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ABSTRACT OF THE THESIS 

Multi-conformation Monte Carlo: a Method for Introducing Flexibility in Efficient 

Simulations of Many-protein Systems 

By  

Vera D. Prytkova 

Master of Science in Chemical and Materials Physics 

University of California, Irvine, 2017 

Professor Douglas Tobias, Chair 

We present a novel multi-conformation Monte Carlo simulation method that enables 

the modeling of protein-protein interactions and aggregation in crowded protein 

solutions. This approach is relevant to a molecular-scale description of realistic 

biological environments, including the cytoplasm and the extracellular matrix, that 

are characterized by high concentrations of biomolecular solutes (e.g., 300-

400 mg/mL for proteins and nucleic acids in the cytoplasm of Escherichia coli). 

Simulation of such environments necessitates the inclusion of a large number of 

protein molecules. Therefore, computationally inexpensive methods, such as rigid-

body Brownian dynamics or Monte Carlo simulations, can be particularly useful. 

However, as we demonstrate herein, the rigid-body representation typically 

employed in simulations of many-protein systems gives rise to certain artifacts in 

protein-protein interactions. Our approach allows us to incorporate molecular 

flexibility in Monte Carlo simulations at low computational cost, thereby eliminating 

ambiguities arising from structure selection in rigid-body simulations. We 



 vi 

benchmark and validate the methodology using simulations of hen egg white 

lysozyme in solution, a well-studied system for which extensive experimental data, 

including osmotic second virial coefficients, small-angle scattering structure factors, 

and multiple structures determined by x-ray and neutron crystallography and 

solution NMR, as well as rigid-body BD simulation results, are available for 

comparison.
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INTRODUCTION 

Biological environments, such as the cytoplasm and the extracellular matrix, are 

characterized by high concentrations of proteins and other biomacromolecular 

solutes (e.g., 300-400 mg/mL in the cytoplasm of Escherichia coli1). Under such 

crowded conditions, intermolecular interactions cannot be neglected and have a 

significant influence on the stability of folded proteins as well as their dynamics and 

aggregation propensities.2 

To model protein-protein interactions and protein aggregation using 

computer simulations, multiple protein molecules must be included in the 

simulation system.  Fully atomistic simulations including explicit representations of 

the aqueous solvent are currently only feasible for systems containing a limited 

number of biomolecular solutes (on the order of 10) and 100 ns timescales.3 

Brownian dynamics (BD) simulations employing an implicit representation of the 

solvent have emerged as a powerful approach to modeling many-protein systems on 

significantly longer timescales.4-7 In BD simulations protein molecules are usually 

modeled as rigid bodies and their translational and rotational motions are 

generated with picosecond timesteps using the Ermak-McCammon algorithm.8 Fast 

potential and force calculations are achieved through the use of pre-evaluated, 

constant potential terms on space-filling grids. This approach allows the simulation 

of solutions containing ~1,000 atomically detailed protein molecules for ~10-100 

s, which is long enough to obtain converged structural and thermodynamic 

properties for concentrated protein solutions in which the proteins are not 

aggregating strongly.4-6 In addition to providing structural and thermodynamic 
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information, BD simulations have been used to investigate the effects of crowding 

on diffusion in protein solutions and a model of the E. coli cytoplasm.5, 9 

Monte Carlo (MC) simulations are potentially an attractive alternative 

approach for the modeling of aggregating systems,10, 11 or to generally improve the 

configurational sampling efficiency when the sampling of explicit dynamics is not 

the primary goal. MC simulations based on highly coarse-grained colloidal sphere 

protein models have been employed to investigate phase behavior in protein 

solutions and protein crystallization.12-16 MC simulations of more detailed protein 

models with residue level coarse-graining have been used to study the effects of 

solution conditions and ion binding on protein-protein interactions,17-19 as well as 

protein self-assembly.20 As we will show below, Metropolis MC simulations21 of 

atomically detailed proteins can be used to investigate the structural and 

thermodynamic properties of crowded protein solutions with at least as good 

sampling efficiency as BD simulations. For more efficient sampling of strongly 

aggregating systems, MC simulations offer the possibility of specialized trial moves 

designed to expedite the formation and destruction of clusters, such as in the 

aggregation-volume-bias MC method pioneered by Siepmann, Chen, and co-

workers.10, 11, 22 

Here, we evaluate the feasibility of performing MC simulations using the 

protein-protein interaction potential developed by Wade and co-workers6 for BD 

simulations of many-protein systems. We use new experimental static light 

scattering (SLS) data for the optimization of the interaction potential parameters in 

simulations of solutions of hen egg white lysozyme (HEWL). The optimized 
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parameters were validated by comparing structure factors computed from the 

simulations to those derived from small-angle x-ray and neutron scattering 

measurements. In conventional rigid-body MC simulations using a single protein 

configuration, we find a strong dependence of both structural and thermodynamic 

properties on the specifics of the protein conformation. These results highlight the 

importance of incorporating protein conformational flexibility in the simulations. 

We have, therefore, implemented a new technique, which we refer to as multi-

conformation Monte Carlo (mcMC); mcMC incorporates conformational flexibility 

by swapping protein conformations within a discrete library determined by 

clustering of protein configurations from an atomistic MD simulation of a single 

protein in explicit solvent. The approach is similar in spirit to the use of pre-

evaluated libraries of molecular fragment conformations in configurational-bias 

Monte Carlo simulations.23-26 However, in mcMC simulations sampling of 

intramolecular degrees of freedom is restricted to a set of discrete conformations, 

which allows the use of pre-evaluated potential grids for highly efficient energy 

calculations.4-6 The HEWL solution simulations with mcMC show better agreement 

with experimental data compared to the results of scMC simulations using a single 

protein configuration, and eliminate the bias imposed by the use of a single 

structure. 

 

 

 



 4 

CHAPTER 1. METHODS 

Protein-protein interaction potential. The overall protein-protein 

interaction potential we employ, which was developed by Mereghetti et al. for 

many-protein Brownian dynamics simulations using the SDAMM software package 

by Mereghetti et al.,6, 27 contains four contributions. The first two account for the 

interactions of the charges on one protein with the electrostatic potential of a 

second protein and an “electrostatic desolvation” penalty when the charges on one 

protein enter a low dielectric cavity of a second protein. The two electrostatic 

contributions contain an explicit dependence on the solution ionic strength. The 

third contribution is a short-ranged attractive “nonpolar desolvation” potential that 

mimics hydrophobic interactions, and the fourth term describes soft-core repulsive 

interactions between atoms on different proteins. 

Prior to the simulations the potentials for each simulated protein 

conformation were pre-computed on cubic grids. To determine the appropriate grid 

sizes, we examined the convergence of the radial distribution functions, g(r), of the 

protein centers-of-mass with grid size (Figure S1 in the Supporting Information) in 

single-conformation MC simulations (described below). The results reported herein 

were generated using 200 x 200 x 200 grids with a 1 Å spacing for all of the terms in 

the interaction potential; Figure S1 shows that these grids are sufficient to obtain 

converged g(r)s.  

The electrostatic potential grids were computed at each ionic strength 

considered for an atomistic representation of the proteins with charges 

corresponding to the OPLS force field28 by finite-difference solution of the non-
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linear Poisson-Boltzmann equation using either the UHBD29 or APBS30 software 

packages. Dielectric constants of 78.4 and 2.0 for the solvent and protein, 

respectively, and ion exclusion radii of 1.5 Å were used. For increased 

computational efficiency, the number of charged protein sites involved in the 

evaluation of the electrostatic potential terms during the simulations was reduced 

by using the effective charge formalism of Gabdoulline and Wade31. 

We used the parameters in the potential function reported by Mereghetti et 

al.6 with the following exceptions: (1) the empirical scaling coefficients of the 

electrostatic and nonpolar desolvation potentials were varied and optimized by 

comparing simulated osmotic virial coefficients with experimental data (see Figure 

S2). Unless otherwise noted, the default scaling parameters of 0.36 (unitless) and 

−0.0090 kcal/mol/Å2 were used for the electrostatic and nonpolar desolvation 

terms, respectively; (2) we increased the parameter σ in the soft-core repulsion 

potential from 3 Å to 10 Å in order to increase the energetic penalty of overlapping 

protein atoms. This was necessary because MC trial moves with such unfavorable 

configurations need to be rejected. With the original parameter, the energetic 

penalty for overlapping protein molecules was too small, allowing compensation via 

electrostatic terms. In BD simulations, such configurations are not accessible, 

allowing a lower penalty and a smoother soft-core repulsion that, in turn, prevents 

the occurrence of large forces. 

Single-conformation Monte Carlo simulations. We implemented single-

conformation MC (scMC) simulations based on translational and rotational trial 

moves of randomly selected molecules in the SDAMM software package for BD 



 6 

simulations of many protein systems.6 The step size of the translational and 

rotational trial moves adapts during the simulation to yield an acceptance ratio of 

roughly 50% to produce efficient sampling under all conditions. Trial moves are 

accepted with a probability given by the Metropolis criterion:21 

P
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= min 1, exp
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where U is the difference in the protein-protein interaction potential between the 

current and trial configurations, kB is Boltzmann’s constant, and T is the 

temperature. 

We performed scMC simulations of HEWL solutions over a range of protein 

concentrations and ionic strengths (Table S1) using three different structures 

obtained from neutron diffraction32, 33 (PDB IDs 1IO5 and 1LZN) as well as solution 

NMR34 (PDB ID 1E8L, model 1) experiments, all of which contain information on 

protonation states and proton coordinates in addition to the heavy atom 

coordinates. 1LZN has two protonated glutamates and a total charge of +11e, while 

1IO5 and 1E8L carry a total charge of +9e. 

Multi-conformation Monte Carlo simulations. To incorporate flexibility of 

the simulated proteins, we introduce a Monte Carlo trial move that, in addition to 

translational and rotational trial moves, attempts to swap protein conformations 

drawn from within a discrete library of conformations. This library is generated by 

clustering of protein conformations from an atomistic MD simulation of a single 

protein in explicit solvent. The candidate conformation is selected at random from 

the library with probability proportional to the population size of the corresponding 
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cluster in the MD simulation (see below). As in the scMC simulations, a standard 

Metropolis acceptance criterion is used. This approach ensures that, in the dilute-

solution limit (i.e., no protein-protein interactions), the resulting distribution of 

conformational states converges to the distribution observed in the MD simulation 

of a single solvated protein. In the case of interacting proteins, the distribution of 

protein conformations can change due to the stabilization/destabilization of 

conformations in bound states. Potential grids are pre-computed for each of the 

structures in the library. The size of the library is limited only by the memory 

requirements of these grids. The conformational swap moves allow sampling of the 

most favourable conformations of interacting proteins at a computational cost that 

is the same as that of the rigid-body translational or rotational moves. The algorithm 

is sketched in Scheme 1. 

 

Scheme 1. Sketch of the multi-conformational Monte Carlo algorithm for the simulation of 

flexible proteins using a library of conformations and standard translational and rotational 

trial moves. 



 8 

Various approaches could be employed to generate a suitable library of 

conformations. Here, we used a 150 ns atomistic MD simulation trajectory of a 

single protein in explicit solvent using a HEWL solution NMR structure34 (PDB ID 

1E8L, model 1) as the initial configuration. To generate the library of protein 

conformations, we computed the heavy (not hydrogen) atom root-mean squared 

deviation (RMSD) matrix between configurations saved every 10 ps, and employed a 

simple clustering algorithm35 using a 1 Å RMSD cutoff to extract the 50 most 

populated clusters. By including all non-hydrogen atoms, we ensure that backbone 

and side chain fluctuations give rise to distinct conformations in the library. The 

cluster centroids constitute the library of conformations, and the cluster 

populations were used to assign a statistical weight to each conformation in the 

library. 

The MD trajectory was generated using the GROMACS software package.36 

The OPLS all-atom force field28 was used for the protein and ions, and the TIP3P 

model37 was used for water. The charge of the protein was neutralized with chloride 

ions, the system was solvated by 3579 water molecules, and periodic boundary 

conditions were applied in three dimensions.  Short-ranged interactions were 

truncated with a 9 Å cutoff, while long-ranged electrostatic interactions were 

computed with the smooth particle-mesh Ewald method38 on a 1.2 Å real-space grid. 

Covalent bonds and the geometry of water molecules were constrained with the 

LINCS39 and SETTLE40 algorithms, respectively. After an initial energy minimization, 

the system was equilibrated for 100 ps using a 1 fs integration time step in the 

isothermal-isobaric ensemble with harmonic restraints on protein heavy atom 
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positions using a force constant of 1000 kJ/mol/nm2, followed by a 1 ns 

unrestrained equilibration using a 2 fs time step. During equilibration, a 

Berendsen41 weak coupling thermostat and barostat was employed with time 

constants of 0.5 ps and 1.0 ps, respectively, and 300 K and 1 bar target values. The 

production simulation of 150 ns duration was generated with a 2 fs time step and 

the Nosé-Hoover thermostat42 for temperature control and the Parrinello-Rahman 

barostat43 for pressure control.  

Calculation of osmotic second virial coefficients and structure factors. 

The osmotic second virial coefficient, B2, is the second-order coefficient in the Taylor 

series expansion of the osmotic pressure in terms of number density;44 it provides 

one of the very few experimental measures of pairwise interactions between 

protein molecules in solution: B2 < 0 implies attractive interactions, while B2 > 0 

implies repulsive interactions, and the magnitude of B2 quantifies the strength of the 

interactions. The osmotic second virial coefficient is computed from simulations 

according to:44  

B
2

= -2p g r( ) -1é
ë

ù
ûr

2dr
0

¥

ò ,       (1) 

where g(r) is the radial distribution function of the protein centers-of-mass. Here, 

the radial distribution function describes a potential of mean force between two 

molecules, W(r) = –kBT ln g(r), which includes averaging over all possible 

orientations and conformations of both molecules. 

The structure factor, S(q), is an interference function that arises from 

interparticle interactions and can be extracted from small-angle x-ray and neutron 
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scattering measurements.  The structure factor is also readily computed from the 

protein-protein radial distribution function according to:45 

S q( ) =1+ 4pr g r( ) -1é
ë

ù
û

sin qr( )
qr

r 2 dr
0

¥

ò ,     (2) 

where q is the modulus momentum transfer vector, and  is the solution density.  

Sample preparation and static light scattering experiments. Lyophilized 

hen egg white lysozyme (Cat. No. 195303) was purchased from MP Biomedicals 

(Solon, OH). Lysozyme was dissolved in 10 mM sodium phosphate buffers 

containing 0.05% sodium azide (pH 4.7 and 6.9) with NaCl concentrations of 50, 75, 

100, 125, 150, 200, 250, and 300 mM for a final protein concentration of 50 mg/mL. 

Serial dilutions were performed to prepare samples with protein concentrations 

ranging from 2.5 to 50 mg/mL for light scattering measurements. The 

concentrations were checked by UV absorbance measurements using  = 2.64 mL 

mM-1 cm-1 at 280 nm. A Dawn HELEOS multi-angle light scattering instrument and 

an Opitlab rEX refractive index detector (Wyatt Technology, Santa Barbara, CA) 

were used to collect the data required for experimental B2 determination. Samples 

were injected using the batch-mode technique from lowest to highest 

concentrations after filtering to ensure monodispersity. 

Estimation of osmotic second virial coefficients from static light 

scattering data. Scattering intensity data at each concentration was processed to 

remove artifacts caused by sample injection, and the median of the remaining 

observations employed as the scattering intensity measurement for each detector.  

Medians were also taken for the refractive index increment at each concentration; 
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readings at concentrations greater than 0.02 g/mL exceeded the range of the 

differential refractometer, and were treated as missing for purposes of analysis. 

For small particles in dilute solution, Zimm's46 second order expansion of 

light scattering intensity (in terms of the excess Rayleigh ratio, R
q

) with respect to 

concentration leads to the approximation:47 

Kc

R
q

»
1

MP q( )
+ 2A

2
c ,        (4) 

where K = 4p 2 dn / dc( )
2

n
0

2 /N
A
l

0

4, with dn/dc the refractive index increment, n0 the 

solvent refractive index, 0 the vacuum wavelength of the incident light, NA 

Avogadro's number, M the (mass weighted) mean particle mass, c the protein 

concentration, P q( )  a size-specific factor that depends upon the detection angle  

relative to the angle of incidence, and A
2

=B
2
N
A

/M2  is the osmotic second virial 

coefficient in a power series expansion of the osmotic pressure in terms of 

concentration. The P q( )®1 limit is realized as the particle radius of gyration rg 

approaches 0; for monomeric or small oligomeric particles with rg << 0, angular 

dependence is negligible, and we employ this limit here.  Note that no angular 

dependence was detected in our experiments, which is consistent with predictions 

for a beam wavelength of 658 nm and rg »  0.14 nm.48 

As B2 represents a very small deviation in local effective particle density 

(relative to uniform mixing), it is challenging to estimate with high precision. We 

employ a number of techniques to address this issue. Given multiple observations of 

R
q

 at varying concentration, it is natural to estimate A2 by regression of Kc /R
q

 on 
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2c; when the scattering particles are monodisperse and of known mass, improved 

precision can be obtained by employing Kc /R
q

-1/M  as the response and fitting a 

zero-intercept model.  When particles are known to be monodisperse but the 

oligomer size is not known, greater precision can still be obtained by fitting models 

to k-mers of orders 1, 2, … and selecting the k that minimizes the squared error in 

the predicted scattering intensity.  As our samples were filtered to ensure 

monodispersity (with verification by dynamic light scattering) and the monomer 

mass is known, we employ this strategy here. This estimate also depends upon 

dn/dc, which must itself be estimated by regressing nc (the measured refractive 

index at concentration c) against c.  Because nc is in practice far more reliably 

measured than c itself, further gains in precision can be obtained by using the 

refractive index data to correct the measured concentration values prior to 

estimation of A2 (i.e., regressing c on nc and employing the predicted ĉ values in 

place of c).  Combining the above leads to the following multi-stage procedure for 

estimating A2: (1) regress nc on c to obtain an estimate of dn/dc (dn dc⁄̂ ); (2) regress 

c on nc to obtain corrected concentration estimates ĉ ; (3) for k Î 1, 2, …, regress 

Kc /R
q

-1/ kM( )  on 2ĉ   to obtain A2̂|k, selecting the k leading to the minimum 

squared error in R
q

 and associated A2̂ for the final B2 estimate. 

Classical estimates of the precision of A2̂ are problematic both because of the 

interdependence of A2̂ on dn dc⁄̂  and because of the contribution of concentration to 

both sides of the regression.  Here, we instead employ a non-parametric bootstrap 

procedure (using the boot library for R49) to estimate confidence intervals.  
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Specifically, the above procedure was repeated for 5000 random with-replacement 

joint resamples of the refractive index and scattering intensity data (with sample 

sizes preserved for each subset), and 95% confidence intervals were estimated from 

the resulting bootstrap replicates using the bias-corrected/adjusted percentile 

(BCa) method of Efron.50  These are shown in Figures 3 and 10 as vertical lines.  

Oligomer size estimates were further inspected by examination of bootstrap 

standard errors for signs of instability; samples were estimated to be monomeric for 

all replicates in all conditions examined.  
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CHAPTER2. RESULTS AND DISCUSSION 

Single-configuration Monte Carlo simulations. In protein solution 

simulations at low to medium concentrations (e.g., < 100 mg/mL), translational MC 

trial move steps can be significantly larger than BD time steps, increasing the 

efficiency of configurational sampling. This is illustrated in Figure 1, which displays 

the convergence of the radial distribution function between protein centers-of-mass 

in scMC and BD simulations of HEWL under identical conditions at a concentration 

of 10 mg/mL. The sampling efficiency in the scMC simulations is increased by 

roughly two orders of magnitude compared to BD, producing a converged radial 

distribution function after 100k MC cycles (one cycle consists of Nprot trial moves, 

where Nprot is the number of protein molecules in the simulation). 

 

Figure 1. Convergence of the protein-protein radial distribution function from scMC (left 

panel) and BD (right panel) simulations of HEWL solutions containing 200 rigid proteins 

(1LZN structure) at a concentration of 10 mg/mL and ionic strength of 200 mM.  The 
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sampling efficiency, in terms of CPU hours needed to generate a converged radial 

distribution function, is roughly two orders of magnitude higher for scMC than BD 

simulations (CPU h on single Intel Xeon E5430 processor with 2.66 GHz). scMC simulation 

lengths are expressed in MC cycles; a single MC cycle consists of Nprot trial moves, where 

Nprot is the number of protein molecules in the simulation. 

The scMC sampling efficiency advantage over BD vanishes at high 

concentrations, when the step size of translational MC trial moves need to be 

reduced in order to maintain acceptance ratios on the order of 50%, as shown in 

Figure 2 for a 169 mg/mL HEWL solution. However, we point out that MC 

simulations offer additional advantages for the simulation of slowly converging 

systems, e.g., in the event of protein aggregation. For example, biased sampling 

schemes, such as the aggregation volume biased MC technique developed by 

Siepmann and co-workers,10, 11 can be readily implemented to improve the sampling 

of the formation and destruction of clusters. 
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Figure 2. Convergence of the protein-protein radial distribution function from scMC (left 

panel) and BD (right panel) simulations of HEWL solutions containing 475 rigid proteins 

(1E8L structure) at a concentration of 169 mg/mL and ionic strength of 100 mM. The 

sampling efficiency is similar for both scMC and BD simulations at this concentration (CPU h 

on single Intel Xeon E5430 processor with 2.66 GHz); scMC simulation lengths are 

expressed in MC cycles; a single MC cycle consists of Nprot trial moves, where Nprot is the 

number of protein molecules in the simulation. 

Previous BD simulations of HEWL solutions using the same6 or similar4 

protein interaction potentials were validated using osmotic second virial 

coefficients as a function of solution ionic strength reported in the literature.45 Here, 

we report two new sets of B2 values from SLS measurements on HEWL at two 

different pH values (see Figure 3). Our experimental results are in good agreement 

with the literature45, 51-54 and are consistent with Derjaguin-Landau-Verwey-

Overbeek (DLVO) theory for colloidal systems.52, 55 
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Figure 3. HEWL second virial coefficient (B2; in units of B2 for hard spheres, BHS = 4 x 

protein volume) estimated from static light scattering experiments and scMC simulations as 

a function of solution ionic strength. Solution pH values of 4.7 and 6.9 reported in the 

experimental measurements correspond to estimated HEWL net charges of +10e and +8e, 

respectively.56 Proteins in solution simulations based on crystal structures (1IO5 and 1LZN, 

net charge +9e and +11e, respectively) are overall more repulsive than indicated by 

experiments. HEWL in simulations based on the solution NMR structure (1E8L), which has 

the same net charge as 1IO5, are overall more attractive than in crystal structure 

simulations, and appear to be consistent with experiments (see text for more details) at 

ionic strength values less than ~0.2 M. However, at higher ionic strengths, the proteins 

appear to be more attractive than indicated by experiments. 

Comparison of the ionic strength dependence of the B2 values computed from 

scMC simulations at a concentration of 10 mg/mL using different input structures 
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reveals that the protein-protein interactions are strongly dependent on the choice of 

structure, and shows that a single structure is not able to reproduce the trend in the 

experimental data (Figure 3). Electrostatic repulsion is overestimated and, hence, B2 

is too large, in the two simulations based on crystal structures (1IO5 and 1LZN, net 

charge +9e and +11e, respectively). At ionic strength values below ~0.2 M, the B2 

values obtained from the solution NMR structure (1E8L, net charge +9e) follow the 

correct qualitative trend compared to the experimental data, but the preponderance 

of electrostatic interactions is evident by the lack of a plateau at ionic strength 

values above ~0.2 M. Notably, the protein-protein interactions are significantly 

more attractive in the 1E8L simulations than in the simulations based on the crystal 

structure with the same net charge (1IO5). 

In addition to the overall increased protein-protein attractive interaction, the 

corresponding radial distribution functions between protein centers exhibit a 

spurious peak at r ~ 30 Å in simulations of the 1E8L HEWL structure, corresponding 

to specific protein-protein contacts that are not present in the simulation based on 

the 1IO5 and 1LZN crystal structures (Figure 4). Furthermore, the differences 

between the 1E8L and 1IO5 radial distribution functions are much greater than the 

differences between the 1IO5 and 1LZN simulations, suggesting that the specifics of 

protein conformations can have a much more dramatic effect than the total charge. 
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Figure 4. Protein-protein radial distribution functions g(r) from the scMC simulations from 

which the B2 values plotted in Figure 3 were obtained (10 mg/mL). In addition to a spurious 

peak at ~30 Å in simulations based on the 1E8L structure, there is more contrast in the 

protein-protein interactions when comparing the provenance of the protein structure (e.g., 

1E8L vs. 1IO5) than when comparing different protein net charges (1IO5 vs. 1LZN). 

In Figure 5, we compare isosurfaces of spatial distribution functions (SDFs), 

specifically, distributions of the density of other protein centers-of-mass around a 

tagged central protein, normalized by the bulk density at a protein concentration of 

10 mg/mL with an ionic strength of 100 mM. Despite the apparent similarity of the 

radial distribution functions for scMC simulations based on the two crystal 

structures 1IO5 and 1LZN, the SDF from the simulation based on the 1IO5 structure 

reveals interaction sites that are not observed in the SDF from the simulation based 

on the more repulsive 1LZN structure. Similarly, the comparison to the SDF 

obtained from the simulation based on the solution NMR structure (1E8L) shows 

not only an overall increased attraction, but also additional locations of preferred 

contact sites.  
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Figure 5. Spatial distribution functions (see text for details) for scMC simulations at 

100 mM ionic strength. The green surfaces represent regions of 1.7 times the bulk density 

computed on a 160 Å cubic grid with a 4 Å grid spacing centered on and aligned with 

respect to the reference molecule shown in red. In addition to the greater protein-protein 

attraction in the 1E8L simulation, the simulations based on the two crystal structures 

exhibit interaction sites that are distinct from each other.  

The SDF for the 1E8L simulation as shown in Figure 5 computed with an 

increased resolution on a 1 Å grid (Figure 6A) reveals two highly localized sites with 

a more than 1500-fold increase of the concentration relative to the bulk solution 

(corresponding to a stabilization in free energy of –4.3 kcal/mol). The 

corresponding dimer structures, extracted from the simulation trajectories, show 

binding motifs characterized by energetically favorable contacts of charged side 

chains (Figure 6B). Such specific binding motifs were not observed in simulations of 

the 1LZN and 1IO5 HEWL structures. The highest local density represents only 9-

fold and 20-fold increases relative to the bulk density in scMC simulations based on 

the 1LZN and 1IO5 structures, respectively. 
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Figure 6. (A) Spatial distribution function for the 1E8L simulation at 100 mM ionic strength 

computed on a 100 Å cubic grid with a grid spacing of 1 Å. The green isosurfaces 

correspond to a 1500-fold increase of the local density relative to the bulk density. (B) 

Dimer configurations corresponding to the regions of increased concentration shown in (A). 

Solvent exposed basic (blue) and acidic (red) side chains are rendered in ball-and-stick 

representation.  

The fact that 1IO5 and 1E8L structures have the same total charge and 

protonation state indicates that the highly specific binding observed in the 1E8L 

simulations originates in the specific arrangements of side chains on the protein 

surface, which is a consequence of the differences in structure determination 

methods. The 1E8L structure represents a protein in an aqueous solution 

environment where the charged side chains are in more extended conformations 

than those in the crystal environment required for the determination of the 1IO5 
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structure via neutron diffraction. A superposition of the 1IO5 and 1E8L structures 

(Figure 7) indicates, apart from the almost perfect alignment of the protein 

backbone, that the basic side chains tend to be significantly more extended and 

solvent exposed in the solution NMR structure than in the crystal, where they are, 

on average, more folded onto the protein surface. The solvent exposed basic side 

chains will be floppy and explore multiple conformations in solution. However, in 

scMC simulations as well as in rigid-body BD simulations, they are rigid, effectively 

losing their conformational entropy. This leads to enhanced favorable inter-protein 

interactions between exposed side chains of opposite charge, as observed in Figure 

6, which in turn create highly specific binding motifs. This behavior is unrealistic, as 

the conformational entropy of the solvent-exposed side chains should decrease the 

population of such highly specific conformations. Thus, our results demonstrate that 

artifacts in inter-protein interactions may arise due to including only single side 

chain conformations in rigid-body BD or MC simulations of many-protein systems.  
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Figure 7. Conformations of basic side chains in the neutron diffraction structure 1IO5 

(orange) and the solution NMR structure 1E8L (green) of HEWL (A), and distances between 

the centers of charge and the protein surface (B), indicate that they are more extended and 

solvent-exposed in the solution NMR structure than in the crystal structure. The behavior of 

these side chains in solution is poorly modeled with a single protein configuration.  

Multi-conformation Monte Carlo simulations. To eliminate the 

dependence of the simulation results on the specifics of the protein conformation, 

we implemented the mcMC method, which introduces conformational flexibility in 

the protein molecules by allowing them to convert from one conformation to 

another within a structural library generated from an all-atom MD simulation (see 
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Methods for details). While the degree of flexibility introduced this way is obviously 

limited and not able to describe the entire protein conformational space, we posit 

that any reasonable choice of the ensemble will provide a significant improvement 

over the modeling of proteins in solution as single-conformation rigid bodies.  

Our library consists of 50 structures that collectively represent a broad 

sampling of the basic and acidic side chain conformations without significant 

structural changes to the HEWL backbone (backbone RMSD < 2 Å). The variation of 

the positions of the positive and negative charge centers within the ensemble is 

shown in Figure 8A. The statistical weights associated with the library of 

conformations, obtained from the relative population of each cluster in the MD 

trajectory and used in the generation of conformational swap trial moves, are 

depicted in Figure 8B. 

 

Figure 8. Structural library of HEWL employed in mcMC simulations obtained from a 

150 ns all-atom MD simulation trajectory. (A) Superposition of the charge centers of basic 

(blue) and acidic (red) amino acid side chains in the 50 conformations that comprise the 

library. B) The statistical weights of individual structures, determined by their relative 

populations along the MD trajectory, are used as probabilities for the generation of 

conformational swap trial moves in the mcMC simulations. 
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To maximize agreement between experimental second virial coefficients and 

simulations with the mcMC algorithm, we adapted the protein-protein interaction 

potential by rescaling the empirical nonpolar desolvation (ND) potential term (as 

also described in other studies with the employed interaction potential6, 27). This 

term describes a short-ranged, uniform attraction between protein surfaces and 

mimics hydrophobic interactions. We also considered the effects of simultaneous 

rescaling of the empirical electrostatic desolvation, ED (repulsive, non-uniform), 

and nonpolar desolvation, ND (attractive, uniform), terms.  We found that the two 

desolvation terms have compensating effects, resulting in a set of optimal ED and 

ND scaling factor pairs that include the default scaling value of the ED term (Figure 

S2). Therefore, we opted for leaving the ED scaling factor at its default value and 

explored in more detail the consequences of variations in the ND scaling factor. 

Figure 9 shows the effects of changing the strength of the nonpolar 

desolvation potential on the protein-protein radial distribution function. When the 

default value of the scaling parameter (ND = −0.0090 kcal/mol/Å2) is used, the 

resulting radial distribution functions (Figure 9, left panels) are very similar to the 

ones obtained from scMC simulations based on the 1IO5 structure under identical 

conditions (middle panels of Figures 4 and 5), suggesting a comparable radially 

averaged interaction potential between the HEWL proteins in both simulations. 

However, the SDFs at 100 mM ionic strength again show significant differences 

between the two simulations (compare the left panel of Figure 9B with the middle 

panel of Figure 5), indicating the importance of side chain conformation and 

flexibility in determining the preferred binding geometries. The radial distribution 
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functions from mcMC simulations with increased strengths of nonpolar desolvation 

interactions (ND = −0.0098 kcal/mol/Å2 and ND = −0.0100 kcal/mol/Å2) and the 

1E8L scMC simulation (Figure 4, left panel) exhibit comparable main peaks at ~35 Å 

separation distance. However, the spurious peak at ~30 Å is absent in the mcMC 

simulations, as expected for simulations with flexible side chains. 

 

Figure 9. (A) Protein-protein radial distribution functions from HEWL mcMC simulations at 

three different values of the scaling parameter of the nonpolar desolvation potential, ND 

(from left to right, ND = −0.0090 kcal/mol/Å2 , −0.0098 kcal/mol/Å2 , −0.0100 kcal/mol/Å2  

). (B) Isosurface contours (green) at 1.7 times the bulk density in the corresponding spatial 

distribution functions at 100 mM ionic strength. 

The experimental osmotic second virial coefficients are reproduced well by 

the mcMC simulations with stronger nonpolar desolvation interactions (Figure 10). 

Notably, however, the SDFs, which define the preferred protein-protein binding 

interfaces, apart from the overall interaction strength, do not depend on the scaling 

factor of the nonpolar desolvation term (Figure 9B) as expected given the uniform 
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attraction relative to the solvent accessible surface area described by the scaled ND 

potential term. In the scMC simulation that employed the 1E8L solution NMR 

structure, the agreement with the experimental B2 values at ionic strength below 

200 mM was fortuitously achieved via increased exposure of the polar and charged 

side chains with zero conformational entropy.  The exposure of polar and charged 

side chains is comparable for the structures in the ensemble used for the flexible 

mcMC simulations, as they are obtained from MD simulations in an explicit solvent 

environment. Thus, in contrast to the scMC case, in the mcMC simulation 

energetically highly favorable protein-protein interactions between individual 

structures lead to a compensating decrease of the conformational entropy, thus 

weakening the total binding affinity. 

 

Figure 10. HEWL second virial coefficient (B2; in units of B2 for hard spheres, BHS = 4 x 

protein volume) estimated from static light scattering experiments and mcMC simulations 

as a function of solution ionic strength at a protein concentration of 10 mg/mL. The mcMC 
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simulations were performed using the optimal value of the nonpolar desolvation strength 

determined from the experimental estimates (ND = −0.0098 kcal/mol/Å2; see Supporting 

Information for more detail on the potential parameter optimization). 

While osmotic second virial coefficients are determined at low 

concentrations (i.e., 2.5–50 mg/mL), structure factors allow us to validate our 

simulations against experimental data obtained at high protein concentration. 

Structure factors are interference functions that arise from protein-protein 

interactions in small-angle x-ray and neutron scattering measurements on protein 

solutions; peaks in the structure factors occur at values of the wave-vector transfer, 

q ~ 2π/d, corresponding to preferred interactions on length scales d.  Results from 

mcMC simulations with variable scaling of the nonpolar desolvation potentials are 

shown in Figure 11 in comparison to experimental results57, 58 and a previous BD 

simulation study by McGuffee et al.4 The concentration used in all cases is 

169 mg/mL. In order to compare our simulations with experiments at low ionic 

strength, we employed an ionic strength of 50 mM to ensure a sufficient decay of the 

electrostatic interactions within the employed potential grids. We note that the 

experimental studies have been carried out at a neutral pH with a slightly different 

protonation state (charge of +8e), while the HEWL proteins in our mcMC 

simulations carry a charge of +9e. Thus, minor differences between the simulation 

and experimental data are expected based on slight differences in solution 

conditions. 
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Figure 11.  Structure factors from mcMC simulations (with varying nonpolar desolvation 

strength) of a HEWL solution at 169 mg/mL and 50 mM ionic strength in comparison to 

experimental data and a previous BD simulation, both at neutral pH. The choice made for 

the nonpolar desolvation strength parameter after optimization using B2 estimates from 

low-concentration simulations (ND = −0.0098 kcal/mol/Å2) also produces the best match to 

experimental structure factors at high concentration. 

The main peak at q = 2.0 nm-1 and the shoulder at q = 0.9–1.0 nm-1 are 

qualitatively reproduced by the mcMC simulations with modified nonpolar 

desolvation potentials (ND = −0.0098 kcal/mol/Å2 and −0.0100 kcal/mol/Å2) 

(Figure 11). In the simulation with the default scaling factor (ND = 

−0.0090 kcal/mol/Å2), the low q-shoulder is shifted towards higher q-values and is 

increased in intensity. At q-values below 0.7 nm-1, the structure factors obtained 

from mcMC simulations are lower than the experimental structure factors, 

indicating some discrepancy in the long-range order. This discrepancy could be due 

to the increased long-ranged repulsion caused by the additional charge, and/or to 
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the lack of convergence of the values of the radial distribution functions at large 

distances that are necessary to compute accurate values of S(q) at very low q.4 

Nonetheless, the simultaneous overall good agreement of the mcMC simulation 

results (for a particular choice of the nonpolar desolvation scaling factor, ND = 

−0.0098 kcal/mol/Å2) with experimentally determined osmotic second virial 

coefficients and structure factors shows that the mcMC simulations can provide a 

realistic description of protein-protein interactions. Moreover, the conformational 

sampling provided by mcMC alleviates the unwanted dependence of the simulated 

protein-protein interactions on the choice of input structure, which is an issue with 

conventional rigid-body simulations. 

High concentrations and the resulting prevalence of protein-protein 

interactions also affect the population of HEWL conformations in the mcMC 

simulations. Conformations that are able to form dimers or oligomers with low 

intermolecular potential energies are stabilized, while conformations that interact 

less favorably with other proteins are destabilized. Figure 12 shows the distribution 

of conformations sampled by the MD simulation represented by the 50 individual 

conformations in the library (gray bars) together with interaction-induced changes 

observed in the mcMC simulations at 169 mg/mL for the three values of the 

nonpolar desolvation potential considered here (colored bars). Both, stabilization 

and destabilization effects are monotonic and approximately proportional to the 

scaling factor of the nonpolar desolvation potential. This result shows how mcMC 

simulations allow the system to adapt the distribution of protein conformations 

from dilute-limit conditions, in which the structural library was generated, to the 
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high concentration regime, in which inter-protein interactions become relevant. 

This adaptation is limited to a change in the population of discrete conformations 

represented in the employed library of structures. Conformations that are 

unfavorable under dilute conditions and only become stable due to interactions 

with other proteins will have low statistical weights in a library generated by a MD 

simulation of a single solvated protein and, hence, require many trial moves to be 

sampled, even if they are energetically favored in high concentration conditions. 

Alternative procedures for generating the library of protein conformations, such as 

a more computationally demanding MD simulation of multiple protein molecules at 

high concentration, might be considered in such a case. 
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Figure 12. Distribution of protein conformations sampled by the MD simulation (gray bars, 

proportional to the statistical weights shown in Figure 8B) together with changes induced 

by inter-protein interactions in mcMC simulations at high protein concentration 
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(169 mg/mL) for varying strength of the nonpolar desolvation potential term (colored 

bars). 
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CHAPTER 3. SUMMARY 

We have shown that MC simulations of many-protein systems can be performed 

using protein-protein interaction models developed for BD simulations. We used 

scMC simulations to analyze the effects of fixed side chain conformations in rigid-

body simulations of systems containing many interacting proteins. Differences in 

the exposure of charged basic side chains, in particular between solution NMR 

structures and structures obtained from crystallography, can significantly modify 

preferential protein-protein interaction sites and the overall attraction of the 

proteins. Within the framework of MC simulations of protein solutions, we 

introduced a simple approach, mcMC, to account for molecular flexibility by 

allowing molecules to switch between multiple conformations within a discrete 

library of conformations, e.g., as obtained herein from a MD simulation of a single, 

fully-flexible protein in aqueous solution. Statistical weights used in the generation 

of mcMC trial moves for conformational changes allow us to describe distinct 

thermodynamic stabilities of individual conformations in the infinite dilution limit. 

Our approach removes potential artifacts observed in simulations of rigid protein 

structures, such as highly specific binding motifs involving fixed conformations of 

long, charged side chains, whose flexibility needs to be accounted for. In particular, 

after a minor reparameterization of empirical scaling parameters in the protein-

protein interaction potential, we demonstrated improved agreement of simulated 

osmotic second virial coefficients with light scattering experiments at low protein 

concentrations and various salt concentrations. In addition, we could demonstrate 
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improved agreement with experimental structure factors obtained at high protein 

concentration.  

The mcMC approach can be employed for simulations of aggregating protein 

systems and crowded biomolecular solutions. Introducing flexibility for the 

simulated proteins, even if only within a limited set of discrete, Boltzmann-weighted 

conformations, will improve predictions of specific binding modes as well as overall 

aggregation propensities. Furthermore, the use of MC simulations allows 

implementation of enhanced sampling procedures for strongly aggregating systems 

(such as aggregation volume biased Monte Carlo10, 11, 13, 22), which are otherwise 

challenging to sample in conventional BD or MC simulations. 
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Table S1. Single-conformation Monte Carlo (scMC) simulations of hen egg 
white lysozyme solutions 
 

 
  

Protein 
Structure 
(PDB ID) 

Net 
Charge 

(e) 

Number of 
Proteins 

Concentration 
(mg/ml) 

Ionic Strength 
(mM) 

MC cyclesa 
(x 103) 

1E8L +9 200 10 50 1500 

1E8L +9 200 10 100 1500 

1E8L +9 200 10 150 1500 

1E8L +9 200 10 200 1500 

1E8L +9 200 10 250 1500 

1E8L +9 200 10 300 1500 

1E8L +9 200 10 500 1500 

1E8L +9 475 169 100 385 

1IO5 +9 200 10 50 1500 

1IO5 +9 200 10 100 1500 

1IO5 +9 200 10 150 1500 

1IO5 +9 200 10 200 1500 

1IO5 +9 200 10 250 1500 

1IO5 +9 200 10 300 1500 

1IO5 +9 200 10 500 1500 

1LZN +11 200 10 50 1500 

1LZN +11 200 10 100 1500 

1LZN +11 200 10 150 1500 

1LZN +11 200 10 200 1500 

1LZN +11 200 10 250 1500 

1LZN +11 200 10 300 1500 

1LZN +11 200 10 500 1500 

aOne MC cycle consists of Nprot trial moves, where Nprot is the number of protein molecules in the 
simulation. 
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Table S2. Multi-conformation Monte Carlo (mcMC) 
simulations of hen egg white lysozyme solutionsa,b 

 
 
 
 
 
 
 

 
   
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dependence of protein-protein radial distribution functions on the size of the 
interaction potential grids. All of the terms in the protein-protein interaction 
potential are mapped onto cubic grids for computational efficiency. We investigated 
the optimal grid size for each potential term in turn by varying the grid size between 
603 and 2003 Å3, while using a 2003 Å3 grid for all the other potential terms. Figure 
S1 shows the corresponding radial distribution functions for each test set. Figure S1 
shows radial distribution functions obtained from scMC simulations using the 1E8L 
NMR solution structure at 10 mg/mL concentration and 100 mM ionic strength. The 
results suggest that convergence is achieved for the electrostatic potential at a 
minimum grid size of 1003 Å3 (at this ionic strength) and at 803 Å3 for all other 
potential terms. The conservative use of 2003 Å3 potential grids in the remainder of 
this study therefore ensures minimal influence of this effective interaction potential 
cutoff on the reported results.  

Number of 
Proteins 

Concentration 
(mg/ml) 

Ionic Strength 
(mM) 

MC cyclesc 
(x 103) 

200 10 50 1500 

200 10 100 1500 

200 10 150 1500 

200 10 200 1500 

200 10 250 1500 

200 10 300 1500 

200 10 500 1500 

475 169 50 300 

aThe structure library used in the mcMC simulations was 
generated from an all-atom MD simulation with the 1E8L structure 
(net charge +9e) as the initial configuration. 
bEach simulation indicated in this table was performed three 
times, each with a different value of the nonpolar desolvation 
parameter. 
bOne MC cycle consists of Nprot trial moves, where Nprot is the 
number of protein molecules in the simulation. 
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Figure. S1. Protein-protein radial distribution functions from HEWL scMC simulations 
performed with the 1E8L structure at a concentration of 10 mg/mL and an ionic strength of 
100 mM. Each panel shows the effect of varying the grid size of a specific interaction 
potential term while using a grid size of at 2003 Å3 for all others: (A) Electrostatic potential 
term. (B) Electrostatic desolvation potential. (C) Nonpolar desolvation potential. (D) Soft-
core repulsion potential. 

 

Optimization of the parameters in the desolvation potentials. In the SDAMM 
potential,1 the strength of the electrostatic and nonpolar desolvation potential terms 
are specified by empirical scaling paramters (ED and ND, respectively).1, 2 As the 
ionic strength is increased, the Coulomb interactions are screened and the short-
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ranged desolvation potentials dominate the protein-protein interactions. In order to 
optimize the values of ED and ND, we performed a systematic search of the ED/ND 
parameter space by computing B2 values in HEWL mcMC simulations at a 
concentration of 10 mg/ml and ionic strengths of 100 and 300 mM. We calculated 
the root-mean squared differences (RMSD) between the simulation values and our 
two sets of experimental B2 estimates (pH 4.7 and 6.9) in the same range of ionic 
strength. The ND parameter was varied from –0.0114 kcal/mol/Å2 to –0.0088 
kcal/mol/Å2 and the ED parameter from 0.1 to 0.5. The logarithm of the RMSD is 
shown as a function of the ND and ED parameters in Figure S2. It is evident that the 
attractive and repulsive contributions to the overall protein-protein interaction 
potential due to the two desolvation potentials can compensate each other to some 
degree, hence the corresponding scaling parameters are not entirely independent.  

Because the resulting set of optimal (ED,ND) pairs includes the scaling value of the 
electrostatic desolvation term employed in previous HEWL BD simulations1 (ED = 
0.36), we opted for leaving ED at this default value and explored the effect of 
changing ND in more detail. In addition to the ND value used in HEWL BD 
simulations1 (ND = -0.090 kcal/mol/Å2), we report in the main text mcMC 
simulation results for the two ND values corresponding to the minimum B2 RMSDs 
for ED = 0.4 (ND = –0.098 kcal/mol/Å2 when comparing to B2 experimental 
estimates at pH 4.7; ND = –0.0100 kcal/mol/Å2 RMSD when comparing to B2 

experimental estimates at pH 6.9). 



 45 

 

Figure. S2. Logarithm of the root-mean squared differences (RMSD) between B2 estimates 
from mcMC HEWL simulations (using the indicated desolvation potential parameters) and 
experimental estimates at pH 4.7 (top) and pH 6.9 (bottom) and ionic strengths of 100 mM 
and 300 mM. The optimal ND values (at ED = 0.4) are encircled. 
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