatible with stability), and include the 5 processes

described in Section (4.1.2). We will use a selection algorithm to determine the most likely
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Figure 4.2: Twenty 3-compartment minimal control networks identified in [1], which are characterized with
constant death rates. The three types of cells are marked by SC (stem cells), TA (transient amplifying cells),
DC (differentiated cells). Horizontal arrows indicate the cell fate decisions: div1 and div2 the division process
of SCs and TACs; diff1 and diff2 are the probability of the division to be a differentiation, as apposed to
proliferation, for SCs and TACs respectively. The curved positive and negative arrows indicate control. The
point of the arrow corresponds to the process that is being controlled, and the base of the arrow corresponds
to the cell type controlling the process.

Figure 4.3: Twelve additional 3-compartment minimal control networks with non-constant death rates.
Notations are as in figure 4.2.
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minimal control network that matches the distribution of the measured data, see figure 4.4.

This algorithm allows us to use biological criteria to exclude many of the possible control

networks depicted in figures 4.2, 4.3. It uses the data generated for the distribution of the cell

numbers as well as other considerations from the literature. The algorithm is demonstrated

here using the 20 constant death rate networks of figure 4.2. The 12 networks of figure 4.3

are considered in Appendix L. The following is the step-by-step procedure used.

Choose networks with local controls. Cell-cell communication may occur by direct

mechanical contact or by dispersal of molecules from a source cell. Mechanisms for the

dispersal of molecules include transport through cell membranes, extracellular Brownian

motion, or transport on the outer cell surface [91]. In each situation the effect of one cell is

greatest on an adjacent cell and decreases on cells further away. Therefore, we assume that

SCs can only control SCs and TACs; that TACs can only control TACs, SCs, and DCs; and

that DCs can only control DCs and TACs. It follows that 11 out of the 20 control networks

have local controls, see figure 4.4. We used figure 4.2 to select local controls, and the results

are independent of the values of W .

Choose networks with stable solution and measured means and variances. Let

us assume that all the control functions are linear (or consider the linearization of nonlinear

controls, see Appendix J), and the death rate of DCs is constant in our analysis (this

assumption is relaxed in Appendix L). Using equations (4.5-4.6) as constraints, we define
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linearized control functions as

L1 = L0 (1 + aL1i1 + bL1i2 + cL1i3) , (4.17)

P1 =
1

2
(1 + aP1i1 + bP1i2 + cP1i3) , (4.18)

L2 = L0

(
D0

L0

− 1

)
(1 + aL2i1 + bL2i2 + cL2i3) , (4.19)

P2 =
1

2(1− L0/D0)
(1 + aP2i1 + bP2i2 + cP2i3) , (4.20)

D = D0, (4.21)

where coefficients a, b, and c with the appropriate subscripts are constants. Functions

(4.17-4.20) are the most general linear functions compatible with identities (4.5-4.6). We

however are interested in “minimal controls”, which is a restricted subset of such functions.

It was shown in [1] that for stability of a three-compartment system, it is necessary to have

at least three control loops, and all three populations must be involved in the control. There

are exactly 20 systems with minimal control (that is, only 3 control loops) with constant

death terms, see figure 4.2 (the non-constant death terms are included in networks of figure

4.3 and analyzed in Appendix L). Each of these control networks is characterized by exactly

one nonzero coefficient a, one nonzero coefficient b, and one nonzero coefficient c in system

(4.17-4.20). For example, the topmost network in the left column of figure 4.2 contains control

of SC divisions by SCs, control of SC differentiation probabilities by TACs, and control

of TAC divisions by DCs. This means that the corresponding linear system of controls,

equations (4.17-4.20), contains nonzero coefficients

aL1 , bP1 , cL2 ,
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with the rest of coefficients being zero. For each minimal control network, there are 5 unknown

constants: the equilibrium values L0, D0, and the nonzero controls (a, b, c). Let us denote

q = L0/D0,

where q is the ratio between the division rate of the SCs and the death rate of DCs at

equilibrium. Equations (4.5) and (4.6) imply that q ∈ (0, 1/2) (since the probability P2 ≤ 1).

Further, by rescaling the time unit, we can set D0 = 1. Therefore, only four unknown

coefficients remain:

a, b, c, q.

Let us use definitions (4.17-4.20) and solve the linear algebraic system of equations given by

(4.16). In particular, we can obtain the expressions for the three variances y11, y22, and y33.

For each control network, these expressions depend on the unknowns q, a, b, and c.

Using the data on the numbers of dividing and non-dividing cells for a given value of W , we

can compute the numerical distributions of SCs, TACs, and DCs, and measure their means

and variances. In this study we will focus on the case: W = 0.03 (most of the dividing cells

are TACs).

Let us pick a control network, and also fix a q value; in our simulations we took q =

0.1, 0.2, 0.4, 0.5. For each q value, we have a system of equations

y11 = V ar(I1)exp, y22 = V ar(I2)exp, y33 = V ar(I3)exp,

where the left hand sides are functions of coefficients (a, b, c) (under fixed control network

and the q value), and the right hand sides are numerically measured values of the cell number

variances (under the fixed value of W , the fraction of active SCs among all dividing cells).

This linear system of three equations with three unknowns can be solved to find the unknown
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controls a, b, c, and only the networks that have real stable solutions for at least one q value

will be considered.

In conclusion, networks #6, 17, 20 do not give stable solutions, and therefore are eliminated.

The other 8 listed in figure 4.4 give realistic stable solutions.

Does the control system  have a stable solution that 
describes the experimentally measured  mean and 
variance?

Control system

Are the controls local?

Do we observe the correct intracrypt
cell type correlations? 

20

11

8

5

Do injury recovery dynamics show realistic 
(oscillatory)  behavior?

(1,2,5,6,8,9,12,13,17,18,20)

(1,2,5,8,9,12,13,18)

(1,2,5,13,18)

2 (1,2)

Figure 4.4: The outcome of the selection algorithm for W = 0.03.

To confirm the theoretical results, for each network, we then run numerical simulations

with the coefficients obtained as described above. Note that the analysis presented here

is local, in the sense that only the derivatives of the control at the equilibrium can be

determined. We do not have any information on the global shapes of the control functions

L1(I1, I2, I3), L2(I1, I2, I3), etc. A numerical simulation requires further assumptions on the

actual functional form for all the four control functions. The simplest way is to use linear

functions, equations (4.17-4.20), for controls for all values of the arguments (cell numbers).
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Figure 4.5: A typical simulation of network #1. Simulation starts at the experimentally measured means
and finishes when the number of time steps reaches 2 · 107. Here we used q = 0.1 and W = 0.03; a set of
control coefficients which produces means and variances similar to those measured in human crypts was
determined by solving system (4.16). For the nonlinear control function see Appendix J.

This assumption works for many control networks, but sometimes it was observed that

stochastic deviations of cell numbers from the mean forced the linear control function to take

values outside the realistic range (e.g. a division rate may become negative). In such cases we

used nonlinear functions which have the correct values of the derivatives at the equilibrium,

but are defined in the biologically relevant range, see Appendix J. A typical simulation of the

control dynamics for network #1 is presented in figure 4.5. The variance of the number of

each cell type, is similar to the measured values reported in [58].

Choose networks with appropriate dynamics of recovery from perturbation.

Next, we perform the eigenvalue analysis of the networks to study the injury recovery dynamics.

The recovery dynamics of the measured data are oscillatory, see e.g. [92]. Theoretically, we

will study the eigenvalues of the linearized system around the equilibrium for each network.

Using the deterministic equations (4.2)-(4.4), we can compute the Jacobian of each network

(evaluating at the steady state) and its eigenvalues, thus obtain the condition of stability

and osillatory behavior, see Appendix K for details. Complex eigenvalues indicate robust
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oscillations. The results are listed as follows (see equations (4.17)-(4.20) for the notations):

• system 1: The system is always stable, and it is oscillatory if aL1 <
bP1
4

.

• system 2: The system is always stable, and it is oscillatory if aL1 <
bP1
4

.

• system 8: The system is always stable but not oscillatory.

• system 9: The system is always stable but not oscillatory.

• system 12: The system is always stable but not oscillatory.

• system 13: The system is always stable, and it is oscillatory if aP2 > −
L0bP1
4D0

.

• system 18: The system is stable if bL2 >
D0cP2
L0

, and it is oscillatory if 4bL2cP2D
2
0 >

(L0bL2 +D0cP2)
2.

From this analysis we conclude that networks #8, 9 and 12 do not have appropriate oscillatory

dynamics and are therefore eliminated.

Choose networks with observed intra-crypt correlations of cell types. From the

measurements, the sum of the number of SCs (total stem cells) and TACs is not correlated

with the number of DCs, see figure 4.6(a). For each candidate network, we evaluate the

absence of this correlation. We do not need to investigate correlations between TACs and

SCs, because these numbers are strongly correlated due to the assumption that a fraction W

of dividing cells is SCs and (1−W ) is TACs. We use W = 0.03, from section 4.1.1.

From the previous step, the remaining networks are: 1, 2, 5, 13, and 18. For each of these

networks, we perform simulations of the dynamics in homeostatic conditions, figure 4.6(b-f).

Each simulation starts at the experimentally measured mean and finishes when time steps

reach 2 · 107. Each data point in figure 4.6 is collected every 4 · 105 time steps: the x-value is
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the sum of SC and TAC population numbers, and y-value is the DC population number (that

is, for each panel in figure 4.6, we plotted 50 data points). Using the statistical package R, we

can check the correlation for each network: we fit a linear regression model of the simulated

DCs against the sum of simulated SCs and TACs. We then perform hypothesis testing on

the linear relation: suppose the model is expressed as y = αx+ β, then the null hypothesis is

H0 : α = 0, and the alternative hypothesis is Ha : α 6= 0. P-values of α can be obtained from

R. A p-value less than 0.05 indicates that a linear correlation was unlikely due to chance,

and a p-value greater than 0.05 indicates that the correlation could have been due to chance.

The result is presented in figure 4.6, and p-values are given in the caption of the figure.

From this part of the analysis we conclude that networks #5, 13, and 18 have significant

correlations between the number of DCs and the sum of SCs and TACs, unlike the observed

data, and therefore are eliminated. However, for networks #1 and #2, the intra-crypt

correlations are not significant, as are the observed data not significant, and they are retained.

Revisit injury recovery dynamics. Besides the eigenvalue analysis, we also look at the

actual trajectories of the cell numbers following in injury. Injury recovery measurements are

available in the literature, see e.g. [92], where the cell numbers in the mouse small intestine

were measured following a perturbation of homeostasis of cell dynamics by a dose of radiation.

Further, [93] shows very similar results, see Fig.6(b) in their paper that depicts oscillations of

DNA synthesizing cells in mouse intestinal crypts after irradiation.

We observe that oscillation trajectories in recovery dynamics feature a certain overshoot

followed by diminishing oscillations around the mean number of the cells. In particular,

Fig.1(c) in [92] shows recovery oscillation of (clonogenic) stem cells, and Fig.1(d) in the

same paper shows the recovery of total cells per crypt. Even though direct measurements of

oscillatory crypt recovery dynamics are only available for murine crypts, we expect that similar

behavior will be observed in human crypts, see also simulations of the human colon crypt
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Figure 4.6: The plots of DCs vs. the sum of SCs + TACs. (a) is for the experimental data, and p-value
= 0.64 (linear correlation coefficient); (b) is for network 1 when q = 0.1, and p-value = 0.598; (c) is for
network 2 when q = 0.1, and p-value = 0.661; (d) is for network 5 when q = 0.1, and p-value = 0.006; (e) is for
network 13 when q = 0.2, and p-value = 0.021; (f) is for network 18 when q = 0.3, and p-value = 4.89× 10−6.
The straight lines indicate the fitted regression line for each. Please note that different values of q are used
in the subfigures (a-f) because different networks describe the measured mean and variances for different
subsets of the possible q values.

70



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time steps 104

0

20

40

60

80

100

120
S

C
s

control #1, Q=0.03

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time steps 104

300

400

500

600

700

800

900

1000

T
A

C
s

control #1, Q=0.03

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time steps 104

1200

1300

1400

1500

1600

1700

1800

D
C

s

control #1, Q=0.03

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time steps 104

1600

1800

2000

2200

2400

2600

2800

to
ta

l n
um

be
r 

of
 c

el
ls

control #1, Q=0.03

Figure 4.7: The simulated recovery trajectories of network #1 when W = 0.03 and q = 0.1. The red lines
indicate the measured equilibrium values of cell numbers. The behavior of network 2 is qualitatively similar.
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Figure 4.8: The simulated recovery trajectories of network #12 when W = 0.03 and q = 0.1. The red lines
indicate the measured equilibrium values of cell numbers.
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in [58], where Fig.5 shows oscillatory behavior similar to that of mouse crypts. Therefore,

we argue that a reasonable control network should exhibit oscillatory behavior both in the

numbers of stem cells and in the total number of cells.

In the previous stage of the algorithm, we have used the eigenvalue analysis to study the

oscillatory behavior of each candidate network, and now we check if each remaining network

produces a recovery trajectory that is qualitatively similar to the measurements. For each

network, we start a numerical simulation at the state of equilibrium. We reduce the total cell

number to 0.8 of the unperturbed value, run the simulation when the time steps reach 2×106,

and then plot the number of cells over the time course. The numerical results for network

#1 are presented in figure 4.7 (for network #2, the dynamics look very similar and are not

shown). We observe that networks #1 and #2, each produce recovery dynamics of total

cell numbers similar to the experimentally observed recovery dynamics reported in [92, 93].

In particular, both the number of SCs and the total number of cells are characterized by

oscillatory recovery trajectories consistent with the experiments. In contrast with that, other

(non-oscillatory) networks exhibit qualitatively different behavior, which is illustrated by the

example of network #12, see figure 4.8.

A note on the variance of SCs. The calculated mean number of SCs in the crypts was

only slightly larger than the standard deviation. As long as parameter W (the fraction of

dividing cells that are active SC) was not too much lower, the system under the minimal

controls studied here was able to maintain robust homeostasis. If we used W = 0, however,

we observed that under the parameter values that produced the experimentally measured

variance, the SCs were subject to relatively frequent extinction events. This observation

allows several interpretations. (i) If we were to interpret the inter-crypt variation as an

indicator of temporal intra-crypt variation, and assumed that W = 0, the minimal control

networks studied here are not enough to explain the system behavior, and additional processes
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such as TAC de-differentiation activated by SCs falling below a certain level would have to

be included. (ii) Alternatively, it is possible that the relatively high inter-crypt variance of

the SC numbers is a consequence of inter-crypt parameter variation, and the actual temporal

homeostatic variability of crypts is lower than this. (iii) The value of W does not fall much

below the measured mean of W = 0.03, in which case no further model modifications are

necessary.

Summary of findings. Of the 20 possible constant-death control networks (figure 4.2),

only networks #1 and #2 have stable dynamics that reproduce the measured mean and

variance of each cell type, exhibit the correct intra-crypt correlation patterns, and show

realistic oscillatory recovery dynamics. Further, as demonstrated in Appendix L, out of the

12 additional, non-constant death control networks (figure 4.3), only network #27 satisfies

the same criteria.

4.3 Results and Discussion

Investigating possible regulation of stem cell dynamics in colon and intestinal crypts has been

a popular subject for computational and mathematical modeling [94–97]. This is because

crypts have a few distinguishable cell types organized in a hierarchy of fewer than 2500 cells

that maintain homeostasis, and can recover after perturbation. It is the kind of dynamical

system that lends itself to formulating possible regulatory models, and testing the model

behaviors by comparing simulation results to experimental observations of real biological

crypts.

In this study we investigated the 20 theoretically possible minimal control networks for a

three-compartment system consisting of SCs, TACs, and DCs. We used the data obtained on

49 human colonic crypts, where the numbers of dividing and non-dividing cells were measured.
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From this information assuming that the fraction W of all dividing cells were active SCs, and

fraction 1−W were TACs, we obtained the distributions of the three cell types. Using this

information as well as observations of crypt recovery from injury and intra-crypt correlations,

we devised an algorithm which allowed us to test all 20 networks. All but two were excluded

based on their inconsistency with the measured data. In particular we found that control

networks #1 and #2 are the best systems that describe the measured data, see figure 4.4.

A conceptually surprising outcome is that an argument about the interactions among the

compartments of a stem cell lineage can be made based on only a very limited set of

measurements, which does not contain any direct assessment of signaling mechanisms. The

biological input consists of quantitative static measurements (the sample means and the

variances of the cell numbers together with their correlations) and qualitative dynamic

measurements (the existence of oscillations in tissue recovery process). Based on these pieces

of evidence, and on our analysis of mathematically possible networks, we were able to restrict

the number of possible regulatory networks to only two.

The resulting candidate networks #1 and #2 (figure 4.2) are among only three networks

(among the 32 networks) that consist entirely of negative loops (network #6 is the third such

network, and it was eliminated at the first step of the analysis because it failed to produce a

stable root with the means and variances matching the observations, see figure 4.4). Network

#27 is one of only two networks (among those where death of DCs is controlled, figure 4.3)

that contain two negative control loop (non-local network #29 is the second one). In general,

negative feedback controls are common in biological systems at many levels, from repressor

protein effects on transcription of the lac operon in DNA to the effect of insulin on glucose in

the blood. Negative controls have also been invoked to model other cell lineages [27, 48]. [98]

emphasizes the important role that negative signaling loops play in oscillatory behavior in a

wide variety of biological systems.

We further notice that the candidate control networks identified by our algorithm are all very
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Figure 4.9: The three minimal control networks selected by our algorithm as candidate networks for colonuc
crypt lineages.

similar: out of three control loops, two occur in all the three networks. These are: (1) the

negative regulation of SC divisions rate by the cells in the SC compartment, and (2) the

negative regulation of SC differentiation probability by the TAC compartment. These control

loops have a simple explanation through the mechanism of crowding: having too many SCs

prevents them from further divisions, and too many TACs restricts differentiation divisions

in favor of proliferation divisions. The DCs in the three candidate networks perform different

tasks: they exhibit negative control of divisions (#1) and proliferations (#2) of TACs and

they regulate their own death (#27). Our current algorithm cannot distinguish between these

three possibilities; further biological information may further narrow the set of possibilities.

Understanding the design principles of control networks is a fascinating research direction, to

which this work can contribute. Given the results of our analysis, we hypothesize that perhaps

the pattern of two negative control loops that occurs in all the three networks selected by

our algorithm may be important for effective control of hierarchically organized tissues such

as crypts.

This work should be considered more of a demonstration of principle than a final result. For

example, we cannot conclude that one of the networks #1, #2 and #27 is definitely the one

that acts in human colonic crypts. We have only tested the minimal (3-control) regulatory

networks. It is still possible that a more complicated network with more than three essential

control mechanisms is in place. All we can say is that we found the three simplest (in the
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sense of having the minimal number of loops) control networks that are compatible with

(both dynamic and static) observations in colonic crypts. The same holds for additional

cellular processes that were not included in the present model, such as cell de-differentiation.

The methods proposed here however can be extended to such systems, see [90]. The process

of de-differentiation can be especially relevant for the system in question, as the measured

inter-crypt standard deviation of the SC numbers is not much smaller than their mean, and

in certain regimes it may be necessary to include TAC de-differentiation to compensate for

stochastic loss of SCs.

In principle, SCs are capable of three types of division: (1) asymmetric divisions, where one

of the daughter cells retains the stemness property while the other is more differentiated; (2)

symmetric proliferation, where both offspring are stem cells, and (3) symmetric differentiation,

where both offspring have higher degree of differentiation compared to the dividing cell. A

large number of studies has been devoted to understanding the symmetry of SC divisions,

and it appears that in some organisms SCs divide mostly asymmetrically, and in others

both division types happen, depending on the specific context. The prevalence of symmetric

divisions depends on the tissue. For example, in the mouse epidermis, it has been reported

that about 20% of SC divisions are symmetric in the ear and tail epidermis, while 40% of SC

divisions are symmetric in the paw epidermis. In the epidermis it has been argued in the

recent years that SCs divide predominantly asymmetrically [19–22]. In crypts, however, SC

symmetrical divisions play an important role [99–102]. Therefore, in the present work we

have used the model with symmetric divisions (types (2) and (3) above). Again, asymmetric

divisions can be added by using the present methodology, see Chapter 3.

In the present work the measurements of Ki-67, where the positively stained cells were

identified as dividing, and the non-stained cells as non-dividing, were used to study cellular

control networks. Different cell types (such as SCs, TACs, DCs) control various cell fate

decisions. In order to convert the measurements into information on the numbers of SCs,
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TACs, and DCs, we used the assumption that some stem cells are quiescent and others

are active. [81] has reviewed evidence for this understanding of stem cells. They describe

evidence for the co-existence of quiescent and active stem cell populations in the hair follicle,

small intestine, and bone marrow. The model includes interconversion between the two types

of stem cells, with quiescent stem cells replenishing damaged active stem cell population, and

the possibility of active cells converting to quiescent stem cells. The number of quiescent

cells are regulated by negative feedback from the active stem cells and/or their progeny. This

model extends the previous models that have described each cell in the stem cell population

as having a probability of not dividing, or dividing symmetrically to produce more stem cells

or asymmetrically to produce a stem cell and a transient amplifying cell [103].

Our model only includes spatial considerations in the most rudimentary sense. We exclude

the networks with nonlocal control, bearing in mind the geometry of the crypts. A more

detailed, spatial model can be designed to test if our conclusions still hold. A limitation of

such numerical studies is that complex spatial models do not allow for analytical solutions,

and a comprehensive parameter study of the kind presented in our algorithm cannot be

implemented. The advantage of our approach is that we obtained analytical expressions for

the means and the variances of numbers of each cell type, and this allowed us to recover the

values for the controls, given the experimentally obtained cell population measurements.

In conclusion, we have compared the simulated behavior of several possible regulatory

networks with the numbers of cell types measured in human biopsy specimens, and have

determined that the most likely form of regulation is by local control of stem cells on their

own division, transient amplifying cells on the differentiation of stem cells, differentiated cells

on the division and differentiation of transient amplifying cells and on their own death.
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Appendices

A The summation equations

Here we consider the patterns for the 5 summation equations which are derived from equation

(2.8) by multiplying by iαjβ and summing over i and j, for α + β ≤ 2. Let us denote the

summation equation derived from multiplying by iαjβ by the pair of numbers (α,β).

We present the example of equation (1, 0). Multiplying equation (2.8) by i and summing over

i and j, we obtain

0 =
∑
i

∑
j

ϕ̃ij(−
1

2
ε(4iL0Px + 4jL0Py)−

1

2
ε2[2i2(2LxPx + L0Pxx)

+4ij(LyPx + L0Pxy + LxPy) + 2j2(2LyPy + L0Pyy)]−
1

2
ε3[i3(2LxxPx + LxPxx)

+i2j(4LxyPx + 2LyPxx + 4LxPxy + 2LxxPy) + ij2(4LxyPy + 2LxPyy + 4LyPxy + 2LyyPx)

+j3(2LyyPy + 2LyPyy)]−
1

2
ε4[i4LxxPxx + 2i3j(LxyPxx + LxxPxy)

+i2j2(LyyPxx + 4LxyPxy + LxxPyy) + j4LyyPyy]) (A.1)

From the above equation, we notice that the power of ε is consistent with the power of iαjβ.

Indeed, every term containing εk term multiplies a term of the form iαjβ, where α + β = k.
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The reason for this can be seen by examining the structure of equation (2.8). In this equation,

every term containing the power k of ε (as follows from the number of derivatives of the

probability functions), is multiplied by iαjβ with α + β = k.

The same property holds for the other four summation equations, which we do not present

here. To derive all the summation equations, we need to perform the summations in i and j

and use definition (2.9) for the moments. Each equation will be coupled to other equations

containing higher order moments. The easiest way to close the system is to use the simple

truncation method. The resulting system of 5 equations is given by (2.17-2.21). The other

two truncation methods are worked out below.

B A case study

In this section, we will consider a special case of the general model equation (2.1). We will see

that the results for the general case coincide with the results found previously by a different

methodology in [75] and reported in Section 2.1.1. In particular, we will demonstrate that all

three truncation methods have the same result for a1
αβ, but different results for a2

αβ, where

xαβ =
a1αβ
εn

+
a2αβ
εn−1 , α + β ≤ 2.

In this example, we assume that

Q(N) =
b

1 + hN
, P (J) =

r

1 + gJ
,

where h, g � 1 and b, r = O(1) are two constants. The corresponding Kolmogorov forward
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equation is given by:

ϕ̇J,N = ϕJ+1,N+1(1−Q(N + 1)) + ϕJ,N−1Q(N − 1)(1− P (J)) +

ϕJ−2,N−1Q(N − 1)P (J − 2)− ϕJ,N . (B.2)

Let n0 and j0 be the steady state, and n = N − n0, j = J − j0. n0 and j0 are defined to

satisfy the deterministic equations:

1. Ṅ = Q(N)− (1−Q(N)),

2. J̇ = 2Q(N)P (J)− (1−Q(N)).

We can easily see that n0 = 2b−1
h

.

Define ϕ̃j,n such that ϕ̃j,n = ϕJ,N , and Q̃(n) = Q(N), P̃ (j) = P (J), then (B.2) can be

rewritten as:

˙̃ϕj,n = ϕ̃j+1,n+1(1− Q̃(n+ 1)) + ϕ̃j,n−1Q̃(n− 1)(1− P̃ (j)) +

ϕ̃j−2,n−1Q̃(n− 1)P̃ (j − 2)− ϕ̃j,n. (B.3)

Expanding Q(N) and P (J) in Taylor series, we obtain

Q(N) =
1

2
+ r1n+ r2n

2 + · · · ,

P (J) =
1

2
+ s1j + s2j

2 + · · · ,

Let us multiply both sides of equation (B.3) by jαnβ and sum over j, n in the quasi-stationary

89



state. We obtain the following 5 summation equations, where xαβ =
∑

j

∑
n j

αnβϕ̃j,n:

r1x01 + r2x02 = 0

2r1x01 + s1x10 + 2r2x02 + 2r1s1x11 + 2r2s1x12 + s2x20 + 2r1s2x21 + 2r2s2x22 = 0

1 + 4r1x02 + 4r2x03 = 0

1 + s1x10 + 2r1x02 + (2r1 + s1 + 2r1s1)x11 + s2x20 + 2r2x03 + 2(r2 + r1s1 + r2s1)x12

+(s2 + 2r1s2)x21 + 2r2s1x13 + 2s2(r1 + r2)x22 + 2r2s2x23 = 0

3

2
+ r1x01 + 2s1x10 + r2x02 + 4r1(1 + s1)x11 + 2(s1 + s2)x20 + 4r2(1 + s1)x12 + 4r1(s1 + s2)x21

+2s2x30 + 4r2(s1 + s2)x22 + 4r1s2x31 + 4r2s2x32 = 0

As in the general case, we expand every term in the Taylor series:

Q(N) =
1

2
− h0

4
n+

h2
0

8
n2,

P (J) =
1

2
− g0

4
j +

g2
0

8
j2,

where we introduce the following short-hand notations:

h0 =
h

b
, g0 =

g

r
, η =

g0

h0

.

We will use the truncation equations of Appendix D for central moment and cumulant closure

method to solve the system for xαβ =
a1αβ
hn0

+
a2αβ

hn+1
0

, α + β ≤ 2. The solutions are presented

below.

1. Simple truncation method
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E[j] = x10 =
4 + 3η

2(2 + η)
+O(h2

0)

E[n] = x01 =
1

2
+O(h2

0)

E[j2] = x20 =
2 + 3η

η(2 + η)
∗ 1

h0

+O(h0)

E[jn] = x11 =
2

2 + η
∗ 1

h0

+O(h0)

E[n2] = x02 =
1

h0

+O(h0)

Comparing with the old results in formulas (2.3)-(2.6), here we have

E[N ] =
2b− 1

h
+

1

2
, V ar[N ] =

b

h
− 1

4

2. Central moment truncation method

x10 =
4 + 3η

2(2 + η)
+

44η + 108η2 + 93η3 + 27η4

8(2 + η)3
h0 +O(h2

0)

x01 =
1

2
+

3

8
h0 +O(h2

0)

x20 =
2 + 3η

η(2 + η)
∗ 1

h0

+
8 + 92η + 138η2 + 93η3 + 27η4

4η(2 + η)3
+O(h0)

x11 =
2

2 + η
∗ 1

h0

+
16 + 24η + 22η2 + 9η3

2(2 + η)3
+O(h0)

x02 =
1

h0

+
3

4
+O(h0)

(B.4)
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3. Cumulant truncation method

x10 =
4 + 3η

2(2 + η)
+
η(228 + 556η + 483η2 + 135η3)

32(2 + η)3
h0 +O(h2

0)

x01 =
1

2
+

3

8
h0 +O(h2

0)

x20 =
2 + 3η

η(2 + η)
∗ 1

h0

+
328 + 580η + 438η2 + 135η3

16(2 + η)3
+O(h0)

x11 =
2

2 + η
∗ 1

h0

+
128 + 140η + 184η2 + 105η3

16(2 + η)3
+O(h0)

x02 =
1

h0

+
3

4
+O(h0)

From the above results, all three truncation methods have the same solution for a1
αβ, but

different solutions for a2
αβ, where xαβ =

a1αβ
hn0

+
a2αβ

hn+1
0

, α + β ≤ 2.

As we can see, the simple truncation, central moment truncation and cumulant truncation

methods yield the same result for the highest order terms in xαβ, where α+β ≤ 2. Therefore,

all three methods have the same result for the mean and variance of N and J , if we only

keep the highest order term, as summarized below:

E[N ] =
2b− 1

h
+

1

2
+O(h), (B.5)

V ar[N ] =
b

h
+O(1), (B.6)

E[J ] =
2r − 1

g
+

4 + 3η

2(2 + η)
+O(h), (B.7)

V ar[J ] =
2 + 3η

η(2 + η)
∗ 1

h0

+O(1). (B.8)

To compare the above results with formulas (2.3)-(2.6), derived from direct calculations in
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Section 2.1.1, we expand formulas (2.3)-(2.6) with respect to h0, and then only keep the

highest order terms. The results are identical to equations (B.5-B.8).

C Comparison of the three truncation methods

Each of the three truncation methods has its own advantages and disadvantages. The

advantage of the simple truncation method is its simplicity. Compared to the simple

truncation method, both the central moment and cumulant truncation method require more

extensive calculations. However, these methods can give more accurate results, as shown

below.

The order of magnitude for the lower moments. Let us expand the moments xαβ in

a power series in terms of ε, xαβ =
∑∞

n=−∞X
(n)
αβ ε

n. We will consider only the two highest

order terms in this expansion, with the corresponding coefficients denoted as a1
αβ and a2

αβ.

That is, we write

xαβ =
a1
αβ

εn
+
a2
αβ

εn−1
+O(1/εn−2),

where a1
αβ, a

2
αβ = O(1) are unknown constants that we need to find. Next, we prove that for

xαβ, where α + β ≤ 2, all three truncation methods yield the same result for a1
αβ, but the

results of the three methods differ for a2
αβ.

To determine the largest contributions to the expansions for xαβ, we consider the five moment

equations. At order (m, k), we multiply equation (2.8) by imjk and perform a double-

summations in i and j. We call the resulting equations the summation equations. Because

of expansion (2.14-2.16), coefficients in front of different variables xαβ will have a different

order in terms of ε. In general, such an equation will contain terms multiplying xm+s,k+r

with s = 0, 1, . . . and r = 0, 1, . . .. The coefficient in front of the term xm+s,k+r is of the order
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εs+r. The summation equations may also contain a nonhomogeneous (constant) term of order

O(1).

Because x01 = E[j], and j = J − j0 is a small perturbation around the steady state, it is

reasonable to assume that x01 = a1
01 + a2

01ε and x10 = a1
10 + a2

10ε. Because x02 = E[j2], x02

should be at least of order O(1
ε
). But if x02 is of order O( 1

ε2
) or higher, then from the 5

summation equations, the coefficient of the terms with power O( 1
εk

) with k ≥ 2 should be

0, which is not the case. Therefore, x02 =
a102
ε

+ a2
02. Similarly, we have x11 =

a111
ε

+ a2
11 and

x20 =
a120
ε

+ a2
20. Calculations presented in Appendix A demonstrate these arguments in detail.

As it will be discussed in E.3 of Appendix, these assumptions are indeed valid.

The order of magnitude of the higher moments. For the 3rd order truncation equa-

tions, the central moment and the cumulant closure methods have the same truncation

equations, because for α + β = 3 we have E[(i− E[i])α(j − E[j])β] = κα,β. Setting these mo-

ments to zero yields 4 equations (equations (D.9)-(D.12) in Appendix D). Because xαβ = O(1)

for α + β = 1 and xαβ = O(1
ε
) for α + β = 2, in order to balance equations (D.9-D.12), xαβ

with α + β = 3 has to be of the order of O(1
ε
).

For α + β ≥ 4, the central moment and the cumulant closure methods have different

truncation equations (see Appendix D.2). For the central moment truncation method,

we have xαβ = O(1
ε
) with α + β = 4, 5. For the cumulant truncation method, we have

xαβ = O( 1
ε2

), where α + β = 4, 5 (see Appendix D).

All three methods coincide for a1
αβ, but differ for a2

αβ. Next, we will show that all

three truncation methods give the same result for a1
αβ, but different results for a2

αβ, where

xαβ =
a1αβ
εn

+
a2αβ
εn−1 +O

(
1

εn−2

)
and α + β ≤ 2.
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First, we look for the highest order term of ε in the 5 summation equations. By the above

and equation (A.1) in Appendix A, the highest order term in the 5 summation equations is

εf1(x01, x10) + ε2f2(x02, x11, x20),

where f1 is a function of x01, x10 and f2 is a function of x02, x11, x20. Presenting xαβ with

α + β ≤ 2 as a series, and keeping only the highest order terms in the summation equations,

we obtain a linear system for a1
αβ. Because the linear system derived from the moment

equations is independent of the truncation methods, we can see that all three truncation

methods yield the same result for a1
αβ, where α + β ≤ 2. This is also the reason why the

highest order contributions to the expectation and variance for i and j are the same for all

the three methods, and so are the leading order to the expectation and variance for I and J

by equations (2.10), (2.12), and (2.13).

Next, we will show that a2
αβ with α + β ≤ 2 are different in the 3 truncation methods by

looking for the second highest order terms of ε in the 5 summation equations.

In the simple truncation method, the second highest order terms are a2
αβε

2, α+β ≤ 2, because

we simply assume that all the higher moments are 0. Thus, we get a linear system for a2
αβ,

α + β ≤ 2.

In the central moment truncation method, the second highest order terms are a2
αβε

2 for

α + β ≤ 2, and a1
αβε

2 for α + β = 3, because when α + β ≥ 4, the power is at least O(ε3),

by equation (A.1). Therefore, we obtain a linear system for a2
αβ, α + β ≤ 2, which contains

terms a1
αβ with α + β = 3. We can solve the system for coefficients a1

αβ with α + β = 3 from

the third order central moment truncation equations.

Finally, for the cumulant truncation method, the second highest order terms are a2
αβε

2 for
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α + β ≤ 2, and a1
αβε

2 for α + β = 3, 4 (the argument is similar to the one presented above).

The difference from the central moment closure method is that the linear system for a2
αβ with

α + β ≤ 2 does not only contain terms a1
αβ with α + β = 3, but also contains terms a1

αβ with

α + β = 4. Similarly, a1
αβ with α + β = 4 can be obtained from the cumulant truncation

equations.

From the above considerations, we can see that the equations for a2
αβ with α + β ≤ 2 for

the simple truncation method contain no information about the higher order terms xαβ,

α + β ≥ 3. For the central moment truncation method, these equations contain some

information about the higher order terms, which is xαβ with α + β = 3. Finally, for the

cumulant truncation method, these equations contain information about xαβ with α+β = 3, 4.

In conclusion, the three truncation methods produce the same result to the leading order

of the mean and variance for the cell population. While we expect the central moment and

cumulant truncation methods to give more accurate results to the next order correction, they

require more extensive computations. In section 2.3.2, we show that the cumulant truncation

is the most accurate among the three methods. The advantage of the simple truncation

method is the straightforward calculations that it involves.

D Truncation equations

For more sophisticated truncation techniques employed here, we need to use truncation

equations that express the higher moments in terms of the lower moments. Here we present

these truncation equations for the central moment truncation method and the cumulant

truncation method.
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D.1 Truncation equations for xαβ, where α + β = 3

These two methods have the same truncation equations for xαβ, where α + β = 3:

2x3
10 − 3x10x20 + x30 = 0 (D.9)

2x01x
2
10 − 2x10x11 − x01x20 + x21 = 0 (D.10)

2x10x
2
01 − 2x01x11 − x10x02 + x12 = 0 (D.11)

2x3
01 − 3x02x01 + x03 = 0 (D.12)

Because x10, x01 = O(1) and x20, x11, x02 = O(1
ε
), we can see that xαβ = O(1

ε
) with α+ β = 3.

D.2 Truncation equations for xαβ, where α + β = 4, 5

When α + β = 4, 5, central moment closure method has different truncation equations

compared to cumulant closure method.
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(a). Central moment closure method.

−3x01x
3
10 + 3x2

10x11 + 3x01x10x20 − 3x10x21 − x01x30 + x31 = 0

−3x2
01x

2
10 + x02x

2
10 + 4x01x10x11 − 2x10x12 + x2

01x20 − 2x01x21 + x22 = 0

−3x10x
3
01 + 3x2

01x11 + 3x01x10x02 − 3x01x12 − x10x03 + x13 = 0

4x2
01x

3
10 − x02x

3
10 − 6x01x

2
10x11 + 3x2

10x12 − 3x2
01x10x20 + 6x01x10x21 − 3x10x22

+x2
01x30 − 2x01x31 + x32 = 0

4x2
10x

3
01 − x20x

3
01 − 6x10x

2
01x11 + 3x2

01x21 − 3x2
10x01x02 + 6x01x10x12 − 3x01x22

+x2
10x03 − 2x10x13 + x23 = 0

Because x10, x01 = O(1), x20, x11, x02 = O(1
ε
) and x30, x21, x12, x03 = O(1

ε
), by the above

truncation equations, xαβ = O(1
ε
), for α + β = 4, 5.

(b). Cumulant closure method. The truncation equations for cumulant closure method

for xαβ, where α + β = 4, 5 are:

x31 − 3x10x21 − x01x30 − 3x20x11 + 6x20x01x10 + 6x11x
2
10 − 6x3

10x01 = 0
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x22 − 2x10x12 − 2x01x21 − x20x02 − 2x2
11 + 2x20x

2
01 + 2x02x

2
10 + 8x11x10x01 − 6x2

10x
2
01 = 0

x13 − 3x01x12 − x10x03 − 3x02x11 + 6x02x01x10 + 6x11x
2
01 − 6x3

01x10 = 0

24x2
01x

3
10 − 6x02x

3
10 − 36x01x

2
10x11 + 12x10x

2
11 + 6x2

10x12 − 18x2
01x10x20

+6x02x10x20 + 12x01x11x20 − 3x12x20 + 12x01x10x21 − 6x11x21 − 3x10x22 + 2x2
01x30

−x02x30 − 2x01x31 + x32 = 0

24x2
10x

3
01 − 6x20x

3
01 − 36x10x

2
01x11 + 12x01x

2
11 + 6x2

01x21 − 18x2
10x01x02

+6x20x01x02 + 12x10x11x02 − 3x21x02 + 12x01x10x12 − 6x11x12 − 3x01x22 + 2x2
10x03

−x20x03 − 2x10x13 + x23 = 0

By these truncation equations, we get xαβ = O( 1
ε2

), for α + β = 4, 5.
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E Moment Equations

E.1 Linear Noise Approximation

To find the next order correction, we will collect terms up to O(ε3/2) in the master equation

expansion. After rescaling time by T = L0τ = L0εt, we will extend the Fokker-Planck

equation (2.43) to O(ε1/2). Then, we can obtain the moment equations by integrations. Here

we will only illustrate several of them:

d〈ξ〉
dT

= −2(Px〈ξ〉+ Py〈η〉) + ε1/2[−(Pxx +
2LxPx
L0

)〈ξ2〉 − (Pyy +
2LyPy
L0

)

〈η2〉 − 2(Pxy +
LxPy + LyPx

L0

)〈ξη〉], (E.13)

d〈ξ2〉
dT

= −4(Px〈ξ2〉+ Py〈ξη〉) + 1 + ε1/2[−2(Pxx +
2LxPx
L0

)〈ξ3〉 − 2(Pyy +

2LyPy
L0

)〈ξη2〉 − 4(Pxy +
LxPy + LyPx

L0

)〈ξ2η〉+
Lx〈ξ〉
L0

+

Ly〈η〉
L0

], (E.14)

d〈ξ3〉
dT

= −6Px〈ξ3〉 − 6Py〈ξ2η〉+ 3〈ξ〉+ ε1/2[−3〈ξ4〉(Pxx +
2LxPx
L0

)−

3〈ξ2η2〉(Pyy +
2LyPy
L0

)− 6〈ξ3η〉(Pxy +
LxPy + LyPx

L0

) + 3〈ξ2〉Lx
L0

+3〈ξη〉Ly
L0

], (E.15)

d〈ξ4〉
dT

= −8Px〈ξ4〉 − 8Py〈ξ3η〉+ 6〈ξ2〉. (E.16)
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E.2 Simple Trunciation

Correspond with (E.13) - (E.16), we have:

(1, 0) −2ε[L0(Pyx01 + Pxx10)] + [−2Ly(Pyx02 + Pxx11)− 2Lx(Pyx11

+Pxx20)− L0(Pyyx02 + 2Pxyx11 + Pxxx20)]ε2 = 0, (E.17)

(2, 0) L0 − 4L0(Pyx11 + Pxx20)ε+ (Lyx01 + Lxx10)ε+
1

2
ε2[−4L0(Pxx

+
2LxPx
L0

)x30 − 4L0(Pyy +
2LyPy
L0

)x12 − 8L0(Pxy +
LyPx + LxPy

L0

)

x21 + Lyyx02 + Lxxx20 + 2Lxyx11] = 0, (E.18)

(3, 0) 3L0x10 + ε(3Lyx11 + 3Lxx20 − 2L0Pyx01 − 6L0Pyx21 − 2L0Pxx10

−6L0Pxx30) + ε2(−2LxPyx11 +
3

2
Lyyx12 − 2LxPxx20 + 3Lxyx21 +

3

2
Lxxx30 − 6LxPyx31 − 2LyPyx02 − 6LyPyx22 − 2LyPxx11 − 6LyPxx31

−6LxPxx40 − L0Pyyx02 − 3L0Pyyx22 − 2L0Pxyx11 − 6L0Pxyx31

−L0Pxxx20 − 3L0Pxxx40) = 0, (E.19)

(4, 0) L0 + 6L0x20 + ε(Lyx01 + 6Lyx21 + Lxx10 + 6Lxx30 − 8L0Pyx11

−8L0Pyx31 − 8L0Pxx20 − 8L0Pxx40) = 0. (E.20)

By using (2.49), equations (E.13)-(E.15) coincide with equations (E.17)-(E.19) to O(ε1/2),

and equations (E.16) agrees with (E.20) to O(1). In fact, all the first, second, and third order

moment equations from the two methods coincide to O(ε1/2), and so are the fourth order

moment equations to O(1).
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E.3 Methodology

To find O(ε1/2) terms of the first order moments 〈ξ〉, 〈η〉, (E.13) shows we only need O(1)

terms of 〈ξ2〉, 〈η2〉, 〈ξη〉. Since the two methods give the same results to the leading order of

the second order moments, O(ε1/2) terms of the first order moments (which turn out to be

non-zero) are the same for the two methods. It follows that the next order correction to the

first order moments are the same for the two methods.

To find O(ε1/2) terms of the second order moments 〈ξ2〉, 〈ξη〉, 〈η2〉, (E.14) shows we only need

O(1) terms of 〈ξαβ〉 for α + β = 3, and O(1) terms of 〈ξ〉, 〈η〉. Through (E.15) and the other

third order moment equations, we have O(1) terms of 〈ξαβ〉, for α + β = 3, are all zero since

O(1) terms of 〈ξ〉, 〈η〉 are zero. It follows that O(ε1/2) terms of the second order moments

〈ξ2〉, 〈ξη〉, 〈η2〉 are all zero.

To find O(ε) terms of the second order moments 〈ξ2〉, 〈ξη〉, 〈η2〉, (E.14) shows we need O(ε1/2)

terms of 〈ξαβ〉 for α+ β = 3, and O(ε1/2) terms of 〈ξ〉, 〈η〉. We know O(ε1/2) terms of 〈ξ〉, 〈η〉

are the same for the two methods. To find O(ε1/2) terms of 〈ξαβ〉 for α + β = 3, we need

O(1) terms of 〈ξαηβ〉 for α + β = 4, and O(1) terms of 〈ξαηβ〉 for α + β = 2 by (E.15). Now,

(E.16) and the other fourth order moment equations show that O(1) terms of 〈ξαηβ〉 coincide

for the two methods, for α + β = 4, since both methods give the same results to the leading

order of the second order moments. It follows that the next order corrections to the second

order moments (which turn out to be non-zero) are the same for the two methods.

By using (2.49), we have just shown that Van Kampen method and simple truncation give

the same results to the next order correction of the mean and variance of the cell population.

In particular, let I and i0 denote the number of stem cells and its steady state; respectively,
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then we have the following results:

〈ξ〉 = a1
10 ε

1/2 + · · · ; (E.21)

〈ξ2〉 = a1
20 + a2

20 ε+ · · · ; (E.22)

E[I] = i0 + a1
10 + · · · ; (E.23)

V ar[I] =
a1

20

ε
+ a2

20 − (a1
10)2 + · · · . (E.24)

F Minimal control systems

In section 3.1.1 we review the analysis of [1], see also figure 3.2 of the main text. For the

two-compartment model, we note that at least two of the four quantities, (qx, qy, px, py), must

be nonzero to satisfy the stability condition: ∆ ≡ pyqx − pxqy > 0. In fact, there are exactly

two cases where only two of the four derivatives are nonzero and satisfy the other stability

condition: B ≡ 2L∗S∗(px − py)− qy > 0:

[1 ] qx < 0, py < 0, qy = px = 0;

[2 ] qy < 0, px > 0, qx = py = 0.

Extending the analysis to three nonzero controls, we find that there are exactly three cases

that satisfy both stability conditions:

[3 ] qy < 0, qx > 0, 0 < py < − qy
2L∗S∗

, px = 0;

[4 ] qy > 0, qx = 0, px < 0, py < px − qy
2L∗S∗

< 0;

[5 ] qy = 0, qx > 0, px > py > 0.
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Note that the case where py = 0 yields a system of controls that is reducible to the two-control

model [2] by setting qx = 0.

G Stability analysis

A deterministic description of the system is given by equations

ẋ = LS(1− P )− LSP = LS(1− 2P ), (G.25)

ẏ = 2LSP + L(1− S)−D, (G.26)

The equilibria are defined by

Li0,j0 = Di0,j0 = L∗, Pi0,j0 =
1

2
, S∗ = Si0,j0 . (G.27)

Li0,j0 = Di0,j0 = L∗, Si0,j0 = 0, P∗ = Pi0,j0 . (G.28)

We can compute the Jacobian of the system, evaluated at mixed divisions steady state (G.27):

J =

 ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

 ,

where f = LS(1− 2P ), g = 2LSP + L(1− S)−D, and all derivatives are evaluated at the

equilibrium (i0, j0).
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Let det, τ be the determinant and the trace of J , respectively. Then,

det =
∂f

∂x
· ∂g
∂y
− ∂f

∂y
· ∂g
∂x

=
2L∗S∗(qxpy − qypx)

ε2
;

τ =
∂f

∂x
+
∂g

∂y
= −2L∗S∗(px − py)− qy

ε
.

The stability of the system requires det > 0 and τ < 0. It follows that mixed divisions steady

state is stable as long as ∆ > 0 and B > 0, where we defined

∆ = qxpy − qypx, B = 2L∗S∗(px − py)− qy.

Similarly, we evaluate the Jacobian at purely asymmetric divisions steady state (G.28), and

we obtained in this case:

det =
L∗(2P∗ − 1)(qxsy − qysx)

ε2
;

τ =
L∗(sy − sx)(2P∗ − 1) + qy

ε
.

It follows that purely asymmetric divisions steady state is stable as long as δ > 0 and b > 0,

where

b = −L∗(sy − sx)(2P∗ − 1)− qy, δ = (2P∗ − 1)(qxsy − qysx).
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H Purely asymmetric divisions steady state

The analysis of the mixed divisions steady state is presented in the main text, and the result

for the variances is given by

V ar[I] =
Kx

4B∆
, V ar[J ] =

Ky

4B∆
. (H.29)

Here we present analysis of the dynamics in the vicinity of the purely asymmetric divisions

equilibrium, equation (G.28).

H.1 Results for the cell number means and variances

It is important to note that in the limit of S∗ → 0 (asymmetric divisions only) formulas (H.29)

break down. When S∗ = 0, the numbers of stem cell cannot change in the model. The state

space becomes one-dimensional. By using the same approach of “linear noise approximation”

as in Chapter 2, we can obtain the means and the variances of the cell population to the

highest order:

E[I] = i0, E[J ] = j0; (H.30)

V ar[I] =
{L∗(2P∗ − 1)sy}2

bδ
, (H.31)

V ar[J ] =
L∗
b

+
{L∗(2P∗ − 1)sx}2

bδ
. (H.32)

Evaluating this at the equilibrium, we obtain the correct answer for strictly asymmetric

divisions (by taking the limit S∗ → 0)

V ar[I] = 0, V ar[J ] = −L∗
qy
.
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H.2 A case study with a purely asymmetric divisions equilibrium

In this section, we will demonstrate that the analytic results of section H.1 agree with the

numerical results. We will use the example of two-control model [2] in figure 3.2 of the

main text, and equip it with a control of division symmetry parameter, S. This model is

characterized by negative control on division and positive control on differentiation. We

consider the following functional forms:

L(x, y) =
1

1 + y
, P (x, y) = 0.7 · tanh(x),

D(x, y) = 1− L(x, y), S(x, y) =
(

1− 1

cx

)2

, (H.33)

where c is a positive constant.

The equilibria. We have qx = py = sy = 0, qy = −2ε(1+y)−2 < 0, px = 0.7ε·sech2(x) > 0,

and sx = 2ε
(

1 − 1
cx

)
· 1
cx2
. The mixed divisions steady state can be obtained by solving

P (x, y) = 1/2, and L(x, y) = D(x, y):

xm =
log(6)

2
, ym = 1 (or im =

log(6)

2ε
, jm =

1

ε
). (H.34)

The purely asymmetric divisions steady state can be obtained by solving S(x, y) = 0, and

L(x, y) = D(x, y):

xa =
1

c
, ya = 1 (or ia =

1

cε
, ja =

1

ε
). (H.35)

By using the theory in the main text, we can obtain the means and the variances for the
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mixed divisions solution:

E[I] =
log(6)

2ε
, (H.36)

E[J ] =
1

ε
, (H.37)

V ar[I] =
2L∗S∗∆ + q2

y

4B∆
, (H.38)

V ar[J ] =
2L∗(2 + S∗)∆ + 8L2

∗S∗p
2
x

4B∆
, (H.39)

where all the partial derivates are evaluated at the mixed divisions steady state, and L∗ = 1/2,

S∗ = (1− 2
c log(6)

)2, ∆ = −qypx, and B = 2L∗S∗px − qy.

Similarly, we obtain the means and the variances for the purely asymmetric solution by

equations (H.30 -H.32):

E[I] =
1

cε
, E[J ] =

1

ε
, (H.40)

V ar[I] = 0, V ar[J ] = −L∗
qy
. (H.41)

where L∗ = 1/2, and qy is evaluated at the purely asymmetric equilibrium.

Stability analysis. The mixed solution is stable in this case (since det > 0, and τ < 0),

but the stability of asymmetric solution is ambiguous (since det = 0, and τ < 0), see Section

G. Nevertheless, a nonlinear stability analysis can be performed in this case. Let c∗ = 1/xm,

then if c > c∗, xm > xa, and if c < c∗, xm < xa. We have the following results by nonlinear

stability analysis:

1. If c > 2
log(6)

, and the system starts near (xa, ya) with x > 1
c
, then the solution will
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Figure H.1: The behavior of the means and variances of the system described by (H.33) with ε = 0.005. The
system starts at ( 3im+ia

4 , ja) for c < c∗ = 2/ log(6), and it starts at (ia − 20, ja) when c > c∗. The analytical
results given by (H.36-H.41) (solid line for mixed division and dashed line for purely asymmetric division)
are compared with numerical results (stars), for different values of c. (‘ss1’) stands for the mixed division
solution, (‘ss2’) stands for the purely asymmetric division solution, and (‘N’) stands for the numerical results.
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Figure H.2: Analogous graph as figure H.1, except the system starts at (ia + 10, ja) for c < c∗, and it starts
at ( 3im+ia

4 , ja) for c > c∗.
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converge to (xm, ym) from below.

2. If c > 2
log(6)

, and the system starts near (xa, ya) with x < 1
c
, then the solution will

converge to (xa, ya) from below.

3. If c < 2
log(6)

, and the system starts near (xa, ya) with x > 1
c
, then the solution will

converge to (xa, ya) from above.

4. If c < 2
log(6)

, and the system starts near (xa, ya) with x < 1
c
, then the solution will

converge to (xm, ym) from above.

Numerical results. For each set of ε and c, we ran numerical simulations starting near

(xa, ya), and finishing either when the number of time steps reached 2 · 106, or if any of the

cell types went extinct. We then computed the means and the variances of the cell population

over the time-course of each simulation. From figure H.1, we observe that when the system

starts near (xa, ya) with x < 1
c
, the numerical results agree with the analytic results given by

cases (2) and (4) in the above stability analysis. As observed in figure H.2, the numerical

results are consistent with the analytic results given by cases (1) and (3) in the stability

analysis when the system starts near (xa, ya) with x > 1
c
.

I Numerical simulations

The numerical simulations presented in this paper are set up in the following way. At each

time-step, one of two events happen: either a SC divides with probability L(i,j)
L(i,j)+D(i,j)

, or a

differentiated cell dies with probability D(i,j)
L(i,j)+D(i,j)

. In the case of a SC division, its nature is

determined based on the probabilities S(i, j) and P (i, j). In this algorithm, each time-step

corresponds to a cellular event (a division or a death). In other words, we have a non-uniform

clock which only advances if a biological event takes place.
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This is in contrast with a real-time, physical clock, which continues “ticking” even if no events

take place. If we were to implement the latter, more realistic simulation, we could use the

well-known Gillespie algorithm, where the probabilities of different events are determined as

above, but the time-steps between the events, ∆ti, are assigned according to an exponential

distribution. The latter type of a simulation would present a picture of population dynamics

as it happens in physical time.

For our purposes, however keeping track of biological time is unnecessary. We are only

concerned with calculating the means and the variances of the cell population, which are the

same in our simulation and in the real-time simulation just described. To show this, let us

suppose that we need to calculate the mean value of a stochastic variable fi, which stands

for the population size of interest at time-step i of our simulation. Then the mean value

obtained from our simulation after n time-steps is simply given by

〈f〉1 =

∑n
i=1 fi
n

.

The value obtained from the simulation which keeps track of biological time is given by

〈f〉2 =

∑n
i=1 fi∆ti∑n
i=1 ∆ti

.

The two expressions are equal because

∑n
i=1 fi
n

∑n
i=1 ∆ti
n

=

∑n
i=1 fi∆ti
n

,

where the left hand side is 〈f〉1〈∆t〉1, and the right hand side is 〈f∆t〉1. Because the two

variables are independent, this equality holds.

The same argument holds for the moments of the variable fi, where for kth moment we

simply consider the mean value of the quantity (fi)
k.
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J Nonlinear control functions

For some parameter values it was possible to assume that the controls are described by

functions (4.17-4.20), as long as the probability values (functions P1 and P2) are within

the interval [0, 1], and the rate functions (L1 and L2) are nonnegative. If in the course of

stochastic dynamics the functions given by equations (4.17-4.20) fall outside these bounds,

we implemented a rule where the functions were replaced by zeros or ones (that is, values

inside the boundaries). For a set of parameters (specifically, for relatively small values of W ),

this rule resulted in a system failure, as depicted in figure J.3 for network #1, W = 0.03. As

observed, SCs stop dividing after around some time; that is L1 ≤ 0. Using equation 4.17, one

can see that the abnormal situation is due to the form of function L1. We have for control

system #1:

L1 = L0(1 + aL1i1), aL1 < 0; (J.42)

P1 =
1

2
(1 + bP1i2), bP1 < 0; (J.43)

L2 = (D0 − L0)(1 + cL2i3), cL2 < 0; (J.44)

where i1, i2 and i3 are given by equation (4.9). We observe that L1 drops below zero when

the SC number is sufficiently large. In the case of this control system, the dynamics often

drives the population of stem cells toward such values where L1 drops below zero. In other

words, linear function L1 attains biologically unrealistic values within the range of normal

fluctuations of x. Therefore, we need to replace the linear function L1 with a nonlinear

function, which remains biologically relevant within the range of x that is attained regularly

by the stochastic system. Notice that such alternative, nonlinear function Ls1 should have the

following properties:
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Figure J.3: A simulation of network #1 when q = 0.1 and W = 0.03. The figure is for linear function of L1

described by equation (4.17). For the nonlinear control of L1 described in Appendix J, see figure 4.5. In both
cases, we hold other control functions as linear.

• Ls1 depends only on i1, and it is decreasing;

• Ls1
∣∣∣
i1=0

= L0 and
∂Ls1
∂i1

∣∣∣
i1=0

= L0aL1 ;

• limi1→∞ L
s
1 = 0.

One suitable choice of the substitute can be an exponential decay function: Ls1 = L0e
aL1

i1 .

As we observed from figure 4.5, network #1 behaves as expected with the nonlinear control

Ls1. For other networks, we perform a similar procedure whenever the assumption of linearity

is violated.

K Eigenvalues Analysis

We illustrate the eigenvalues analysis on system 1 of figure 4.2. Using the figure and the

notations in equations (4.17)-(4.20), system 1 can be characterized as:

∂L1

∂x1

=
L0aL1

ε
< 0,

∂L2

∂x3

=
(D0 − L0)cL2

ε
< 0,

∂P1

∂x2

=
bP1

2ε
< 0 .
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The Jacobian of the system (evaluating at the steady state) can be obtained using the

deterministic equations (4.2)-(4.4):

J =


0 −L0bP1

ε
0

L0aL1

ε

L0bP1
ε

−L0cL2

ε

0 0
D0cL2

ε

 .

By solving the roots of the characteristic polynomial |J − λI|, we obtain the eigenvalues:

λ1 =
D0cL2

ε
, λ2, λ3 =

L0bP1 ±
√
L0bP1(L0bP1 − 4L0aL1)

2ε
.

It follows that system 1 is always stable (all eigenvalues have negative real part), and it is

oscillatory if L0bP1 − 4L0aL1 > 0 (complex eigenvalues indicate robust oscillations); that is,

aL1 <
bP1
4

.

We then performed the same analysis for system 2, 8, 9, 12, 13 and 18. The results are

summarized below:

• system 2: ∂L1

∂x1
=

L0aL1

ε
< 0, ∂P1

∂x2
=

bP1
2ε
< 0, ∂P2

∂x3
=

D0cP2
2ε(D0−L0)

< 0

– Eigenvalues are λ1 =
D0cP2
ε
, λ2, λ3 =

L0bP1±
√
L0bP1 (L0bP1−4L0aL1

)

2ε
.

– The system is always stable, and it is oscillatory if aL1 <
bP1
4

.

• system 8: ∂L1

∂x2
=

L0bL1

ε
< 0, ∂L2

∂x3
=

(D0−L0)cL2

ε
< 0, ∂P1

∂x1
=

aP1
2ε

> 0

– Eigenvalues are λ1 =
2D0cL2

ε
, λ2 = −L0aP1

ε
, λ3 =

L0bL1

ε
.

– The system is always stable but not oscillatory.

• system 9: ∂L1

∂x2
=

L0bL1

ε
< 0, ∂P1

∂x1
=

aP1
2ε

> 0, ∂P2

∂x3
=

D0cP2
2ε(D0−L0)

< 0

– Eigenvalues are λ1 =
D0cP2
ε
, λ2 = −L0aP1

ε
, λ3 =

L0bL1

ε
.

– The system is always stable but not oscillatory.
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• system 12: ∂L2

∂x3
=

(D0−L0)cL2

ε
< 0, ∂P1

∂x1
=

aP1
2ε

> 0, ∂P2

∂x2
=

D0bP2
2ε(D0−L0)

> 0

– Eigenvalues are λ1 = −L0aP1
ε
, λ2, λ3 =

−D0(bP2−cL2
)±
√

[D0(bP2+cL2
)]2−4D0L0bP2cL2

2ε
.

– The system is always stable but not oscillatory.

• system 13: ∂L2

∂x3
=

(D0−L0)cL2

ε
< 0, ∂P1

∂x2
=

bP1
2ε
< 0, ∂P2

∂x1
=

D0aP2
2ε(D0−L0)

> 0

– Eigenvalues are λ1 =
D0cL2

ε
, λ2, λ3 =

L0bP1±
√
L0bP1 (L0bP1+4D0aP2 )

2ε
.

– The system is always stable, and it is oscillatory if aP2 > −
L0bP1
4D0

.

• system 18: ∂L2

∂x2
=

(D0−L0)bL2

ε
> 0, ∂P1

∂x1
=

aP1
2ε

> 0, ∂P2

∂x3
=

D0cP2
2ε(D0−L0)

> 0

– Eigenvalues are λ1 = −L0aP1
ε
, λ2, λ3 =

(D0cP2−L0bL2
)±
√

(L0bL2
+D0cP2 )2−4D2

0bL2
cP2

2ε
.

– The system is stable if bL2 >
D0cP2
L0

, and it is oscillatory if 4bL2cP2D
2
0 > (L0bL2 +

D0cP2)
2.

L Analysis of non-constant death rate minimal net-

works of figure 4.3

We followed the steps of the algorithm described in the main text to analyze the 12 minimal

networks depicted in figure 4.3. The consecutive elimination steps are shown in figure L.4.

First, we eliminated the non-local networks, which excluded networks 29-31. Out of the

remaining networks 21-28, all eight allow for control coefficients compatible with the measured

means and variances. The stochastic analysis is based on the linearization of the control

functions given by equations (4.17-4.20) and the equation for the death rate,

D = D0 (1 + aDi1 + bDi2 + cDi3) .
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Analysis of eigenvalues shows that networks #21, #22, and #23 are non-oscillatory. Networks

#24 and #25 have complex eigenvalues, but the solution for the stem cell component is

non-oscillatory. Similarly, network #26 has oscillatory eigenvalues but the total number of

cells is non-oscillatory. Finally, networks #27 and #28 both have complex eigenvalues, and

both the stem cells and total numbers of cells have oscillatory recovery dynamics. Of these

two remaining networks, #28 has statistically significant intra-crypt correlations, while #27

does not, see figure L.5. Further, this network exhibits oscillatory recovery dynamics similar

to that depicted in figure 4.7. Therefore, we conclude that the only remaining candidate

network is #27.

Figure L.4: The outcome of the selection algorithm for the non-constant death networks of figure 4.3 with
W = 0.03.
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Figure L.5: The plots of DCs vs. the sum of SCs + TACs for two non-constant death networks. (a) Network
27 when q = 0.2, and p-value = 0.9. (b) Network 28 when q = 0.2, and the p-value is 0.000328 (other values
of q also produced p< 0.05, not shown).
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