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ON STATISTICAL CRITERIA: THEORY, HISTORY, AND APPLICATIONS

JOAKIM EKSTRÖM

Abstract. A statistical criterion is a convention by which certain values are considered
relatively probable and others considered relatively improbable. Statistical criteria play a
crucial role in the theory of statistics and were originally introduced by Daniel Bernoulli
and later independently proposed by Karl Pearson and Ronald Fisher. This article dis-
cusses the theory and history of statistical criteria, in particular the density criterion and
the distance criterion. Applications for statistical hypothesis generation and testing are
discussed. The pedagogical value of statistical criteria is illustrated through a concise and
simple explanation of statistical classification. This article also contains discussions on
Gauss’ least squares conjecture and Fisher’s maximum likelihood.
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1. Introduction

The founder of the original academy, Plato, was adamant that hypotheses only can
be verified through logical derivation within an axiomatic system. Yet, at present a
substantial portion of results published by the members of the scientific community
are based on experiments, empirical observations, and data. Statistical criteria play a
crucial, albeit under appreciated, role in the advancement of science through empirical
observation. The present article aims to discuss thoroughly what they are and the role
that they play, in terms of theory and history, and illustrate their use through some
applications.

In September 1657, Dutch polymath Christiaan Huygens published De Ratiociniis in
Ludo Aleæ, a thirteen page text on the mathematically correct valuation of games, lottery
tickets, and the like. The text, while largely recreational in nature, was the first pub-
lished work on probability theory (Hald, 1990). At some point in the following decades,
Jakob Bernoulli read Huygens’ text and subsequently imagined an entirely different use
of the theory; combining it with empirical observations to produce a theory of the cor-
rect valuation of empirical evidence. The impact that Huygens text had on Bernoulli’s
thinking was so great that the text was reprinted it in its entirety as part of Bernoulli’s
last, greatest work, Ars Conjectandi (1713).

Bernoulli’s idea of combining empirical observations with the concept of probability,
later independently proposed by Karl Pearson (1892), launched a new era in the his-
tory of science. It provided the members of the scientific community with an alternative
method for testing hypotheses, a method which as of present is utilized in nearly every
scientific discipline. The essence of the idea is, in Pearson’s wording, that a hypothe-
sis is considered verified, or Pearson-verified, if it is demonstrated as overwhelmingly
probable. And it is in the evaluation of probability that statistical criteria play a crucial
role.

Evaluating the probability of a hypothesis corresponds to evaluating the probability
of a proposition x ∼ F ; whether the value x is an observation of a random variable with
probability distribution F (see Section 3 for a detailed discussion). The probability of
the proposition, Prob(x ∼ F ), can be evaluated directly through Prob(u = x) = P({x}),
where u is a random variable with distribution F , and, accordingly, P the probability
measure under F . However, often this expression is identically zero and therefore of
no use. For example, if x ∈ Rp and P is absolutely continuous with respect to the
Lebesgue measure, then P({x}) = 0 for all x, and hence the expression is useless. This
conundrum gives rise to the need for a convention on which values that are considered
relatively probable vis-à-vis other values, i.e. a statistical criterion.
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A statistical criterion is a convention by which certain values are considered rela-
tively probable and others considered relatively improbable. At present, there are two
statistical criteria in widespread use: the density criterion, first proposed by Daniel
Bernoulli (1778), and the distance criterion, first proposed by Karl Pearson (1900).

The density criterion utilizes probability density. If the probability density at a value is
relatively high then the value is considered relatively probable, and if the density at the
value is relatively low then the value is considered relatively improbable. The density
criterion has been formalized as follows.

Proposition (The density criterion). Suppose x is a value and F a probability distribution
with density function f . If the density at x, f (x), is low, then the proposition x ∼ F is deemed
improbable.

A density function maps all elements of its domain into the non-negative real numbers.
Since the non-negative real numbers is a totally ordered set, all values can be ordered in
terms of their density. Use of the density function for the purpose of a statistical criterion
also yields many other desirable properties, which are discussed in Section 4.

The distance criterion utilizes Mahalanobis distance. Originally, Pearson (1900) used
his chi-distance but that distance has since merged into the more general Mahalanobis
distance. If a value is relatively close to the distribution reference point, which is typically
the median of the distribution, then the value is considered relatively probable. If the
value is relatively far from the reference point, then the value is interpreted as being on
the relative periphery of the distribution and is hence deemed improbable. The distance
criterion has been formalized as follows.

Proposition (Pearson’s distance criterion). Suppose x is a value and F a probability distri-
bution with reference point m, and let d denote the Mahalanobis distance under F . If the distance
d(x, m) is great, then the proposition x ∼ F is deemed improbable.

Like a density function, a distance maps its domain into the non-negative real num-
bers. Therefore all values can be ordered in terms of their Mahalanobis distance to the
distribution reference point. Use of the Mahalanobis distance for the purpose of a statis-
tical criterion also yields a number of desirable properties, see Section 4.

Since both density functions and distances map to the non-negative reals, the two sta-
tistical criteria are easily interchangeable. More precisely, a statistical criterion can be
used as a modular, exchangeable component of a statistical analysis, both for statisti-
cal hypothesis testing and statistical hypothesis generation. As an example, Section 3
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discusses Pearson’s statistical hypothesis test under the density criterion. Under cer-
tain conditions the two statistical criteria yield identical results in statistical hypothesis
generation and testing, and such conditions are detailed in Section 5.

The present article derives properties of the two statistical criteria, reviews history,
proves Gauss’ least squares conjecture and discusses Fisher’s maximum likelihood. Ad-
ditionally, the inherent pedagogical value of the two statistical criteria is illustrated
through an example: a concise and simple explanation of the method called statistical
classification.

2. Origins and history

The first proposal of a density criterion found in the literature is D. Bernoulli (1778).
Bernoulli proposed using as a point estimate, rather than the arithmetic mean, whichever
value is determined to be most probable under the density criterion. Bernoulli assumed
that the real valued observational errors were statistically independent and had the semi-
circle probability distribution, whose density function f is given by

f (x) = c1[−r,r](x)
√

r2 − x2,

where c a normalizing constant, r the greatest possible observational error and 1A the
indicator function of the set A. In appearance, the graph of the density function is akin to
a semi-circle; hence the name. If there are three or more observations, then the arithmetic
mean is generally not the most probable value under the density criterion.

In an editorial comment, L. Euler noted that analytically solving for the most probable
value amounts to finding roots of polynomials of a degree nearly twice the number of ob-
servations, and hence Bernoulli’s method was at the time not practically feasible. In the
eighteenth century polynomial roots could not be effortlessly found through computer
assisted numerical optimization.

Gauss (1809) applied the density criterion for the determination of the most probable
Kepler orbit given observations of a heavenly body. Unlike Bernoulli, Gauss assumed
that the observational errors were normally distributed, an assumption which makes
analytical optimization considerably simpler. Specifically, solving for the value most
probable under the statistical criterion amounts to minimizing a sum of squares, a min-
imum which Legendre (1805) had shown equals the solution of his system of normal
equations.

While acknowledging that the arbitrary normal distribution assumption constituted
a weakness of his work, Gauss claimed that the method of least squares, which arose
as a result, also yields the most probable value under other distributional assumptions.
Section 6 of the present article discusses the claim, named Gauss’ least squares conjecture,
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including specification of necessary and sufficient conditions. Throughout the nineteenth
century, the method of least squares was accepted as a practical and principally sound
method for generating estimates, regardless of probability distribution (see, e.g., Airy,
1875).

The first proposal of the distance criterion is Pearson (1900), which uses the statisti-
cal criterion for the purpose of the statistical hypothesis test defined in the same article.
Pearson (1900) contains few explanatory wordings, but Mahalanobis (1936), which gen-
eralizes Pearson’s chi-distance, uses a parallel with Galilean transformations in physics
to explain the distance: by transforming arbitrary probability distributions into the stan-
dard normal distribution, the probability distributions can be evaluated within a frame
of reference, and thus much of the complexity is circumvented; see Ekström (2011a) for
a discussion and a generalization beyond the normal distributions.

Fisher (1912) proposes the density criterion anew. Its statistic was later termed likeli-
hood (see, e.g, Fisher, 1922), and the method has become most well known under related
names. Fisher applies the criterion in a way that is different from that of Bernoulli (1778)
and Gauss (1809). In short, Bernoulli and Gauss maximize the value of the density func-
tion while Fisher maximizes the density function of the value; Section 7 of the present
article discusses this difference in application.

Throughout the literature there are numerous instances in which the probability den-
sity of a value is interpreted, or explained, as the probability of the same value. That
interpretation, however, stretches the truth to quite an extent; a probability density arises
from differentiation of the probability measure, but is not a measure itself. In short, in-
terpreting a probability density as a probability is factually erroneous, and can easily set
the stage for a number of misunderstandings.

3. Pearson-verification under the density criterion

The present section discusses Pearson’s statistical hypothesis test (1900) under the
density criterion, as opposed to the distance criterion which Pearson originally proposed.
Definitions are modified to accommodate the density criterion.

The fundamentals of Pearson’s statistical hypothesis test are the following. Suppose
x1, . . . , xn are observations of the phenomenon of interest, that the observations are el-
ements of some topological space denoted X, and that the observations have Gauss-
Pearson decomposition xi = µi + ui, for i = 1, . . . , n, where µi and ui are the ideal and
random parts, respectively, of the observation xi, and + is a binary operation such that
(X,+) is a group. The Euclidean space, Rp, was used in Pearson (1900), i.e. X = Rp.
For convenience, let the arrow accent denote sequences of length n, e.g. ~x = (x1, . . . , xn),
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which are added through component-wise addition. Thus the observation ~x ∈ Xn, some-
times referred to as the sample point, has Gauss-Pearson decomposition ~x = ~µ+~u. Also,
the notation L(~u) is convenient, which denotes the probability distribution, or the law,
of the random variable ~u. The distribution L(~u) is assumed ex ante known.

Next, consider the hypothesis that the ideal part of the observed phenomenon, ~µ,
equals some given sequence ~ν ∈ Xn. The hypothesis yields the representation ~x =

~ν +~e, where ~e is the representation residual. Hence there are two representations of the
observation, and the two constitute the following system:{

~x = ~µ + ~u, (the Gauss-Pearson decomposition)
~x = ~ν +~e. (the hypothesis representation)

Since Xn is a group, algebraic manipulation of the system yields

~µ = ~ν implies ~e ∼ L(~u), and ~e � L(~u) implies ~µ 6= ~ν.

Therefore, if the proposition ~e ∼ L(~e) is Pearson-falsified (at statistical significance level
α) then it follows through logical deduction, specifically contraposition, that the hypoth-
esis, ~µ = ~ν, is Pearson-falsified (at statistical significance level α). Note that if e is an
observation of a random variable then the notation e ∼ L(u) is shorthand for the more
cumbersome e is an observation of a random variable with distribution L(u).

Pearson (1900) proposes the distance criterion for the purpose of determining whether
it is probable that the representation residual~e has distribution L(~u), or in his own word-
ing: whether it can be reasonably supposed that ~e has arisen from random sampling.
Pearson’s article and his statistical hypothesis test is reviewed in modern notation and
rigor in Ekström (2011b), making detailed discussions in the present text superfluous. In
short, though, Pearson (1900) defines the chi-statistic η = d(~e, ~m), where d is the Maha-
lanobis distance under L(~u) and ~m the distribution’s reference point, and evaluates its
relative size through the p-value, P = P(Bη(~m)c), where P is the probability measure
under L(~u) and B the Mahalanobis ball.

In the following, Pearson’s statistical hypothesis testing framework is studied under,
and modified to accommodate, the density criterion. Under the density criterion, the
analogue of the chi-statistic is the following.

Definition 1. Assuming that the observations have Gauss-Pearson decomposition ~x =

~µ + ~u, where the random part ~u has an ex ante known distribution L(~u) with density
function f , the density statistic ζ under the hypothesis ~µ = ~ν is defined

ζ = f (~e),

where ~e is the residual of the representation ~x = ~ν +~e.
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If the density statistic, ζ, is small, then by the density criterion the proposition~e ∼ L(~u)
is deemed improbable, and if it is large the proposition is not deemed improbable. In
particular, if the density at the hypothesis representation residual, ~e, is zero then the
proposition is deemed to be at the extremity of improbability. Determination of whether
the density statistic is small or large is made through the p-value.

Let ( f > t) denote the set {x ∈ Xn : f (x) > t}, for some t ∈ R. In the case Xn = R2,
the set can be visualized by thinking of the graph of f as a landscape, which then is
flooded up to level t; the set ( f > t) corresponds to the area of the islands that are above
water. Under the density criterion, ( f > ζ) is the set of points more probable than ζ

while its complement is the set of points as or less probable than ζ. Consequently, the
p-value under the density criterion is defined as follows.

Definition 2. In the notation and context of Definition 1, the p-value P is defined

P = P(( f > ζ)c),

where P : B(Xn)→ R is the probability measure under L(~u).

While the p-value under the distance criterion can be expressed as a percentile of the
chi-square distribution, it is in general more difficult to express the p-value under the
density criterion in closed form. However, the p-value under the density criterion can
easily be approximated numerically, for example through monte carlo integration. The
definition of acceptance regions under the density criterion is immediate.

Definition 3. In the notation and context of Definition 2, the acceptance region at statistical
significance level α, A, is defined

A = ( f > t),

where t is the solution of the equation P(( f > t)c) = α.

Solving the equation P(( f > t)c) = α for t is relatively easy since the left hand side is
a non-decreasing real-valued function of t ∈ R that can be numerically approximated. If
the equation does not have a solution, which it need not have, it is prudent to choose the
greatest smaller statistical significance level α̃ for which a solution exists, or equivalently
let the acceptance region be defined by the greatest t that satisfies the inequality P(( f >

t)c) ≤ α.
The following are desirable properties of acceptance regions under the density crite-

rion. At all non-zero statistical significance levels every acceptance region is contained in
the support of the probability measure, P. Conversely, if the representation residual ~e is
not an element of the support of P, then the proposition~e ∼ F is Pearson-falsified at ev-
ery non-zero statistical significance level. Additionally, if the distribution, L(~u), has one
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or more point probabilities, i.e. if the probability measure, P, has a singular part, then
those points are included in every acceptance region since the density at those points are
infinity.

Acceptance regions under the two statistical criteria are identical if L(~u) is strictly
unimodal elliptical with a density function, as per Theorem 7, Section 5. Notably, Pear-
son (1900) assumes that the random part is normally distributed, and as a result the
choice of statistical criterion, i.e. whether to use the chi-statistic or the density statistic, is
immaterial under Pearson’s assumptions.

4. Comparison of statistical criteria

The existence of two statistical criteria upon which statistical hypothesis tests can be
based naturally leads to the question: Is one statistical criterion better than the other?
Unfortunately, the question does not have a simple answer; each of the two have both
desirable and undesirable properties. The present section aims to summarize some of
the properties of the statistical hypothesis test under the two statistical criteria.

Under the distance criterion acceptance regions are connected, while under the density
criterion acceptance regions need not be. Connectedness under the distance criterion
follows from the homogeneity property of Mahalanobis balls and the fact that continuity
of Mahalanobis transformations is necessary for uniqueness of the distance. A counter-
example that shows that acceptance regions under the density criterion need not be
connected is the distribution that is uniform on the set ∪∞

n=1[n, n + 2−n] ⊂ R. In fact, for
this distribution, each acceptance region under the density criterion has infinitely many
connected components.

Under the density criterion, acceptance regions are contained in the support of the
density function, while acceptance regions under the distance criterion need not be. This
property follows immediately from the fact that acceptance regions under the density
criterion are defined by ( f > t) for non-negative t. A counter-example that shows that
acceptance regions under the distance criterion not need be contained in the support
of the density function is the distribution of the preceding paragraph, since acceptance
regions under the distance criterion are connected.

Because of the homogeneity property of Mahalanobis balls, acceptance regions un-
der the distance criterion are preserved under suitable transformations T in the sense
that if A1 is the acceptance region for U and A2 is the acceptance region for T(U) then
A2 = T(A1). This property is in many cases convenient, and is also intuitively desir-
able. This property does not hold under the density criterion; a counter-example is the
transformation x 7→ x2 applied to a standard uniform random variable.
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The following property was discussed by Neyman & Pearson (1933), and is referred
to by names such as best critial region or most efficient/powerful test. An accurate
and more informative name of the property is that acceptance regions under the density
criterion have least Lebesgue measure. The following theorem details this property; for
enhanced readability the proof is in the Appendix.

Theorem 1. Suppose f is a probability density function, λ the Lebesgue measure, and let the
probability measure P be defined by P(A) =

∫
A f dλ. If A = ( f > t), for some t, and B is a set

satisfying P(A) = P(B), then λ(A) ≤ λ(B).

Note that when the density function is defined with respect to a measure other than
the Lebesgue measure, then Theorem 1 holds with the Lebesgue measure substituted
for the other measure. The event in which a random variable with a density function
different than f attains an element of the acceptance region is by Neyman & Pearson
(1933) referred to as an error of second type, and the probability that it does not attain
such an element is referred to as statistical power. The following corollary implies that
acceptance regions under the density criterion have greatest statistical power in a certain
sense.

Corollary 2. In the notation of Theorem 1, if V is a random variable with constant probability
density on A ∪ B, then Prob(V ∈ A) ≤ Prob(V ∈ B).

Under the distance criterion, the p-value can be expressed as a value of the non-
central chi-square distribution function (see Ekström, 2011b), while the p-value under the
density criterion in general must be numerically approximated. This fact is a theoretical
and practical advantage that the distance criterion has relative to the density criterion.

An advantage that the density criterion has relative to the distance criterion is that it
is a simpler concept. Under the distance criterion there are sometimes issues relating
to existence and uniqueness of the Mahalanobis distance. Use of the distance criterion
also requires specification of a distribution reference point, which use of the density
criterion does not. On the other hand, the reference point is ensured to be an element of
every acceptance region under the distance criterion while it need not be an element of
acceptance regions under the density criterion.

In summary, each of the two statistical criteria have properties that are desirable. Un-
der certain conditions the acceptance regions yielded by the two statistical criteria are
equal, see Section 5. If the two acceptance regions are not equal, an acceptance re-
gion with a mix of properties can be constructed by intersecting the acceptance regions
yielded by the two statistical criteria; the intersection has a statistical significance level
between α and 2α.
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5. Conditions for equivalence of the statistical criteria

The contours of the normal distribution’s density function concur with the distribu-
tion’s Mahalanobis spheres. As a consequence, given a normal distribution assumption
all p-values and acceptance regions are identical under the density criterion and the dis-
tance criterion, making the choice of statistical criterion immaterial. The present section
aims to derive more general conditions sufficient for the two statistical criteria to yield
equal acceptance regions and p-values.

Assuming that X is a Euclidean space, a distribution is spherical if it is radially symmet-
ric about the origin, 0. In greater detail, if v is a random variable, then L(v) is spherical
if v is equal in distribution to rs where r and s are two statistically independent random
variables with ranges [0, ∞) and {x ∈ X : ‖x‖ = 1}, respectively. In particular, if v has
a density function, f , then the density of every ray f (tx/‖x‖) = fr(t), x 6= 0, t ≥ 0, is
identical. The distribution function, F, of r consequently satisfies F(t) =

∫ t
0 fr(s)ds. Fur-

thermore, a random variable is elliptically distributed, i.e. its distribution is elliptical, if
it is equal in distribution to an affine transformation of a spherically distributed random
variable.

If a spherical distribution has a density function, then its Mahalanobis distance exists.
Because the standard normal distribution is spherical it is natural to use a Mahalanobis
transformation that is radially symmetric about the origin, i.e. one that acts on all rays
tx/‖x‖, x ∈ X, x 6= 0 and t ≥ 0, equally. Using the expression v = rs of the preceding
paragraph, such a Mahalanobis transformation T can be written T(v) = g(r)R(s), where
R is orthogonal and g a real-valued function. Under necessary Mahalanobis uniqueness
conditions g equals the composition G−1 ◦ F, where F is the distribution function of the
random variable r and G is the chi distribution function with one degree of freedom
(see Ekström, 2011a, Theorem 11). Hence the radially symmetric Mahalanobis distance
satisfies

d(x, y) = ‖T(x)− T(y)‖,

where T(0) = 0 and T(x) = G−1 ◦ F(‖x‖)x/‖x‖ for x 6= 0. If the elliptically distributed
random variable w satisfies w = L(v) + b, for some linear and injective L : X → X and
b ∈ X, then the Mahalanobis transformation T ◦ L−1(w − b) is natural. For example
L(v) = Var(w)1/2v and b = E(w) satisfy w = L(v) + b.

The following three lemmas contain facts related to elliptical distributions, and they
are of use in the derivation of the main theorems of this section. For enhanced readability
the proofs are in the Appendix.



ON STATISTICAL CRITERIA: THEORY, HISTORY, AND APPLICATIONS 11

Lemma 3. Suppose the distribution F is spherical and has a density function, and let Br(m) and
Er(m) denote the Mahalanobis and Euclidean balls respectively, then for every r,

Br(0) = Er̂(0),

where r̂ = F(−) ◦ G(r) and F(−) is the pseudoinverse defined F(−)(y) = inf{x : F(x) = y}.

Lemma 4. Suppose that the random variable U has density function f and that T is an injective
affine transformation, then it holds

T(( f > t)) = ( f̂ > t̃),

where f̂ = |det(T)|−1( f ◦ T−1) is the density function of T(U) and t̃ = |det(T)|−1t.

Lemma 5. Suppose F is an elliptical distribution with a density function, then its density
function is constant on Mahalanobis spheres centered at the median.

A distribution is strictly unimodal if it has a density function that has no local optimum
on its support except for its mode, m. If X is a linear space over R, then the condition is
equivalent to the density of each ray originating from the mode, t 7→ f (m + t(x − m)),
t ≥ 0 and x 6= m, being strictly decreasing. A distribution is unimodal if the density of
every ray originating from the mode is non-increasing. A distribution which is strictly
unimodal is also unimodal but the converse need not hold.

The following lemma contains a property of strictly unimodal distributions; the proof
is in the Appendix.

Lemma 6. Suppose F is a strictly unimodal distribution with mode m and density function f ,
then

( f = t) ⊂ ∂( f > t) = ∂( f < t),

for all 0 < t < f (m).

Under the distance criterion an acceptance region is defined as a Mahalanobis ball,
Br(m), and under the density criterion an acceptance region is defined as a set ( f > t),
see Definition 3. The following theorem, a main theorem of the section, details conditions
under which interchanging the two statistical criteria will not change the acceptance
region, implying that the choice of criterion is immaterial.

Theorem 7. Suppose F is a unimodal elliptical distribution with density function f , then for
each t > 0 there is an r such that

Int( f > t) = Br(m),

where m is the median of F and Br(m) the Mahalanobis ball under F . Furthermore, if F is
strictly unimodal then for each r > 0 there is a t such that the equality holds.
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The normal distribution, which was assumed in Pearson (1900), is an example of a
strictly unimodal elliptical distribution. The next theorem is related to Theorem 7 but
applies to statistical hypothesis generation under the two criteria.

Theorem 8. Suppose F is a unimodal elliptical distribution with density function f and median
m, then for any set A ⊂ X,

d(a, m) = inf
x∈A

d(x, m) =⇒ f (a) ≥ sup
x∈A

f (x).

Furthermore, if F is strictly unimodal then

f (a) = sup
x∈A

f (x) =⇒ d(a, m) = inf
x∈A

d(x, m).

In traditional statistics, the subsets A ⊂ X are commonly lines, planes, hyperplanes,
or graphs of arbitrary functions, sometimes referred to as non-linear models. If the
dimension of A is less than that of X, then projection onto A is commonly referred to
as dimension reduction. The application of the two statistical criteria for the purpose of
statistical hypothesis generation is also discussed in Section 6.

6. Special topic: Gauss’ least squares conjecture

In Theoria Motus Corporum Coelestium (1809), Gauss sought to determine which Kepler
orbit is most probable under the density criterion given observations of a heavenly body,
and it was shown that the method of weighted least squares maximizes density under
an uncorrelated, mean zero joint normal distribution. Gauss acknowledged that the ar-
bitrary normal distribution assumption constituted a weakness of his work, but claimed
that the method of least squares yields the most probable Kepler orbit also when the
observational errors are not normally distributed. Specifically, the claim is that whether
the density function of the observational errors is exactly equal to the normal density
function is of no importance in practice (Gauss, 1809, §178), and therefore the principle
of least squares must, everywhere, be considered an axiom (Gauss, 1809, §179).

The claim that minimizing squares also maximizes density is referred to as Gauss’
least squares conjecture. The fact that Gauss did not present any supporting evidence
has been noted by historians and even raised a few eyebrows. In his defense, though,
it should be noted that §§174-5 of Gauss (1809) specify that the observational errors can
be assumed to have a unimodal distribution that has an even density function, i.e. one
that satisfies f (−x) = f (x). In the univariate case, the latter condition implies that
the distribution is spherical. In the general multivariate case, however, the condition
does not suffice for the distribution to be median zero elliptical. Nevertheless, Gauss’
assumptions are remarkably close to the necessary and sufficient conditions derived in
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the present section. For ease of reference, Gauss’ least squares conjecture is formalized
below with the corresponding claim relative to the distance criterion incorporated in
parentheses.

Conjecture (Gauss’ least squares conjecture). The method of generalized least squares is op-
timal under the density (distance) criterion, i.e. it yields a value that maximizes (minimizes) the
density (chi) statistic.

Suppose X is a Euclidean space. Each median zero, elliptically distributed random
variable w with a density function can be expressed as an injective linear transformation
L(v) of some spherically distributed random variable v. The linear transformation L
is sometimes given, otherwise L(v) = Var(w)1/2v can be taken, or any non-zero scalar
multiple thereof. Further, note that if ‖ · ‖ denotes the Euclidean norm then ‖L−1(x)‖ =
‖x‖? is also a norm. Given the median zero elliptical distribution L(w), minimizing ‖ · ‖?
is referred to as the method of generalized least squares.

Because of mathematical convenience, the distance criterion version of Gauss’ least
squares conjecture is treated firstly, facilitating treatment of Gauss’ original least squares
conjecture thereafter. The following theorem details sufficient conditions for a value that
is optimal under the method of generalized least squares to be optimal also under the
distance criterion; the proof is in the Appendix.

Theorem 9. Suppose F is a median zero elliptical distribution with density function f , then for
any A ⊂ X

‖a‖? = inf
x∈A
‖x‖? =⇒ d(a, 0) = inf

x∈A
d(x, 0),

where d denotes the Mahalanobis distance under F . Furthermore, if a ∈ Int(supp( f )), then

‖a‖? = inf
x∈A
‖x‖? ⇐⇒ d(a, 0) = inf

x∈A
d(x, 0).

The following theorem is similar to Theorem 9, but details the method of generalized
least squares vis-à-vis optimization under the density criterion.

Theorem 10. Suppose F is a unimodal median zero elliptical distribution with density function
f , then and only then for any A ⊂ X

‖a‖? = inf
x∈A
‖x‖? =⇒ f (a) ≥ sup

x∈A
f (x).

Furthermore, if F is strictly unimodal and A ∩ Int(supp( f )) 6= ∅, then

f (a) = sup
x∈A

f (x) =⇒ ‖a‖? = inf
x∈A
‖x‖?.

The following corollary summarizes the above theorems in the context of Gauss’ least
squares conjecture.
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Corollary 11. The distance criterion version of Gauss’ least squares conjecture holds if the dis-
tribution of the random part is median zero elliptical and has a density function. Gauss’ least
squares conjecture, the original density criterion version, holds if and only if the distribution of
the random part is median zero elliptical, unimodal and has a density function.

Gauss (1809) contains an additional claim: that if observations are statistically in-
dependent then the method of generalized least squares is optimal under the density
criterion. However, even if statistically independent random variables are elliptically
distributed their joint distribution is typically not elliptical, and thus by Corollary 11
the claim is false. The normal distribution is a notable exception, in which the joint
distribution of statistically independent random variables is elliptical.

7. Special topic: Fisher’s maximum likelihood

Fisher (1912) proposes the density criterion anew, but suggests a way of applying the
statistical criterion that is different from that of Bernoulli (1778) and Gauss (1809). This
section discusses the differences between the two ways of applying the density criterion.

The problem considered by Fisher (1912) is determination of the probability distri-
bution of a sample of statistically independent and identically distributed real-valued
observations x1, . . . , xn ∈ R. This particular problem is well-suited for illustration of the
differences between the two ways of application. In the following, Bernoulli and Gauss’
way of applying the density criterion is discussed firstly, and then compared to Fisher’s
way of applying the density criterion.

The premise of Theoria Motus (Gauss, 1809) is Gauss’ observation postulate, i.e. that
each observation consists of two parts: the true value of the observed phenomenon and
an observational error. The empirical distribution function of the sample is an unbiased
observation of the postulated true distribution function. The empirical distribution func-
tion is sometimes seen as an element of the Euclidean space Rn, but in the present dis-
cussion regarded as an element of Skorokhod’s topological space D of right-continuous
functions with left-hand limits. Let y denote the empirical distribution function, and
y = µ + u its Gauss-Pearson decomposition, where µ is the ideal part, i.e. the true distri-
bution function, and u the random part, i.e. the observational error. Given any ideal part,
the distribution of the random part, L(u), can be derived analytically, or approximated
through simulation or through Donsker’s theorem.

Bernoulli and Gauss’ way of applying the density criterion is to determine the most
probable ideal part, out of some subset A ⊂ D, through

arg max
z∈A

f (−z + y),
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where f is the density function of L(u). Fisher’s way of applying the density criterion
is quite different; the original sample point ~x is assumed free of observational error and
the probability distribution determined through the optimization

arg max
θ∈Θ

fθ(~x),

where { fθ}θ∈Θ is a collection of density functions and Θ its index set. In short, Bernoulli
and Gauss apply the density criterion to find the value of greatest density, while Fisher
applies the density criterion to find the density function that is greatest at the observed
value. Put differently, Bernoulli and Gauss use a known density function to find an
unknown value, while Fisher uses a known value to find an unknown density function.

Fisher’s assumption of an error free observation makes his way of application difficult
to reconcile with the broader body of statistical methods. The methods of Gauss and
Pearson, for statistical hypothesis generation and testing, are built on Gauss’ observation
postulate by which the observation is assumed to consist in part of an observational
error that is unavoidable and impossible to eliminate. Fisher’s way of application does
not allow for a Gauss-Pearson decomposition of the observation since the observation is
assumed error free and hence non-random.

While fundamentally different, the two ways of applying the density criterion have
co-existed in relative harmony throughout the twentieth century. This fact can to a large
extent be explained by a single special case in which the two ways of application happen
to yield equal results. Consider the collection { fθ} of normal density functions with unit
variance, indexed by their means. The collection’s index set satisfies Θ = Rp = X and it
holds that

fθ(x) = f (x− θ) = fx(θ),

where f is the standard normal density function, i.e. the index and the value are elements
of the same set, and they are interchangeable. As a result, for any A ⊂ Θ = X it holds

arg max
θ∈A

fθ(x) = arg max
θ∈A

f (−θ + x),

and thus the two ways of applying the density criterion yield a common optimum. Fur-
ther, by Corollary 11 the method of generalized least squares yields this optimum, re-
gardless of variance, and hence the two ways of application produce identical results
under this distributional assumption. Because of the normal distribution assumption’s
historical prevalence, the special case can to an extent explain why the two different ways
of applying the density criterion have co-existed largely without troubles.

With respect to statistical hypothesis testing, the differences between the two ways of
applying the density criterion are also considerable. Statistical hypothesis testing under
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Bernoulli and Gauss’ way of application utilizes the identity∫
X

f (x)dλ(x) = 1,

presuming the density function is defined with respect to λ, the Lebesgue measure. The
identity is an immediate consequence of Kolmogorov’s axioms. The integral over a subset
A ⊂ X is interpreted as the probability of the random variable attaining an element of
A, a fact that is essential to the construction of p-values and acceptance regions under
the density criterion (cf. Section 3). The corresponding integral under Fisher’s way of
application is ∫

Θ
fθ(x)dξ(θ),

i.e. integration over the collection { fθ}. In general, it cannot be assumed that the integral,
if it exists, is constant over x, and moreover the choice of measure, ξ, is unclear. The
meaning of the integral is also difficult to interpret; integration over a subset of the index
set Θ cannot be interpreted as a probability, a fact noted by Fisher (1912). Because of
these reasons, the integral cannot be used for construction of statistical hypothesis tests
under Fisher’s way of applying the density criterion. Furthermore, while Bernoulli and
Gauss’ way of application yields an acceptance region that is a subset of X, the sample
space, Fisher’s way of application yields an acceptance region that is a subset of Θ, the
index set of the collection of density functions, which complicates conceptualization of
the acceptance region.

However in another remarkable coincidence, it was discovered that if { fθ} is again
taken to be the collection of normal density functions, with covariance matrix Σ and
indexed by their means, then it holds that

−2 log fθ(x)/ fx(x) = (x− θ)tΣ−1(x− θ) = η2,

i.e. a log likelihood ratio expression equals the squared chi-statistic. Consequently, under
the hypothesis θ ∼ N(x, Σ) a likelihood ratio expression has a known distribution. Since
the index and the value are interchangeable in this case, fθ(x) = fx(θ), the hypothesis
θ ∼ N(x, Σ) is equivalent to x ∼ N(θ, Σ), and it follows through Theorem 7 that the
acceptance regions in this case are identical under both ways of application (cf. Section 3).

In general, however, the log likelihood ratio does not have a known distribution, and
consequently the type one error probability cannot be controlled. As a fall back op-
tion, it is commonly assumed that the above log likelihood ratio expression is chi-square
distributed, often using an asymptotic result known as Wilks’ theorem as rationale (see
Ferguson, 1996, for a detailed list of required assumptions). While the chi-square distri-
bution could be a decent approximation of the log likelihood ratio statistic’s distribution
in some instances, the lack of control makes the construction unsatisfactory nevertheless.
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The possibility of computing exact p-values under the Bernoulli and Gauss way of ap-
plication is a decided advantage, and it unavoidably raises the question of whether the
likelihood ratio test should even be used at all.

In this context a remark on terminology is appropriate. Sometime in between years
1912 and 1922, Fisher started referring to the density statistic by the term likelihood.
In Statistical Methods for Research Workers (1928), Fisher explains that due to his rejection
of the theory of inverse probability, also called Bayesian statistics, he used the term
likelihood rather than probability, so to avoid the latter word. The present article uses
the term density statistic (cf. Definition 1), a term that is both accurate and informative.

In summary, the way of applying the density criterion suggested by Fisher (1912) is a
doable way of determining the probability distribution of a sample of statistically inde-
pendent and identically distributed observations, in that it produces an expression that
can be optimized to yield a density function. But because of its error free observation
assumption, it fits the broader body of statistical methods poorly. Fisher’s way of appli-
cation is particularly ill-suited for statistical hypothesis testing since the type one error
probability generally cannot be controlled.

8. Example: Statistical classification

The two statistical criteria discussed in the present article have an inherent pedagog-
ical value that reaches beyond theoretical statistics. This section aims to exemplify that
value by discussing the statistical technique known as discriminant analysis or statistical
classification.

Many textbooks on multivariate analysis, such as Mardia et al. (1979) and Muirhead
(1982), contain a chapter on statistical classification. Through utilization of the two statis-
tical criteria, the technique can easily be explained in one sentence: Let x be a value, {Fθ}
a set of distributions with density functions { fθ} and reference points {mθ}, and suppose
that it is ex ante known that x is an observation from one of the distributions, then using
the distance criterion x is classified as an observation from the distribution with least
distance, dFθ

(x, mθ), and using the density criterion x is classified as an observation from
the distribution with greatest density, fθ(x).

Besides the efficient use of words and the impeccable rigor, the utilization of the two
statistical criteria also has a certain conceptual beauty. Given a value and a number of
distributions, and the ex ante information that the value is an observation from one of
the distributions, there is really not much that can be done except for evaluating which
distribution is most probable. And for the evaluation a statistical criterion is needed.

It is important that statistical methods are easily understandable because they are
routinely used for purposes that have far-reaching consequences. If the methods are
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easily understandable, then the risks of misunderstandings and unintentional errors are
reduced. In the teaching environment, taking the time to explain the two statistical
criteria, laying the groundwork so to speak, will simplify explanation of most statistical
methods, be they hypothesis generation, hypothesis testing, statistical classification or
almost any other statistical method.
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Appendix

Proof of Theorem 1. Let C = A r B, D = B r A and note that P(C) = P(D). Since
C ⊂ ( f > t) and D ⊂ ( f > t)c it holds that λ(C) ≤ P(C)/t = P(D)/t ≤ λ(D). Thus,
λ(A) = λ(A ∩ B) + λ(C) ≤ λ(A ∩ B) + λ(D) = λ(B). �

Proof of Lemma 3. Suppose x 6= 0, then the Mahalanobis distance ‖T(x)− T(0)‖ equals
G−1 ◦ F(‖x‖). Let B′r(0) be the punctuated Mahalanobis ball with center point 0, then
it holds B′r(0) = {x 6= 0 : G−1 ◦ F(‖x‖) < r} = {x 6= 0 : ‖x‖ < F(−) ◦ G(r)} = E′r̂(0),
since G−1 ◦ F is non-decreasing. The balls are empty if and only if r, r̂ ≤ 0, and hence the
center point, 0, is an element of both balls when r, r̂ > 0. This shows the statement. �

Proof of Lemma 4. By the change of variables theorem, f̂ = |det(T)|−1( f ◦ T−1). There-
fore,

T(( f > t)) = {T(x) : f (x) > t} = {y : f ◦ T−1(y) > t} = (( f ◦ T−1) > t) = ( f̂ > t̃),

which shows the statement. �

Proof of Lemma 5. Every elliptically distributed random variable with a density function
is equal in distribution to an injective affine transformation T of a spherically distributed
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random variable. The homogeneity property of Mahalanobis balls and Lemma 3 yields

Br(m) = T(BGr (T
−1(m))) = T(BGr (0)) = T(Er̂(0)),

where G is the aforementioned spherical distribution, m the median of F and Er̂(0) a
Euclidean ball. By the invariance of domain theorem it follows that ∂T(A) = T(∂A)

for every subset A, and thus ∂Br(m) = T(∂Er̂(0)). Further, if g denotes the density
function of G, then by Lemma 4 f = c(g ◦ T−1) where c is a normalizing constant. Hence
f (∂Br(m)) = c(g ◦ T−1)(T(∂Er̂(0))) = cg(∂Er̂(0)), which by radial symmetry is a one-
point set. �

Proof of Lemma 6. Since F is strictly unimodal, f does not have any local optimum on
( f > 0) except for its mode. Thus every neighborhood of ( f = t) intersects both ( f > t)
and ( f < t) and hence every point of ( f = t) is a limit point of ( f > t) and ( f < t).
Since the three sets are disjoint, the statement follows. �

Proof of Theorem 7. Every elliptically distributed random variable with a density function
can be expressed as an injective affine transformation T of a spherically distributed ran-
dom variable, and by the change of variables theorem the spherical distribution, G, also
has a density function, g. Further, by Lemma 4 G is (strictly) unimodal if F is. By radial
symmetry and unimodality the set Int(g > t̃) is a Euclidean ball Er̂(0) with center point
zero and some radius r̂.

Since G is unimodal, it follows that supp(g) is convex and further that the distribution
function F of its radius is strictly increasing on the interior of the support. Hence F is
injective on Int(supp(gr)) and, by Lemma 3, r = G−1 ◦ F(r̂) and consequently there is
an r for each r̂ ∈ Int(supp(gr)) such that Er̂(0) = BGr (0). By Lemmas 3 and 4, and the
homogeneity property of Mahalanobis balls it then follows

Int( f > t) = T(Int(g > t̃)) = T(Er̂(0)) = T(BGr (0)) = T(BGr (T
−1(m))) = Br(m),

where the first equality holds by the invariance of domain theorem.
If F is strictly unimodal then it follows that for each Euclidean ball Er̂(0) there is some

t̃ such that Er̂(0) = Int(g > t̃), and the previous equalities then yield that for every r
there is some t such that Br(m) = Int( f > t). �

Proof of Theorem 8. Suppose d(a, m) = infx∈A d(x, m) = r and note A ∩ Br(m) = ∅ and
a ∈ ∂Br(m). Let f (a) = t, then a /∈ ( f > t). By Theorem 7, Int( f > t) = Bs(m) for some
s, and since a /∈ Int( f > t), s ≤ r and A ∩ Bs(m) = ∅. Consequently, if x ∈ A ∩Cl( f > t)
then x ∈ ∂Br(m), but by Lemma 5 f (x) = f (a) = t. Therefore A ⊂ ( f ≤ t) and the first
implication follows.
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Suppose F is strictly unimodal and f (a) = supx∈A f (x) = t. Let d(a, m) = r, then
a ∈ ∂Br(m), and note that ( f > t) ∩ A = ∅. By Theorem 7, Int( f > t) = Bs(m), some s,
and thus ∂( f > t) = ∂Bs(m). But a ∈ ( f = t) and by Lemma 6, ( f = t) ⊂ ∂( f > t) =

∂Bs(m) and thus s = r. Hence A ∩ Br(m) = A ∩ Int( f > t) = ∅, which shows the second
implication. �

Proof of Theorem 9. Let w ∼ F , take L(x) = Var(w)1/2x and let G = L(L−1(w)) which is
spherical. Let, further, Br(m), Er(m) and E?

r (m) denote the Mahalanobis ball under F ,
the Euclidean ball and the ball under ‖ · ‖?, respectively. By Lemma 3 and the homo-
geneity property of Mahalanobis balls, Br(0) = L(BGr (L−1(0))) = L(Er̂(0)). Note also
that E?

r (0) = L(Er(0)), and hence Br(0) = E?
r̂ (0).

Let ‖a‖? = s and d(a, 0) = r, and suppose s = infx∈A ‖x‖?. Then a ∈ ∂E?
s (0), a /∈ Br(0)

and E?
s (0) ∩ A = ∅. It will be shown that Br(0) ∩ A = ∅ which yields r = infx∈A d(x, 0).

Since Br(0) = E?
r̂ (0), a /∈ Br(0), r̂ ≤ s and hence Br(0) ⊂ E?

s (0) and Br(0) ∩ A = ∅.
Suppose a ∈ Int(supp( f )), then the equality r̂ = F(−) ◦ G(r), from Lemma 3, is in-

vertible in a neighborhood of a and thus defines a local one-to-one relationship between
r̂ and r. It follows that a ∈ ∂Br(0), and consequently r̂ = s and Br(0) = E?

s (0). Hence
Br(0) ∩ A = ∅ if and only if E?

s (0) ∩ A = ∅, which shows the second implication. �

Proof of Theorem 10. The first implication follows from Theorems 8 and 9. With regards
to the second implication, note that since F is elliptical all points of ∂supp( f ) have, by
symmetry, equal density. Since F further is strictly unimodal, that density is less than
that of any point of Int(supp( f )), and thus A∩ Int(supp( f )) 6= ∅ and f (a) = supx∈A(x)
imply that a ∈ Int(supp( f )). The second implication then follows by the same theorems.

To show that unimodality is necessary for the first implication, suppose for some
y ∈ X and t > 1, f (ty) > f (y). Let A = {y, ty} and note ‖y‖? = infx∈A ‖x‖? while
f (y) < supx∈A f (x) = f (ty). To show that the distribution necessarily must be median
zero elliptical, suppose y1, y2 ∈ X, ‖y1‖? = ‖y2‖? and y1 6= y2, but f (y1) 6= f (y2),
say f (y1) > f (y2). Let A = {y1, y2} and note ‖y2‖? = infx∈A ‖x‖? while f (y2) <

supx∈A f (x). This completes the proof. �
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