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HAM-5 Functions As a MAP Kinase Scaffold during Cell
Fusion in Neurospora crassa
Wilfried Jonkers1, Abigail C. Leeder1, Charles Ansong2, Yuexi Wang2, Feng Yang2¤, Trevor L. Starr3,

David G. Camp, II2, Richard D. Smith2, N. Louise Glass1,3*

1 Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America, 2 Pacific Northwest National Laboratory,

Richland, Washington, United States of America, 3 Energy Biosciences Institute, University of California, Berkeley, Berkeley, California, United States of America

Abstract

Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the
activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in
germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ,8 minutes, perfectly
out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase
pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the
MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that
can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were
potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function.
Previously, Dham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with
NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic
interactions. In the Dmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to
the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed
cytoplasmic and nuclear localization in a Dham-5 strain and did not localize to puncta. Via co-immunoprecipitation
experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a
scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling
and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2
cascade to upstream factors and proteins involved in this intriguing process of fungal communication.
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Introduction

Fusion between genetically identical cells occurs in many

different organisms and plays pivotal roles in different develop-

mental processes, such as myoblast fusion during muscle

formation, macrophage fusion involved in tissue remodeling and

fusion of trophoblasts during placental development [1,2]. Cell

fusion is also important for the formation of the interconnected

mycelial network that is the hallmark of filamentous fungal growth

[3,4,5]. In addition to hyphal fusion, fusion can also occur between

genetically identical germinating asexual spores (conidia) of

filamentous fungi [6,7,8]. Both hyphal and germling fusion are

integral to the formation of an interconnected hyphal network and

impart fitness benefits, as well as mediating genetic mixing and the

sharing of resources [3,4,9,10,11,12,13].

In the filamentous ascomycete fungus, Neurospora crassa,

germinated conidia (germlings) in close proximity fuse via

specialized conidial anastomosis tubes (CATs) that form at germ

tube tips or between conidia [14]. In a fungal colony, hyphal

fusion is observed in the central parts of the colony, in contrast to

the peripheral parts where hyphae avoid each other. A large

number of genes have been identified in N. crassa that are

important for the process of sensing, chemotropic interactions and

CAT fusion and have contributed to an understanding of this

complex developmental system in filamentous ascomycete fungi

[7,15,16,17]. An essential part of chemotropic interactions in N.
crassa is the oscillatory recruitment of three kinases of a MAPK

cascade (NRC-1, MEK-2 and MAK-2) and of a protein of

unknown function, SOFT (SO), to CAT tips [18,19]. In strains

carrying loss-of-function mutations in these genes, oscillatory

recruitment of NRC-1/MEK-2/MAK-2 or SO, chemotropic

interactions and fusion do not occur [8,18,19,20]. It was proposed

that the alternating oscillation of MAK-2 and SO to CAT tips may

function to establish two distinct physiological states in interacting
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germlings to enable chemotropism to persist, avoid self-stimulation

and assure a rapid and efficient cell fusion [19,21]. Recently, it has

been shown that an ortholog of SOFT in the related filamentous

ascomycete species, Sordaria macrospora, PRO40, is a scaffold

protein for the cell wall integrity MAP kinase pathway (MAK-1)

[22]; Dmak-1 mutants in both N. crassa and S. macrospora are

fusion mutants [22,23].

Previously, it was shown that kinase activity of MAK-2 is

required to maintain oscillatory recruitment of both MAK-2 and

SO; addition of ATP-analog 1NM-PP1 to a mutant containing an

inhibitable MAK-2 protein encoded by a mak-2Q100G allele,

disrupted the oscillation of both MAK-2 and SO in communicat-

ing germlings and stalled chemotropic interactions and the fusion

process [19]. The use of mak-2Q100G strain also contributed to the

identification of downstream genes whose expression levels depend

on functional MAK-2 [24]. However, MAK-2 kinase targets

involved in the oscillation process have not been identified and the

characterization of such potential targets could help unravel

molecular mechanisms associated with this highly regulated and

complex process.

In recent years, highly sensitive liquid chromatography-mass

spectrometry (LC-MS) based quantitative phosphoproteomic

techniques have contributed to our understanding of kinase

pathway function in eukaryotic cells [25,26,27,28]. To identify

MAK-2 kinase targets in N. crassa, we took a global approach by

identifying phosphopeptides in mak-2Q100G germlings, treated or

not with 1NM-PP1. From the phosphoproteomic screen, a

number of candidate MAK-2 target proteins were identified,

one of which encodes a protein previously identified as being

essential for germling/hyphal fusion, HAM-5 [23,29]. We show

that HAM-5 oscillates during chemotropic interactions with

components of the MAK-2 pathway, physically interacts with

NRC-1, MEK-2 and MAK-2 and was required for localization of

MAK-2 and MEK-2 to puncta. Our data supports the hypothesis

that HAM-5 functions as a scaffold protein by binding to and co-

localizing to CAT tips with all three kinases in the MAK-2 cascade

during chemotropic growth in germlings as well as in hyphae

undergoing fusion events. These studies shed new light on the

mechanisms of oscillation during communication and chemotropic

interactions between genetically identical cells and which may be

important for function of this conserved MAPK pathway in other

filamentous ascomycete fungi.

Results

Identification of MAK-2 targets in Dmak-2Q100G germlings
using a phosphoproteomic approach

To better understand the role of MAK-2 during chemotropic

interactions, we set out to identify putative kinase targets using a

global quantitative phosphoproteomics approach using a strain

carrying an inhibitable mak-2Q100G allele. Altering a specific

amino acid in the ATP binding site (glutamine for glycine) renders

MAK-2 sensitive to inhibition to the ATP analogue 1NM-PP1, but

does not affect MAK-2 kinase activity in the absence of inhibitor

[19]. In the absence of the inhibitor 1NM-PP1, strains and

germlings containing the mak-2Q100G allele (his3::mak-2Q100G;

Dmak-2) showed wild-type growth and fused normally, while in

the presence of inhibitor, the mak-2Q100G strain showed a mutant

mak-2 phenotype; chemotropic interactions and fusion were not

observed, consistent with inactivation of MAK-2 kinase activity

[19]. For identifying MAK-2-dependent phosphorylation events,

4.5-hr old mak-2Q100G germlings were treated with DMSO (two

samples and two biological replicates) or 1NM-PP1 (dissolved in

DMSO; two samples and two biological replicates) for 10 min.

Proteins were extracted, digested, and enriched phosphopeptides

identified and quantified using isobaric peptide tags for relative

and absolute quantification (iTRAQ)-based LC-MS/MS analyses.

Although the same peptides across experimental conditions are

labeled with different iTRAQ reagents and indistinguishable by

mass, different masses will be generated in the tandem MS by

releasing the reporter ions for the 4-plex iTRAQ method (Figure

S1). We performed the full experiment twice, resulting in a total of

eight samples, which were analyzed for phosphopeptide identity

and abundance.

From these experiments a total of 3200 unique phosphopeptides

were identified. These 3200 unique phosphopeptides originated

from 1164 proteins (Dataset S1). A small percentage of the

identified peptides have multiple phosphorylation sites (12%,

Figure 1B), as compared to peptides where only a single

phosphorylation site was identified (88%, Figure 1B). Phosphor-

ylation sites were predominantly identified on serine residues

(75%), and to a lesser extent on threonine (22%) and tyrosine (3%)

residues (Figure 1C). FunCat analysis [30] showed the set of

identified phosphorylated proteins in germlings originated from a

wide spectrum of functional categories (Figure 1A), including, not

unexpectedly, proteins involved in metabolism, energy, cell cycle

and DNA processing, protein synthesis and transcription. How-

ever, proteins within the functional categories of cellular commu-

nication/signal transduction, cell defense, and interaction with the

environment were also identified, suggesting germlings are poised

to respond to variations in their environment (Dataset S1).

Of the 3200 phosphopeptides, 96 unique phosphopeptides from

67 proteins were.1.5 times less abundant (p,0.05) in at least one

replica experiment in the 1NM-PP1 treated mak-2Q100G germlings

relative to the DMSO-treated control cells (Table S1). Functional

category analyses [30] of this set of proteins showed enrichment

for genes involved in metabolism, energy, cell cycle and DNA

processing, transcription, protein fate, regulation of metabolism

and protein function, cellular communication/signal transduction,

interaction with the environment, cell fate and cell type

differentiation (p,0.01) (Figure 1A; Dataset S1). Three proteins

in this group had previously been shown to be required for hyphal

fusion, including HAM-9, HAM-11 and MAK-1 [23,24,31,32]. In

addition to the MAP kinase involved in the osmotic response

Author Summary

Cell fusion between genetically identical cells of the
fungus Neurospora crassa occurs when germinating
asexual cells (conidia) sense each other’s proximity and
redirect their growth. Chemotropic growth is dependent
upon the assembly of a MAPK cascade (NRC-1/MEK-2/
MAK-2) at the cell cortex (conidial anastomosis tubes;
CATs), followed by disassembly over an ,8 min cycle. A
second protein required for fusion, SO, also assembles and
disassembles at CAT tips during chemotropic growth, but
with perfectly opposite dynamics to the MAK-2 complex.
This process of germling chemotropism, oscillation and
cell fusion is regulated by many genes and is poorly
understood. Via a phosphoproteomics approach, we
identify HAM-5, which functions as a scaffold for the
MAK-2 signal transduction complex. HAM-5 is required for
assembly/disassembly and oscillation of the MAK-2 com-
plex during chemotropic growth. Our data supports a
model whereby regulated modification of HAM-5 controls
the disassembly of the MAK-2 MAPK complex and is
essential for modulating the tempo of oscillation during
chemotropic interactions.

Ham-5 Functions As a Scaffold for MAPK Signaling
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signaling (OS2) [32], CUT-1, which is implicated in the osmotic

stress response [33,34] as well as the transcription factor that is a

target of the OS-2 pathway (ASL-1/ATF-1, NCU01345) [35]

were identified (Table 1; Table S1). Of these 3200 unique

phosphopeptides, 33 phosphopeptides (from 27 proteins) were

identified with an increased abundance of at least 1.5 fold (p,

0.05) in the 1NM-PP1 treated germlings in at least one replica

experiment. Functional category analyses [30] of this set of 27

proteins showed over-representation for genes/proteins involved

in phosphate metabolism (perhaps as a response to 1NM-PP1

exposure), protein synthesis, protein fate and protein with binding

function or cofactor requirements (Dataset S1).

To identify potential direct MAK-2 targets, we inspected the 96

phosphopeptides that showed reduced abundance in the 1NM-

PP1 treated mak-2Q100G germlings for MAPK consensus phos-

phorylation sites (P-X-S*/T*-P) [36,37]. Nine proteins were

identified, of which five were annotated as hypothetical proteins.

One of the proteins was ASL-1, the transcription factor that is a

target of the OS-2 pathway and which shows an ascospore-lethal

phenotype [35]; Dmak-2 mutants also show an ascospore-lethal

phenotype [8,38]. The remaining proteins included a predicted 6-

phosphofructo-2-kinase (NCU01728), a predicted trehalose phos-

phatase (NCU05041) and a protein previously reported to be

required for hyphal fusion, HAM-5 [23,29] (Table 1). In addition

to a predicted MAPK phosphorylation site, a predicted MAPK

docking motif (R/K-R/K-(X)1-5-I/L-X-I/L) [39] was predicted in

NCU07868 (hypothetical protein) and HAM-5 (Table 1). Of the

nine genes encoding potential MAK-2 phosphorylation targets,

five showed a reduction in expression levels in either a Dpp-1

mutant (transcription factor that is a target of the MAK-2

pathway) or in a mak-2Q100G germlings treated with 1NM-PP1

[24], including ham-5 (Table 1).

To determine whether the putative direct or indirect MAK-2

phosphorylation targets were involved in germling fusion, strains

carrying individual deletions of 8 out of the 9 genes whose proteins

contained a MAPK consensus phosphorylation site and showed

decreased abundance in the 1NM-PP1-treated mak-2Q100G

germlings (including strains carrying deletions in all five hypo-

thetical proteins) (Table 1), plus an additional 31 deletion mutants

selected from a subset of proteins that showed decreased

abundance in 1NM-PP1-treated mak-2Q100G germlings, but which

lacked a predicted MAPK consensus phosphorylation site (Table

S1), were evaluated for the ability to undergo chemotropic

interactions and cell fusion. Of these, Dham-5 in the first set, and

Dham-9, Dham-11, and Dmak-1 strains in the second set, were

fusion defective.

Putative MAK-2 target HAM-5-GFP localizes in an
oscillatory manner to cell tips during chemotrophic
interactions

To further characterize putative MAK-2 targets that are

required for germling fusion, we GFP-tagged proteins where

localization during chemotropic interactions/cell fusion had not

been determined. This effort included HAM-5. The ham-5 mutant

was identified in a forward screen for mutants that failed to form a

heterokaryon [29] and encodes a large protein of 1686 amino

acids (aa) with seven putative WD40 repeats at the N-terminus (aa

14-313, grey boxes; Figure 2A). At the C-terminus, an unstruc-

tured region of low complexity was identified (shaded white boxes;

Figure 2A) that contains stretches of predominately proline and

glutamine residues. Two coiled coil domains were also predicted in

HAM-5 (aa 1168-1190 and 1257-1286, red boxes; Figure 2A). In

total, 16 phosphorylation sites were identified, located mainly at

the middle section of HAM-5 (Figure 2A). Three phosphorylation

sites were identified from our phosphoproteomics analysis, one of

which was a putative MAPK site at amino acid residue 506 (serine)

(Figure 2A; Table 1). Thirteen additional HAM-5 phosphopeptide

sites were identified in a recent phosphoproteomics study of N.
crassa hyphal cultures exposed to different carbon sources [40]. A

putative MAPK docking site was also identified between residues

1128-1136 (RRKPPALDL) in the C-terminus of HAM-5 (yellow

bar; Figure 2A).

In conidia, germlings and in hyphae, HAM-5-GFP fluorescence

was observed in small, cytoplasmically localized puncta (white

arrows, Figure S2). In mature hyphae, localization to septa was

also observed (red arrow, Figure S2A). During chemotropic

interactions between germlings, HAM-5-GFP driven by the tef-1
promoter was observed as small puncta in interacting germlings

and also at the tip (Figure 2B). Importantly, HAM-5 oscillated to

CAT tips in germling pairs during chemotropic interactions, with

localization dynamics similar to MAK-2 or SO: HAM-5-GFP

appeared at the CAT tip of one germling, but was absent from the

CAT tip in the partner germling, while 4 min later, HAM-5-GFP

was present at the CAT tip of the second partner germling, but

was absent from the CAT tip of the first germling (Movie S1).

During the fusion process, a HAM-5-GFP signal was also observed

in puncta that localized either to the cell periphery or to points

close to nuclear compartments, which were devoid of HAM-5-

GFP (Figure 2B, asterisk). When HAM-5-GFP localized to the

CAT tips, the number of cytoplasmically localized puncta in the

partner germling was reduced and the GFP signal was more

dispersed in the cytoplasm (Figure 2B). HAM-5-GFP was detected

Figure 1. Summary of phosphoproteomics results conducted
on Dmak-2Q100G mutant. (A) Overview of FunCat categories of
proteins harboring the identified phosphopeptides. The upper bar
shows the categories of all the proteins with identified phosphopep-
tides (3200 phosphopeptides, 1164 proteins), the middle bar shows
functional categories of proteins with phosphopeptides that showed
higher abundance after inhibition (33 phosphopeptides, 27 proteins)
and the lower bar shows FunCat analysis of the proteins with
phosphopeptides that showed lower abundance in mak-2Q100G germl-
ings after treatment with 1NM-PP1 (96 phosphopeptides, 67 proteins).
(B) Pie chart showing the relative percentages and absolute numbers of
single, double, triple and quadruple phosphosites per peptide. (C) Pie
chart showing the relative percentages and absolute numbers of
phosphorylated serine, threonine and tyrosine in all peptides found.
doi:10.1371/journal.pgen.1004783.g001

Ham-5 Functions As a Scaffold for MAPK Signaling
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at the site of germling contact and remained there until the

cytoplasm of the two germlings mixed (Figure 2C).

To assess whether the HAM-5-GFP-tagged versions were

biologically functional, we crossed wild type (WT) strains carrying

ham-5-gfp driven by either the native, tef-1 or ccg-1 promoter into

the Dham-5 mutant. Progeny bearing both ham-5-gfp and Dham-5
showed a fusion phenotype and frequency similar to WT, indicating

that ham-5-gfp driven either by the native, ccg-1 or tef-1 promoter

was functional. Localization of HAM-5-GFP driven by either ccg-1
or tef-1 in the Dham-5 strain was similar to HAM-5-GFP in the WT

strain, and showed localization to puncta and oscillation to CAT

tips during chemotropic interactions. ham-5-gfp driven by its native

promoter in the Dham-5 strain also showed localization to puncta

(Figure S3). However, due to low expression levels of HAM-5-GFP

in this strain, localization during chemotropic interactions could not

be fully assessed. In the following sections, HAM-5-GFP is shown

driven by the tef-1 promoter unless stated otherwise. A heterokary-

on of a strain carrying ham-5-gfp driven by tef-1 and a strain

carrying histone H1-dsRED (a nuclear marker), showed non-

overlapping fluorescence (Figure S2), indicating that HAM-5-GFP

was excluded from the nucleus. This localization pattern is similar to

SO-GFP [19], but different than MAK-2-GFP, which localizes to

the cytoplasm and to nuclei (Figure S2) [19].

MAK-2 regulates HAM-5 dynamics
HAM-5 is predicted to be a highly phosphorylated protein, with

16 predicted phosphorylation sites (Figure 2A). To assess whether

HAM-5 is a phosphorylation target of MAK-2, as indicated by the

phosphoproteomics data, we introduced ham-5-GFP into a Dmak-2
strain and determined its phosphorylation status during germling

fusion. HAM-5-GFP was immunoprecipitated from WT (ham-5-
gfp) and Dmak-2 (ham-5-gfp) 5 hr-old germlings using anti-GFP

antibodies and assayed for phosphorylation status using Western blot

analysis with anti-phosphoserine/threonine antibodies that specifi-

cally recognize phosphoserine or phosphothreonine sites followed by

a proline residue (MAPK phosphorylation sites). The results showed

that HAM-5-GFP from both WT and Dmak-2 cells was specifically

phosphorylated (Figure 2D). The HAM-5-GFP protein band from

WT germlings showed a slight smear upwards and was slightly larger

than that observed in Dmak-2 (ham-5-gfp) germlings (Figure 2D).

These data support the phosphoproteomics data, which suggested a

MAK-2-dependent modification of HAM-5 during germling fusion

(Table 1). However, it is clear that HAM-5-GFP was also

phosphorylated in the Dmak-2 mutant, suggested possible additional

regulatory inputs into HAM-5 via phosphorylation by other proteins

during conidial germination/germling fusion.

To assess whether the identified phosphosite in HAM-5 (serine

506) was required for HAM-5 function during chemotropic

interactions and germling fusion, strains carrying site-directed

mutations whereby serine 506 was altered to an alanine (phosphor-

ylation impaired) or a glutamate (phosphorylation mimic) residue

were evaluated: chemotropic behavior and cell fusion in germlings

carrying the ham-5S506A or ham-5S506E mutations driven by the

ccg-1 promoter were indistinguishable from wild type germlings and

fully complemented the growth phenotype of the Dham-5 strain

(Figure S4A). To assess whether mutations in the predicted MAPK

docking site affected HAM-5 function, a strain was constructed

where the first three amino acids of the MAPK docking site were

changed to alanine (RRKPPALDL to AAAPPALDL). However,

germlings bearing this ham-5 allele (ham-5RRK1128AAA) also showed

a similar communication and fusion phenotype to WT germlings

resulting in similar growth phenotype to WT and complemented

fully the growth phenotype of the Dham-5 strain (Figure S4A). Thus,

the predicted MAPK docking site in HAM-5 might not be

functional or additional MAPK docking sites are present making

this site redundant for function.

We predicted that HAM-5-GFP would show altered localization

when introduced into Dmak-2 germlings, due to the inability of

these cells to undergo chemotropic interactions. However, HAM-

5-GFP localized to puncta in Dmak-2; ham-5-gfp germlings, as

observed in wild type cells (Figure 2E). However, no oscillation of

Table 1. Phosphopeptides with predicted MAPK site that showed decreased abundance in 1NM-PP1-treated mak-2Q100G cells.

NCU # Phosphorylated peptide1 Annotation locus Fusion

NCU005212 SPVS*PTAGEFTFAPRQS*LDSAR hypothetical protein yes

NCU01345 R.SGPLS*PAMLSGPTTSDYFGDHIR ascospore lethal-1 asl-1 yes

NCU01728 SLNDLDGGIGGFGFTGQHNPIAYNSPYSQSIPSTAPGS*PR 6-phosphofructo-2-kinase n/d

NCU03070 SLALNSGGPRS*PFPIDR hypothetical protein yes

NCU041642 T*PTPGKYFGPPK hypothetical protein yes

NCU05041 IDEHDIARS*PGTVGLEETGSVDR trehalose-phosphatase yes

NCU05041 TESSLPGHLRPSVINVPVT*PGISR trehalose-phosphatase yes

NCU05041 TESSLPGHLRPS*VINVPVTPGISR trehalose-phosphatase yes

NCU062472 TAAS*NETTSREAT*PR hypothetical protein yes

NCU062472 LEVPHS*PR hypothetical protein yes

NCU078682,4 TPSSTATPDS*PR hypothetical protein yes

NCU078682,4 SVEAPQPSAALQSLRS*AR hypothetical protein yes

NCU078682,4 SVEAPQPS*AALQSLR hypothetical protein yes

NCU078682,4 TST*PVSTPK hypothetical protein yes

NCU017893,4 HEVPRS*PDDAKVVDLFK hyphal anastomosis-5 ham-5 NO

1Phosphopeptides with MAPK site in either 1 or 2(*) experiments, p,0.05, 1.56 decreased after 1NM-PP1 treatment.
2Showed reduced expression in Dpp-1 germlings (19).
3Showed reduced expression in a mak-2Q100G germlings treated with 1NM-PP1 (19).
4Proteins with a predicted MAPK docking motif (R/K-R/K-(X)1-5-I/L-X-I/L).
doi:10.1371/journal.pgen.1004783.t001

Ham-5 Functions As a Scaffold for MAPK Signaling
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HAM-5-GFP puncta to cell tips was observed, consistent with the

lack of fusion and chemotropic interactions in Dmak-2 germlings.

HAM-5-GFP puncta were localized randomly within the cell, with

some puncta close to the nuclear periphery and membrane, but

cells also contained at least one HAM-5-GFP puncta localized to

the cell tip (Figure 2E). The stable, tip-anchored localization of

HAM-5-GFP (Figure 2E, arrows) was not observed in WT

germlings in the absence of chemotropic interactions (in isolated

germlings), and was unique to Dmak-2; ham-5-gfp cells.

HAM-5-GFP oscillates with the MAP kinase cascade
members to CAT tips

The observation that HAM-5-GFP showed oscillation during

germling fusion, but still localized to puncta in Dmak-2 germlings,

suggested that either HAM-5 interacted with SO or with other

proteins in the MAK-2 signal transduction pathway. Previously, it

was shown that the components of the MAK-2 pathway, the

MAPKKK (NRC-1) and the MAPKK (MEK-2), oscillate with

MAK-2 during chemotropic interactions in germlings [18]. To

determine if HAM-5 oscillated with the components of the MAK-2

complex or with SO, we used heterokaryons of strains carrying ham-
5-gfp and either mCherry-tagged mak-2, mek-2, nrc-1 or so alleles

and examined co-localization of these proteins during chemotropic

interactions in germlings. As shown in Figure 3, HAM-5-GFP +
MAK-2-mCherry, or HAM-5-GFP + MEK-2-mCherry or HAM-

5-GFP + NRC-1-mCherry were co-recruited to the CAT tips

during chemotropic interactions. In homokaryotic strains carrying

both HAM-5-GFP and MAK-2-mCherry, the dynamics of the two

proteins were identical and showed simultaneous oscillatory

recruitment to CAT tips (Movie S2). HAM-5-GFP + MAK-2-

mCherry and HAM-5-GFP + MEK-2-mCherry also co-localized to

cytoplasmic puncta during chemotropic interactions (Figure 3). As

observed in [18], the NRC-1-mCherry signal was weak, and

recruitment of HAM-5-GFP + NRC-1-mCherry to cytoplasmic

puncta could not be assessed. In contrast to MAK-2/MEK-2/

NRC-1, SO-mCherry + HAM-5-GFP always appeared at opposite

CAT tips (Figure 3D) and with exactly opposite dynamics during

chemotropic interactions (Movie S3).

The localization of HAM-5 during chemotropic interactions

suggested that HAM-5 physically interacts with MAK-2, MEK-2

and/or NRC-1. To test this hypothesis, we performed co-

immunoprecipitation experiments using strains carrying HAM-5-

GFP + MAK-2-mCherry, HAM-5-GFP + MEK-2-mCherry or

HAM-5-GFP + NRC-1-mCherry. As controls, we used strains

carrying MAK-2-mCherry, MEK-2-mCherry or NRC-1-

mCherry-tagged proteins with GFP driven by the ccg-1 promoter;

GFP in these strains showed only cytoplasmic localization and was

never observed in puncta. A specific interaction between HAM-5-

GFP and MEK-2-mCherry and HAM-5-GFP and NRC-1-

mCherry was detected when HAM-5-GFP was immunoprecipi-

tated using anti-GFP antibodies from 5 hr-old germlings and

subsequently re-probed using anti-mCherry antibodies (Fig-

ure 3E), consistent with the co-localization of these proteins

observed by confocal microscopy (Figure 3A–C). No interaction

between the mCherry-tagged proteins and cytoplasmic GFP was

observed (Figure 3E; Figure S4C). An interaction between MAK-

2-mCherry and HAM-5 could not be assessed, as MAK-2-

mCherry showed non-specific binding. However, using phospho-

specific anti-P42/P44 (Erk1/Erk2) antibodies that recognize

phosphorylated MAK-2 [8], an interaction between HAM-5-

GFP and MAK-2 was detected via co-immunoprecipitation

(Figure 4D). By contrast, no interaction was detected between

HAM-5-GFP and SO-mCherry (Figure 3E).

The HAM-5 WD40 domain is required for function and
stability and binds to MAK-2 but not to MEK-2

HAM-5 is a large protein with predicted protein-protein

interaction domains including seven WD40 repeats, which are

predicted to form b-propeller structures that have been implicated

in coordinating protein assemblages in other systems [41]. To test

the hypothesis that the WD40 domain is involved in HAM-5-

MAK/MEK-2/NRC-1 interactions, we constructed two mutant

ham-5 alleles: one in which the WD40 motifs (aa 67-348) were

removed (HAM-5D67-348) and one in which only the first 351 aa

including the WD40 motifs of HAM-5 were retained (HAM-51-

351). Both alleles were tagged with gfp, and function and

localization were assessed in both WT and Dham-5 mutant strains.

Figure 2. HAM-5-GFP localization in WT and Dmak-2 germlings.
(A) Schematic overview of HAM-5 protein structure. The predicted
WD40 domains are shown in grey and the putative coiled coil domains
are shown as red bars. The two disordered regions with low complexity
are depicted by shaded white boxes. The MAPK phosphorylation site
(aa 506) is marked by a blue star, the other two sites showing decreased
abundance in treated cells (aa 1288 and 1604) are marked by green
stars, and other 13 identified phosphorylation sites (S14, S414, S792,
S818, S833, T838, T969, S1085, S1199, T1201, S1202, T1353, S1608) [40]
are marked by black stars. The putative MAPK docking site is marked by
a yellow line. (B) Localization of HAM-5-GFP to puncta localized to CAT
tips during chemotropic interactions between genetically identical cells.
HAM-5-GFP showed dynamic localization to CAT tips of germlings with
an oscillation of every four min (arrow). HAM-5-GFP also localized to
puncta within germlings and near nuclear compartments devoid of
HAM-5-GFP (asterisks). The image left is a bright field image. Scale bar
= 10 mM. (C) HAM-5-GFP localized to the sites of contact during
germling fusion (arrow). (D) Western blots of WT, WT (ham-5-gfp) and
Dmak-2 (ham-5-gfp) germlings with immunoprecipitated HAM-5-GFP
probed with anti-GFP antibodies (right panel shows longer run showing
higher mobility of HAM-5-GFP in wild type germlings) specifically
detecting HAM-5-GFP (210 kD; Figure S4D). Lower panel shows a
Western blot with identical samples probed with anti-phospho
antibodies that specifically detect phosphorylated serine or threonine
residues followed by a proline. (E) Localization of HAM-5-GFP to puncta
in Dmak-2 germlings. Some puncta showed localization to germling
tips, but which did not oscillate during growth (white arrows). Scale bar
= 10 mM.
doi:10.1371/journal.pgen.1004783.g002
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The ham-51-351 construct failed to complement the growth or

fusion defects of the Dham-5 mutant (Figure S4A). When observed

microscopically, the localization of the HAM-51-351-GFP in Dham-
5 germlings was cytoplasmic and nuclear; no puncta were

observed (Figure 4B; Figure S5A). This result is in contrast to

the full length HAM-5-GFP, which localized to puncta and was

excluded from the nucleus (Figure 2; Figure S2). However, in a

WT background, a portion of the HAM-51-351-GFP localized to

puncta and showed oscillation during chemotropic interactions

between germlings (Figure 4A). These observations suggest that in

WT germlings, HAM-51-351-GFP may bind the native untagged

HAM-5, resulting in localization to puncta when the complex

oscillates to CAT tips during chemotropic interactions. To

determine whether HAM-51-351-GFP (in a Dham-5 mutant)

physically interacted with MAK-2 or MEK-2, we performed co-

immunoprecipitation experiments using either anti-mCherry

antibodies (for MEK-2-mCherry) or anti-p42/44 antibodies for

MAK-2 [8]. HAM-51-351 specifically immunoprecipitated phos-

phorylated MAK-2 but not MEK-2-mCherry (Figure 4C, D;

Figure S4D).

The ham-5D67-348 construct also failed to complement the

growth or fusion defects of the Dham-5 mutant (Figure S4A),

consistent with an essential role for the HAM-5 WD40 domain.

Cellular fluorescence of HAM-5D67-348-GFP in germlings or

hyphae was not observed and less protein was produced than

other GFP-tagged proteins (Figure S4B), suggesting that the

WD40 domain is required for HAM-5-GFP stability. However,

co-immunoprecipitation experiments revealed a specific interac-

tion between HAM-5D67-348 and MEK-2-mCherry, but not with

MAK-2 (Figure 4C; Figure S4F). These biochemical interaction

studies indicated that the WD40 domain of HAM-5 is important

for interactions with MAK-2 and the C-terminus is important for

interactions with MEK-2. The predicted MAPK docking site,

which was not required for function by mutational analyses (see

above), is located in the C-terminus of HAM-5, indicating that this

site is not essential for MAK-2-HAM-5 interactions.

Figure 3. HAM-5-GFP shows localization with components of the MAK-2 pathway. (A) Co-localization of HAM-5-GFP and MAK-2-mCherry
during germling communication (arrows). (B) Co-localization of HAM-5-GFP and MEK-2-mCherry during germling communication (arrows). (C) Co-
localization of HAM-5-GFP and NRC-1-mCherry during germling communication. NRC-1-mCherry strains show low fluorescence [18]. (D) HAM-5-GFP
and SO-mCherry do not co-localize during chemotropic interactions, but instead show opposite localization to CAT tips in communicating germlings
(arrows). The images on the left are bright field images, fluorescent images on the right. Scale bar = 10 mM. (E) Co-immunoprecipitation experiments
showing an interaction between HAM-5-GFP (210 kD; Figure S4D) and MEK-2-mCherry (82.9 kD; Figure S4C) and NRC-1-mCherry (128 kD; Figure S4C).
Input panels show Western blots of immunoprecipitated protein samples from 5 hr-old germlings probed with either anti-GFP (free GFP = 27 kD;
Figure S4D) or anti-mCherry antibodies. The output panel is a Western blot of proteins immunoprecipitated by anti-GFP antibodies (and thus HAM-5-
GFP) and probed with anti-mCherry antibodies (detecting MEK-2-mCherry or NRC-1-mCherry).
doi:10.1371/journal.pgen.1004783.g003
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HAM-5 is required for assembly of the MAPK-cascade
members MAK-2 and MEK-2 into puncta

Scaffold proteins such as Ste5 in Saccharomyces cerevisiae [42],

which assembles the pheromone response MAPK pathway,

regulates spatial functionality of this pathway via nuclear/plasma

membrane shuttling of Fus3 during mating. We hypothesized that

HAM-5 was also required for the assembly of the MAK-2 cascade

members in complexes and subsequent recruitment of these

complexes to their correct cellular location during chemotropic

interactions (e.g. the CAT tip). To test this hypothesis, we

introduced MAK-2-GFP or MEK-2-mCherry into a Dham-5
strain. In contrast to WT and Dmak-2 germlings where HAM-5-

GFP was localized to puncta (Figure 2), MAK-2-GFP showed

cytoplasmic and nuclear localization in the Dham-5 mutant; no

puncta were observed (Figure 5A, B). In Dham-5 hyphae, MEK-2-

mCherry localized to the cytoplasm and to septa, but puncta were

not observed as in WT hyphae (Figure 5C, D; Movie S4). We then

tested whether HAM-5 was required to establish a stable

interaction between MEK-2 and MAK-2. When MEK-2-

mCherry was immunoprecipitated from WT germlings, phos-

phorylated MAK-2 was also detected, while in Dham-5 germlings,

co-immunoprecipitation of phosphorylated MAK-2 with MEK-2-

mCherry was not detectable (Figure 5E; Figure S4E). SO-GFP

was also cytoplasmically localized in Dham-5 (so-gfp) germlings

(Figure S5), a localization pattern identical to that observed in WT

(so-gfp) germlings not undergoing chemotropic interactions.

Phosphorylation of MAK-2 by the upstream kinase, MEK-2, is

required for fusion [18], but is not fully dependent on functional

HAM-5. In a Dham-5 mutant, phosphorylated MAK-2 is still

detectable in hyphal preparations [29]. We confirmed this result in

germlings, where phosphorylated MAK-2 was also observed in the

Dham-5 samples (Figure 6A). MAK-2 phosphorylation is also

observed in two other fusion mutant strains: Dham-7 and Dham-
11 [24,43] (Figure 6A). To investigate whether the localization of

Figure 4. The WD40 domain of HAM-5 interacts with MAK-2,
while the C-terminus interacts with MEK-2. (A) Localization of
HAM-51-351-GFP (WD40 domain only) in WT germlings localized to the
cytoplasm, the nucleus and the puncta at the cell periphery and at the
tip during chemotropic interactions and oscillation (arrow). (B) HAM-51-

351-GFP in Dham-5 germlings localized to the cytoplasm and the
nucleus; no puncta were observed. The images on the left are bright
field images. Scale bar = 10 mM. (C) Western blots showing a specific
interaction between MEK-2-mCherry (82.9 kD) with full length HAM-5-
GFP (210 kD) or HAM-5D67-348-GFP (180 kD), but not with free GFP
(27 kD; Figure S4C, D). An interaction between MEK-2-mCherry and
HAM-51-351-GFP (65.3 kD) was not detected. Input panels show Western
blot of immunoprecipitated proteins isolated from 5 hr-old germlings
probed with either anti-mCherry antibodies or anti-GFP antibodies.
Output panel shows anti-mCherry immunoprecipitated proteins (MEK-
2-mCherry) probed with anti-GFP antibodies (HAM-5-GFP). (D) Western
blots showing a specific interaction between full length HAM-5-GFP or
HAM-51-351-GFP and phosphorylated MAK-2. Input panels show
Western blot of proteins isolated from 5 hr-old germlings probed with
anti-p42/44 antibodies (which recognize phosphorylated MAK-2
(40.8 kD; Figure S4D, E) [8]) or immunoprecipitated proteins probed
with anti-GFP antibodies. The output panel shows anti-GFP immuno-
precipitated protein sample probed with anti-p42/44 antibodies,
showing interaction between HAM-5-GFP or HAM-51-351-GFP and
phosphorylated MAK-2. (E) Schematic showing regions of interaction
between HAM-5 and MAK-2 or MEK-2 based on co-immunoprecipita-
tion experiments.
doi:10.1371/journal.pgen.1004783.g004

Figure 5. HAM-5 is required to localize MAK-2 and MEK-2 to
puncta. (A) MAK-2-GFP in isolated WT germlings localizes to the
nucleus, cytoplasm and to puncta (white arrows). (B) In the Dham-5
mutant, MAK-2-GFP localization is cytoplasmic and nuclear; no puncta
are observed. Scale bar = 10 mM. (C) In WT hyphae, MEK-2-mCherry
localizes to the septum (green arrow) and also to cytoplasmic puncta
(white arrow). Scale bar = 10 mM. (D) In Dham-5 hyphae, septum
localization of MEK-2-mCherry is observed (green arrow), but puncta are
not. Scale bar = 10 mM. (E) Co-immunoprecipitation experiments
showing an interaction between MEK-2-mCherry and phosphorylated
MAK-2 in WT (mek-2-mCherry) germlings, but a significant reduction in
interaction between MAK-2 and MEK-2-mCherry in a Dham-5 (mek-2-
mCherry) strain. Top panel is a Western blot of protein samples probed
with anti-p42/44 antibodies (MAK-2, 40.8 kD, MAK-1, 46.7 kD; Figure
S4E). Middle panel is anti-mCherry immunoprecipitated proteins
probed with anti-mCherry antibodies (MEK-2-mCherry, 82.9 kD; Figure
S4C, E). Bottom panel is anti-mCherry (MEK-2-mCherry) immunoprecip-
itated proteins probed via Western blot with anti-p42/44 antibodies
that recognize phosphorylated MAK-2.
doi:10.1371/journal.pgen.1004783.g005
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MAK-2 complexes to puncta was dependent on HAM-5 or the

ability to undergo chemotropic interactions, we expressed HAM-

5-GFP and MAK-2-mCherry in Dham-7 and Dham-11 cells.

Although Dham-7 and Dham-11 germlings are unable to undergo

chemotropic interactions and cell fusion [23,24,43], co-localization

of HAM-5-GFP and MAK-2-mCherry to puncta was still

observed (Figure 6B-D). Interestingly, as seen in the Dmak-2;
ham-5-gfp strain, tip-anchored HAM-5-GFP and MAK-2-

mCherry were present in Dham-7 and Dham-11 germlings

(Figure 6, arrows).

HAM-5-GFP oscillates with MAK-2 during hyphal fusion
Most mutants affected in germling fusion are also deficient in

hyphal fusion [7], although localization of MAK-2 or SO during

hyphal interactions has not been previously reported. Whether

hyphal fusion is similarly coordinated as germling fusion is

unknown, as different avoidance and fusion signals may be

present at the periphery and older parts of a colony [44]. Another

difference between germlings and hyphae is the presence of

cytoplasmic flow in hyphae [10] that may influence the oscillation

of proteins to sites of fusion. We therefore evaluated the

localization of HAM-5-GFP during hyphal fusion in a mature

colony. As shown in Figure 7, oscillation of HAM-5-GFP to the

tips of hyphae undergoing chemotropic interactions was observed

with dynamics very similar to that during germling fusion (where

MAK-2 has a cycling time of ,8 min at a single hyphal tip).

Similar to germlings, MAK-2-mCherry also showed co-localiza-

tion with HAM-5-GFP and oscillated with identical dynamics.

MAK-2-mCherry was also observed in nuclei, while HAM-5-GFP

was excluded (Figure S6A and Movie S5).

In addition to localization to sites at fusion tips of hyphae,

puncta containing HAM-5-GFP and MAK-2-mCherry within

adjoining hyphal compartments also showed oscillation (Figure 7

and Figure S6). Interestingly, upon membrane merger

(t = 22 min), oscillation in both fusion hyphae was completely

coordinated for an additional 30 minutes (Figure 7C,D, Figure S6

and Movie S5). We further assessed how far oscillation of HAM-5-

GFP puncta extended in hyphal compartments that surrounded a

fusion point. In filamentous fungi like N. crassa, hyphal

compartments are delineated by septa, but septa contain a pore

through which organelles, including nuclei, can move [45]. We

observed coordinated oscillation of HAM-5 in over six hyphal

compartments that were ,100 mm from the point of fusion for a

total distance of ,200 mm (Figure S7). Hyphal compartments that

showed different or no oscillation of HAM-5 distant from the point

of fusion were delineated by septa (Movie S6). These data show

that the oscillation of HAM-5-GFP in the hyphal network was

coordinated over large distances surrounding a fusion point, but

could be restricted by septa. Cytoplasmic flow, septal plugging and

fusion events in nearby hyphae may also affect the oscillation of

HAM-5 in compartments surrounding hyphal fusion points.

Discussion

In this study, we show that HAM-5 functions as a scaffold

protein for the MAK-2 MAP kinase complex and is required for

oscillation of this complex during chemotropic interactions during

germling and hyphal fusion in N. crassa. Our findings are

complemented by the accompanying study of Dettmann et al.,
[46] that show physical interaction between HAM-5 and MAK-2/

MEK-2/NRC-1 via mass spectrometry and yeast two hybrid,

assessing both indirect and direct physical interactions of HAM-5

with the MAK-2 kinase complex. In other filamentous ascomycete

species, mutations in nrc-1, mek-2, mak-2 orthologs results in

strains unable to undergo vegetative cell fusion [47,48,49,50] as

well as defects in growth, reproduction, virulence and host

colonization phenotypes, indicating expanded functions for this

MAPK pathway in filamentous fungi as compared to yeast

[51,52,53,54,55,56]. ham-5 is highly conserved in the genomes of

filamentous ascomycete species [51]. We predict that these ham-5
homologs will function as a scaffold in these species for mak-2/mek-
2/nrc-1 orthologs, and which may be important for mediating

growth, reproduction and virulence functions of this important

and conserved signal transduction pathway.

The MAK-2 MAPK signal transduction pathway (MAK-2,

MEK-2 and NRC-1) in filamentous fungi is orthologous to the

pheromone response pathway in S. cerevisiae (Fus3, Ste7 and

Ste11). Previously, it was shown that a FUS3/KSS1 ortholog in the

filamentous ascomycete species Magnaporthe grisea, (PMK1) as

Figure 6. HAM-5-GFP and MAK-2-mCherry localize to puncta in Dham-7 and Dham-11 fusion-deficient germlings. (A) Western blot of
protein samples from 5 hr-old WT, Dham-5, Dham-7 and Dham-11 germlings probed with anti-p42/44 antibodies, which recognize phosphorylated
MAK-1 and MAK-2 [8]. As previously shown [43], MAK-1 phosphorylation is reduced in the Dham-7 mutant. (B) HAM-5-GFP and MAK-2-mCherry
localization in WT germlings undergoing chemotropic interactions. Arrows show localization to the CAT tip and to cytoplasmic puncta. (C) HAM-5-
GFP and MAK-2-mCherry co-localization in Dham-7 (ham-5-gfp; mak-2-mCherry) germlings. Note lack of chemotropic interactions. Arrows show
puncta of HAM-5-GFP and MAK-2-mCherry in Dham-7 (ham-5-gfp; mak-2-mCherry) germlings, which are often co-localized at the germ tube tip. (D)
HAM-5-GFP and MAK-2-mCherry co-localization in Dham-11 (ham-5-gfp; mak-2-mCherry) germlings. Note lack of chemotropic interactions. HAM-5-
GFP and MAK-2-mCherry co-localized to both cytoplasmic and tip-localized puncta (arrows). The upper left panels are bright field images, the upper
right panels show GFP fluorescence, the lower left panels show mCherry fluorescence. Lower right panels show merged images of GFP and mCherry
images. Scale bars = 10 mM.
doi:10.1371/journal.pgen.1004783.g006
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well as its ortholog in Aspergillus nidulans (mpkB) complements

the pheromone response/mating defect of a S. cerevisiae fus3D/
kss1D mutant [49,57]. In S. cerevisiae, the Ste5 scaffold protein

allosterically facilitates Ste7 phosphorylation of N. crassa MAK-2

(called N. cra mpkB) [58] and A. nidulans MpkB [57], indicating

conservation of regulation of these kinases by allosteric motifs

within Ste5. However, although components of these two MAPK

pathways are highly homologous in fungi, an ortholog of STE5 is

absent in the genomes of filamentous ascomycete species. Future

experiments comparing the function of these non-homologous

scaffold proteins (STE5 and HAM-5) in regulating conserved

signal transduction pathways will reveal how selection and

evolution has shaped convergent evolution of these processes.

In S. cerevisiae, Gbc is involved in the recruitment of Ste5 to

the plasma membrane upon pheromone exposure, thereby

recruiting the Fus3 MAPK cascade to the membrane. Membrane

binding of Ste5 likely concentrates the bound MAP kinases

spatially, promoting amplification of the signal [59,60]. In N.
crassa, how HAM-5 and MAK-2 are recruited to the membrane is

still elusive, but is dissimilar from Ste5 since the Gbc ortholog in

N. crassa is not involved in germling fusion [61,62]. Other

upstream factors shared between S. cerevisiae and N. crassa might

regulate the activation of the MAPK pathway. One is STE50, a

component in yeast that helps to activate Ste11. In the

accompanying article, Dettmann et al., [46] identified a role for

N. crassa STE-50 as an activator of NRC-1; Dste-50 mutants were

fusion deficient. Three other proteins acting upstream of NRC-1

and STE-50 were also identified: the MAP4 kinase STE-20, the

small GTPase RAS-2/SMCO-7 and the capping protein of the

adenylate cyclase (AC) complex, CAP-1/NCU08008. Strains

carrying a deletion of any of these three genes still showed

residual germling fusion, suggesting multiple and redundant inputs

into the MAK-2 signal transduction pathway. In S. cerevisiae,

Bem1 interacts with Ste20, Ste5 and actin [63]. In N. crassa,

strains carrying either a deletion of bem-1, encoding a predicted

scaffold for NADPH oxidase (NOX), or its regulator (NOXR), are

germling/hyphal fusion deficient [23]. Activated RAC-1 also

localizes to CAT tips during chemotropic interactions and may

also function as an upstream activator [64]; Drac-1 mutants are

also are germling fusion defective [23].

During chemotropic interactions, HAM-5/MAK-2 complex

assembles in puncta at the CAT tip and in the cytoplasm, followed

by disassembly of HAM-5/MAK-2 complex from puncta, not just

at the CAT tip, but from puncta observed throughout the

Figure 7. HAM-5-GFP shows oscillatory localization to fusion points and puncta in hyphae showing chemotropism. (A) Time course of
HAM-5-GFP localization to interacting hyphae prior to cell fusion. HAM-5-GFP localized to the hyphal tip of a homing hyphae (white arrow T = 0;
T = 8), followed by a disappearance and localization of HAM-5-GFP at the cell surface in the receptive hypha (white arrow; T = 4). Red arrow shows
localization to septa near fusion points. At T = 30, HAM-5 is observed at the site of contact (white arrow). Bright field image is shown in upper left
panel; remaining panels show GFP fluorescence. Scale bar = 50 mM. (B) Graphical representation of relative fluorescence intensity (R.F.I.) of HAM-5-
GFP localization to the receptive hypha and the homing hypha over the time course (panel A). 6axis shows time (min). (C) Graphical representation
of HAM-5-GFP fluorescence of interacting fusion hyphae shown in Figure S6B over an extended time course. Note that following the fusion event
(T = 22 min), HAM-5-GFP puncta co-oscillate in both hyphae for an additional 30 minutes, see (D). y axis shows maximal fluorescence intensity (M.F.I.)
while the 6axis shows time (min). The time points at which the individual pictures taken at T = 4, T = 8, T = 46 and T = 59 minutes are pointed out in
the graph (black arrows) (Figure S6 and Movie S5). The time of fusion at T = 22 min is marked with a black line. (D) Example of HAM-5-GFP appearing
in puncta in both hyphae after fusion at T = 46.
doi:10.1371/journal.pgen.1004783.g007
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germling and fusion hyphae, a cycle that repeats itself during

chemotropic interactions every ,8 min. In the absence of HAM-

5, localization of MAK-2 kinase complex to puncta was impaired,

while in Dmak-2 mutants, HAM-5 puncta were still observed.

These observations indicate that MAK-2 kinase activity is essential

for disassembly of the HAM-5/MAK-2 complex (Figure 8) during

chemotropic interactions. The formation of HAM-5/MAK-2

complexes in puncta was not disrupted in other fusion mutants,

such as Dham-7 and Dham-11; cortical localization of the HAM-

5/MAK-2 complexes were observed at cell tips, although

oscillation was not. These data suggest that the HAM-5/MAK-

2/MEK-2/NRC-1 complexes are poised to signal for chemotropic

interactions, but that the absence of HAM-7 or HAM-11 disrupts

signaling that results in disassembly of the HAM-5/MAK-2

complexes, both within the cell and at the cell cortex.

Few downstream targets of MAK-2 have been identified in

filamentous fungi. The PP-1 protein, a transcription factor similar

to Ste12 from yeast, is a likely downstream factor that is required

for the activation of genes that play a role during the cell fusion

and membrane merger [24,46,65]. Another target of MAK-2 is

MOB-3, a protein of the STRIPAK complex involved in cell

fusion that assures correct nuclear localization of MAK-1 [66].

Among the phosphorylated proteins in addition to HAM-5

identified in this study are members of the osmosensing (OS-2,

CUT-1 and ASL-1) and cell wall integrity pathways (MAK-1) and

other proteins of unknown functions but which are required for

fusion (HAM-9 and HAM-11) (Table S1). The accompanying

study [46] also identified MAK-1, OS-2 and CUT-1 in MAK-2

complexes via mass spectrometry. Both studies also identified

other proteins that interacted with MAK-2/MEK-2/NRC-1

complex [46] or as potential phosphorylation targets of MAK-2

(this study; Table S1), including a glucokinase (NCU00575), SUC

(pyruvate decarboxylase), an aminotransferase (NCU03500), a

trehalose-phosphatase (NCU05041), CAMK-4 calcium/calmodu-

lin-dependent kinase-4, and four hypothetical proteins (NCU00627,

NCU00935, NCU006247 and NCU08330) [46]. The identification

of MAK-2 phosphorylation targets provides new clues to the

interconnectivity of signaling pathways in N. crassa; these two

combined datasets will be a rich resource for further studies on the

MAPK pathway function in fungi.

It is challenging to identify kinase targets that are often present

in low abundance and have low phosphorylation stoichiometry,

from a complex whole cell lysate with limited sample size. The

multiplexed iTRAQ quantitation strategy, high specificity of

phosphopeptide enrichment and high resolution nano-flow LC

separation coupled to MS, as used in this study, have together

contributed to the success of identifying and quantifying thousands

of phosphopeptides from a small size sample (,200 mg protein per

sample condition). Our phosphoproteomics dataset from 5 hr old

germlings provides information on stage-specific phosphorylation

events on over ,1100 proteins (Dataset S1). This dataset can be

further compared to a recently published study on ,3500

phosphorylated proteins identified under hyphal conditions and

different carbon sources [40]. Both of these studies provide rich

datasets for the filamentous fungal research community to

interrogate the identity and function of phosphorylation sites on

a large fraction of proteins in the N. crassa proteome. For

example, three phosphorylation sites on HAM-5 from germlings

were identified from this study, but an additional 13 HAM-5

phosphopeptides were identified in a sample from a 20 hr-old

hyphal culture [40]. For chemotropic interactions, further studies

on the additional phosphorylation sites and further dissection of

the protein domains in the C-terminus of HAM-5 may explain

how this scaffold protein itself is recruited to puncta, and may

reveal additional binding partners for HAM-5. Such studies will

elucidate the molecular mechanism and function of oscillation of

the HAM-5/MAK-2/MEK-2/NRC-1 complex during chemo-

tropic interactions. Understanding the molecular basis of germl-

ing/hyphal fusion in filamentous fungi provides a window into

fungal language and communication and provides a paradigm for

self-signaling mechanisms in multicellular eukaryotic species.

Materials and Methods

Molecular techniques and strain construction
Deletion strains used to screen for fusion mutants and strains

constructed for this study are listed in Table S2. Strains were

grown on Vogel’s minimal medium (VMM) [67] (with supple-

ments as required) and were crossed on Westergaard’s medium

[68]. Transformations and other N. crassa molecular techniques

were performed as described [69] or using protocols available at

the Neurospora home page at the FGSC (http://www.fgsc.net/

Neurospora/NeurosporaProtocolGuide.htm).

To construct the ham-5 alleles, PCR was performed with the

restriction enzyme linkers included in the primer region. We

amplified ham-5 alleles using primers 1-5: ham-5FXbaI tttttc-

tagaATGTCGGTCCCCGGACACA; ham-5RpacI aaaattaattaa-

GATCATCTCACTATGATGCAAC; ham-5 WD40onlyR tttttaat-

taaGTTAGCAGGATGTTGAACGTTG; ham-5RWD40 tttatgca-

tatttaaaTCATGGTGGCAGCATACAATC; ham-5FWD40 tttatt-

taaatCCTGCTAACATGTTACCTCC; and cloned the fragments

into pCR-Blunt vector (Invitrogen). For constructing the point

mutations at the predicted phosphorylation site we used fusion PCR

strategy with primers CGTCATCGGGGGCGCGCGGCACCT-

CATGGCG and GGTGCCGCGCGCCCCCGATGACGC-

GAAAGTTGT (S R A) and CGTCATCGGGCTCGCGCGG-

CACCTCATGGCG and GGTGCCGCGCGAGCCCGATGAC-

Figure 8. Model for HAM-5-MAK-2/MEK-2/NRC-1 function
during chemotropic interactions. HAM-5 interacts with MAK-2,
MEK-2 and NRC-1 and assembles in puncta throughout the germling,
some of which are recruited to the CAT tip during chemotropic
interactions via interactions with a plasma membrane associated
protein (MDP: membrane docking protein). Association of the HAM-5/
MAK-2/MEK-2/NRC-1 complex to the CAT tips is associated with signal
reception from the partner germling. During this process, HAM-5 is
successively phosphorylated by MAK-2 and other kinases, resulting in
the disassociation of the complex and termination of the ability to
receive signal. Nuclear MAK-2 signaling to the transcription factor PP-1
is not believed to be essential for chemotropic interactions as treatment
of germlings with cycloheximide did not disturb oscillation of MAK-2
nor chemotropic behavior [19]. The coordinated assembly and
disassembly of HAM-5/MAK-2/MEK-2/NRC-1 during communication
regulates the tempo of chemotropic interactions between germlings.
doi:10.1371/journal.pgen.1004783.g008
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GCGAAAGTTGT (S R E) together with the primers TTTGATG-

CATCACAATGCTGACC and TTAAGGGCCGAATTCTT-

CGC. The mutated constructs were ligated into the NsiI and EcoRI

sites of the HAM-5 gene. For constructing the mutation at the

predicted docking site, we used primers ggtcgctgacaaactcgaat and

tttgccggctgcCTCGGAACTGCGCGCGCGG that has the restric-

tion site NaeI in the linker and TTTCGGCCAGCATCATGAGA

and tttagcgctCCTCCAGCACTCGACCTTCGC that has the

restriction site AfeI in the linker. The two respective products were

digested with NsiI and NaeI and AfeI and Tth111I, respectively and

ligated using a three-point ligation in the vector with HAM-5 cut

open with NsiI and Tth111I.

We sequenced and digested the constructs from the pCR-Blunt

vector with the appropriate restriction enzymes. The different

fragments were ligated into plasmid pMF272 (AY598428) [70,71].

For the MAK-2-mCherry, SO-mCherry, MEK-2-mCherry and

NRC-1-mCherry strains, plasmid TSL84C was used. To generate

plasmid pTSL84C, sGFP, from plasmid pMF272, was removed by

digestion with PacI and EcoRI restriction enzymes and replaced

by a version of mCherry that is codon-optimized for N. crassa and

includes a C-terminal 6x-His-tag (mCherryNc-6xHis). Plasmid

pMFP26 [72] contains untagged codon-optimized mCherryNc

and was used as a template for PCR using forward primer

OTS177 (AAATTAATTAACGTGAGCAAGGGCGAGGAGG-

ATAAC) and reverse primer OTS202 (AAAGAATTCCTAG-

TGGTGGTGGTGGTGGTGGCTGCCCTTGTACAGCTCG-

TCCATGCCGCCG), which contained information for the 6xHis

tag and a stop codon. Plasmid derivatives with the tef-1 promoter

instead of ccg-1 promoter were obtained by swapping the ccg-1
promoter for the tef-1 promoter using the restriction enzymes NotI
and XbaI. A tandem construct of tef-1-ham-5-gfp and tef-1-mak-
2-mCherry was created by digesting the tef-1-mak-2-mCherry
pMF272 plasmid with restriction enzymes PspOMI and BstBI and

the tef-1-ham-5-gfp construct with NotI and BstBI. The latter

fragment was ligated into the tef-1-mak-2-mCherry pMF272

plasmid to create tef-1-mak-2-mCherry and tef-1-ham-5-gfp. All

constructs were transformed into the WT his-3 strain with

selection for His+ prototrophy. Homokaryotic strain was obtained

via microconidial purification [73]. A strain bearing cytoplasmic

GFP was obtained by transformation of the empty pMF272

plasmid into the WT his-3 strain. All micrographs with HAM-5-

GFP are with strains bearing the tef-1-ham-5-gfp constructs unless

stated otherwise.

Deletion strains were obtained from the FGSC [74] that were

generated as part of the N. crassa functional genomics project

[69,75]. For each deletion strain, both the mating type A and

mating type a strains were analyzed, if available.

Phenotypic analyses
To assess the ability of fusion between conidia of a deletion

strain as compared to wild type, slant tubes containing the strains

were grown for 4–6 days or until significant conidiation occurred.

Conidia were harvested by vortexing the slant tube with 2 ml

ddH2O and subsequently filtered by pouring over cheesecloth to

remove hyphal fragments. Conidia were diluted to a concentration

of 3.36107 conidia/ml. For each sample, 300 ml of spore

suspension was spread on a 9 cm solid VMM plate. The plates

were dried in a fume hood for 20-30 minutes and incubated for 3–

4 hours at 30uC. Squares of 1 cm were excised and observed with

a Zeiss Axioskop 2 using a 406 Plan-Neofluor oil immersion

objective. The ability of germlings to communicate was deter-

mined by evaluating whether germlings displayed homing

behavior when germinated conidia were within ,15 um of each

other.

Phosphoproteomics sample preparation
Samples for protein extraction were grown for 4.5 h at 30uC

and 200 rpm. Shaking was stopped and samples were grown for

20 minutes longer to encourage cell-cell interaction. The mak-
2Q100G strain was treated with 10 mM 1NM-PP1 final concentra-

tion in DMSO or with DMSO alone for 10 minutes. Cells were

harvested by filtration and frozen before protein extraction.

Protein was extracted using the Trizol procedure (according to

manufacture’s protocols) and was kept in a solution of 6 M

guanidine, 50 mM ammonium bicarbonate at pH 7.4. 200 mg for

each sample was used for guanidine digestion: 1) pH was adjusted

to pH 7.4 with the iTRAQ resuspending buffer (500 mM), 2) 1 hr

reduction using 5 mM DTT at 56uC, 3) 1 h alkylation using

10 mM iodoacetamide at RT in the dark, 4) samples were diluted

10 fold with 25 mM NH4HCO3, pH 7.8, 5) 2 mM CaCl2 and

trypsin was added at a 1:50 (trypsin-to-protein) ratio and

incubated for 3 hr at 37uC with gentle shaking, 6) trypsin was

added again in the same ratio and samples were incubated over-

night at 37uC with gentle shaking, 7) subsequently, a standard C18

Solid phase extraction (SPE) was performed with 80% ACN and

no TFA, 8) samples were dried in a Speed-Vac and a

bicinchoninic acid (BCA) assay was performed.

For 4-plex iTRAQ labeling, 100 mg lyophilized sample per

iTRAQ label was used: 1) samples were reconstituted with

30.0 mL of dissolution buffer (500 mM triethylammonium bicar-

bonate), sonicated and vortexed to resuspend the peptides, 2)

sample pH was checked (,pH 8.5), 3) each vial of iTRAQ reagent

(114, 115, 116 and 117) was brought to room temperature and

70 mL of ethanol was added to each iTRAQ reagent vial, 4)

samples were vortexed for 1 min and spun down, 5) each labeled

reaction mix was added to one separate sample, 6) samples were

vortexed, spun down and incubated for 1 hr at RT. Samples were

subsequently hydrolyzed by adding 300 uL of 0.05% TFA (3 times

the volume), vortexed, spun down and incubated at room

temperature for another 30 min, 7) samples were concentrated

to 40 mL using a Speed-Vac, 8) samples were pooled into a fresh

2 mL silanized tube and concentrated to ,100 mL using a Speed-

Vac before a desalting (SPE C18) step was performed.

For phosphopeptide enrichment, magnetic Ni-NTA-agarose

beads were obtained from Qiagen (Valencia, CA Part N#36111):

1) 50 mL of the 5% suspension metal ion activated NTA was used

for 100 ug peptides, 2) beads were first prepared by washing 36
with nano-pure water (800.0 mL of water per 1.0 mL of bead

suspension), 3) beads were then treated with 100 mM EDTA,

pH 8.0 (800.0 mL of 100 mM EDTA per 1.0 mL of bead

suspension) for 30 min with end-over-end rotation, 4) EDTA

solution was removed, and beads were washed 36with nano-pure

water (at the same ratio). Subsequently, the beads were treated

with 10 mM aqueous metal ion solution (800.0 uL of 100 mM

FeCl3 per 1.0 mL of bead suspension) for 30 min with end-over-

end rotation, 5) after removing excess metal ions, beads were

washed 36 with water (at the same ratio), and resuspended in

1:1:1 acetonitrile/methanol/0.01% acetic acid for aliquoting into

microcentrifuge tubes, 6) peptide samples were resuspended in

200.0 ml wash/resuspension buffer (80% acetonitrile, 0.1% TFA),

7) beads were washed with of 80% acetonitrile with 0.1% TFA

(200 mL of 80% acetonitrile per 50.0 mL of beads) and precipitated

using the magnetic stand; the supernatant was discarded. The

resuspended samples (100 mg peptides in 200 ml of 80% acetoni-

trile, 0.1% TFA) were added to the activated beads and incubated

for 30 min with end-over-end rotation, 8) beads were precipitated

using the magnetic stand and washed for 1 min with 80%

acetonitrile, 0.1% TFA. This step was repeated three more times,

9) phosphopeptides were eluted from the beads using an
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appropriate amount of elution buffer (50.0 mL of the elution buffer

per every 50.0 uL of beads/100.0 ug of peptides) after incubating

for 5 min, 10) the samples were then acidified to pH 4.0 by

concentrating the samples down to 5210 ml in a Speed-Vac and

reconstituted in 30 mL with 0.1% TFA.

Mass-spectrometry based analysis
All peptide samples were analyzed using an automated home-built

constant flow nano LC system (Agilent) coupled to an LTQ Orbitrap

Velos mass spectrometer (Thermo Fisher Scientific) operating in

data-dependent mode [76]. Electrospray emitters were custom made

using either 360 mm o.d.620 mm i.d. chemically etched fused silica.

The nano LC system for phosphoproteomics analysis has an online

4-cm6360 mm o.d. 6150 mm i.d. C18 SPE column (5- mm Jupiter

C18, Phenomenex, Torrence, CA) to desalt each phosphopeptide

sample (20 mL), which is connected to a home-made 60-

cm6360 mm o.d. 650 mm i.d. capillary column (3- mm Jupiter

C18, Phenomenex, Torrence, CA). Mobile phase flow rate was

100 nL/min and consisted of 0.1 M acetic acid in water and 0.1 M

acetic acid in 70:30 (v/v) acetonitrile:water. For each sample, three

technical replicates of LC-MS analyses were performed as shown in

Figure S1. These included (i) an LC gradient of 300 min with the

LTQ Orbitrap Velos mass spectrometer acquiring higher-energy

collisional dissociation (HCD) scans; (ii) an LC gradient of 300 min

with the LTQ Orbitrap Velos mass spectrometer acquiring

alternating collision-induced dissociation (CID), ETD (electron

transfer dissociation), and higher-energy collisional dissociation

(HCD) scans; (iii) an LC gradient of 180 min with the LTQ

Orbitrap Velos mass spectrometer acquiring alternating collision-

induced dissociation (CID), ETD (electron transfer dissociation), and

higher-energy collisional dissociation (HCD) scans.

Peptide identification and quantification
For peptide identification, MS/MS spectra were searched

against a decoy Neurospora protein sequence database using

SEQUEST [77]. Search parameters included: trypsin enzyme

specificity with a maximum of two missed cleavages, +/- 50 ppm

precursor mass tolerance, +/- 0.05 Da product mass tolerance,

and carbamidomethylation of cysteines and iTRAQ labeling of

lysines and peptide N-termini as fixed modifications. Allowed

variable modifications were phosphorylation of serine, threonine

or tyrosine residues. MSGF spectra probability value [78] was also

calculated for peptides identified from SEQUEST search.

Measured mass accuracy and MSGF spectra probability were

used to filter identified peptides to ,1% false discovery rate (FDR)

at spectrum level.

iTRAQ reporter ions were extracted using the MASIC software

[79] within 10 ppm mass tolerance of each expected iTRAQ

reporter ion from each MS/MS spectrum. The sum of the

individual iTRAQ reporter ion values from all MS/MS spectra for

a given peptide was used for calculating their relative abundance

across different conditions. To correct any systematic error due to

pipetting, data were normalized by the median of iTRAQ reporter

ion of the individual sample. Fold change of each phosphopeptide

was calculated by dividing the data points from the two different

conditions (i.e. control and 1NM-PP1-treated) and transformed

into Log2 scale. Statistical analyses were performed using Students

t-test. Only data with changes exceeding 1.56 greater in control

versus 1NM-PP1-treated (p,0.05) were considered differential.

Fluorescence microscopy
The strain used to cross so-gfp into a Dham-5 strain was AF-

SoT8 and the strain used to cross mak-2-gfp into a Dham-5 strain

was AF-M512 (Table S2).

Oscillation studies performed with HAM-5-GFP and mCherry

tagged strains were prepared as described above with modifica-

tions from [20]. Images were taken using a Leica SD6000

microscope with a 10061.4 NA oil-immersion objective equipped

with a Yokogawa CSU-X1 spinning disk head and a 488-nm or

561-nm laser controlled by Metamorph software. Multiple pairs of

interacting germlings were analyzed per experiment and repre-

sentative pairs are shown for each strain. The ImageJ software was

used for image analysis.

Immunoprecipitations and western blotting
Harvested conidia (16106/ml) were inoculated in 100 ml

VMM in flasks and incubated for 2.5 hrs at 30uC with shaking

at 200 rpm, then an additional 2.5 hrs at 30uC without shaking.

Germlings from 3 flasks were harvested by vacuum filtration over

a nitrocellulose membrane and frozen in liquid nitrogen. Protein

extraction from ground mycelium was performed using 1 ml lysis

buffer described in [8] containing complete protease inhibitors,

phosphatase inhibitor and Triton X-100. 20 ml supernatant was

used for western blotting and the remaining fraction was used for

immunoprecipitation using Protein G Dynabeads (Invitrogen),

according to manufacturer’s instructions, with the following

exceptions: mouse or rabbit anti-GFP antibody (Roche or Life

Technologies, respectively) or rabbit anti-mCherry antibody (Bio-

vision) was covalently bound to the beads using BS3 (Sulfo-DSS,

Fisher scientific) or DMP (dimethylpimelimidate) according to

manufacturer’s instructions.

Supernatant samples were incubated with the beads overnight

at 4uC. Beads were washed with standard PBS for three times

before protein was removed from the beads by heating at 70uC for

10 min in 16 loading buffer, and samples were run on a 4–12%

Nu-Page Bis-Tris GelGel (NOVEX, Life Technologies). Protein

gels were subjected to Western blot analysis using standard

methods. Samples for the MAK-1 and MAK-2 phosphorylation

western blots were treated similarly, except, after protein

extraction with 1 ml lysis buffer, 25 ml of protein sample was

directly loaded on a 7% NuPage Bis-Tris GelGel (NOVEX, Life

Technologies) protein gel. Gels were subjected to Western blot

analysis using standard methods and detection of phosphorylated

MAK-1 and MAK-2 was carried out using anti-phospho p44/42

MAP kinase antibodies (1:3000 dilution) (PhosphoPlus antibody

kit; Cell Signaling Technology) as described [8]. Detection of

phosphorylated HAM-5-GFP was performed using anti-phospho-

threonine-proline/phosphoserine-proline antibodies (Abcam).

Supporting Information

Figure S1 Schematic overview of protein samples of
DMSO (control) and 10 mM 1NM-PP1 in DSMO treated
cells (two replicas each), downstream processing and
mass spectrometry analysis. Two flasks of control and 1NM-

PP1 treated mak-2Q100G 5-hr old germlings were used to collect

protein (left). Each of the four protein samples was digested with

trypsin and subsequently treated with a barcoded iTRAQ label.

The barcoded samples were mixed and subjected to immobilized

metal affinity chromatography to enrich for phosphopeptides. The

phosphopeptides were identified using liquid chromatography-

mass spectrometry (LC-MS) with three different LC-MS acquisi-

tion methods. Statistical analyses were performed to identify

peptides that differed in abundance between treatments.

(TIF)

Figure S2 HAM-5-GFP localizes to puncta in conidia and
mature hyphae, but is excluded from the nucleus. (A)

Localization of HAM-5-GFP to puncta in a hypha (white arrows)
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and to the septum (red arrow). The left panel shows a bright field

image (scale bar = 10 mM). (B) Localization of HAM-5-GFP to

puncta in conidia (white arrows). The panel on the left shows a

bright field image (scale bar = 10 mM). (C) Composite of HAM-5-

GFP and H1-dsRED during germling fusion. Upper left panel is a

bright field image (scale bar = 10 mM), upper right panel shows

HAM-5-GFP fluorescence, lower left panel shows H1-dsRED

fluorescence and lower right panel shows the composite of HAM-

5-GFP and H1-dsRED fluorescent images. H1-dsRED localizes to

the nucleus and is visible in vacuolar structures (lower left, white

arrow and green arrows, respectively). (D) Composite of MAK-2-

GFP and H1-dsRED during germling fusion. Upper left panels is a

bright field image (scale bar = 10 mM), upper right panel shows

MAK-2-GFP fluorescence, lower left panel shows H1-dsRED

fluorescence and the lower right panel shows the composite of

MAK-2-GFP and H1-dsRED images.

(TIF)

Figure S3 Localization of HAM-5-GFP in hyphae when
driven by its native promoter. Left panel: GFP fluorescence

images showing HAM-5-GFP localization to puncta in hyphae

(arrows). The right panel is a bright field image. Scale bar

= 10 mM.

(TIF)

Figure S4 The WD40 domain is required for HAM-5
stability and function, but does not complement the
Dham-5 growth defect. (A) Slant tubes with WT, Dham-5,

Dham-5+ ham-5-gfp, Dham-5+ ham-51-351-gfp (WD40 domain

only) and Dham-5+ ham-5D67–348-gfp (W/O WD40 domain) and

three slant tubes with the point mutation mutants ham-5S506A-gfp,

ham-5S506E-gfp and ham-5RRK1128AAA-GFP (B) Western blot

showing the protein sizes and levels of full length HAM-5-GFP

(black arrows) and HAM-5-GFPD67–348 (red arrows) in conidia and

germlings in WT and Dham-5 strains. The right panel shows

molecular weight marker sizes (kD) (C) A representative Western blot

showing the protein sizes of MAK-2-mCherry (68 kD), MEK-2-

mCherry (83 kD), NRC-1-mCherry (128 kD) and SOFT-mCherry

(167 kD). A molecular marker is given at the right indicating marker

sizes in kilodalton (kD). (D) A representative Western blot showing

the protein sizes of HAM-51-351-GFP (65 kD), free GFP (27 kD) and

HAM-5-GFP (210 kD). Molecular weight markers are given at the

right (kD). (E) A representative Western blot showing the protein

sizes of phosphorylated MAK-1 (47 kD) and phosphorylated MAK-

2 (41 kD). Molecular weight markers are given on the right (kD). (F)

Western blots showing a specific interaction between HAM-5-GFP

(210 kD) and phosphorylated MAK-2 (40.6 kD) in WT cells, but not

between HAM-5D67-348-GFP (180 kD) and phosphorylated MAK-2.

Top panel shows Western of protein samples using anti-P42/44

antibodies. The middle panel shows anti-GFP immunoprecipitated

proteins probed with anti-GFP antibodies. Lower panels shows

Western blot of anti-GFP immunoprecipitated proteins probed with

anti-P42/44 antibodies. The strain Dmak-2+ HAM-5-GFP was used

as a negative control.

(TIF)

Figure S5 Localization of HAM-51-351-GFP (WD40 do-
main) and H1-dsRed in WT germlings and SO-GFP
localization in wild-type and Dham-5 germlings. (A)

Upper left panel is bright field image (scale bar = 10 mM), upper

right panel shows GFP fluorescence (HAM-51-351-GFP) localiza-

tion in WT germlings during chemotropic interactions; note

localization to CAT tip and to nuclei (white arrows). Lower left

panel shows H1-dsRED localization in germlings (four nuclei

(arrow) and to vacuoles). Lower right panel shows co-localization

of HAM-51-351-GFP and H1-dsRED to four nuclei (red arrow

points to one nucleus). (B) In the WT germlings that are not

communicating or (C) in the Dham-5 strain, SO-GFP shows

cytoplasmic localization and is absent from the nucleus (black

areas). Size bar = 10 mM.

(TIF)

Figure S6 HAM-5-GFP and MAK-2-mCherry oscillate to
opposite sites of fusion in hyphae. (A) HAM-5-GFP and

MAK-2-mCherry oscillate together every four minutes to the tip of

an homing hypha (T4) and receptive hypha (T8) (white arrows) at a

site near a septum (red arrow). MAK-2-mCherry also localizes to

nuclei (white arrow, lower right picture). (B) HAM-5-GFP localizes

to puncta in fusing hyphae when HAM-5-GFP is concentrated at

the tip or at sites surrounding the septum (T = 4 and T = 8). Once

the hyphae have merged and cytoplasmic flow is observed (see

bright field picture at T = 22 min), HAM-5-GFP puncta appear-

ance and disappearance is coincident in both hyphae (T = 46 and

T = 59). For graphical representation, see Figure 7C and for Movies

S5. (C) Bright field image showing hyphal fusion at T = 22 minutes.

(TIF)

Figure S7 Oscillatory appearance and disappearance of
HAM-5-GFP to puncta is restricted to hyphal compart-
ments surrounding the site of fusion. A) Bright field image

of a fusing hyphal pair in which septa (*) and site of fusion (red

circle) are visible. Scale bar = 10 mm. B) Ten different septated

hyphal compartments surrounding the site of fusion were assigned.

(C) Appearance of HAM-5-GFP (maximal fluorescence intensity)

and disappearance (minimal fluorescence intensity) was followed

over time for each assigned fragment (Movie S5). (D) The

fluorescence intensities for each assigned fragment from 66 frames

(11 minutes) were plotted and a trend line was drawn through the

data points. A full line is drawn through all graphs at places where

fluorescence is low for fragments 2-9 and a dotted line when

fluorescence was high in order to compare each graph for similar

rhythmicity. y axis shows the ratio of relative fluorescence intensity

(R.F.I.) in each fragment as compared to background. x axis shows

time. (E) Fragments showing comparable graphs in (D) are color

coded similarly. Fragments 2 – 9 showed similar oscillation graphs

and were coded blue as fragments 1 and 10 showed dissimilar

oscillation patterns compared to the rest and were coded red.

(TIF)

Movie S1 Oscillatory movement of HAM-5-GFP in two
germlings undergoing chemotropic interactions. A 90-

minute movie compressed in 26 seconds of two ham-5-gfp
germlings undergoing chemotropic interactions and cell fusion.

During chemotropic interactions, oscillatory recruitment of HAM-

5-GFP to the CAT tips and puncta of germlings and to the site of

contact is observed. The left panel is composed of brightfield

images, the right panel of fluorescent images.

(AVI)

Movie S2 Oscillatory movement of HAM-5-GFP and
MAK-2-mCherry to the same CAT tip in germlings
undergoing chemotropic interactions. A 30-minute movie

compressed in 9 seconds of two ham-5-gfp; mak-2-mCherry
germlings undergoing chemotropic interactions and cell fusion.

Oscillatory recruitment of HAM-5-GFP and MAK-2-mCherry to

the same CAT tip of germlings (co-oscillation of HAM-5 and

MAK-2) and to the site of contact is observed. The upper left

panel is made of brightfield images, the lower left of GFP-

fluorescent images, the lower right panel of mCherry-fluorescent

images and the upper right panel movie is of merged GFP and

mCherry images.

(AVI)
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Movie S3 Oscillatory movement of HAM-5-GFP and SO-
mCherry to opposite CAT tips in two germlings
undergoing chemotropic interactions. A 52-minute movie

compressed in 15 seconds of two genetically identical ham-5-gfp;
so-mCherry germlings undergoing chemotropic interactions and

cell fusion. Oscillatory recruitment of HAM-5-GFP and SO-

mCherry to opposite CAT tips of the germlings is observed. Ham-

5-GFP is also observed at the site of germling contact, while SO-

mCherry is not. After fusion and cytoplasm mixing, the HAM-5-

FGP and SO-mCherry fluorescent proteins are observed in both

germlings. The upper left panel is made of brightfield images, the

lower left of GFP-fluorescent images, the lower right of mCherry-

fluorescent images and the upper right panel is a movie of merged

GFP and mCherry fluorescent images.

(AVI)

Movie S4 MEK-2-mCherry localizes to puncta and to
septa in wild type hyphae, but only localizes to septa in
hyphae of a Dham-5 strain. Two 4.5-minute movies

compressed into 1 second showing MEK-2-mCherry in WT

(mek-2-mCherry; upper panels and in Dham-5 (Dham-5; mek-2-
mCherry; lower panels) hyphae. Septal localization of MEK-2-

mCherry is observed in both strains, but localization of MEK-2-

mCherry to puncta is only observed in WT hyphae. The left

panels are made of brightfield images, the right panels of

fluorescent images.

(AVI)

Movie S5 Oscillatory movement of HAM-5-GFP and
MAK-2-mCherry to punta, to the hyphal tip and eventual
site of contact in hyphae undergoing chemotropic
interactions and fusion. A 60-minute movie compressed in

17 seconds of two hyphae undergoing chemotropic interactions

and cell fusion. Oscillatory co-recruitment of HAM-5-GFP and

MAK-2-mCherry to puncta, to hyphal tips undergoing chemo-

tropic growth, to sites surrounding the septum, and to the site of

contact is observed. MAK-2-mCherry is also observed in nuclei,

but HAM-5-GFP is not. Alternating oscillation of both HAM-5-

GFP and MAK-2-mCherry to puncta and the hyphal tip in the

two homing hyphae is observed before fusion, but after fusion, the

oscillation of HAM-5-GFP and MAK-2-mCherry to puncta and

septa is observed simultaneously in both hyphae. The upper left

panel is made of brightfields images, the lower left panel of GFP-

fluorescent images, the lower right panel of mCherry-fluorescent

images and the upper right panel is of merged GFP and mCherry

fluorescent images.

(AVI)

Movie S6 Oscillation of HAM-5-GFP to puncta is
restricted to hyphal compartments surrounding the site
of fusion. An 11-minute movie compressed in 9 seconds of two

hyphae that are undergoing fusion. Oscillatory recruitment of

HAM-5-GFP to puncta throughout the hyphae, to septa and to

the site of contact is observed. Co-oscillation of HAM-5-GFP to

puncta is seen in hyphae that have completed fusion, but co-

oscillation is restricted to a few hyphal compartment distal to the

site of fusion and is not observed in compartments further away

(See Figure S7). The left panel is made of brightfield images, the

right of GFP fluorescent images.

(AVI)

Table S1 Phosphopeptides that show lower abundance
in the 1NM-PP1 treated cells compared to untreated cells.
List of genes, identified phosphorylation site and peptides, N. crassa
locus (if characterized), predicted annotation (https://www.

broadinstitute.org/annotation/genome/neurospora/MultiHome.

html) and whether deletion mutants in identified genes are capable

of undergoing germling fusion.

(DOCX)

Table S2 Strains used in this study. Strain name,
genotype and reference for strains generated or ob-
tained for this study.

(PDF)

Dataset S1 Phosphopeptides identified in this study.
Page 1: Dataset S1 labeling summary. Page 2: All phosphopeptides

identified in this study. Page 3: List of all unique proteins identified

from phosphopeptide data. Page 4: Data for biological repeats 1

and 2 (experiment 1). Page 5: Data for biological repeats 3 and 4

(experiment 2). Page 6: 455 phosphopeptides with significant

abundance change (p,0.05) in 1NM-PP1 treated cells (mak-
2Q100G) relative to controls. Page 7: Phosphopeptides showing an

increase in abundance (p,0.05) of at least 1.5 fold. Page 8:

Functional category analyses [30] of genes encoding phosphopep-

tides that increased in abundance after treatment with 1NM-PP1.

Page 9: Phosphopeptides that showed significant (p,0.05)

decreased abundance in 1NM-PP1 treated mak-2Q100G cells

relative to controls. Page 10: Functional category analysis [30] of

genes encoding phosphopeptides that showed a decrease in

abundance.

(XLS)
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