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Abstract

Linear mixed models are widely used for analyzing longitudinal datasets, and the inference for 

variance component parameters relies on the bootstrap method. However, health systems and 

technology companies routinely generate massive longitudinal datasets that make the traditional 

bootstrap method infeasible. To solve this problem, we extend the highly scalable bag of little 

bootstraps method for independent data to longitudinal data and develop a highly efficient Julia 

package MixedModelsBLB.jl. Simulation experiments and real data analysis demonstrate the 

favorable statistical performance and computational advantages of our method compared to the 

traditional bootstrap method. For the statistical inference of variance components, it achieves 

200 times speedup on the scale of 1 million subjects (20 million total observations), and is the 

only currently available tool that can handle more than 10 million subjects (200 million total 

observations) using desktop computers.

Keywords
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1 | INTRODUCTION

Linear mixed models (LMMs) are powerful tools for analyzing longitudinal data, which 

are ubiquitous in medical research and E-commerce applications. For example, electronic 

medical records (EMR) data contains longitudinal measurements from the same patient 

over time. However, there are two challenges in applying LMMs to today’s problems. The 

first one is the massive sample size of modern datasets. For instance, the UCLA Health 

System alone has over 2.5 million annual patient visits. Analyzing such datasets with 

LMMs is challenging, especially if the goal is to make statistical inference on the variance 
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component parameters. For example, to test if subjects have different slopes for a covariate, 

one needs to test whether the corresponding random effect has zero variance. Statistical 

tests based on asymptotics are dubious because the limiting distribution of random effect 

parameters is difficult to derive. Therefore, researchers rely on the bootstrap method [7], 

which eliminates the need for asymptotics, but is computationally intensive. Specifically, 

running the traditional bootstrap method on LMMs has a computational cost of O(BNq3), 

where B is the number of bootstrap replicates, N is the number of subjects, and q is the 

number of random effect parameters. When N is on the scale of millions, the bootstrap 

method is prohibitively slow.

The second challenge relates to distributed datasets. Modern datasets are often stored at 

multiple locations: internet companies that harvest large volumes of data store them across 

data centers worldwide to save data transfer costs; medical centers that collaborate in 

multisite studies try to avoid sending data over the internet due to security and privacy 

concerns. However, to fit LMMs and use the traditional bootstrap method, one has to either 

move the distributed datasets to one place or communicate model parameters and their 

derivatives continuously between data centers, which incur high data transfer costs.

To overcome these challenges, we extend the bag of little bootstraps (BLB) method [12] to 

the longitudinal data setting. It has a computational cost of O(Bbq3) where b ≪ N, so it is 

capable of fitting and making statistical inference of LMMs on massive longitudinal datasets 

using a fraction of the time compared with the traditional bootstrap method. Moreover, by 

using the BLB framework, our software, MixedModelsBLB.jl, provides a solution to the 

analysis of distributed longitudinal datasets.

2 | METHOD

2.1 | Model and notation

Given a longitudinal dataset with N independent clusters (the word “cluster” is used 

interchangeably with “subjects” in this paper), let yi ∈ ℝni be the observed response vector 

of length ni from subject i, and Xi ∈ ℝni × p and Zi ∈ ℝni × q be the observed covariates for 

the fixed and random effect parameters, respectively. Consider an LMM of the form

yi = Xiβ + Zibi + ϵi, (1)

where β ∈ ℝp denotes the fixed effect parameters, bi ~ N(0, Σ) denotes the random effect for 

the i-th subject, Σ is a q × q covariance matrix, and ϵi N 0, σ0
2Ini  denotes the random error. 

bi and εi are jointly independent. Σ and σ0
2 are the variance component parameters.

2.2 | Statistical inference for LMMs

For fixed effect parameters, statistical inference is usually based on the asymptotic 

distribution of β. This approach relies on approximations that may not be accurate when the 

data are unbalanced or when the residuals have non-constant variance [1, 9]. For distributed 
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datasets, the asymptotic approach is difficult to implement and is potentially costly because 

it involves transferring parameters and their derivatives between different data centers.

Statistical inference of variance component parameters is more challenging. For testing if 

a random effect should be included in the model, one needs to test the hypothesis that the 

corresponding random effect variance equals zero. Since zero lies on the boundary of the 

parameter space of variance, the usual regularity condition that the parameter should be an 

interior point of the parameter space is not met. Testing such hypotheses involves using 

complex asymptotic or exact null distributions [5, 6, 14], which makes it cumbersome to use 

in practice.

Following the notation in References [12, 16], let wi = (yi, Xi, Zi) ~ P be independent and 

identically distributed (IID) for i = 1, …, N, and let the corresponding empirical distribution 

be ℙN = N−1∑i = 1
N δwi. θ(P) = β, Σ, σ0

2  denotes all model parameters, θN = θN ℙN  is an 

estimate of θ(P). In its essence, statistical inference of θN = θN ℙN  is a summary, denoted 

by ξ {QN(P)}, of the distribution QN(P) of u ℙN, P , which is a function of θN and its form 

depends on our inferential goal. For example, if we want to quantify the variance of θN, 

then u ℙN, P = θN and ξ is the variance. In practice, since P and QN(P) are unknown, we 

cannot calculate ξ {QN(P)} directly, but we can estimate it using the observed dataset. The 

asymptotic approach is one way to perform the estimation where we replace QN(P) with the 

asymptotic distribution of θ(P). An alternative approach is the bootstrap method [7], which 

replaces QN(P) by its bootstrap approximation.

Given IID data w1, …, wN and its empirical distribution ℙN, the bootstrap method first 

samples N data points with replacement from ℙN, which has empirical distribution function 

ℙN* . From the bootstrap sample, u ℙN* , ℙN  can be calculated. This process is repeated many 

times to obtain ℚN* , which is the empirical distribution of the u’s and serves to approximate 

QN(P). Finally, we use ξ ℚN*  as an estimate of ξ {QN(P)}.

However, the bootstrap method is computationally expensive for large datasets, especially 

for longitudinal data. In addition, it is awkward to apply the bootstrap method to distributed 

datasets because resampling requires access to the full data. To solve these problems, 

we extend the BLB method [12], which was developed for cross-sectional data, to the 

longitudinal data setting.

Given a longitudinal dataset with N clusters and a subset size b < N, the BLB method first 

samples s subsets, each consisting of b clusters. The sampling is done without replacement 

and uniformly at random. Let I1, …, Is ⊂ {1, …, N} denote the clusters that are in each 

subset, where |Ij| = b for 1 ≤ j ≤ s. Further let ℙN, b
(j) = b−1∑i ∈ Ijδwi denote the empirical 

distribution for subset j. Then, for each subset, it samples N clusters with replacement to 

obtain the bootstrap sample and calculates u ℙN, b* , ℙN, b
(j) , where ℙN, b*  denotes the empirical 

distribution of the bootstrap sample. Resampling is repeated B times and the empirical 
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distribution of the u-values on subset j is denoted by ℚN, j* . Finally, BLB estimate of ξ 

{QN(P)} is given by

s−1 ∑
j = 1

s
ξ ℚN, j* ,

where ξ ℚN, j*  serves as an approximation of ξ QN ℙN, b
(j) .

The fact that BLB operates on subsets rather than the entire dataset confers two advantages. 

First, it is more amenable to parallel processing than the bootstrap method. Since each 

subset is much smaller than the full dataset, we can parallelize at the subset level such that 

multiple CPU cores can work on multiple subsets at the same time. Secondly, to analyze 

datasets stored at multiple data centers, BLB can treat each data center as a subset or 

take further subsets at each data center, perform analysis on each subset, and obtain the 

final statistical inference by aggregating parameter estimates from different data centers. 

Since the final parameter estimates are all we need to transfer between data centers, BLB 

avoids moving raw data over the internet and incurs minimal communication costs. In 

contrast, the bootstrap method requires that we either move distributed datasets to one place, 

which poses security and privacy concerns, or communicate large amounts of intermediate 

parameter estimates and their derivatives, which incurs high communication costs. We note 

that in order for BLB to work in distributed data settings, one needs to be comfortable 

with the assumption that subjects from different data centers are IID samples from the 

population of interest. When certain variables demonstrate spatial heterogeneity, we expect 

more variability in the corresponding estimates; see Section S3 in supporting information for 

a simulation experiment.

Another feature of BLB is the way it generates bootstrap samples. Given a subset with b 
clusters, it samples N clusters (N > b) with replacement to form a bootstrap sample. Doing 

so offers three advantages. First, it makes BLB automatic in the sense that re-scaling of the 

resulting estimates is not needed because the u-values are calculated on datasets that are of 

the same size as the original data. This contrasts to methods such as subsampling [13] and 

M out of N bootstrap [3]. Both methods estimate parameters on datasets that are smaller 

than the original data, and thus require re-scaling the estimates. The second advantage is that 

storing BLB resamples requires O(b) rather than O(N) memory because each resample has 

its support on b distinct clusters. In fact, resampling N clusters from b clusters amounts to 

generating a weight vector from an N-trial uniform multinomial distribution over b objects, 

so each resample can be compactly represented by b clusters and a length-b vector denoting 

the number of repeats of each cluster. The third advantage is that for estimators that can 

work with a weighted data representation, the computational time using BLB resamples 

scales as O(b) rather than O(N). Many commonly used estimators, including maximum 

likelihood estimators (MLE) and general M-estimators, fall into this category. This means 

that we can use either MLE or generalized estimating equations (GEE) to estimate model 

parameters. Finally, BLB for longitudinal data enjoys the same consistency and higher-order 

correctness guarantee as BLB for IID data. Theoretical analysis of BLB is similar to that of 
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bootstrap and follows from standard empirical process results. Using weak convergence of 

the bootstrapped empirical process [Reference 16, theorem 3.6.3], Kleiner et al. [12] showed 

that size n resamples from ℙN, b
(j)  behave asymptotically as if they were drawn directly from 

P. This together with the delta method for bootstrap [Reference 17, theorem 23.9] yields 

the consistency of each individual ξ QN ℙN, b
(j)  as b, n → ∞. Consistency of BLB is then 

obtained by using the continuous mapping theorem [17]. This analysis assumes that the 

sampling units are IID, which is satisfied in the longitudinal setting because our sampling 

units are clusters and we assume that clusters are IID. Similar arguments can be made for the 

proof of higher-order correctness.

Consistency and higher-order correctness of BLB for longitudinal data hold for estimators 

that are Hadamard differentiable. Since M-estimators are generally Hadamard differentiable 

[16, 17] and both MLE and GEE produce M-estimators, these theoretical properties hold 

with either MLE or GEE.

In the following sections we present results obtained by MLE. GEE results, which are 

implemented through an approach called WiSER [8], are presented in Section S4 in 

supporting information.

3 | COMPUTATIONAL STRATEGY

A key component of Algorithm 1 is fitting LMMs, and we do so by maximizing the 

log-likelihood using the Fisher scoring algorithm. For model (1), the log-likelihood for the 

i-th cluster is

ℓi = −
ni
2 log(2π) − 1

2logdet ZiΣZi′ + σ0
2Ini

− 1
2 yi − Xiβ ′ ZiΣZi′ + σ0

2Ini
−1 yi − Xiβ .

Identifying a good starting point is crucial for fast convergence. In practice, we initialize β 
and σ0

2 with least-squares solutions

β(0) = ∑
i

XiTXi
−1

∑
i

XiTyi

σ0
2 = ∑

i
ri
(0)Tri

(0) / ∑
i

ni ,
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where ri
(0) = yi − Xiβ(0). To initialize Σ, we minimize

∑
i

‖ri
(0)ri

(0)T − ZiΣZiT‖F
2,

which gives

vecΣ(0) = ∑
i

ZiTZi ⊗ ZiTZi
−1

∑
i

ZiTri
(0) ⊗ ZiTri

(0) .

Besides a good starting point, we also need to evaluate the gradient and the Fisher 

information matrix efficiently by exploiting structures in these quantities. For example, by 

using the Woodbury structure in the marginal covariance ZiΣZi′ + σ0
2Ini, we can avoid the 

storage and decomposition of potentially large ni × ni matrices. See Section S2 in supporting 

information for detailed derivation and the implementation strategy.

4 | SOFTWARE

Our implementation, MixedModelsBLB.jl, is an open-source Julia package available at 

https://github.com/xinkai-zhou/MixedModelsBLB.jl. Users can run the software on Julia 

v1.5 or later, or use Docker without installing Julia. The package is compatible with a wide 

range of data inputs, including data frames and datasets that are too large to fit in memory. 

Furthermore, it works with a variety of nonlinear programming solvers such as Ipopt [18], 

NLopt [11], and KNITRO [4]. Finally, when the user has access to multiple CPU cores, 

parallel processing can be turned on to gain further efficiency by processing BLB subsets 

simultaneously.

We illustrate it on the sleepstudy example data [2]. The BLB estimates and the confidence 

intervals are printed. In addition, parameter estimates from all iterations are returned in 

an object of type blbEstimates for further analyses. See https://github.com/xinkai-zhou/

MixedModelsBLB.jl for detailed documentation.

5 | SIMULATION STUDY

This section presents two simulation experiments. The first one compares the statistical 

performance between BLB and bootstrap. The second simulation applies BLB to ultra large 

data sets to demonstrate its scalability.

In the first simulation, we define the relative error of the confidence intervals as |c − c0|/c0, 

where c is the estimated confidence interval width and c0 is the true confidence interval 

width. We then compare the relative error of the confidence intervals between BLB and the 

bootstrap method. To calculate c0, we generate 1000 datasets of size N from the underlying 

data generating distribution P, compute θN on each of them, and use these estimates to 

calculate confidence intervals and c0. To calculate c, we simulate one dataset of size N from 

P, run BLB and bootstrap, and record the parameter estimates as well as the cumulative 
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processing time (after each bootstrap resample or BLB subset has been processed). To 

reduce the variation in c induced by a particular dataset, we repeat this process on five 

simulated datasets and average the resulting relative errors and processing times. We present 

the trajectory of relative error versus time, where the relative error is averaged over variance 

components parameters. Note that the time axis provides a single-number summary of 

parameters b (subset size), s (number of subsets), and r (number of bootstrap iterations on 

a given subset) for BLB, and of r (number of bootstrap iterations) for bootstrap. We used 

our package MixedModelsBLB.jl for BLB and the Mixed Models.jl package for bootstrap. 

Parallel processing was turned off for both methods because the primary focus of this 

experiment is statistical performance.

Listing 1.

Illustrating software usage on the sleepstudy data.

We generate data under two settings. In the first one, non-intercept entries 

of Xi, Zi, and ϵi are drawn independently from the standard normal 
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distribution. In the second one, Xik, j Γ(1 + 5(j − 1)/(p − 1), 2) − 2Γ(1 + 5(j − 1)/(p − 1), 2), 

Zik, j Γ(1 + 5(j − 1)/(q − 1), 2) − 2Γ(1 + 5(j − 1)/(q − 1), 2), and ϵik Γ(1, 2) − 2 independently 

for k = 1, …, ni, j = 1, …, p. In both settings, N = 20,000, ni = 10 for all i, p = 100, 

and q = 2. For BLB, we set the subset size to be b = Nγ where γ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, 

and the number of Monte Carlo iterations to be r = 200.

Figure 1 shows the results. For all subset sizes, BLB converges to low relative error faster 

than bootstrap. When the subset size is small (γ = 0.5, 0.6, 0.7), it takes a very short time for 

BLB to process each subset, and it takes no more than 10–20 subsets for BLB to reach low 

relative error (each hinge corresponds to a subset for BLB). When the subset size is larger (γ 
= 0.8, 0.9), it takes longer to process each subset, but only a small number of subsets (3–5) is 

needed to achieve low relative error.

Besides the comparison with bootstrap, we also examined the subsampling method [13] as 

an alternative. However, we observed similar divergence in relative error for smaller subset 

sizes as reported by Reference [12]. See Section S5 in supporting information for more 

details.

The second simulation experiment compares the scalability of BLB and bootstrap. Since 

data generating distributions do not affect scalability, we only consider the standard normal 

case. We choose N = 1 million, ni = 20, p = 20, and q = 2. The truth is obtained by 

simulating 200 instead of 1000 datasets due to the bigger sample size. For bootstrap, we set 

the number of Monte Carlo iterations r = 400. For BLB, we set b = N0.6 ≈ 3981, s = 10, 

and r = 200. For both procedures, we turn on parallel processing. Specifically, BLB uses 

10 worker nodes and bootstrap uses two threads. We cannot use 10 threads for bootstrap 

because it makes a copy of the model object and the bootstrap sample on each thread, so 

it would quickly exhaust the memory on our computer (64 GB) if we use more than two 

threads. Figure 2 shows the simulation result. We see that BLB finishes all calculations 

within 170 s, which is more than 200 times faster than bootstrap, and achieves lower relative 

error (0.0534 vs. 0.0603, or an 11% reduction). A rough calculation shows that even if our 

computer has more memory (> 300 GB) so that bootstrap can run with 10 threads, it would 

still take 2 h and thus be much slower than BLB.

To see how BLB compares with bootstrap on even larger data sets, we simulated a data set 

with N = 10 million, ni = 20, p = 20, and q = 2 using the same data generating distribution as 

above. The entire data set contains 200 million records, and the CSV file takes 79 GB disk 

space. For BLB, we set b = N0.6 ≈ 15850, s = 10, and r = 200. BLB finishes all computation 

within 22 min. On the other hand, since the data set exceeds our computer’s memory limit, 

we are unable to run bootstrap.

Besides these two experiments, we also examined the relationship between the number 

of bootstrap samples on each subset (r) and relative error; see Section S6 in supporting 

information for details.
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6 | REAL DATA

In this section, we apply MixedModelsBLB.jl to the Action to Control Cardiovascular 

Risk in Diabetes trial (ACCORD) dataset [10]. The ACCORD study examined whether the 

intensive therapy that targets normal glycated hemoglobin (HbA1c) levels (< 6.0%) would 

reduce cardiovascular events when compared with the standard therapy among patients 

with type 2 diabetes who had either established cardiovascular disease (CVD) or additional 

cardiovascular risk factors. A total of 12,251 patients aged 40–79 years participated; their 

glucose concentrations were measured every 4 months in the initial year and then annually 

up to a maximum of 84 months.

After data cleaning, our analytic dataset consists of 67,063 observations on 10,195 

individuals. The outcome of interest is fasting plasma glucose, and the covariates include 

gender, race, baseline age, BMI, visit number, baseline CVD history, adjusted insulin, and 

the type of therapy they received. We follow Siraj et al. [15] and use insulin units per body 

weight in kg (adjusted insulin) instead of raw total insulin units. In addition to random 

intercept, we also included a random slope for the visit number. Since the ground truth is 

not available for real data, we cannot compare methods using relative error. Instead, we 

present the 95% confidence intervals given by BLB, bootstrap, and the Wald method. Note 

that the Wald method can only produce confidence intervals for fixed effect parameters. 

For this analysis, we used a subset size of 1600 individuals (γ = 0.8) and ran BLB 

on 30 subsets, each with 200 bootstrap samples. The subset size was chosen so that we 

would not get too few observations for certain categories in the unevenly distributed race 

variable. A sensitivity analysis of other subset sizes is given in Section S7 in supporting 

information. For bootstrap, we ran it with 2000 bootstrap samples. Both methods used 

parallel processing. Table 1 shows the results. We find the visit number, BMI, baseline age, 

race, adjusted insulin, and certain oral medication classes to be significantly associated with 

fasting plasma glucose. We also find the random slope for visit number to be significant 

and should be included in the model. Finally, we note that BLB achieves similar inference 

compared with bootstrap, but uses much less time.

7 | CONCLUSION AND FUTURE WORK

We have developed an algorithm based on the BLB method for the statistical inference 

of fixed effect and variance component parameters of LMMs on large and distributed 

longitudinal datasets; we also developed a Julia software package MixedModelsBLB.jl for 

this purpose. Unlike the bootstrap method, which typically requires O(BNq3) computational 

cost, our method only costs O(Bbq3), where b is much smaller than N. The simulation and 

real data results demonstrate the efficiency and statistical performance of our method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Relative error versus processing time for BLB and bootstrap under normal (left) and gamma 

(right) data generating distributions
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FIGURE 2. 
Relative error versus processing time on N = 1 million subjects and 20 million total 

observations. BLB subset size was set to b = N0.6 ≈ 3981
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