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Interactions of the immune system with skin and bone tissue in 
psoriatic arthritis: A Comprehensive Review.
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1Department of Dermatology, Division of Rheumatology, Allergy and Clinical Immunology, School 
of Medicine, University of California, Davis.

2Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, 
School of Medicine, University of California, Davis.

Abstract

Cutaneous psoriasis [e.g. psoriasis vulgaris (PsV)] and psoriatic arthritis (PsA) are complex 

heterogeneous diseases thought to have similar pathophysiology. The soluble and cellular 

mediators of these closely related diseases are being elucidated through genetic approaches such 

as genome-wide association studies (GWAS), as well as animal and molecular models. Novel 

therapeutics targeting these mediators (IL-12, IL-23, IL-17, IL-17 receptor, TNF) are effective in 

treating both the skin and joint manifestations of psoriasis, reaffirming the shared pathophysiology 

of PsV and PsA. However, the molecular and cellular interactions between skin and joint disease 

have not been well characterized. Clearly, PsV and PsA are highly variable in terms of their 

clinical manifestations and this heterogeneity can partially be explained by differences in HLA-

associations (HLA-Cw*0602 versus HLA-B*27, for example). In addition, there are numerous 

other genetic susceptibility loci (LCE3, CARD14, NOS2, NFKBIA, PSMA6, ERAP1, TRAF3IP2, 
IL12RB2, IL23R, IL12B, TNIP1, TNFAIP3, TYK2) and geoepidemiologic factors that contribute 

to the wide variability seen in psoriasis. Herein we review the complex interplay between the 

genetic, cellular, ethnic and geographic mediators of psoriasis, focusing on the shared mechanisms 

of PsV and PsA.
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INTRODUCTION

Psoriatic arthritis (PsA) is a unique type of inflammatory arthritis that by definition requires 

the presence of cutaneous psoriasis. Though Moll and Wright were not the first to describe 

the relationship between cutaneous psoriasis and arthritis, they did provide the 

epidemiologic, clinical, radiologic and serologic evidence that defined PsA as a distinct 
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entity, different from other common arthritides like rheumatoid arthritis [1]. Also, they 

described five clinical patterns of PsA: oligoarticular asymmetrical, polyarticular rheumatoid 

arthritis-like, distal predominant, spondylitis and arthritis mutilans. Similar to PsA, 

cutaneous psoriasis has a variable presentation with different subtypes including guttate, 

inverse, palmoplantar, pustular, erythrodermic and the most common, plaque psoriasis. 

Plaque psoriasis is known as psoriasis vulgaris (PsV), and for the most part PsV predates the 

onset of arthritis, although this pattern deviates in a small percent of cases [2]. Many aspects 

of psoriasis pathophysiology remain a mystery despite our new insight into effector 

cytokines, chemokines and cell mediators, and the recent advances in psoriasis genetics. 

This review will discuss the psoriasis genetic susceptibility loci including HLA associations, 

cell mediators common to both PsV and PsA, and geoepidemiology of psoriasis.

SKIN PHYSIOLOGY and PATHOLOGY

In broad terms, skin is composed of two layers, the dermis and epidermis, which are 

separated by a basement membrane. Basal keratinocytes reside on the basement membrane, 

generating prodigy that undergo distinct stages of differentiation to ultimately become the 

stratum corneum, an enucleated, metabolically inactive layer. The layers of the epidermis 

include the stratum corneum (the outermost layer), stratum granulosum, stratum spinosum 

and stratum basale. Each of these layers become altered in the setting of PsV (Figure 1).

Although PsV is usually a clinical diagnosis, challenging presentations sometime require a 

biopsy. While no consensus guidelines exist for the histologic diagnosis of PsV, 

“characteristic” histologic features have been well described in the medical literature. The 

major features include thinned suprapapillary plates, with occasional formation of 

spongiform pustules of Kogoj; collections of neutrophils in the stratum corneum, termed 

Munro’s microabscesses; psoriasiform epithelial hyperplasia; elongation and edema of 

dermal papillae; continuous or alternating parakeratosis, retained nuclei in the stratum 

corneum; a diminished or absent granular layer; and dilated and tortuous capillaries [3,4]. 

Given the microscopic diversity of PsV, Trozak created a grading system where histologic 

features were assigned a number score based on features considered most characteristic of 

the disease [5]. Nearly pathognomonic histologic findings include Munro’s microabscesses 

and the spongiform pustules of Kojog; thus, these features were given the highest numerical 

value [6]. Club shaped rete ridges, suprapapillary plate thinning, total (as opposed to focal) 

parakeratosis and absence of a granular layer are considered characteristic of psoriasis, but 

were given a lesser score as these features can also be seen in other dermatologic conditions 

[5]. Complicating the histologic diagnosis of PsV further, is the finding that early and 

longstanding lesions can display different features [5].

GENETIC SUSCEPTIBILITY LOCI

Given the common underlying mechanisms of PsV and PsA, it is somewhat surprising that 

only 20–30% of patients with PsV develop joint disease [2,7]. Heterogeneity in disease 

presentation is partially reconciled by HLA types, which have been implicated to dictate 

phenotype, disease onset, and severity. Though the majority of patients ascribe to a typical 

timeline with arthritis following cutaneous onset, deviations from this stereotype can be 
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explained through HLA genotypes. The major polarizing HLA types, HLA-Cw*0602 and 

HLA-B*27, are paradigms for primarily cutaneous and joint disease, respectively. These and 

other genetic susceptibility loci are discussed below, and additional loci are listed in Table 1.

HLA Associations

HLA-Cw*0602—PsV is strongly associated with the human leukocyte-associated antigen 

(HLA), Cw6. HLA-C, a type of MHC class I molecule, is expressed on all human nucleated 

cells. Like other class I molecules, it functions to present endogenously processed antigens 

to the immune system [8,9]. Patients with the HLA-Cw*0602 allele have a 10–20 fold 

increased risk of developing PsV [10]. Gudjonsson et al. demonstrated that heterozygotes 

have a relative risk of developing psoriasis of 8.9, whereas homozygotes have a relative risk 

of 23.1, with earlier disease onset being more common in this group [11]. Cibulova et al. 

found HLA-Cw*0602 to be the most prominent HLA in Type I PsV, correlating well with an 

earlier disease onset and a family history of psoriasis [12]. This finding was echoed in 

siblings discordant for HLA-Cw*0602, where the positive HLA-Cw*0602 sibling had 

significantly early disease onset [13]. Interestingly, there is mixed data regarding the effect 

of HLA-Cw*0602 on disease severity and phenotype. Some have reported that HLA-

Cw*0602 does not dictate severity or phenotype, while others have reported that HLA-

Cw*0602 patients develop more extensive disease and guttate-like psoriatic lesions 

[11,14,13,15].

While the data regarding the association with PsV is solid, the relationship between HLA-

Cw*0602 and PsA is not as strong. Several studies failed to show a statistically significant 

relationship between HLA-Cw*0602 and PsA [16,14]. In one said study, arthritis was more 

common in the HLA-Cw*0602 negative group, though this difference was not significant 

[17]. Interestingly, when patients were stratified by onset of skin and joint disease, HLA-

Cw*0602 patients had more time dependent development of musculoskeletal disease [18]. 

Also, this cohort of patients had a lower percentage of HLA-Cw*0602, thought to be due to 

more stringent criteria, excluding patients with non-psoriatic musculoskeletal syndromes 

[18]. Indeed, the complex, heterogeneous presentation of PsA makes gene studies 

challenging [16].

HLA-B*27—While HLA-B27 is widely associated with seronegative spondarthritides such 

as ankylosing spondylitis, it has also been found to play an important role in PsA. As stated 

by Winchester et al., the HLA-B*27 allele encodes for a MHC class I molecule with 

electronegative “B pockets”, which bind endogenously processed peptides with positively 

charged arginine anchor motifs at position P2 [18]. This is a proposed mechanism in 

ankylosing spondylitis, which might also be related to HLA-B*27’s ability to cause PsA 

[19–22]. HLA-B*27 has been suggested as the strongest risk allele for PsA. In cases of 

HLA-B*27 positivity, patients had nearly contemporaneous onset of cutaneous and 

musculoskeletal disease, with less extensive skin disease [18]. This phenomenon was found 

in other studies showing decreased time between skin and joint disease in patients with 

HLA-B*27, as well as earlier disease onset of both PsV and PsA [16]. Winchester postulated 

that self peptides presented by HLA-B*27 give rise to autoreactive T cells, specific to skin 
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and joints, whereas HLA-Cw*0602-presented autoantigens might primarily be of cutaneous 

origin [18].

With regards to arthritis, HLA-B*27 is strongly associated with axial disease [23–25]. 

McHugh et al. found that the association with HLA-B*27 and spondylitis became weaker as 

more peripheral joints were involved [26]. Others have found an increased risk of HLA-

B*27 positive individuals developing enthesitis, dactylitis and uveitis [27]. Given the 

presence of similar extra-articular features (mucous membrane lesions, iritis, urethritis, 

diarrhea and aortic root dilatation), rheumatoid factor seronegativity, and spondarthritis, PsA 

makes for a natural member of HLA-B*27-associated spondyloarthritides [2]. For other 

HLA associations, and skin and joint affiliations, see Table 1.

Genes of Skin Barrier Function

LCE3—In addition to HLA alleles, genes involved in skin barrier function, the innate 

system, and the adaptive immune system have known ties to PsV and PsA pathophysiology. 

Of the genes involved in skin barrier function, only LCE3 has been associated with both PsV 

and PsA [28]. The late cornified envelop gene cluster 3 (LCE3) is part of the epidermal 
differentiation complex (EDC) that encodes stratum corneum proteins in the cornified 

envelope that have potential functions in epidermal terminal differentiation [29]. LCE3 

proteins encompass five genes (LCE3A, LCE3B, LCE3C, LCE3D, LCE3E), each with a 

unique structure and function [30]. Of these genes, deletions of LCE3B and LCE3C 
(LCE3C_LCE3B-del) are significantly associated with the risk of PsV and PsA [30]. One 

possibility is that a breach of the skin barrier function allows for a cross-reactive skin/joint 

immune response to develop. An alternative hypothesis is that LCE3 deletions affect tissues 

other than skin, promoting autoimmunity at multiple sites.

With regard to skin barrier function, LCE3C promotes hyperproliferation and keratinocyte 

differentiation in normal individuals following tape stripping [31]. This response was not 

seen in patients homozygous for LCE3C_LCE3B-del. De Cid et al. suggested that this 

deletion could result in impaired epidermal repair after barrier disruption, causing increased 

susceptibility to exogenous antigens, resulting in inflammation. The latter mechanism 

supports the Koebner phenomenon, whereby non-lesional skin develops inflammatory 

lesions in response to traumatic exfoliation [31].

Genes of the Innate Immune Response

CARD14—Whereas LCE3 encodes skin barrier function, caspase recruitment domain 

family member 14 (CARD14) is closely tied to the innate (and adaptive) immune system via 

NF-κB. The psoriasis susceptibility locus 2 (PSORS2) is due to a gain of function mutation 

in CARD14 that affect epithelial and stromal cells [32,33]. In addition, localization of 

CARD14 is different in psoriatic plaques compared to normal skin. Jordan et al. found 

psoriatic plaques had reduced expression of CARD14 in basal layers and mild upregulation 

in suprabasal layers [32]. In the skin, CARD14 induces activation of NF-κB that in turn 

upregulates a variety of factors including keratinocyte IL-8, which is a strong neutrophilic 

chemotactic factor, and CCL20 [34,35]. In the joint, CARD14 induces inflammation through 

NF-κB-mediated processes, triggering early osteoclast differentiation via RANKL and TNF 
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[36]. The requirement of NF-κB activation in bone resorption has previously been 

demonstrated in NF-κB deficient mice that develop osteopetrosis due to an absence of bone 

resorbing osteoclasts [37].

NOS2—Like CARD14, NOS2 encodes a protein involved in the innate immune system. 

SNP rs4795067 maps to the intron of the NOS2 gene, which encodes inducible nitric oxide 

synthase (iNOS), an enzyme responsible for producing the proinflammatory signaling 

molecule, nitric oxide. While this SNP was significant only in subphenotye analysis for PsV, 

it was strongly associated with PsA [38]. Melchiorri et al. demonstrated that iNOS is 

markedly overexpressed in the synovium, either by synovial fibroblasts or infiltrating 

dendritic cells in the setting of PsA [39]. Increased iNOS leads to activation of 

metalloproteinases and inhibits the production of the matrix elements [39,40]. The 

importance of iNOS in the pathophysiology of PsV has also been well highlighted in the 

literature. Within psoriatic skin, Zaba et al. described a 30-fold increase of TNF-producing 

CD11c-positive (CD11c+), CD1c-negative dendritic cells expressing iNOS [41,42]. Through 

anti-CD11c+ therapy, Lowes et al. demonstrated that PsV disease activity correlates less to T 

cell infiltrates, and more to dendritic cell infiltration and iNOS expression [42]. This study 

suggests that dendritic cells accumulate in psoriatic lesions and perpetuate inflammation 

though production of iNOS and TNF.

Genes of the Adaptive Immune System

NFKBIA, PSMA6 and ERAP1—NFKBIA, PSMA6 and ERAP1 are genes involved in the 

adaptive immune system thought to be important in PsA and PsV pathophysiology. A SNP 

(rs12586317) in the region of the genes KIAA0391, PSMA6 and NFKBIA was found to be 

significantly associated with PsV and PsA [38]. Of the three genes, NFKBIA and PSMA6 
are considered most significant in PsV susceptibility. IκB-a, which is an inhibitor of NF-κB 

signaling, is encoded by NFKBIA [38]. IκB-a retains NF-κB in the cytoplasm by sterically 

blocking the NF-κB nuclear localizing sequence [43]. Many activating agents of NF-κB, 

like TNF and IL-1, disrupt the IκB-a /NF-κB interaction by phosphorylation-induced 

degradation of IκB-a, allowing NF-κB to translocate to the nucleus [43]. Transcriptional 

products of NF-κB include chemokines (CXCL1, CXCL2, CXCL10), cytokines (TNF, IL-6, 

IL1β), negative cell regulators (A20, NFKBIA), and the cell survival factors (BCL2L1, and 

PAI2). Additional genetic susceptibility loci involving the NF-κB pathway include TNF 

alpha-induced protein 3 (TNFAIP3) and TNKAIP3 interacting protein 1 (TNIP1) that 

activate NF-κB through ubiquitination and degradation of IκB-a [44,45].

In contrast, ERAP1 and PSMA6 encode protein involved in MHC class I antigen processing 

[38]. Endoplasmic reticulum aminopeptidase 1 (ERAP1) processes peptides within the 

endoplasmic reticulum that are presented by HLA molecules on antigen presenting cells 

[46]. Molecular models of an ERAP1 gene variant showed decreased aminopeptidase 

activity in the enzyme pocket [47]. Given its role of antigen processing, it is thought that 

ERAP1 could process autoantigens, which are then presented by HLA-Cw6 [48]. This 

theory is strengthened by the finding that PsV susceptibility was only influenced in patients 

carrying the ERAP1 gene variant in the presence of HLA-Cw*0602 [49]. ERAP1 has been 

associated with the PsA subtype resembling ankylosing spondylitis, which is not surprising 
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considering ERAP1 has been shown to affect HL-B27 expression [50]. Chen et al. 

demonstrated that an ERAP1 variant increased HLA-B27 free heavy chain expression in 

HeLa.B27 and ERAAP −/− cells compared to protective ERAP1 variants [50]. HLA-B27 

free heavy chains are cell membrane bound remnants of the HLA-B27 molecule after 

dissociation of the β2-microglobulin and peptide. Traditionally heavy chains are thought to 

translocate to the cell surface as part of a fully functional HLA molecule, though free heavy 

chains have been shown to reach the cell surface independently of β2-microglobulin and 

peptide [51,52]. HLA-B27 free heavy chains have been shown to bind immunoregulatory 

receptors killer cell immunoglobulin-like receptor 3DL2 (KIR3DL2) with greater affinity, 

ultimately causing proliferation and survival of IL-17 producing T cells [50,53,54].

Similar to ERAP1, PSMA6 is involved in encoding protein involved in MHC class I antigen 

processing, and it is likely that the disruption of PSMA6’s normal function generates 

autoantigens or other proinflammatory antigens for presentation to pathogenic CD8+ T cells. 

PSMA6 is know to be overexpressed in psoriatic lesions [38]. Though the mechanism of 

PSMA6 in PsA is not fully understood, PSMA6 has been significantly associated with 

ankylosing spondylitis, which suggests a similar etiology for both arthritides [55]. Moreover, 

polymorphisms of this SNP are associated with other autoimmune diseases such as Graves 

disease and inflammatory bowel disease [38].

CYTOKINES, CHEMOKINES and EFFECTOR CELLS

Many of the other genes identified in GWAS encode proteins that overlap with the soluble 

mediators identified in animal, immunologic and molecular models of psoriasis. The concept 

of an altered cytokine network being central to the pathophysiology of PsV and PsA was 

popularized by the Th1/Th2 hypothesis, with psoriasis being originally labeled as a 

prototypic Th1 disease [56]. Now the IL-23/Th17 axis is more at the forefront of current 

theories, though many cytokines are likely involved in psoriasis pathophysiology. Some of 

the mechanisms for the major cytokines linked to PSV and PsA are explained below.

IL-23/ Th17 axis

The IL-23/Th17 axis is a major pathway in the pathogenesis of multiple autoimmune 

diseases, including PsV and PsA. Virtually all elements of the IL-23/Th17 axis (Th17 cells, 

IL-17, IL-17R, IL-22 and IL-23p19, IL-23R) have been shown to be elevated in psoriatic 

plaques and synovial fluid of PsA patients [57–62]. Differentiation of Th17 cells occurs after 

exposure to IL-1β, IL-6 and TGF-β [63–65]. Of these, TGF-β increases responsiveness to 

IL-23, which is necessary for stabilization, survival and proliferation of Th17 cells [66,67]. 

This may be an oversimplification of the Th17 pathway given the discovery of unique 

subtypes of Th17 cells, which are described in detail elsewhere [68].

The IL-23/Th17 axis has been shown to evoke the various features of psoriatic plaques. We 

have found that systemic expression of IL-17A in murine models resulted in neutrophilia 

and histologic features consistent with plaque psoriasis including epidermal hyperplasia, 

parakeratosis, and hypertrophy of the spinous layer [69]. Others have shown that IL-17 

stimulated keratinocytes to release chemotactic factors IL-8/CXCL8, CXCL3, CXCL5, and 

CXCL8, causing neutrophil migration, resulting in the formation of Munro’s microabscesses 
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[61]. While IL-17 is largely considered the primary proinflammatory cytokine that induces 

cell trafficking of neutrophils (also dendritic cells and T cells), another Th17 related 

cytokine, IL-22, is responsible for epidermal hyperplasia by down regulating keratinocyte 

differentiation genes suggesting that IL-17 and IL-22 mediate distinct pathways that 

contribute to psoriasis [61]. In addition IL-23, which partly regulates the Th17 cell 

population, also seems to stimulate epidermal hyperplasia via other mechanisms involving 

TNF and IL-20R2 [70]. It is noteworthy that in an animal model of IL-23 overexpression 

where multiple pathways are activated mixed features of psoriasis and arthritis occur such as 

enthesitis, pannus formation and bone erosion has been observed [71,72] and unpublished 

data. The mechanism by which the IL-23/Th17 axis induces joint disease is a field of active 

investigation. Although IL-23 promotes erosive bone disease by stimulating Th17 cells to 

produce RANKL and IL-17, IL-23 and IL-17 independently induce myeloid cells to undergo 

osteoclast formation [74,75,73].

Medications targeting elements of the IL-23/Th17 axis have proven effective in the treatment 

of both PsA and PsV, further substantiating this axis in psoriasis pathophysiology. 

Ustekinumab is a cytokine-neutralizing human monoclonal antibody directed against the 

common p40 subunit shared between IL-12 and IL-23 [76]. By blocking IL-23, ustekinumab 

inhibits Th17 differentiation and survival thereby decreasing levels of IL-17 [76]. Phase III, 

randomized, double blind, placebo-controlled trials of ustekinumab proved successful in 

treatment of PsV [77,78]. Similarly, ustekinumab was effective in treatment of PsA with 

symptomatic and radiographic improvement in dactylitis and enthesitis [79]. IL-17A 

inhibitors, like secukinumab and ixekizumab, have also proven effective in the treatment of 

PsV and PsA.

The CLEAR trial demonstrated that secukinumab was superior to ustekinumab in inducing 

PASI 100 (44.3% of patients receiving secukinumab versus 28.4% of patients receiving 

ustekinumab0 [80]. However in this trial, the dose of secukinumab was markedly higher 

compared to ustekinumab (300 mg weekly for the first 4 weeks, then every 4 weeks 

thereafter versus 90 mg on weeks 1 and 4, then every 12 weeks thereafter). Similar to the 

efficacy in treating PsV, IL-17A inhibitors showed improvement in patients with PsA, 

demonstrated in the FUTURE 2, FIXTURE and ERASURE trials [81,82]. Brodalumab, a 

monoclonal antibody specific to the IL-17 receptor, has been shown to be effective in 

treating PsV, however due to concern for increased suicide risk, it is unclear if it will make it 

to market [83]. These trials underscore the shared pathophysiology of the IL-23/Th17 axis in 

PsA and PsV.

CCL20 and CCR6

Though Th17 cells express a variety of receptors (CCR2, CCR4, CCR5, CXCR3), their 

hallmark receptor CCR6 distinguishes them from Th1 and Th2 cells [84]. CCR6 is a CC 

chemokine G protein-coupled receptor. Th17 cells also produce the ligand for CCR6, 

chemokine (C-C motif) ligand 20 (CCL20), which is a cytokine of the CC chemokine family 

[84]. While keratinocytes produce low levels of CCL20 at baseline, proinflammatory 

cytokines, namely IL-17, TNF, IL-1, IFNγ, enhance CCL20 expression [85]. Also, Harper et 
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al. demonstrated that human keratinocytes upregulate CCL20 expression in a dose-

dependent manner when exposed to IL-17A, IL-22 and TNF [86].

CCL20 is a chemotactic factor for CCR6+ T cells, immature dendritic cells, and resident 

epidermal dendritic cells, also known as Langerhan cells [84,41]. CCR6+ T cells include 

memory T cells and Th17 effector cells, which infiltrate psoriatic lesions in response to 

CCL20 [61]. Hendrick et al. showed that CCR6 is essential to the psoriasiform phenotype in 

an animal psoriasis model. Specifically following IL-23 injection, mice that did not express 

CCR6 failed to develop the IL-23-inducible psoriatic features seen in control animals 

[87,88]. Though literature on CCL20 in PsA is not as extensive, CCL20 also strongly 

correlates with PsA disease activity [89]. Celis et al. have shown that CCL20 in PsA 

synovial fluid correlates with known markers of inflammation. In addition, CCL20 serum 

levels strongly correlate with CCL20 synovial fluid levels [90,89]. Thus, CCL20 fits well 

into the IL-23/Th17 paradigm, as it acts as a major Th17-attracting chemokine and is 

elevated in both the blood and synovial fluid of PsA patients.

IL-22

IL-22 is an alpha-helical cytokine belonging to the IL-10 superfamily. It is believed to be 

involved in psoriasis pathophysiology, and is produced by Th17 cells, Th1 cells and natural 

killer cells [91]. In the skin, IL-22 modulates keratinocyte mobility, induces acute phase 

reactants and promotes anti-microbial defense [91]. Levels of IL-22 are massively 

overexpressed in psoriatic lesions and increased in serum of PsV patients, the later strongly 

correlating with disease severity [92,93]. IL-22 contributes to the PsV phenotype by 

promoting keratinocyte hyperproliferation and preventing their terminal differentiation [94]. 

IL-20 and STAT3 amplify the actions of IL-22 by creating a positive feedback loop [95–97]. 

Similar to the induced hyperproliferation of keratinocytes, IL-22 promotes 

hyperproliferation leading to entheseal and periosteal bone formation in PsA. Specifically 

Mitra et al. found elevated levels of IL-22 in synovial fluid of PsA patients and demonstrated 

the ability of IL-22 to induce proliferation of fibroblast like synoviocytes [62]. This effect 

was magnified in the presence of TNF [62]. Likewise in a PsA animal model, IL-22−/− mice 

had reduced arthritis and pannus formation compared to control animals [98].

TNF

As a prototypic Th1 cytokine and one of the products induced by IL-17 stimulation, it is not 

surprising that TNF plays a central role in psoriasis pathophysiology [70,99]. TNF blockade 

was initially being developed as therapy for sepsis, but its coincidental success in treating 

PsV revolutionized psoriasis therapy [100]. TNF expression is upregulated in psoriatic skin 

and is essential to the development of the psoriatic plaque [70]. Boyman et al. demonstrated 

that mice failed to develop psoriatic plaques when exposed to TNF-neutralizing monoclonal 

antibodies or receptor fusion proteins [101]. Today the most commonly prescribed biologics 

for psoriasis are the TNF inhibitors including etanercept, infliximab and adalimumab [76]. 

Although all of these medication neutralize soluble TNF, each have unique properties that tie 

into their mechanism of action [76]. For a comprehensive review of their differences, see 

Sivamani et al. (2013). TNF is also implicated in PsA pathophysiology by inducing 

osteoclastogenesis and anti-TNF therapy is widely used in PsA with clinical improvement in 
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approximately 70% of patients [102–104]. TNF is responsible for a stimulating 

inflammation through a variety of processes, some of which include the production of IL-1, 

prostaglandin E2 and acute phase reactants, as well as promoting the expression of adhesion 

molecules in endothelial cells.

IL-12

IL-12 is a heterodimeric inflammatory cytokine made of four alpha helices encoded by 

IL-12A and IL-12B. It shares a common subunit (p40) and receptor (IL12RB1) with IL-23. 

In PsV pathophysiology, IL-12 promotes the differentiation of naïve CD4+ T cells into 

mature IFNγ-producing T-helper type 1 (Th1) effector cells. In addition, it is a potent 

stimulus of natural killer cells and induces CD8+ T cells to produce IFNγ [105]. High levels 

of IFNγ transcripts originating from IFNγ+-secreting T cells are enriched in psoriatic 

plaques, and multiple studies have shown synergy between Th1 and Th17 pathways in PsV 

pathophysiology [106–108,57]. Kryczek et al. demonstrated that IFNγ-stimulated myeloid 

antigen presenting cells induce differentiation of IL-17-secreting T cells through a 

mechanism involving IL-1β and IL-23 [57]. In addition, IFNγ induces CCL20 expression, 

which promotes homing of Th17 cells to lesional skin [57]. Therefore, both Th1 and Th17 

cells play important roles in PsV pathophysiology.

While elements of the IL-12 pathway including IL12B and IL12RB2 are significant to PsV 

and PsA in GWAS, IL-12 has been shown to play a protective role against the development 

of PsA [28,49]. IL-12 has an anti-inflammatory effect on joints, with IL-12 deficient mice 

experiencing more joint inflammation than control mice [109]. In addition, animal models 

have shown the absence of IL-12 results in the elevation of IL-1β, IL-6 IL-17 and TNF 

expression, thus favoring an inflammatory environment [109]. Experimental autoimmune 

encephalitis (EAE) serves as a model of multiple sclerosis, and has supported the anti-

inflammatory affects of IL-12. Animals lacking IL-12 were highly susceptible to EAE 

compared to controls, and cited IL-23 as the critical end stage effector cytokine [110,111]. 

In fact, the p40 heterodimer shared by IL-12 and IL-23 played a central role in EAE 

pathogenesis, whereas the p35 subunit (unique to IL-12) conferred a protective effect against 

EAE [111]. This is in agreement with GWAS where IL12B, the gene encoding p40, is 

significant to PsA [28]. IL12RB2 codes for the subunit unique to IL-12 and lies adjacent to 

IL23R on chromosome 1, whereby inactivation of this gene could result in autoimmunity 

[112]. Therefore, IL-12 is significant to PsA development through its own inactivation, or its 

association with the p40 subunit.

RANK/RANKL

Receptor activator of nuclear factor κB (RANK) is widely associated with bone metabolism 

and plays a pathogenic role in PsV as well. RANK (the receptor for RANKL) is found on 

epidermal dendritic cells [113]. Keratinocytes residing in all epidermal layers within lesional 

psoriatic skin strongly express RANKL. Interestingly, Loser et al. demonstrated that RANK 

expression does not change epidermal dendritic cell behavior or number, but when 

stimulated by RANKL, causes increased proliferation of CD4+CD25+ T cells [113]. This 

compliments the finding whereby psoriatic plaques have a proliferation of regulatory T cells 

[114]. In addition, Sugiyama et al. found that dermal CD4+CD25+ T cells demonstrated 
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decreased suppression of effector T cells, though this finding was not replicated by Loser et 

al. [114,115]. Perhaps increased RANKL expression in psoriatic plaques leads to the 

expansion of non-functional regulatory T cells, resulting in the increased activity of effector 

T cells. Though much still needs to be explored in the RANK/RANKL pathway in PsV, the 

pathophysiology of RANKL in arthritis has been well described. RANKL is critical to 

osteoclastogenesis whereby RANKL-RANK binding results in recruitment of adaptor 

molecules to induce NF-κB and mitogen–activated kinases [36]. RANKL-induced 

transcription factors ultimately lead to the differentiation of functional osteoclasts which 

through secretion of bone matrix degradation enzymes, including tartrate resistant acid 

phosphatase (TRAP), matrix metalloproteinase 9 (MMP9) and cathepsin K (CatK) resorb 

mineralized bone[116].

GEOEPIDEMIOLOGY

Psoriatic disease, while common worldwide, demonstrates patterns of skin and joint 

involvement with similar ethnic and geographic variation. Though challenging to precisely 

measure, the presence of PsA has been shown to mirror PsV in distinct ethnic groups. For 

example, Norway has the highest prevalence of PsV and arthritis in PsV patients compared 

to other Nordic regions (Denmark, Finland, Iceland and Faroe Islands) [117,118]. Similarly, 

Europe and the United States have a similar prevalence of PsV, and incidence of PsA [118–

121]. The annual incidence of PsA is 6.59 per 100,00 in the United States, and 6 per 100,000 

in Europe [122,123]. This pattern is upheld in countries with warmer climates. Japan has one 

of the lowest prevalences of PsV, estimated to be 0.34% [124]. Similarly, the incidence of 

PsA among Japanese PsV patients is extremely low at 0.1 per 100,000 [125]. American 

Samoa and natives in the Andes of South America were reported to have no cases of PsV or 

PsA [126,127]. Thus, not only does PsV and PsA show similar ethnic patterns, also exhibit 

geographic variation, increasing in prevalence from tropical environments to colder, northern 

regions [128].

Genetic susceptibility loci demonstrate interesting trends, as well. HLA-Cw*0602 is a high-

risk PsV allele, though its frequency does not necessarily correlate to skin disease. Psoriasis 

is less common in Africans, with a prevalence as low as 0.3% in West Africa [118]. 

However, Africans (all black populations tested by Gudjonsson et al.) are known to have the 

highest prevalence of the HLA-Cw*0602 allele, at 15.09% [20,118]. Similarly, the 

LCE3C_LCE3B-del has been associated with PsA in Italian and Spanish populations, but no 

similar association was shown in German and Tunisian populations [129–131]. Thus, 

genetic susceptibility loci must be considered alongside population-specific effects and 

environmental exposures, which can vary dramatically.

CONCLUSION

Although the pathophysiology of psoriasis is broad, we have attempted to highlight the 

important factors shared by PsV and PsA. GWAS, animal models, and a variety of 

immunology and molecular biology approaches have given us critical insight into the 

pathophysiology of psoriasis. Despite our knowledge of these mechanisms, there is great 

variability in the clinical presentation of PsA and PsV. In addition, there is regional and 
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ethnic diversity, which suggests mediating factors that have yet to be thoroughly described. 

Hopefully, future research endeavors will elucidate the mechanisms of these underlying 

factors, allowing for the development of more effective, targeted therapies for these 

debilitating diseases.
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Fig. 1. Normal skin and psoriatic plaque histology.
This figure juxtaposes normal and lesional skin to highlight the characteristic histologic 

changes of cutaneous psoriasis. In comparison to normal skin, psoriatic plaques have: a 

compact, thickened stratum corneum with retained nuclei (parakeratosis), an absent granular 

layer, expansion of the stratum spinosum to create club shaped rete ridges, and neutrophilic 

collections in the stratum corneum (Munro’s microabscesses) and stratum spinosum 

(spongiform pustules of Kojog). Cellular features common to both cutaneous psoriasis and 

psoriatic arthritis are shown. Cutaneous psoriasis features dendritic cells and macrophages, 

which promote the differentiation of T helper 17 (Th17) cells and T helper 1 (Th1) cells. In 

addition, dendritic cells release TNF, IL-23 and nitric oxide (NO), which stimulate 

keratinocyte production of TNF and IL-1β. Products of Th17 cells include IL-22, which 

induces keratinocyte proliferation; IL-17, which stimulates keratinocytes to release 

neutrophilic chemotactic factors; IL-12 and TNF. In response to IL-17, keratinocytes release 

CCL20, which attracts additional CCR6+ Th17 cells to the skin. Th1 cells release the 

inflammatory factors IL-22, IFNγ and TNF.
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Table 1.
Genetic Susceptibility Loci

Antigen Presentation References

HLA-Cw*0602 Strongly associated with PsV, earlier disease onset and a positive family history. 12, 13

HLA-B*27 One of the strongest risk alleles for axial joint disease in PsA. 23–25

HLA-B*39 Similar to HLA-B*27, this allele encodes electronegative B pockets, and is associated with ankylosing 
spondylitis and PsA. 18

HLA-B*40 This allele is protective against PsA, and encodes electropositive B pockets. 18

ERAP1 Variants of ERAP1 have decreased aminopeptidase activity involved in antigen processing, and is 
associated with HLA-Cw*0602 and HLA-B*27 alleles. 47

PSMA6 PSMA6 encodes a subunit involved in MHC class I antigen processing. 38

Skin Barrier Function

LCE3 The LCE3C_LCEB-del is thought to increase susceptibility to exogenous substances due to impaired 
barrier function in PsV. 28, 30, 31

Innate Immune Response

CARD14 CARD14 activates NF-κB which upregulates IL-8 and CCL20 in skin, and controls early osteoclast 
differentiation in bone. 34–36

NOS2 NOS2 encodes inducible nitric oxide synthase, which has increased expression in psoriatic plaques and 
synovium. 39–42

TNIP1, TNFAIP3 These genes control the ubiquination and degradation of IκB-a, which inhibits NF-κB transcription by 
retaining it in the cytoplasm. 44–45

NFKBIA NFKBIA encodes IκB-a, which is an inhibitor of NF-κB signaling. 38

Adaptive Immune Response

IL12B Significantly increased levels of IL12B gene expression have been identified in psoriatic plaques. 
IL12B encodes the common subunit of IL-12 and IL-23. 28, 62

IL23R, IL23A IL23R encodes the receptor for IL-23, which is a cytokine critical for the survival and stabilization of 
Th17 cells. IL23A encodes the p40 subunit of IL-23. 28, 48, 59, 134

IL12RB2, TYK2 IL12RB2 encodes the IL-12 receptor, and is critical in controlling Th1 lineage differentiation and 
responsiveness to IL-12. TYK2 is required for IL-12B1 signaling. 28, 48, 59, 60

TRAF3IP2 TRAF3IP2 encodes adaptor protein CIKS (Act1), which is recruited to IL-17RA, a significant step 
required for the expression of IL-17 mediated inflammatory genes. 56, 57

HLA, human leukocyte antigen; PsV, psoriasis vulgaris (plaque psoriasis); PsA, psoriatic arthritis; LCE, late cornified envelope; ERAP1, 
endoplasmic reticulum aminopeptidase 1; CARD14, caspase recruitment domain family member 14; TNFAIP3, TNF alpha-induced protein 3; 
TNIP1, TNKAIP3 interacting protein 1; IL, interleukin; TRAF3IP2, TRAF 3 interacting protein 2.
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