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Interactive techniques for correcting CAD data
Brian A. JEAN ! and Bernd HAMANN ?

Summary - The paper presents a technique for correcting disconti-
nuities (holes. overlapping surfaces, and intersecting surfaces) in CAD
data. The techmgque approximates faulty geometries by several new
B-spline surfaces which match properly. Each B-spline suriace 1s con-
structed from four user-defined boundary curves.

1. Introduction

Commonly, surfaces created by a CAD system are not connected
properly or intersect with each other. Surfaces must be connected
continuously for further processing, e.g., grid generation, flow simu-
lation, and manufacturing. The surface correction technique described
in this paper is implemented in the grid generation system currently
'I:r:mﬁ developed at the NSF Engineering Research Center for Computa-
gﬂn Fi:llzld Simulation at Mississippi State University (“National Grid

roject” ).

Each B-spline surface of the global approximant is constructed from
four user-specified boundary curves. These four curves define an initial
local approximant, a Coons patch, which might lie on original surfaces
or might only be “close” to them. The Coons patch is projected onto
the given try, and the projections are i.ﬂlﬂ'p-ﬂlﬂtﬂdp by a B-spline
surface. The geometric modeling methods used 1n this algorithm are
described in [1], [2], [3], [4], [7], Egj, [10], [11], and [14]. Grid generation
is discussed in [6] and [13]. Creating a single, local B-spline approximant
requires these steps:

(i) Specifving four boundary curves
(i1} Constructing a bilinear Coons patch from these four curves

(iii) Projecting the Coons patch onto the geometry

(iv) Performing scattered data approximation in case some projec-
tions can not be found
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(v) Interpolating the data resulting from steps (ii1) and (iv)
{vi) Estimating the error

Eventually, all single, local B-spline approximants are adjusted such
that they define = globally continuous approximation of the entire ge-
ometry.

2. Creating and projecting the initial loecal approximant

The first step is the generation of four curves defining the boundary
curves of & bilinearly blended Coons patch (see [3], [4], and [EJ} Th
four curves can be curves on the original geometry or curves “close” to
it. They are evaluated such that the resulting point distribution on each
curve 15 nearly uniform with respect to arc length. The finite point sets
on each curve are bilinearly blended defining & finite point set on the
Coons patch.

The resulting points on the Coons patch are denoted by x; 5, I,J =
0, ..., N. The Coons patch is used as an initial local approximation of the
given geometry, and the points on it must be relatively close to the given
surfaces. In the next step, all points x; s are projected onto the original
surfaces. For each point X7 ;, & unit outward normal vector ns s is
approximated using finite differences. Each point Xy, s is then projected
onto the original surfaces by computing the intersection(s) of the line
Lys = %5+ drng 1, dr ; € IR, with e triangulation of the given
surfaces. Provided that the original surfaces are defined parametrically,
this triangulation is obtained by evaluating all parametric surfaces on
rectilinear grids in their parameter spaces and splitting the resulting 3D
quadrilaterals into pairs of triangles.

An intersection with the surface triangulation is considered only if
its distance from x; ; does not exceed a certain ercentage of the length
of the diagonal of a scaled bounding box of the gnnns patch. If multiple
intersections are found along aline Ly ;, the one closest to x; s is chosen.
Using the concept of barycentric coordinates, each intersection point is
mapped onto the surface, provided its parametric definition is known.
The points that have been mapped onto the given surfaces are denoted
by ¥1,2. Fig. 1 illustrates the projection of the Coons patch onto the
given geometry.

Coons paich

Fig. 1: Projecting Coons patch onto original geometry.
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3. The octree data structure
During the construction of the approximation, points on the Coons
~ patch are projected onto the original set of surfaces. This is the most
computationally expensive and time consuming step in the construction
process. In order to accelerate this step, the set of triangles ap 1=
mating the given surfaces is stored in an octree data structure. Octree
structures have been used by a number of researchers for finite element
mesh generation (see [10]) and for object representation (see [9]). The
octree affords a substantial increase in execution time because the spa-
tial information contained in the octree allows rapid culling of large
numbers of triangles that need not to be considered for the projection.
An octree is a hierarchical data structure which results from suc-
cessively subdividing a cube in each dimension to form eight regions
or octants. The subdivision 15 continued until some stopping crite-
rion 15 satisfied. Each node in the tree corresponds to some region
of space bounded by the cube associated with that node. Since the tree
i1s constructed in cartesian space, the faces of the cube are constant-
r, constant-y, and constant-: planes. Therefore, only six coordinate
extrema are stored. If a node 15 not a terminal or leaf node, then it
has eight children or subcubes, the union of which completely fill the
cube associated with the node. In the current implementation, the sur-
face data associated with an octant is stored in the form of an array of
pointers to surface triangles associated with the octant. An octree data
structure with three levels is shown in Fig. 2. The actual data elements
associated with every node in the tree are

o the integer identifier of the node,

= a pointer to the parent of the octant,

e minimum ryz coordinates among the cube vertices,
* maximum ry: coordinates among the cube vertices,

» pointers to the eight children of the octant,

* a list of pointers to triangles contained partially or completely
in the octant (triangle list), and

* an integer indicating the number of triangles in the triangle
list.

Fig. 2: Octree with three levels.
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4. Building the octree
Building the octree consists of the following steps:

(i) Determining the bounding box containing all triangles to be
considered

(ii} Using the min/max rys coordinates of the bounding box ver-
tices as bounds for the root node of the tree and adding all
triangles to the root node

(1) Subdividing the current cube

(iv) Determining the triangles contained in each of the children
and adding them to the associated triangle list

(v) Recursive subdivision of the child, if stopping criteria are not
satisfied: otherwise, terminating subdivision

(vi) Returning to the root and traversing the tree, removing tnan-
gle lists from every node that is not a leaf

Subdivision of an octant is the process of bisecting the octant in
the z, ¥, and z directions to form eight equal octants. :l%g. 3 illustrates
an octant with its eight children. Although there is no standard, the
numbering scheme shown in Fig. 3 is typical. Note that child 0 is not
visible.

{ 2k

T

Fig. 3 : Octant showing child numbering scheme.

Step (iv) requires a series of tests to determine whether or not 2
triangle is to be associated with an octant. Only triangles contained
in the parent octant need to be considered. There are five possible
conditions which indicate that a triangle is to be associated with an
octant. These conditions are:

(i) One or more vertices of the triangle lie within an octant.

(ii) One or more edges intersect an octant face, but no vertex 15
within the octant.

(iii) Edges of the octant intersect the triangle.
(iv) Omne or more vertices lie on ar octant face.

(v) Part of a triangle’s interior coincides with an octant face.

4
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b The first three of these conditions are illustrated in Fig. 4, Fig. 5,
and Fig. 6. Case (iv) is & special case of (i), while case (v) is a special
case of (ii).

L R

Fig. 4 : Vertex Les inside the octant.

g e

Fig. 5: Edges intersect octant faces.

Fig. 6: Octant edges intersect triangle,

The criterion for stopping the subdivision process is based on two
quantities: the number of triangles contained in an octant and the size
or volume of the octant. The goal is to optimize the relationship between
storage requirements and search speed. Obviously, the minimum mem-
ory requirements occur when no tree is implemented, however, searching
for the correct triangle is unacceptably slow in this situation. Maximum
speed is achieved when each octant contains the minimum number of
triangles possible, but this leads to unacceptably large storage require-
ments for complex geometries. In the current implementation, the maxi-
mum number of triangles per octant is ten. This number is increased for
complex geometries with the maximum being 7 of the total number of

triangles. The “minimum-velume” rule is necessary to handle surfaces
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with d ate edges. Given a sufficiently high resolution, & degenerate
edge will always violate the *maximum-number-of-triangles” rule, Due
to the fact that a single vertex is shared by every triangle associated
with the degenerate edge (see Fig. 7). The “minimum-volume” rule
allows the algorithm to detect 5‘:.1(‘.% cases and treat them appropriately.

AT e

a
LY el

Fig. 7: Octant containing a degeneracy.

5. Projecting the Coons patch using the octree

Determining the triangle (or triangles) with which a line L, ; inter-
sects requires finding all the leaf octants through which the line passes,
This is ucﬂmplisheé by searching the tree and determining all the leaf
octants containing the line. The search speed decreases exponentially
with the depth of the search since children of octants that are not in-
tersected by the line segment may be eliminated. If an octant is to the
left, to the right, above, below, in front of, or behind both end points of
& line segment it need not to be considered. The hine 15 intersected with
the faces of the remaining children of an octant. The search is done
recursively, starting with the root octant. The result is a linked list of
octants through which the line passes. Only leaf octants which contain
surfaces are contained in the list. The line L, ; is then intersected with

each triangle in each of the octants to obtain projections (see Section
2),

6. Deriving additional approximation conditions

Usually, eertain lines L ; do not intersect any triangle due to the
existence of discontinuities in the geometry. If no intersection is found
for a line L; s, a bivariate scattered data approximation technigue is
used to derive “artificial projections.” This is necessary, since the B-
spline approximation to be constructed requires exactly (N+1)x(N+1
points to be interpolated. The method used for deriving these “artifici
projections” 15 based on Hardy's reciprodal multiquadric, & standard
bivariate scattered data approximation method (see [5]).

Each point y; s lying on the original geometry is projected per-
pendicularly onto the associated line L; y. The (signed) distance d; J
between ¥; ; and the projection onto L; s is computed (see Section
2). Thus, the problem of deriving “artificial projections™ for lines Ly s
without intersection with the geometry becomes a bivariate scattered
data approximation problem. ﬁI'hﬂ interpolation conditions that must
be satisfied by the scattered data approxamant are '
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where all distance values d; ; and parameter values {u; s, v ;) are con-
sidered for which a projection is ﬂirﬂwn It has been found that the
value for R should be of the same order of magnitude as the spac-
ing in the {u,uj—pa.rametcr space of the Coons patch. The value for p
should be smaller than ;., assuming that the Coons patch is defined
Ll +1] % [0,1] (see [5]).
most cases, 1t-is admta.g&nus to localize this scattered data ap-
roximation scheme by tun.!iintrm only a fixed numhf_-r of values dj ;
the computation of each “artificial projection,” i.e., the number of
equations in (6.1) to be considered for the gEner&tiun ul' each local scat-
tered data approximant is constant (see [5]). This approach is faster and
tends to preserve local surface properties better than the global approx-
imation epproach. Once the scattered data approximant(s) isl:a.rES"?:umv
puted, “artificial projections™ y; ; are defined by y; 1 = Xy s+dr 0y, 1,
using distance values d; ; resulting from evaluating (6.1).

Fig. & shows the data to be considered in the scattered data ap-
proximation step. Distance values d; ; that have been obtained by
projecting the Coons patch onto the geometry are indicated. The re-
sulting scattered data approximant is evaluated for all parameter values
{wr g,vr,7) without known distance value.

‘ot dun
| i ]
d dap (143 ¥y !
IL”
" l
0 1 @no 0

Fig. 8 : Input data for scattered data approximation.

7. Constructing the local and the global approximant
Having projected points of the Coons patch onto the original sur-

faces and having performed scattered data approximation, the resulting

(N 4 1) x (N + 1) points are interpolated by a C! continuous, bicubic
B-spline surface written as

aN an
= Y ¥ di; Niu) Ni(v), 7.1)

=0 =0
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where d, ; 15 a 3D B-spline control point and Ni{u) and N(v) are the
normalized B-spline basis functions of order four (see [1], [3], or [B]).
The (normalized) knot vectors have gquadruple knots at the ends and
triple knote in the interior of the domain. The control points d; ; are
the Bézier control points of the segments of a piecewise bicubic Bezier
surface (see [1] and [ﬂj

In , a real-world geometry can not be represented using a
single B-spline surface. Thus, one must generate several B-spline sur-
faces, each one locally approximating the given geometry. The user must
make sure that the number of B-spline surfaces 1s small and each Coons
patch is “properly placed.” If an initial Coons patch differs very much
from the given geometry, it is not guaranteed to obtain & good B-spline
approximation. More work needs to be done ﬂ:%ardjng this aspect.

Once all single B-spline approximants have “wrapped around”
the entire geometry, they are unioned such that the resulting global ap-

roximant 15 continuous. Since each B-spline surface consists of several
gir_uhic Bézier surface segments, continuity conditions for two B-spline
surfaces sharing a common boundary curve are assured by enforcing
continuity conditions for all Bézier surface segments sharing common
boundary curves. Special care is required at points where several B-
spline surfaces (two, three, four, or more) come together and must share
a common corner point. The conditions to be enforced for positional
(C?) and derivative/gradient (C') continuity are deseribed in [1], (3],
(4], (7], 8], and [14].

It is possible to enforce either C° or C? continuity along the bound-
aries of B-spline surfaces. Currently, it 15 not possible to interactively
modify the order of continuity aleng boundaries of B-spline surfaces lo-
cally, At this point, the algorithm enforces C* continuity everywhere.
The reason for this are slope/tangent plane discontinuities in the oniginal

eometry that must be preserved by the global B-spline approximation.
%‘ht user must make sure that the boundary curves of certain Coons/B-
spline surfaces conform closely to those curves on the given geometry
where slope/tangent plane discontinuities occur.

8. Error estimation

The error measure that is used to measure the distance between
a locally approximating B-spline surface s(u, v) and the given surfaces
is an estimate for the maximum [ahsnlul:c% distance between the local
B-spline approximant and the given surfaces. This estimate is obtained
by computing the maximum distance between a finite set of points on
the local B-spline approximant and the given surfaces. The peints on
s(u,v) used for this process are

1
aj g = 8§ 1_’.1;_%5_ F)' I=0,..,(N-=1), J=0,..,N,
I 2741
by = E(E»f Tj-:'—“). I=0,..,N,J=0,.,(N-1), and (81)
2I+1 27 +1 :
ey = & E:':T 1 2; )1 I=0,.,(N=1), J=0,..(N~- 1).

Due to the oscillation characteristics of bicubic surfaces, a bicubic
B-spline approximant has large distances to the original surfaces in the

g
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center of each bicubic surface segment and at the midpoint of each cubic
boundary curve segment. ‘ ; )

The maximum distance between a single local B-spline approximant
and the original etry is estimated by computing the maximum value

all the (shortest) perpendicular distances between the points

ar r, EI.J, and ¢z s and the original surfaces. The distance of the global
B-spline approximant and the original geometry is approximated by the
maximum of all the maximal distances of the single local approximants.
The perpendicular distances must not be computed for points ay 5, by j,
and c; s that lie in a region of a B-spline approximant which is associated
with a discontinuity in the original geometry.
9. Examples

Fig. 10 and Fig. 11 show B-spline surfaces approximating ge-
ometries reflecting the kinds of discontinuities frequently ecccurnng in
real-world CAD data. The examples clearly demonstrate the u.higijtgr
of the technique to approximate geometries with holes/gaps and inter-
secting surfaces. The boundary curves of the initial Coons patches are
constructed from user-specified points and curves. The specified points
and curves imply the four boundary curves of the Coons patch. Fig.
9 and Fig. 10 show the line segments L; ; that are used to generate
projections on the given surfaces.

Fig. 10: Approximation of surfaces with hole.
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Fig. 11 : Approximation of intersecting surfaces.

Fig. 12 and Fig. 13 show real-world geometries and entire approx-
imations thereof, The two figures show the resulting approximations
consisting of several B-spline surfaces.

Fig. 12 : Approximation of car body.
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Fig. 13 : Approximation of helicopter.

10. Conclusion

The method described allows the approsamation and correction of
faulty CAD data. Geometries containing holes, overlapping surfaces,
and intersecting surfaces can be approximated. Each local approwi-
mant 15 constructed from a combination of user-specified points and
curves. The final global approximation is C" continuous and thus al-
lows the preservation of boundary curves of original surfaces as well as
slope/tangent plane discontinuities.

In the current implementation, all surfaces are stored as NURBS
(Non-Uniform Rational B-Spline) surfaces using unit weights. Instead of
using unit weights, the additional degree of freedom provided by them
should be used to reduce the number of control points necessary to
approximate a 5i1r:n geometry accurately. Unfortunately, choosing the
weights of a rational approximation is still an open research problem.
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