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ABSTRACT OF THE DISSERTATION

Agent Based Modeling of Land Use Change: The Case of Shade Coffee in Mexico.

by

Raymundo Marcos Martinez

Doctor of Philosophy, Graduate Program in Environmental Sciences
University of California, Riverside, March 2014
Professor Kenneth A. Baerenklau, Chairperson

This research focuses on addressing methodological issues that impact the
performance of spatially explicit discrete choice agent-based land use models that are
estimated with remotely sensed data. The empirical setting considers land use transitions
between agroforests, perennial crops, grass and corn, and fallow lands during the period
1984 — 2006 in a Mexican coffee growing region in which relatively high deforestation
rates were observed. As a starting point, a Mixed Conditional — Multinomial Logit model
is implemented to highlight assumptions and limitations associated with this standard
modeling approach. The results indicate that this model produces theoretically
inconsistent parameter estimates for the revenue variable associated with three out of four
land uses considered in the analysis. To investigate whether those counterintuitive
marginal effects are generated from misclassified land use data, a Latent Multinomial

Logit (LMNL) model is implemented. This approach allows the identification of land
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use observations that have a high likelihood of being wrongly classified. A
reconfiguration of the dataset based on the LMNL model increased the magnitudes of the
marginal effects of the analyzed land use drivers in the theoretically expected directions.
Next, because static land use models require limiting assumptions that potentially
oversimplify the behavioral process followed by landowners, a structural dynamic
discrete choice model of land use decisions is implemented under the assumption that
land managers are forward-looking and act to maximize their discounted flow of current
and future expected utility within a stochastic environment. A comparison between static
and dynamic models shows that the directions of the marginal effects corresponding to
time-invariant parcel-specific variables generally have the expected directions
independent of the selected modeling approach. More importantly, the marginal effect
estimates for the revenue variables of the agroforestry and perennial crops categories
have the expected direction in the dynamic model. By contrast the myopic modeling
approaches generate counter-intuitive results for the revenue variable that corresponds to
perennial crops production, which affects the validity of those results for policy design.
Finally, a policy simulation exercise shows the sensitivity of welfare estimates to the

discount factor selected as representative of the true value used by decision makers.
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Chapter 1

Introduction

The purpose of this brief introductory chapter is to provide a general justification
of the relevance of the study of agent based land use decisions, as well as a description of
the organization of this thesis. Literature reviews and statements of the research problems
that support and motivate the modeling approaches implemented in this research are left
to subsequent chapters.

During the last few decades, human-driven alterations of the surface of the Earth
have affected relevant patterns and process of the global ecosystem and constitute one of
the main determinants of global environmental change (Bonan, DeFries, Coe, & Ojima,
2004; Lambin et al., 2001). It is estimated that in the postindustrial era, land use and land
cover change (LULCC) such as conversion of natural to agricultural ecosystems,
drainage of wetlands, or biomass burning have generated carbon emissions equivalent to
50% of the global fossil fuel combustion related discharges (Lal, 2004). On the other
hand, greenhouse gas emissions from LULCC dynamics exceed that generated by the
transportation sector worldwide (Myers Madeira, 2008). Land use management can also
modify surface characteristics and affect climate conditions. For instance, overgrazing
and agricultural intensification may reduce vegetation and evapotranspiration generating
warmer surfaces in areas with low soil moisture content (Bofnan et al. 2004) as well as
soil exposure and soil compaction which may result in lower infiltration rates, increased

runoff, and drier soils (USDA, 2008).



Landscape dynamics also affect water resources (see Guo, Ma, Yang, & He,
2010; Peierls, Caraco, Pace, & Cole, 1991 for some examples), biodiversity (Haines-
Young, 2009; Hansen, DeFries, & Turner, 2004; Maestas, Knight, & Gilgert, 2003) and
might alter the frequency or severity of natural disasters such as wildfires (Millington et
al., 2008), landslides (Begueria, 2006), floods (Jiang et al., 2008), and hurricanes (Zia,
2012). During the coming decades, significant increases are expected in global
population, urban areas, and living standards in developing countries. Those situations
will create pressure to further convert or intensify the management of existing ecosystems
to satisfy human needs. Given the relevance that the anthropogenic landscape
configuration has over key aspects of the global ecosystem, several techniques and
methodological approaches have been implemented during the last few decades to
identify, analyze and simulate landscape dynamics (see Agarwal, Green, Grove, Evans, &
Schweik, 2002; Biirgi, Hersperger, & Schneeberger, 2004; Matthews, Gilbert, Roach,
Polhill, & Gotts, 2007; Parker, Manson, Janssen, Hoffmann, & Deadman, 2003 for a
review of modelling approaches). The implemented LULCC modeling efforts have
facilitated the identification of underlying drivers of landscape dynamics (Biirgi et al.,
2004; Geist & Lambin, 2002; Redman, Grove, & Kuby, 2004), and the assessment of
potential impacts of human-environment interactions on the global ecosystem .

Nevertheless, there are still plenty of methodological issues in the agent-based
land use change literature that require further research. Some assumptions or
methodological approaches that directly impact the direction, magnitude and/or statistical

significance of parameter estimates do not appear to have enough empirical justification.



For instance, forward-looking behavior, subjective expectations, consumption
constraints, neighborhood effects on technology adoption, and risk preferences have
received relatively little attention in the land use and land cover change literature.

Given the relevant contribution of environmental services provided by forested
areas, a significant amount of research has been done to understand how driving forces of
deforestation reconfigure pristine landscapes (Andersen, 1996; Chomitz & Gray, 1996;
Geist & Lambin, 2002; Puri, 2006). Unfortunately, the continued pressure over this type
of natural resource has reduced the available area of forests stands. The growing
recognition that agroforestry production systems can provide forest-like services has
motivated a surge of studies of landscape dynamic in agroforestry regions (see Kursten
2000; Blackman & Avalos-Sartorio 2010; Bhagwat et al. 2008; Shanker & Solanki 2000;
Dinata Putra et al. 2005; Swallow et al. 2006; Huang et al. 2002; Schroth 2004 for some
examples). Given the socioeconomic and ecological relevance that coffee production has
in many developing nations, the empirical applications of the modeling approaches tested
in this thesis are based on spatially explicit information collected in a Mexican coffee
growing area that has experienced high rates of tree canopy loss during recent years.

There are practical and methodological justifications to extend the analysis of
landscape dynamics in agroforestry production areas. From a practical standpoint, an
improved understanding of the patterns and processes that generate LULCC in those
regions and the associated socioeconomic and environmental consequences would be
beneficial for policy design that could help to increase agricultural productivity, provide

support in biodiversity conservation efforts, help to control soil degradation and water



pollution, facilitate sustainable urbanization processes, and even help to reduce rural
poverty and migration in agroforestry areas. From a methodological standpoint the
implementation of modeling approaches to incorporate agent’s subjective revenue
expectation processes; to reduce the impacts of misclassified, incomplete or latent land
use information; and to estimate a structural model of land use decisions with forward
looking agents' and potentially reversible land use decisions, ultimately could lead to
better understanding of landscape configuration processes and their drivers. Both issues
are considered in this research by using a latent multinomial logit model to identify
misclassified land use observations, and by implementing a structural dynamic model of
land use choices under uncertainty.

To test alternative modeling options to handle the aforementioned issues, I use
remotely sensed data, socioeconomic information and parcel specific characteristics to
study land use decisions in a Mexican coffee-growing region during the period 1984 -
2006. During that time window, a substantial amount of tree canopy was lost as farmers
moved out of shade coffee and into other crops like corn, citrus and banana. A detailed
description of the study site, and the dataset used in the land use models is presented in
chapter 2. To highlight the methodological limitations of standard static discrete choice
models, chapter 3 describes the implementation of a mixed Multinomial — Conditional
logit model to estimate marginal effects of spatial and economic factors that affect land
use decisions in the study area. Chapter 4 presents an application of the Latent

Multinomial Logit (LMNL) methodology (Caudill, 2006), which is a post-classification

"In this thesis agents, decision makers, landowners and land managers are considered equivalent concepts.



procedure that can be used to identify misclassified land use data. The results indicate
that the reclassification of the parcels based on the LMNL model increases the
magnitudes of the marginal effects of changes in the modeled land use drivers in the
theoretically expected direction. To investigate the structure of the behavioral process
followed by landowners in the study region, in the last chapter, I implement an agent-
based model that consider that the land use choices are dependent on stochastic future
returns expectations and parcel characteristics within a framework that allows for the
possibility that land use decisions can be reversed. The approach is based on a dynamic
discrete choice model that uses the nested fixed point algorithm to compute the maximum
likelihood parameter estimates that better explain the decision making process under

analysis.



Chapter 2

Description of the study region and dataset.

2.1. Study region.

Deforestation in Mexico has been a relevant issue during the last decades,
particularly because this country has been considered one of the five richest biodiversity
hotspots in the world (Mas et al., 2004), and because the agriculture and forest sector
despite representing only 3.8% of the Gross Domestic Product, employs around 13% of
the Mexican labor force representing around 3.3 million farmers that live mostly in poor
rural areas (Conservation International, 2013). According to the Food and Agriculture
Organization (FAO, 2010) during the period 1990-2000 Mexico registered one of the ten
largest annual net losses of forested areas worldwide. Despite the declining trend in the
deforestation rates observed after 2000, the protection of the remaining forested areas and
the restoration of degraded lands still is a relevant policy issue. According to the
Mexican Ministry of Environmental and Natural Resources, one of the Mexican states in
which deforestation has significantly reconfigured the landscape is Veracruz. In that
state, it is estimated that around 75% of the forested arcas have been cleared or
significantly degraded (SEMARNAT, 2005).

Tree canopy removal has not only happened in primary or secondary forests, but
also in agroforestry regions. Particularly in shade-grown coffee plantations during the
1990’s and first half of the 2000’s as a result of the long term sustained decline in coffee

prices observed during that period. The elimination of the Mexican Institute of Coffee



(INMECAFE), which was a governmental agency that subsidized the production,
processing, and commercialization of coffee beans, left coffee growers alone in a
reconfigured international market (Perfecto, Vandermeer, Mas, & Pinto, 2005). The
situation was worst for coffee growers in low-land regions® that are not suitable to
produce high quality coffee, but that were devoted to this agricultural activity during the
period of high coffee prices and heavy governmental subsidies to coffee related activities
during the 1970’s and 1980’s. Landowners in those regions were more prone to
experience reconversion of coffee plantations to monocrops (e.g., citrus, banana,
cornfields) to grasslands; or to migrate and abandon their lands (Gay, Estrada, Conde,
Eakin, & Villers, 2006; Perfecto et al., 2005; Romero, Houston, & Epperson, 2006).
After real coffee prices received by farmers reached their lowest level during the
last 100 years in 2002 (Perfecto et al., 2005) the government of the state of Veracruz
joined efforts with the Universidad Veracruzana (the main public university in Veracruz),
the Common Fund for Commodities, and the International Coffee Organization to
implement a pilot project aimed at providing additional income sources and reducing
migration rates and tree canopy removal in low land coffee growing areas. The objective
was to provide funding and technology transfer to help farmers establish and manage
diversified agroforestry production systems. Two regions in the central area of the state
of Veracruz were selected to implement the pilot project: Zozocolco, and the low altitude
areas of the municipality of Atzalan (see figure 2.1). Those regions have similar agro-

ecological characteristics but different socioeconomic and cultural conditions. A

? In this study low-lands are defined to be less than 800 meters above sea level.



preliminary version of the dataset constructed as part of this thesis was used in two
previous studies of those regions by Ellis et al. (2010) and Baerenklau et al. (2012).
Those authors find that the population living in Atzalan is relatively more educated and
better connected to commodity markets compared with the population of Zozocolco that
has higher poverty rates, is mainly composed by indigenous people, and is relatively
isolated from regional commodity markets. Landscape metric and econometric analyses
implemented by those authors indicate that coffee-growing areas in Atzalan registered a
significant loss of tree canopy, mainly in coffee growing areas in response to the long-
term decline in the profitability of that crop. On the other hand, those authors report that
coffee growers in Zozocolco either abandoned their plantations or increased the number
of allspice trees in their parcels instead of removing the tree canopy to substitute coffee

for other crops.

Figure 2.1 Location of Zozocolco de Hidalgo and Atzalan, Veracruz, Mexico.

2ozocolco U
de Hidalgo



Since agents’ land use decisions in Zozocolco appear to be weakly related to
variations in commodity prices and potentially affected by subsistence constraints that
require modeling assumptions that differ from the approaches that are implemented in
this thesis, I decided to focus my analysis on the study of agent based land use decisions
with empirical data corresponding to the low altitude area of Atzalan. Figure 2.2 shows

the geographic location of the study region used in this research.

Figure 2.2 Low altitude coffee growing region in Atzalan, Veracruz, Mexico.

The study area is defined by a contiguous geographical surface integrated by
around 25,500 hectares distributed across an altitudinal gradient that extends from 80 to
760 meters above sea level. The landscape in that region has gradually reconfigured from

secondary forest and coffee parcels to grasslands, citrus groves and banana plantations.



Information collected in 2006 by the Mexican government (SAGARPA, 2006) indicates
that at the municipality level citrus production was the main agricultural activity
accounting for 68% of the agricultural GDP in the whole municipality. Banana
plantations contributed 12% of the production value; corn generated 9% and coffee
production after representing the main income source in the region during the previous
decades only contributed 5% in that year. On aggregate around 89% of the agricultural
GDP in the municipality is generated by agricultural systems that do not require tree
canopy, which is an indicator of the landscape degradation experienced in that region.
Statistics collected in 2000 indicate that around 82% of the labor force in Atzalan was
employed in agricultural activities and that only two thirds of those workers received
wages while the remaining arguable worked in their own farms (INEGI, 2001).
Additionally, according to CONAPO (2006) Atzalan is considered a municipality with

high poverty levels.

2.2. Dataset description.

2.2.1. Land use information

In the development of land use change analysis one of the first challenges is to
collect spatially explicit data in a cost-effective way. Depending on the scale of the study,
field research (e.g., participatory mapping, surveys), or remotely sensed data can be used
to produce land use information to identify landscape dynamics in a particular region. For
instance, field research can be used to generate a detailed description of ecological,
geographic, and economic landscape-related features at local or regional scales.

Nevertheless, its implementation, validation and analysis can be costly when compared

10



with alternatives that rely on remotely sensed data (Cornwall & Jewkes, 1995).
Specifically, remote sensing techniques can be used to acquire land use and land cover
data of large areas or over inaccessible regions by detecting the natural radiation emitted
or reflected by materials at the surface of the earth (Comber et al 2008). There are pros
and cons associated with implementing either of these mechanisms, and usually a
combination of both approaches results in a more accurate land use/land cover
classification. For instance, the information captured by remote sensors may not be
enough to distinguish between land features with similar spectral signature (Comber et al.
2008), but groundtruthing verification can help to produce a more accurate landscape
analysis. In this thesis remotely sensed data is used with groundtruthing points to produce
a time series dataset of land use decisions between relevant land use classes.

One of the implicit assumptions in economic models of land use change is that the
period for which the researcher has information corresponds to the period in which agents
make their decisions (Rust, 1994). This assumption is rarely recognized but almost
general in studies that investigate land use decisions with cross-sectional or time series
data, particularly in the analysis based on remotely sensed information. In those types of
analyses it is commonly assumed that each of the land use decisions observed at time ¢
was made during that specific period as a function of the explanatory variables observed
at that specific point in time. Unfortunately, land use analyses that require remotely
sensed information are heavily constrained by the availability of aerial or satellite
imagery. In particular, technical and financial constraints limit the collection of historical

land use information to only certain points in time. This constitutes a potential issue in
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the analysis of landscape dynamics since studies based on land use information collected
at points in time that are separated by many years are more likely to erroneously model
observed land use decisions as being determined in the observed periods, when in fact
those choices may have been made at a time for which there is not information in the
dataset. Therefore, land use analysis that rely on observations separated by many years
may produce inaccurate estimations by modeling relationships between land use
decisions and land use drivers that are not temporally linked, especially during periods of
relatively large fluctuations in the explanatory variables.

In an effort to reduce the potential estimation problems generated by the
aforementioned issue, I collected remotely sensed data for as many periods as possible
for the geographical region under analysis. I obtained seven LandSat images for the years
1973, 1984, 1989, 1993, 1996, 2000, 2003, and one Spot image for the year 2006. After
masking out cloud-contaminated data present in the satellite images, I used Image
Analysis for ArcGIS to implement maximum likelihood classification algorithms to
group the pixels in the remotely sensed data into six land use categories: secondary
forests, shade grown coffee, banana, citrus, pasture, and corn.

Unfortunately, the spectral information contained in the LandSat image collected
in 1973 does not allow separating the pixels into the six mentioned categories. The coarse
pixel data in that satellite scene was categorized into forest/agroforestry, grasslands and
agricultural areas. Given the differences in the land use classification implemented in the

1973 LandSat image, the land use analysis is limited to the period 1984 — 2006. This will
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also help to reduce the maximum time separation between observations because several
land use transitions are possible during the 11 years between the periods 1973 and 1984.

Figure 2.3 shows how the landscape configuration in the study region changed
during the period 1984 — 2006. We can observe a continuous decline in the percentage of
land covered by coffee plantations during the period 1984 — 2000 and then the proportion
seems to stabilize around 21% during the period 2000 — 2006. Similarly, land devoted to
cattle ranching activities presents a declining trend during the period under analysis.
Figure 2.3 also allows us to observe that the percentage of land detected as citrus
plantations is almost constant during the period of analysis. In contrast, the proportion of
banana plantations gradually increased from 2% in 1984 to 13% during 2000. The
proportion of cornfields detected in the land use classification do not vary significantly,
in 1984 the land devoted to corn production represented 3% of the total surface, that
percentage increased to 7% at the end of the observed period. Land detected as secondary
forest presents a surprising trend since the relative proportion increased from 4% in 1984
to 18% in 1993, and after reaching the highest percentage for this land use category at
21% in 2003, the proportion ended at 17% during 2006.

Unfortunately, the trend corresponding to secondary forests does not seem to
correspond to the landscape configuration observed in the study area. A potential
explanation to that trend is that the biomass density commonly found in shade-grown
coffee plantations produces spectral signatures that may be difficult to differentiate from
pixel information generated by secondary forests. In fact it is highly likely that a

significant percentage of the parcels classified as Secondary forest are in fact Agroforest

13



parcels. Unfortunately, the resolution of the LandSat and Spot images do not allow us to
accurately discriminate between those two land use classes. We could implement
participatory surveys or geo-reference the forested zones in the region to isolate areas that
are in fact secondary forest but unfortunately those activities are too costly and time
consuming to be implemented in this research.

Figure 2.3. Landscape configuration dynamics in the study region 1984 — 2006
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To reduce potential classification errors, and the dimensionality of the modeling
approaches that are implemented in this thesis, I integrated the land use classes obtained
with the supervised classifiers into three general land use categories: agroforestry (AG)
composed of shade grown coffee and secondary forests; grassland and corn for grain
(GC), and perennial crops (PC) composed of pixels classified as citrus or banana. Those
categories are composed of land uses with similar tree canopy density, profitability and

conversion costs. Figures 2.4 and 2.5 show the land use maps generated with the
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remotely sensed data using the aggregated land use classifications, and figure 2.6 presents
the trends observed during the study period. One of the drawbacks of the aggregation of
the land use data into the AG, GC and PC classes is that some of the observed trends in
figure 2.3 cancel out once we merge the components of each aggregated land use class.
For instance, merging areas identified as shade grown coffee plantations or secondary
forests into the AG category results in a lower rate of decline than the observed for
agroforestry plantations (although as mentioned before those trends are likely affected by

misclassified observations).
2.2.2. Spatial autocorrelation and sample selection

The raster images containing the land use classification produced with the
remotely sensed data are integrated by around 7,400,000 pixels classified into one of the
three broad land use categories mentioned in the previous section. Commonly in the land
use literature each pixel is considered an observation of the independent variable, and
ideally we should be able to use all the available information to analyze landscape
dynamics in the study region. Nevertheless land use decisions are not arbitrary since
agents take into account spatially dependent geographic variables as well as neighboring
agents’ choices to make their decisions. Therefore, we should expect that land use
information at the pixel level does not satisfy the assumption that the observations are
independent from each other. In fact spatial autocorrelation and spatial heterogeneity are
inherent components of land use analysis that need to be controlled to correctly estimate
standard errors, and to produce accurate inferences and efficient parameter estimates

(Brady & Irwin, 2011; Griffith, 2009; Schnier & Felthoven, 2011).
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Figure 2.4. Land use maps low land Atzalan 1973-1993

- FomstAgroforests

1973

1984

1989

1993

16



Figure 2.5. Land use maps low land Atzalan 1996-2006
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Figure 2.6. Aggregated land use trends 1984 — 2006
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Different methodological approaches to account for spatial dependence in the
context of discrete choice random utility models are analyzed by Schiern and Felthoven
(2011) and by Robertson et al. (2009). A commonly implemented workaround to deal
with spatial autocorrelation is to construct spatial correlograms to identify at what
distance the spatial autocorrelation “vanishes”, and at that aggregation level implement
systematic sampling, or systematic random sampling, to generate a sample of spatially
independent observations (Dunn & Harrison, 1993). The Spatial Statistics ArcGIS
toolbox was used to estimate the value of the global Moran’s I index at different distance
values between observations to generate a systematically selected random sample of
independent observations that are not spatially clustered at the 5% significance level. In
the first part of the sampling process the aggregated and disaggregated land use

classifications produced with the 2006 satellite image were used to identify the distance
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at which the potential sample points were not spatially related. Figure 2.7 shows that at
around 720 and 890 meters of separation between sampling points the global Moran’s I
index is below the threshold level. After repeating the analysis for the rest of the land use
maps a separation of around 890 meters between sampling points appeared to be
statistically adequate during all the points in time for which we have remotely sensed
data. This sampling mechanism produced a sample composed of 274 sampling points
distributed across the study area. We follow the common approach in the land use
literature and consider that each sampling point correspond to a parcel with a land use
value determine by a K-nearest neighbors algorithm with k equal to 25 since there is not
available information to identify the polygons corresponding to the area of the parcels in
the study region. Figure 2.8 shows the distribution of the sample parcels in the region
under analysis.

Figure 2.7. Correlogram of 2006 land use data
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Figure 2.8. Location of the systematically selected sampling points
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The sample was further modified to allow the estimation of the age of the land use
observed in each parcel, which is a relevant variable in the dynamic model of land use
decisions implemented in this thesis. Recall that in the original dataset of land use
classifications the largest separation between observations occurs between 1973 and
1984. To define a starting value for the age variable required in the dynamic analysis
(more details can be found in chapter 5), in our sample of 274 parcels we identified 210
parcels that did not change land uses during the period 1973 - 1984. In this subset we
consider that the minimum age of each land use at the beginning of 1984 is 11 years (i.e.,

age; 454 =11 for all parcels i=1,...,210), which corresponds to mature land uses that

have reached its maximum productivity. To be able to compare the result obtained from
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all the different modeling approaches used in this research we limit our analysis to the
subset of 210 parcels and land use data for the periods 1984, 1989, 1993, 1996, 2000,
2003, and 2006. Figure 2.9 shows the location of the observations included in the final
sample of 210 parcels.

Figure 2.9. Location of the sample parcels.
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2.2.3. Fallowed lands category

Land use change is in most of the cases a costly action since it requires the
removal of the current land use, an up-front investment to establish a new crop, and the
financial resources to implement maintenance activities during the growing period of the
newly planted crops. Under some circumstances agents would prefer to abandon their
lands during some period or periods instead of changing the use of their land. To control
for this type of decision, land use information produced with the remotely sensed data

was used to construct an additional land use category composed by fallowed parcels
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(FA). This land use type was assigned to some parcels after analyzing the sequence of
land use decisions produced with the remotely sensed data. I consider that a temporary
land use transition that lasts at most six years (roughly two observation intervals) from
GC or PC to AG and then back to the previously observed land use indicates that that
parcel was in fact fallowed during the period detected as AG. An example may clarify the
procedure. Consider that after classifying the remotely sensed data the land use in parcel
s is classified as GC during 1996, AG during 2000 and again GC in 2003. This land use
sequence is not logical either by economic or biological reasoning. In cases like this we
consider that parcel s was in fact fallowed during 2000 and that the classifier algorithm
categorized the land use as AG after detecting an increase in biomass that was likely
generated because the landowner forwent maintenance activities in that parcel. This
procedure allows me to identify potential fallowed parcels mainly in the GC category
since temporary land use transitions between PC and AG represent less than 0.15% of the
sample dataset. We do not consider this a relevant drawback of the procedure to detect
FA parcels in the PC category since land abandonment of citrus or banana plantations is
not common given the potential impacts on future yields that the lack of maintenance
activities may have. Figure 2.10 shows the trends across the four land use categories in
the sample data during the period 1984 — 2006. In that figure we can observe that the
upward trend in the perennial crops class, and the slight decline in the proportion of land
devoted to grasslands and cornfields observed in the complete dataset are present in the
sample data. On the other hand, the decline in the proportion of agroforest/forest parcels

is higher in the sample data than in the whole study region.
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Figure 2.10. Land use proportions in the sample data
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2.2.4. Land use drivers

Reviews of studies in the land use and land cover change literature have found
that economic factors, political conditions, technological development, demographic
changes, cultural differences and bio-geographical elements interact at different temporal
and spatial scales inducing modifications to the terrestrial ecosystem (Biirgi et al., 2004;
Geist & Lambin, 2002; Redman et al., 2004). Given that a significant percentage of the
land use and land cover change literature has been focused on understanding the causes
of deforestation, some general conclusions have been reached about how changes in
some of the underlying drivers of landscape dynamics impact deforestation rates. For
instance, Angelson and Kaimowitz (1999) after reviewing 146 studies of deforestation in
tropical areas conclude that increases or improvements in the road network, increases in
agricultural prices, low wages, and low employment opportunities generally increase

deforestation. Nevertheless, those authors also find mixed result for other variables such
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as population pressure, poverty, and income levels. The expected direction of the
marginal effects of changes in drivers of land use change becomes less clear when trying
to analyze landscape dynamics using a broader set of land use categories.

Additionally, the results may be highly influenced by the methodological
approaches, modeling assumptions and the quality of the dataset used in the analysis. For
instance, a study considering that market prices drive landowners decisions may find
counterintuitive results if decision makers are not fully market integrated and use shadow
prices that may be affected by subsistence constraints or by cultural factors to make their
land use decisions (Angelsen & Kaimowitz, 1999; Arslan & Taylor, 2008). The next
subsections present a description of the drivers of land use change included in this thesis,
a justification of their inclusion in the model as well as a discussion of the expected

direction of the marginal effects.

2.2.4.1. Market prices

Agricultural prices are one of the most important driving forces of land use
change (Angelsen & Kaimowitz, 1999). Typically, in economic models of household
land use decisions, agricultural prices are commonly assumed to be exogenously
determined in the market. Nevertheless, some studies show that in regions with non-
competitive market structures, imperfect information, insecure property rights, high
transportation costs, or with non-market values attached to agricultural activities,
subjectively determined shadow prices may guide land managers’ resource allocations
(Angelsen & Kaimowitz, 1999; Brooks, 2010; De Janvry, Fafchamps, & Sadoulet, 1991).

Studies that estimate the relationship between land use decisions and fluctuations in
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market prices in those regions may misleadingly estimate decision makers as insensitive
to market prices, or not economically rational, if the shadow prices that they use are
significantly different from the market reference (Arslan & Taylor, 2008; Puri, 2006).

As mentioned in previous paragraphs, the study region was selected after two
preliminary studies by Ellis et al. (2010) and Baerenklau et al. (2012) found that agents in
the low land area of Atzalan, Veracruz, Mexico present a relatively high elasticity of
substitution between land uses. Those authors observe that a significant proportion of the
agents in that region replaced their coffee farms for citrus or banana plantations in
response to low coffee prices. Considering those agents as market-price responsive, I use
time series data on average market prices received by farmers at the state level per ton of
coffee, lemon, orange, tangerine, mandarin, grapefruit, banana, livestock, and corn
obtained from the Secretariat of Agriculture, Livestock, Rural Development, Fisheries
and Food (SAGARPA, 2012) to construct price indexes for the land use categories
considered in this research.

Since some of the land use categories are integrated by more than one agricultural
product it was necessary to merge the price information from each component of the
aggregated land use categories into a useful variable. For the AG category, given that
there is not commercial use of forested lands in the study region and that the main
component of the agroforestry production system is coffee, I use the average rural price
per-ton received by coffee growers as representative of the price for this category (see
table 2.3 in the Appendix section). Since the PC category is integrated by different citrus

varieties as well as banana plantations; to construct a price index for this category it was
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necessary to implement a two-step procedure. In the first step price information of citrus
varieties harvested in the study region was used to construct a weighted average price
per-ton, with weights set according to the area harvested for each citrus type at the state
level (see tables 2.4 and 2.5 in the Appendix section). In the second step, a similar
weighting process was implemented to merge the citrus price index information with the
time series data of average prices of banana observed in rural areas of the state of
Veracruz (see table 2.6 in the Appendix section).

A different procedure was used to construct the price index corresponding to the
GC category. Empirical observations indicate that agricultural activities in the study area
are developed using labor and land intensive production technologies that have not been
significantly modified in decades. This is particularly true for cornfields and grassland
parcels in which it is fair to assume that on average farmers get the same amount of grain
and weight gain of livestock per hectare independently of the age of the plantations.
Obviously this is arguable since the weight gain of livestock per hectare is dependent on
the age of the herd; and the cornfields productivity may decrease through time if the soil
is not fertilized or if the landowner does not implement a rotational production system.
Additionally, climate factors may induce variability in the productivity of the components
of the GC category. Nevertheless, since collecting information about soil quality or
fertilization practices at the parcel level or about the age composition of the livestock
ranching in grasslands is not feasible for this research, I use the average productivity of
corn plantations (that is estimated to be 2.31 tons of corn per hectare) (SAGARPA,

2012); and the average livestock weight gain per hectare observed in unfertilized
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grasslands in the state of Veracruz, Mexico (that is 425 kilograms per year, around 937
pounds), (Tergas & Sanchez, 1979) to construct a per hectare weighted price index for
the GC category. The information used to construct this index is presented in table 2.7 in
the appendix.

Since the FA category does not involve crop production, to account for the
monetary reward that a farmer that decides to let his land fallow can get in an alternative
activity I use the yearly minimum wage for construction workers as a price index for this
category (see table 2.3 in the Appendix section). Farmers in the state of Veracruz do not
have many employment options. Besides working in parcels owned by other people, the
most common option in the study area is to migrate to Mexico City or to the U.S.A.
(Nava-Tablada & Martinez-Camarillo, 2012). Given the educational level of farmers in
the study area the salary received by construction workers can be used as proxy of the
income that farmers can get working off parcel.

The procedures followed to construct price indexes for the land use categories
used in the analysis generate an average price per ton for the AG and PC categories, an
average price per hectare for the GC category, and an average price per farmer for the FA
category. The differences in the procedures are only to facilitate numerical analysis, and
the units are reconciled by using yield values that produce consistent per hectare revenue

estimates.
2.2.4.2. Yields

Historical data from the Agro-food information system (SAGARPA, 2012), and

information from agronomists working in the region is used to determine the average
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productivity per hectare of shade grown coffee, banana, citrus, pasture, and corn. That
information is used to estimate expected yields for AG, and PC plantations for ages
ranging from one to twenty-five years (table 2.1). On the other hand, since the GC price
index is per se a measure of the expected revenue per hectare that is independent of the
age of the land use, a unit value is assigned through all the aforementioned age range.

Table 2.1. Expected yield per hectare at different plantation ages for the AG and
PC categories and yield indexes for the GC and FA categories.

Age AF PC GC FA Age AF PC GC FA
1 0.00 0.33 I 05 14 224 1225 1 05
2 0.00 1.29 I 05 15 224 1225 1 05
3 035 1.29 I 05 16 224 1225 1 05
4 0.80 1.29 I 05 17 224 1225 1 05
5 1.40 4.85 I 05 18 224 1225 1 05
6 2.10  8.15 I 05 19 224 1225 1 05
7 224  10.02 I 05 20 224 1225 1 05
8 224 1225 I 05 21 224 1225 1 05
9 224 1225 I 05 22 224 1225 1 05
10 224 12.25 I 05 23 224 1225 1 05
11 224 12.25 I 05 24 224 1225 1 05
12 224 12.25 I 05 25 224 1225 1 05
13 224 12.25 I 05

The AG and PC yield units are tons. The GC and FA yields are
indicators that map the corresponding price index to the corresponding
proportion of the annual revenue per hectare that is independent of the
age of the plantation.

For the FA category, the constructed price index represents the revenue that a
farmer can get by working off-farm letting his land fallow. Empirical observations in the
study area indicate that one person can complete all the required maintenance activities
for a 2-hectare parcel without needing to hire additional labor. Therefore, I assume that
the price index of the fallow category represents a unit of “yield” for a two-hectare
parcel; or alternatively that the FA revenue that can be linked to a one hectare parcel

corresponds to a yield equivalent of 0.5 of the FA price index. Again all these differences
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in the construction of the price indexes are for convenience in the numerical analysis.
Alternative approaches can be implemented but the estimation of the revenue per hectare

will reach similar values.

2.2.4.3. Parcel specific characteristics
Since this research is based on Von Thiinen’s model of land use that assumes that
land is allocated to the use with the highest return, and that the revenue and cost
associated with each land use option are determined by spatially explicit variables
(Angelsen, 2007; Chomitz & Gray, 1996), I include in the dataset parcel specific
characteristics that are usually included in models of landscape dynamics.

2.2.4.3.1. Distance to nearest road and to nearest market

In spatially explicit random utility land use models it is commonly assumed that
the distance from a parcel to a market affects the revenues and costs associated with the
land uses available to the decision makers. It is logically assumed that the farther a parcel
is to a road or to a market, the higher the transportation costs to sell the harvest or to
purchase the necessary inputs to cultivate a farm. Studies of deforestation processes have
found that the closer a parcel is to a road the higher the likelihood of that area to be
deforested, although in some cases the road infrastructure is an endogenous variable
defined by decision makers to provide access to forests stands with high quality timber
(Angelsen & Kaimowitz, 1999; Chomitz & Gray, 1996). In shade-grown agroforestry
regions the proximity to markets may reduce the probability of substitution of
agroforestry areas for other land use types (Blackman, Avalos-Sartorio, & Chow, 2012).

On the other hand, in a study of land use change in shade-grown coffee based agroforests
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in Mexico developed by Blackman et al. (2008) the authors find that parcels that are
farther from markets and big cities are more likely to be replaced by subsistence
agriculture. Following the last two mentioned studies, I expect a reduction in the
probability of observing cash crops (AG or PC) in the region as the distance to a market
increases, and an increase in the likelihood of agents selecting subsistence crops (such as
corn), land uses that require a large area (such a cattle ranching activities), or land

abandonment as the distance to a marker increases.

There are three main regional market centers in the proximity of the study region
at which farmers can sell their products. Those three markets have similar prices for the
produce generated from the land use categories under analysis. To compute the distance
from each parcel to the nearest market I followed a three-stage process. First, I computed
the Euclidean distance from each sample parcel to the nearest road using vector data from
the National Institute of Geography and Informatics (INEGI, 1999). Second, by using the
network analysis ArcGIS extension and vector data of the road network in the area, I
computed the most efficient route (in terms of distance) from the nearest road
(corresponding to each sampling point) to every market center. Finally, I compared the
distances to each market and selected the shortest one. This variable is considered to be
static since the road network was not significantly expanded during the period of
analysis. It is true that improvements were made to the conditions of some of the main
roads (e.g., changing from dirt roads to paved roads) which potentially reduced diving
time but not driving distance to each market. Figure 2.11 shows the location of the

relevant cities identified as main markets as well as the road network in the study area.
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Figure 2.11. Road network in the study area.
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2.2.4.3.2. Poverty index

We can argue that agents in poor areas relying on household labor to implement
agricultural activities may be less likely to stop cultivating their parcels (Albers, Avalos-
Sartorio, Batz, & Blackman, 2006). On the other hand, farmers in a region with better
welfare status may require relatively higher salaries to work in agricultural activities
potentially increasing the cost of labor and the probability of observing fallowed parcels.
In the agricultural region under analysis I expect that areas with lower poverty rates are
likely to be composed of PC or AG (i.e., by cash crops that require higher up-front

investment) than subsistence crops.
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Starting in 1995 the Mexican Government computes every 5 years an index that
uses data regarding education accessibility, housing conditions and monetary income to
measure the degree of poverty at the community level. This index in general ranges from
-2.37 to 4.49, with lower values corresponding to a better welfare status (CONAPO,
2006). A review of the statistics generated by CONAPO (1998, 2006, 2011) indicates that
the poverty level in the 104 communities located either within the study area or up to 500
meters outside its boundary, has not fluctuated significantly during the 1995, 2000, 2005
and 2010 analyses. We use the Inverse distance weighting method (IDW) to interpolate
the 2005 poverty index values across the study area and the results with the
corresponding range of the poverty index are shown in figure 2.12.

Figure 2.12. Poverty index computed using the Inverse Distance Weighted
interpolation method.
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2.2.4.3.3. Population density

Several studies have documented the influence that population growth has over
land use change in rural areas (see for instance Andersen, 1996; Meyer & Turner B L,
1992; Verburg, Veldkamp, & Bouma, 1999). To capture the effects of population density
and labor availability on land use change for the parcels contained in the sample we use
population data at the community level and interpolate the information across the study
area.  Statistics from CONAPO (1998, 2006, 2011) indicate that the number of
inhabitants in most of the communities has not significantly changed during the study
window. It is expected that large human settlements generate more pressure over their
surrounding environment and at the same time provide more labor to harvest the land.
Since both effects diminish as the distance to the settlement increases I use population
data from 2005 and the inverse distance weighting interpolation procedure to construct

the interpolated surface shown in figure 2.13.
2.2.4.3.4. Slope, elevation, and soil texture

Topographic variables can constitute a relevant factor in the configuration of the
choice set of land uses available to the decision maker or alter crop productivity levels.
For instance, soil chemical and physical properties that impact soil quality can be
dependent on the degree of slope and on the land use/land cover implemented in a
particular area (Moges & Holden, 2008; Wei, Fu, Horton, & Shao, 2010). Additionally,
the land use options for a parcel may be constrained by the degree of slope and soil type
observed in that piece of land (Bakker et al., 2005; Fu et al., 2006). Furthermore, parcels

with high slope values may be prone to soil degradation if the vegetation in an area is
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dramatically changed (Lal, 2001; Van de Koppel, Rietkerk, & Weissing, 1997). In the
study region empirical observations indicate that areas with high degree of slope are used
mostly for agroforestry production while parcels with low slope are preferred for

cornfields, grasslands, citrus or banana production.

Figure 2.13. Population pressure index computed using the Inverse Distance
Weighted interpolation method.
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On the other hand, microclimatic conditions that depend on altitudinal gradients
may also constrain land use options. Agro-ecological requirements for the production of
citrus, coffee and banana suggest that parcels at higher elevations may be more likely to
be devoted to agroforestry production, citrus instead are mostly found at lower elevations.

Since corn and grass can be produced in parcels located at different elevation gradients,
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the direction of the marginal effects could go in either direction depending on the values

of other land use drivers.

To study the effect of topographic variables in the land use decision making
process followed by agents in the geographical region under analysis, I use vector data of
elevation level curves obtained from INEGI (1998) to construct a digital elevation model
that was used to generate slope and elevation information. Figures 2.14 and 2.15 show
the raster data of slope and elevation. Additionally, soil texture information from
SEMARNAP (1998) was used as a proxy of soil quality although there is not significant
variation across the study region (figure 2.16) .

Figure 2.14. Map of slope information.
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Figure 2.15. Map of elevation.
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Figure 2.16. Map of soil texture.
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To conclude this chapter Table 2.2 presents a summary of the mean, minimum and
maximum values of the parcel specific characteristics in the sample data used in the
analysis. Further details are provided in the remaining chapters of this thesis.

Table 2.2. Summary statistics for the parcel specific variables

Variable Description Mean Min Max

Elevation Meters above sea level 354 85 726
Slope Degrees 10.49 0 60.09
Poverty Index that uses education accessibility, 0.316 -0.798 2.109

housing conditions and monetary income
data to measure the degree of poverty
with lower values corresponding to a
better welfare status

Population Index to measure labor availability 263 30 793

Soil texture Soil texture of parcel (1 = fine, 2 = 1.34 1.00 3.00
medium, 3 = coarse)

Distance to road Euclidean distance from each parcel to 389 0 1,779
the nearest road (m)

Distance to nearest Distance from each parcel to nearest 14.36 2.93 35.52

market market (km)

Summary statistics are computed for all parcels and for all the time periods considered in the analysis.
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Appendix.
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1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Table 2.3. AG and FA price indexes.

Nominal values

AG

Average rural price of
cherry coffee (Mex $ /
Ton)
9.25
9.90
12.00
15.00
33.00
59.32
230.00
380.00
550.00
661.39
435.00
594.48
573.00
586.18
850.00
2139.00
2439.95
3294.65
4395.57
4838.16
2855.43
1472.92
1153.69
1373.42
1619.62
2177.47
3055.76
2845.69
4016.67
4133.68
4630.81
5496.29

FC

Construction
workers' salary
(Mex $ per year)

68.54
88.42
123.67
206.83
317.03
491.70
830.45
1770.12
3347.52
3774.84
4334.94
5004.00
5605.92
6001.92
6422.40
7553.76
9368.40
12672.00
14443.20
14443.20
15883.20
16920.00
17683.20
18316.80
18984.96
19641.60
20427.84
21225.60
22075.20
23002.56
24001.92
26159.04

IPC (2000)
0.0012
0.0016
0.0025
0.0051
0.0084
0.0132
0.0246
0.0570
0.1221
0.1466
0.1857
0.2277
0.2630
0.2887
0.3088
0.4169
0.5602
0.6757
0.7834
0.9133
1.0000
1.0637
11172
1.1680
12227
12715
13177
1.3699
1.4401
1.5164
1.5844
1.6333

Real values

AG price index

Average rural price of
cherry coffee (2000
Mex $ / Ton)
7500
6275
4786
2963
3941
4490
9349
6663
4503
4512
2343
2610
2178
2030
2753
5131
4355
4876
5611
5297
2855
1385
1033
1176
1325
1713
2319
2077
2789
2726
2923
3365

FA price index

Construction workers'
salary (2000 Mex $ per
year)
55,578
56,038
49,324
40,863
37,857
37,220
33,755
31,036
27,406
25,752
23,349
21,974
21,312
20,790
20,798
18,120
16,723
18,753
18,437
15,814
15,883
15,907
15,828
15,682
15,527
15,447
15,503
15,494
15,329
15,169
15,149
16,016

Source: Author calculations based on data from SAGARPA (2012) and INEGI (2009).
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Year
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Table 2.4. Nominal average market prices for relevant citrus varieties harvested in the study region.

Lemon
5,728
7,935
15,281
15,486
16,014

6,756

6,527

5,317

5,339

6,932

6,216

7,176
10,266
10,537
11,284
11,821
10,966
10,894
12,704
13,356
13,965
16,589
18,499
20,820
21,990
22,177
23,009
27,374
31,210
31,245
31,300
33,003

Surface harvested ( Ha. )

Mandarin
5,039
6,095

13,465
13,425
13,579
6,540
6,540
5,389
4,492
4,492
4,492
4,727
4,842
5,631
5,154
5,697
5,511
5,739
7,331
5,722
6,181
6,601
7,096
7,477
7,596
7,519
7,674
7,826
8,576
8,106
8,137
8,944

Orange
71,683
72,427
86,752
86,861
87,939
85,713
88,710
90,557
94,617

120,291
120,291
114,115
120,975
123,216
133,473
153,048
155,093
144,909
152,707
144,418
144,082
147,016
153,981
148,176
150,758
145,513
144,613
152,395
160,411
157,117
157,798
157,586

Tangerine

SO OO OO OO

(e

5,788
5,452
6,381
5,452
5,452
5,452

10,853

10,050

10,695

11,352

13,230

12,930

12,655

12,393

12,659

13,154

14,663

14,515

14,541

11,618

Grapefruit
3,434
3,434
3,455
3,435
3,434
1,233
3,300
4,462
4,462
4,462
4,462
4,493
4,200
4,066
4,204
4,204
4,174
4,276
3,654
3,494
4,283
4,306
4,638
5,353
5,622
5,540
5,380
5,447
5,662
5,634
6,221
5,674

Lemon
3
4
9
18
34
22
30
133
400
844
1,090
984
700
553
550
1,110
1,878
1,577
1,689
1,964
740
1,482
1,466
1,430
1,471
1,610
1,728
1,308
1,732
2,047
2,574
3,039

Average rural price (Mex $ / Ton.)

Mandarin
2
3
3
20
28
66
76
115
187
223
279
286
600
570
550
356
769
566
1,007
1,397
1,092
504
904
884
500
771
1,036
932
826
683
1,280
843

Orange
4
4
7
16
25
21
26
50
170
178
357
423
450
456
168
577
547
541
623
1,001
764
483
589
741
674
488
663
762
707
748
999
1,225

Source: Author calculations based on data from SAGARPA (2012).

Tangerine

319
358
400
420
349
400

2,000

2,009

1,000
786
913
853
970

1,116

1,297

1,018
796

1,383

1,254

1,898

Grapefruit
6
6
7
21
22
16
23
80
190
203
250
292
471
697
1,200
641
361
489
1,273
1,278
1,880
625
1,693
887
768
1,646
972
1,377
790
819
1,115
1,228
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Years
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Table 2.5. Weights used to construct a price index for the citrus category.

Proportions of land devoted to the production of

Lemon
0.067
0.088
0.128
0.130
0.132
0.067
0.062
0.050
0.049
0.051
0.046
0.055
0.070
0.071
0.070
0.066
0.061
0.064
0.068
0.075
0.078
0.089
0.094
0.107
0.111
0.115
0.119
0.133
0.142
0.144
0.144
0.152

Mandari
n
0.059
0.068
0.113
0.113
0.112
0.065
0.062
0.051
0.041
0.033
0.033
0.036
0.033
0.038
0.032
0.032
0.030
0.034
0.039
0.032
0.034
0.036
0.036
0.038
0.038
0.039
0.040
0.038
0.039
0.037
0.037
0.041

Orange
0.835
0.806
0.729
0.729
0.727
0.855
0.844
0.857
0.869
0.883
0.888
0.874
0.828
0.827
0.832
0.849
0.856
0.846
0.816
0.816
0.804
0.791
0.780
0.761
0.759
0.753
0.748
0.739
0.727
0.725
0.724
0.727

Tangerine
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.040
0.037
0.040
0.030
0.030
0.032
0.058
0.057
0.060
0.061
0.067
0.066
0.064
0.064
0.065
0.064
0.066
0.067
0.067
0.054

Grapefrui
t
0.040
0.038
0.029
0.029
0.028
0.012
0.031
0.042
0.041
0.033
0.033
0.034
0.029
0.027
0.026
0.023
0.023
0.025
0.020
0.020
0.024
0.023
0.023
0.027
0.028
0.029
0.028
0.026
0.026
0.026
0.029
0.026

Lemon
0.21
0.32
1.21
2.37
4.56
1.48
1.86
6.70

19.61
42.94
50.03
54.12
49.20
39.13
38.67
72.81
113.65
100.33
114.61
148.13
57.68
132.28
137.35
152.86
162.85
184.89
205.62
173.62

245.14

295.28

369.61

462.49

Proportional prices (Mex $ / Ton.)

Mandari
n
0.13
0.18
0.38
2.24
3.17
4.28
4.75
5.84
7.71
7.36
9.25
10.36
19.89
21.56
17.66
11.25
23.38
18.96
3941
45.13
37.67
17.91
32.50
33.94
19.11
30.00
41.12
35.37
32.13
25.57
47.78
34.79

Orange
3.34
3.55
4.99
11.31
18.13
17.82
22.30
42.83
147.69
157.54
317.20
369.44
372.69
377.22
139.71
490.00
467.87
457.50
508.27
816.86
614.09
381.83
459.31
563.77
511.63
367.37
496.15
562.82
514.52
542.74
723.11
890.41

Tangerine
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
12.64
13.11
15.90
12.71
10.49
12.73

115.92
114.06
59.68
48.03
61.16
56.61
61.78
71.59
84.94
64.95
5291
92.68
83.66
101.67

Source: Author calculations based on data from SAGARPA (2012) and INEGI (2009).

Grapefrui
t
0.22
0.23
0.21
0.61
0.62
0.19
0.73
3.38
7.78
6.66
8.23
10.04
13.54
19.03
3143
14.94
8.32
12.21
24.83
25.22
44.93
14.49
39.76
24.39
21.73
47.22
27.05
36.37
20.30
21.29
31.82
32.13

(Mex $/ Ton.)
Citrus price
index
3.90
4.27
6.78
16.53
26.48
23.77
29.65
58.74
182.80
214.49
384.71
443.96
467.96
470.05
243.38
601.71
623.71
601.74
803.05
1149.40
814.05
594.53
730.08
831.57
777.11
701.07
854.89
873.13
865.01
977.57
1255.98
1521.49
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Year
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Surface harvested

(Ha.)

Citrus Banana

85884 17478

89891 17490
118953 17995
119207 17966
120966 17989
100242 21063
105077 20703
105725 23138
108910 26619
136177 19995
135461 16403
130511 16725
146071 14280
148902 14723
160496 14710
180222 14252
181196 14519
171270 13902
187249 13466
177040 11793
179204 11278
185864 11544
197444 11262
194756 11618
198622 11830
193142 13475
193334 13911
206195 16393
220522 15093
216617 14490
217997 14797
216824 14867

Table 2.6. Weights used to construct the PC price index.

Precio Medio Rural
(Mex $/ Ton.)

Citrus price
index
3.90
4.27
6.78
16.53
26.48
23.77
29.65
58.74
182.80
214.49
384.71
443,96
467.96
470.05
243.38
601.71
623.71
601.74
803.05
1149.40
814.05
594.53
730.08
831.57
777.11
701.07
854.89
873.13
865.01
977.57
1255.98
1521.49
Source:

Banana
1.99
3.10
5.20

19.93
21.00
13.35
20.89
67.50
240.00
421.71
485.00
610.75
550.00
571.45
476.00
808.00
798.22
504.01
969.17

1202.32

1076.70

1014.96

883.63
968.90

1449.80

1784.20

1339.68

2483.74

2410.22

1995.78

1963.05

2500.59

Proportions of
land devoted to

Citrus
0.83
0.84
0.87
0.87
0.87
0.83
0.84
0.82
0.80
0.87
0.89
0.89
0.91
0.91
0.92
0.93
0.93
0.92
0.93
0.94
0.94
0.94
0.95
0.94
0.94
0.93
0.93
0.93
0.94
0.94
0.94
0.94

Banana
0.17
0.16
0.13
0.13
0.13
0.17
0.16
0.18
0.20
0.13
0.11
0.11
0.09
0.09
0.08
0.07
0.07
0.08
0.07
0.06
0.06
0.06
0.05
0.06
0.06
0.07
0.07
0.07
0.06
0.06
0.06
0.06

Price proportions

Citrus
3.24
3.58
5.89

14.37
23.05
19.64
24.77
48.19
146.89
187.03
343.16
393.53
426.28
427.76
22295
557.61
577.44
556.56
749.17
1077.62
765.85
559.76
690.69
784.75
733.42
655.34
797.50
808.83
809.60
916.28
1176.15
1423.86

Banana
0.34
0.50
0.68
2.61
2.72
2.32
3.44

12.12
47.14
53.99
52.39
69.38
48.98
51.42
39.96
59.21
59.22
37.84
65.02
75.09
63.75
59.35
47.68
54.55
81.50
116.36
89.92
182.92
154.39
125.13
124.77
160.46

PC Price
index

3.58
4.08
6.57
16.98
25.77
21.96
28.21
60.31
194.03
241.02
395.55
46291
475.26
479.18
26291
616.82
636.66
594.40
814.19
1152.71
829.60
619.12
738.37
839.30
814.92
771.71
887.43
991.75
963.99
1041.40
1300.92
1584.32

Author calculations based on data from SAGARPA (2012)

Consumer
Price Index
(2000 Mex $)

0.0012
0.0016
0.0025
0.0051
0.0084
0.0132
0.0246
0.0570
0.1221
0.1466
0.1857
0.2277
0.2630
0.2887
0.3088
0.4169
0.5602
0.6757
0.7834
0.9133
1.0000
1.0637
1.1172
1.1680
1.2227
1.2715
1.3177
1.3699
1.4401
1.5164
1.5844
1.6333

PC Price
index
(2000 Mex $)

2901.99
2586.16
2620.58
3354.24
3077.26
1662.25
1146.61
1057.44
1588.50
1644.24
2130.55
2032.71
1806.78
1659.80
851.38
1479.61
1136.47
879.62
1039.33
1262.12
829.60
582.05
660.92
718.59
666.47
606.92
673.49
723.94
669.37
686.75
821.09
970.03
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Table 2.7. GC Price index.

Nominal values Real values
Corn Livestock Corn Livestock Corn Livestock GC Price index
Years (Mex $/Ton.)  (Mex $/Ton.) IPC (2000) (Mex $/Ton.) (Mex $/Ton.) (Mex $/Ha.) (Mex $/Ha.) (Mex $ / Ha.)
1980 5.43 31 0.0012 4403 25136 10171 10683 10427
1981 6.38 37 0.0016 4044 23451 9341 9966 9654
1982 9.14 73 0.0025 3645 29115 8421 12374 10397
1983 19.9 97 0.0051 3932 19164 9082 8145 8613
1984 34.14 179 0.0084 4077 21375 9417 9084 9251
1985 50.55 297 0.0132 3826 22482 8839 9555 9197
1986 89.44 388 0.0246 3635 15771 8398 6703 7550
1987 191.77 918 0.0570 3362 16095 7767 6841 7304
1988 326.86 2656 0.1221 2676 21744 6181 9241 7711
1989 466.88 3410 0.1466 3185 23263 7357 9887 8622
1990 543.62 3989 0.1857 2928 21486 6764 9132 7948
1991 675.47 4290 0.2277 2966 18838 6852 8006 7429
1992 736.88 4331 0.2630 2801 16465 6471 6998 6734
1993 742.08 4810 0.2887 2570 16661 5938 7081 6509
1994 626.48 5160 0.3088 2029 16710 4686 7102 5894
1995 861.59 5670 0.4169 2067 13601 4774 5780 5277
1996 1362.63 9800 0.5602 2432 17494 5619 7435 6527
1997 1271.24 11600 0.6757 1881 17166 4346 7296 5821
1998 1470.79 11690 0.7834 1877 14922 4337 6342 5340
1999 1530.68 12230 0.9133 1676 13391 3871 5691 4781
2000 1505.94 12270 1.0000 1506 12270 3479 5215 4347
2001 1612.09 13110 1.0637 1516 12325 3501 5238 4370
2002 1785.12 11600 1.1172 1598 10383 3691 4413 4052
2003 1822.15 13030 1.1680 1560 11156 3604 4741 4173
2004 1897.44 14560 1.2227 1552 11908 3585 5061 4323
2005 1910.08 15930 1.2715 1502 12528 3470 5325 4397
2006 1967.03 16590 1.3177 1493 12591 3448 5351 4400
2007 2774.72 16690 1.3699 2025 12183 4679 5178 4928
2008 3038.12 18060 1.4401 2110 12540 4873 5330 5101
2009 3166.04 18600 1.5164 2088 12266 4823 5213 5018
2010 3399.52 19180 1.5844 2146 12106 4956 5145 5051
2011 3917.19 18840 1.6333 2398 11535 5540 4902 5221

Source: Author calculations based on data from SAGARPA (2012).



Chapter 3
A Mixed Multinomial - Conditional model of land use

decisions.

3.1 Model description.

Since the work of Chomitz and Gray (1996), spatially explicit discrete choice
models of land use decisions have been one of the most commonly used approaches in
the study of landscape dynamics. The typical formulation considers that agents’ land
allocations are mainly driven by the expected payoffs of the land use choices available in
a particular geographical area, and that such payoffs are affected by parcel specific
variables such as slope, distance to nearest markets, soil quality, etc., as well as by
socioeconomic, technological, cultural and ecological factors (Geist & Lambin, 2002;

Redman et al., 2004). The state of those land use drivers at a particular time 7 =1,...,7",

for T <o, determines the choice set, C,, of land uses available to decision maker i at

it
different ¢ periods. For a specific region composed of a set of agents 77 and a finite set of

tet

time periodsz , the analyst can define a finite choice set J = UC” that includes all the
ien

feasible land uses in the region.
Generally, it is assumed that at time ¢, an economically rational agent i chooses the

land use with the highest expected payoff both at time 7 and in future periods. An

additional common assumption in the land use literature is that at every period ¢, agent i
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knows the value of the per period payoff, u, VjeJ, but the researcher can only
observe the agent’s land use choice d,, (with d, =1 if land use j is selected, and 0

otherwise), and the state of some of the variables that determine the payoff VjeJ. In

the context of random utility theory u, can be decomposed into an observable

systematic component (or representative utility),S,,, and a random term, ¢, that

ijt 2

accounts for the effects of factors that are unobservable for the analyst that impact the

payoff levels for each land use in the choice set (Rust, 1994).

Typically the systematic component of the utility is modeled as a profit function
that depends on input and output prices, expected yield, and parcel characteristics that
impact the productivity or quality of the uses attached to each parcel (Baerenklau et al.,
2012; Chomitz & Gray, 1996). Following Baerenklau et al. (2012) we can consider that

the net profit from land use j at time ¢ can be represented as v, = p,y, —q, "¢, where

the revenue from land use j is computed using information on the price per unit of

output j at time 7, p,, and the yield per parcel in that period , y, ; the production costs
are computed as the dot product of a vector of input prices, q,, and a vector of

quantities of each input required by land use j, ¢, . A vector of parcel characteristics K,

1

can be incorporated in the analysis to estimate its impact on the payoffs for each land use.

If we define u,, as the random variable: u, =V, = Sm(vﬂ,ki)+8w, and represent the

portion of the payoff that can be observed by the analyst as

Sy.l(vﬂ,ki)=aj+,B'jvﬂ+w'l.kiwith a;, p;and o representing alternative specific
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coefficients that can be used to estimate the marginal effects of changes in prices and
parcel characteristics in the landscape configuration. We can then represent agent’s i

payoff from choosing land use j at any ¢ period as V, = a; + ,B'/.vjt + m'jki +&, -

As stated in the previous paragraphs, economically rational agents are assumed to
select land use j if, and only if, its payoff is higher than the payoff from any other
alternative land use available in their choice set. Dropping the time index to simplify the

notation this can be stated as d; =1 iff V;; >V, V j,I €J A j=#1. Following Croissant

(2008) we can analyze the implication of this utility comparison to see the effects of
setting alternative specific coefficients for the alternative specific variables (e.g., output
prices), and parcel specific coefficients for the variables that represent agent
heterogeneity (e.g., distance from a parcel to urban areas, soil quality, landowner’s
education). The following derivation provides some insights of the implication of the
assumed utility comparison process followed by decision makers. If land use j is
preferred over land use / by agent i, this is an indication that,
V,>Vi=>a,+fv,+0 K +&,>a+fv,+0k +¢,
a,—a+pv,-Bv+o k -0k >¢ ¢

aj—a,+,6jvj—ﬂ,v,+((oj—cok) k, > &, - &,

This expression shows that the coefficients for the parcel specific variables Kk, and

the constant terms need to be alternative specific and that only their differences matter.
This implies that we can estimate coefficients on parcel characteristics for all but one of

the land uses contained in the choice set. The common normalization criterion is to set
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one of the coefficients equal to zero. On the other hand, we can observe that coefficients

for all the alternative specific variables can be computed without requiring normalization.

Assuming that the random terms are independent Gumbel distributed variates, the

probability of agent i selecting the observed land use in the dataset can be computed as,
Pr(dl.j = l‘v‘i,kl,a

Assuming that the sample data is composed by independent land use decisions, the

probability of each agent in the sample selecting the observed land use can be represented

by the likelihood functlonL((p‘v], i»dy) = HHPr " where ¢ =3, Uw UOL Y j

Since the product of the individual probabilities over all the land options can
generate a small number that can be affected by rounding errors it is more convenient to
use the log of the likelihood function to compute the parameter estimates (Enders, 2010).
Following Train (2009), the log-likelihood is,

LL(¢|v, k) = ZZdulnPr

i=1 jeJ

N
:z dii(ai+B'jV+wk) szulﬂzlq brok

i=1 jeJ i=1 jeJ

The marginal effect of a change in the revenue of land use j on the probability of
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0Pr,
selecting that particular land use can be represented as Wl]: B, Prii(l—Prij). The
j

marginal effects of changes in parcel specific variables can be estimated using the

0Pr,
formula# =P, [a)j - Za), Prl.,j .

i leJ

3.2 Empirical application.

The described modeling framework was used in previous analysis implemented by
Ellis et al. (2010) and Baerenklau et al. (2012) to identify and analyze land use and land
cover change trends in two Mexican coffee growing municipalities during the period
1984-2006. Those authors use remotely sensed data, coupled with geographic and
socioeconomic information to implement a multinomial logit analysis of the marginal
effects of spatial and economic factors that affect land use choices between Agroforests
(AG), Perennial crops (PC), Grass and corn (GC), and Fallow lands (FA) in the study
area, and to test the welfare effects and landscape configuration resulting from simulated
policies that increase the expected revenue of agroforestry parcels. Those studies, that
constitute an example of a standard implementation of a spatially explicit model of land
use decisions, are considered as a starting point in the mixed multinomial-conditional
logit (MMCL) analysis implemented in this chapter. The MMCL modeling approach
differs from the multinomial logit analysis implemented by Ellis et al. (2010) and
Baerenklau et al. (2012) in one key assumption, it considers that the portion of the
expected land use payoff that is determined with market information, should be modeled

as an alternative specific variable, especially if that component is computed using market
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prices and average yield values that are independent of parcel characteristics. On the
other hand, if there is not market information on output prices, and land use revenues are
considered to be endogenously determined by parcel characteristics (see Chomitz and
Gray (1996), Blackman et al. (2008), Nelson et al. (2004) and De Pinto and Nelson
(2008) for some examples); one of the coefficients of the variables that capture the
effects of prices on agents’ decisions needs to be normalized for model identification and
in those cases a multinomial logit model is an appropriate modeling mechanism.

In the study region, farmers on average receive similar prices for their yields
independently of the location of their parcels. Obviously, distance to markets and yield
quality directly affect the net revenue received by landowners but those factors are
assumed to be controlled in the MMCL by the parcel specific characteristics included in
the dataset, and the unobservable components. An adequate computation of the
alternative specific component of the payoff for land use j requires knowledge about the
age of the current land use and about the price expectation process followed by the
decision maker. Even though the sample design allows approximating the age of the land
uses in each parcel, that information is not incorporated in the MMCL analysis since the
purpose of this chapter is to implement a standard economic model of discrete land use
decisions to highlight the advantages and limitations of this approach and accounting for
age of the land uses is not commonly found in similar spatially explicit models. With
regard to the price expectation process, farmers in the study area appear to be
irresponsive to short-term fluctuations in land use profitability, especially when land use

change requires at significant up-front investment to switch to a different use.
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Nevertheless, if the price trends continue during several years agents become more likely
to replace the use of their land for a more profitable use. I follow Baerenklau (2012), to
consider that landowners not only use the price information available in the current
period but also the price signals observed during the previous past five years to estimate
expected revenues. I construct a moving average time series revenue data with inflation-

adjusted price indexes, and an average expected yield for each relevant j land use during

25
25 years of production, using the formula, Py Elzt P,y with ¥ :%Z Y for
' i=1

5 s=t—4+ Js
land use j corresponding to a land use that is different to the observed at the beginning of

the decision period, and Y equal to the maximum yield for a mature plantation to

estimate the expected revenue of continuing the same land use during an additional year.
The limitations of this procedure are obvious, but commonly implemented in the context
of myopic discrete choice static models. A more structured approach is implemented in
chapter five using a dynamic model of land use decisions that consider that yield is
dependent on the estimated age of each land use at the parcel level. Figure 3.1 shows the
trends observed in the expected revenue from mature land uses in a 2-hectare parcel,
which is the parcel size that we consider in the econometric analysis for two reasons: it is
a farm-size that can be managed by one person giving a meaningful value to the FA price
index, and because most of the shade grown coffee plantations are around that parcel size

(Escamilla Prado, 2007).
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Figure 3.1. Expected revenue from mature land uses in a 2-hectare parcel.
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On the other hand, empirical observations in the study region indicate that the
agricultural production technology has been labor intensive and without significant
improvement during the last decades. Those observations appear to be supported by
studies developed in similar regions. For instance, Gay et al. (2006) in a study of coffee
production in the state of Veracruz, Mexico, finds that labor cost can account for up to
80% of the total production costs. Similarly, Albers et al. indicate that (2006) shade-
grown coffee plantations require few purchased inputs such as pesticides and fertilizers.

Therefore, we consider that production costs for each land use j, q,'c,, are relatively

Jjt?

constant during the period of analysis and captured by the constant term and parcel

characteristics in the econometric model.
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Summarizing, the behavioral decision-making process modeled with the MMCL
approach assumes that agents:
a) use current price information to update a five-year moving average price
expectation process to estimate future price realizations.
b) use an average of the expected yearly output per land use during the first
25 years of a new land use to estimate the expected yield for different land
uses to the observed at the beginning of the decision period.
c) utilize the expected yield for a mature land use as the expected yield if the

current land use is not changed during the decision period.

Additionally, it is assumed that average production costs and switching costs are
relatively constant during the period of analysis and its effects captured in the constants,

unobservable variables and parcel specific information.

3.3 Results and discussion

3.3.1 Parameter estimates and marginal effects.

The mixed multinomial — conditional logit model of land use choices was
estimated using the mlogit R package (Croissant, 2008). The estimated coefficients of the
variables considered in the analysis are shown in table 3.1. We can observe that all the
parameter estimates of the revenue variable are statistically significant at the 10% level.
Given that for alternative specific variables, signs in the parameter estimates can be
interpreted as directions of marginal effects, we can observe that the econometric model
produces counterintuitive parameter estimates for the revenue associated with perennial

crops, grass and corn, and the fallow category. The agroforestry revenue coefficient has
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the appropriate direction although its significance level is the lowest among the

alternative specific coefficients.

Table 3.1 Mixed Multinomial — Conditional Logit parameter estimates.

Agroforestry Perennial Grass and Fallow
Crops Corn
Revenue 0.02689 . -0.05638 * -0.09415 *%*  .0,13432 *%*
0.01462 0.02253 0.02200 0.01358
Slope 0.41628 ***  -0.21461 * -0.14862
0.09032 0.09896 0.14152
Distance to market 0.65282 *** 0.92505 *** 1.03446  ***
0.18172 0.18245 0.21731
Distance to road 1.61612 *** 1.43768 *** 1.20529 **
0.34001 0.33020 0.39877
Poverty -0.05792 -0.31780 0.67688 *
0.25020 0.24742 0.32355
Soil texture 0.04850 -0.57309 ** -0.37084
0.17843 0.17651 0.25894
Elevation 5.17566 ***  -1.37557 . -2.28093 =
0.77509 0.76828 1.14876
Population -0.28962 ***  -0.55676 ***  -0.58732 *¥*
0.07456 0.07980 0.13211
Constant -5.49572 ***  -0.18972 -1.48418
0.62667 0.58782 0.85720

Notes: The parcel specific coefficients of the fallow category were normalized to zero for model
identification. The corresponding standard errors are shown below each parameter estimate.
Significance codes:  “***’ significant at the 0.1% level; “**’significant at the 1% level; “*’
significant at the 5% level; .” Significant at the 10%.
On the other hand, since the signs of the estimated coefficients of the parcel
specific variables do not indicate the direction of their marginal effects, I estimate how
changes in each of the variables used in the analysis affect the land use probabilities for

each parcel and then averaged the results across all observations, the mean marginal

effects, standard deviation and expected signs as described in chapter 2 are shown in
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table 3.2. In general, the directions of the marginal effects are consistent with the
multinomial logit analysis of land use decisions in this region developed by Ellis et al.
(2010) and Baerenklau et al. (2012). The results indicate that parcels at higher elevations
have greater probability of being selected for agroforestry production. This is consistent
with agroecological/productivity requirements for coffee production, which constitutes
the main component of the agroforestry land use category. The negative and statistically
significant effect of elevation on the probability of selecting perennial crops is also
consistent with requirements to produce the crops included in that land use category.
Slope has a positive and statistically significant effect on the probability of a parcel being
devoted to agroforestry production. This is consistent with informal observations in the
study region that indicate that parcels with relatively high slope are mostly devoted to
coffee production in areas very difficult to cultivate. The results also indicate an inverse
and statistically significant effect of the distance from a parcel to the nearest market in
the probability of a parcel being selected for agroforestry or perennial crop production.
The marginal effects of distance to the nearest market in the probability of selecting grass
and corn or fallow are coherent with the intuition that if a parcel is far from a market it
would be better to let it fallow or to grow subsistence crops. The marginal effects that
correspond to the poverty index have the expected signs indicating than cash crops are
more likely to be selected in areas with lower poverty levels, and that subsistence crops

would be preferred in poorer areas.
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Table 3.2. Marginal effects.

Expected Estimate Standard

sign Deviation
Revenue AG + 0.0049 0.0016
PC + -0.0055 0.0048
GC + -0.0182 0.0055
FA + -0.0086 0.0065
Slope AG + 0.1019 0.0347
PC - -0.0329 0.0328
GC - -0.0674 0.0345
FA +- -0.0016 0.0077
Distance to market AG - -0.0425 0.0198
PC - 0.0161 0.0162
GC + 0.0838 0.0404
FA + -0.0574 0.0460
Distance to road AG - 0.0891 0.0384
PC - 0.0161 0.0266
GC + -0.0171 0.0506
FA + -0.0881 0.0635
Poverty index AG = -0.0746 0.0503
PC - -0.0585 0.0558
GC + 0.1517 0.0473
FA + -0.0186 0.0241
Soil texture AG + 0.0770 0.0289
PC + -0.0419 0.0378
GC - -0.0520 0.0324
FA +- 0.0170 0.0161
Elevation AG I 1.2598 0.4277
PC - -0.2633 0.3147
GC +- -0.9786 0.4083
FA +- -0.0179 0.0979
Population AG + 0.0402 0.0158
PC + -0.0158 0.0152
GC - -0.0556 0.0254
FA - 0.0312 0.0256

Expected direction codes: © + ¢ indicates that a positive marginal effect is
expected, © — ° indicates that a negative marginal effect is expected, * + -’
indicates that the marginal effects can go in either direction. See chapter 2
for a detailed description of the expected direction of the marginal effects.

3.3.2 Predictive power.

The estimated probabilities of agent i selecting land use j €J were used to detect

the land use with the highest probability of being selected. On average the model
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accurately predicts land use choices in 59% of the parcels which is relatively close to the
52% predictive accuracy with the multinomial logit model used by Baerenklau et al.
(2012) in the same region. Figure 3.2 shows the prediction accuracy of the estimated land
use decisions during the years for which we have land use observations. We can observe
that the model does a relatively good job predicting land use decisions during the first
two periods in the dataset, after that the accuracy falls below the mean. Figure 3.3 shows
that the model does not predict fallowing in any period of the analysis, it overestimates
agroforestry and grass and corn choices, and it underestimates the proportion of land
devoted to perennial crops.

Figure 3.2. Parcel-level accuracy of land use predictions
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Figure 3.3. Percentage of observed and estimated land uses (1984 — 2006).
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To evaluate the out-of sample predictive power of the model, we use the
parameter estimates and the corresponding values of the explanatory variables in 2011 to
estimate land use choices in that year. To test the accuracy of the predictions we use
Google Earth to identify the land uses for the sample parcels in 2011. The declining trend
in the prediction accuracy of the model observed in figure 3.2 continues through 2011
since the model accurately predicts only 37.6% of the observed land use decisions during

that year. Nevertheless, if we analyze the predicted land use proportions, the model
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generally does a decent job of predicting the land distribution between the land use
categories (Figure 3.4).

Figure 3.4. Percentage of observed and estimated land uses in 2011.
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3.4 Summary

In general terms the MMCL model produces marginal effect estimates that are
consistent with the expected directions described for the parcel specific variables that
account for population, elevation, soil texture, and slope. Nevertheless, this reduced form
static model does not produce theoretically consistent parameter estimates for the revenue
variable associated with three of the land uses. The model accurately captures the impact
of declining revenue on the percentage of agroforestry parcels but it cannot provide an
economically rational explanation for the increasing proportion of perennial crops and the
concomitant decrease in the associated revenue. The predictive performance of the model
is within the range of similar studies. Although the per-parcel prediction accuracy of the

model decreases through time, potentially indicating that this model may be a good
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mechanism for short term predictions but perhaps not useful for extended time periods.

Unfortunately, discrete choice static models have inherent limitations that
complicate a realistic approach to the behavioral process followed by landowners. One of
the key assumptions of myopic discrete choice models is that decision makers only use
historical data and current information to make their choices. In reality, landowners not
only consider the current state of the world but also incorporate forward-looking behavior
and some type of risk analysis to evaluate the expected returns and consequences derived
from their decisions. Furthermore it has been shown that the study of inherently dynamic
economic problems within static frameworks can generate biased and theoretically
inconsistent estimates and consequently less accurate policy recommendations
(Baerenklau & Provencher, 2005; Hicks & Schnier, 2006). Therefore, the development
and implementation of agent-based models that account for the dynamic nature of land
use decisions is necessary both to evaluate the magnitude of the bias in estimates derived
from commonly used static models and to develop more accurate policy

recommendations.

Additionally, in the tested model it is possible that landowners use an expectation-
formation process to estimate future prices that is different than the simple moving
average approach used in this chapter which may produce inaccurate parameter estimates
for the revenue variable. It is also possible that some of the parcels classified in the
agroforestry category are in fact fallowed lands and that some of the fallowed lands are

part of rotational constraints and have not been abandoned, but since land use
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classification methods cannot identify such situations the parameter estimates and

marginal effects may be biased.

Despite all the aforementioned drawbacks, which are common to this type of
modeling approach, discrete choice static models continue to be used to analyze agent
based land use decisions. The next chapters present alternatives to some of the limiting

assumptions or problems faced by the type of model implemented in this chapter.
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Chapter 4
Discrete choice analysis of land use decisions with

misclassified data.

4.1 Introduction

Advances in remote sensing technologies during the last few decades have
allowed the characterization of landscape dynamics at different temporal and spatial
scales. Particularly, the increasing availability of satellite imagery has contributed to the
generation of global, regional and local land cover and land use information. Typically,
the mapping of remotely sensed data is implemented using supervised or unsupervised
classification methods, a combination of both approaches, or through object-based
classification. Data collected at specific geographic locations is often used to calibrate the
classification algorithms and to reduce classification errors. Unfortunately, several
conditions might generate misclassifications. In some cases, the resolution or quality of
the remotely sensed data complicates the classification process. For instance when the
image has a high percentage of its area covered with clouds or when the pixel size is very
large that only a coarse land use classification can be implemented. In other cases, the
complexity of the landscape configuration limits the accuracy of the pixel-based
classification algorithms used to categorize land uses with similar spectral signatures
(e.g., land uses with similar biomass density). The quest for better procedures to extract
land use information from remotely sensed data has motivated a significant amount of

research during the last decades to improve or develop new classification algorithms.
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Nevertheless, after reviewing more than five hundred classifications of satellite images
published during the period 1989-2003, Wilkinson (2005) reports that such efforts have
not materialized into a significant improvement in the accuracy of pixel-based land use
classifications. More recently, the increasing availability of high resolution spatial data
and computational advances have facilitated the development of more sophisticated
classifiers that not only use pixel information but also pattern recognition algorithms to
improve the classification of remotely sensed data although their effectiveness has not
been extensively tested (see Du et al. 2012; Hongzan et al. 2011 for some examples).

I start with the assumption that classification errors are an intrinsic component of
the land use classification process but that statistical methods can be implemented to
improve the accuracy of land use datasets. My aim is to investigate the impact of
inaccurate land use data on the analysis of land use decisions and derived policy
recommendations. This is a particularly important issue in the dataset of land use
information described in Chapter 2. The categorization of land uses in the coffee growing
region of Atzalan, Veracruz, Mexico proved to be a complex task. The vegetation density
of forested areas, agroforestry parcels, or land that has been fallowed during several years
produces similar spectral values that can mislead even the most sophisticated pixel-based
classifiers. In our dataset it was practically impossible to accurately classify in separate
categories those land uses using only remotely sensed data and ground truthing.

To address this issue, I implement a post-classification strategy that
simultaneously detects misclassified land use decisions using the information generated

from the remotely sensed data, and incorporates those corrections into a latent
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multinomial logit (LMNL) land use model. The following section presents a review of
relevant research that constitutes the basis of the modeling approach implemented in this
chapter. The third section presents a methodological description of the LMNL model
implemented in the context of agent-based land use decisions. The fourth section presents
the results of the empirical application, including a comparison of the parameter
estimates and marginal effects derived from a standard multinomial logit model
implemented with the original dataset, with those derived from the LMNL model that
corrects for misclassified. Finally, the last section presents the conclusions as well as a
discussion of the limitations of the analysis.
4.2 Literature Review

Since the seminal work of Dempster et al. (1977), the expectation maximization
(EM) algorithm has been used to generate parameter estimates in probabilistic models
with incomplete or misclassified data. This is typically done by associating an incomplete
data problem with a complete-data problem for which maximum likelihood estimation is
manageable (McLachlan & Krishnan, 1997). An iterative process between the
expectation step (E-step) and the maximization step (M-step) is the basis of the EM
algorithm. The E-step computes the expectation of the missing data conditional on the
given set of incomplete information and initial values of the parameters to be estimated.
The M-step uses those conditional expectations in the place of the missing information to
“complete” the dataset and estimate the parameters that maximize the likelihood function
for the “complete-data” problem. The parameter estimates produced in the M-step are

used as updated initial values of the coefficients in the E-step and the process is repeated
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until the likelihood converges to a local maximum (McLachlan & Krishnan, 1997; Zhai,
2007).

Given its extensive implementation across several disciplines the EM procedure is
considered to be a highly desirable algorithm in data mining (Wu et al., 2007). In the
context of land use and land cover mapping the EM algorithm has been used to refine
unsupervised classification methods (Chardin & Perez, 1999; Yang, Peng, Xia, & Zhang,
2013); to estimate the pixel values of portions of remotely sensed imagery that are
missing due to the presence of clouds during the time of data collection (Melgani, 2006);
and to improve the classification accuracy of pixels that include information of more than
one land use category (Susaki, J., & Shibasaki, 2000). Nevertheless, to our knowledge the
EM algorithm has not been used to analyze the impact of misclassified data on agent
based land use models, a task that can be accomplished using a latent multinomial logit
model (LMNL).

The LMNL model uses a nesting structure to classify observed choices as
branches that may or may not contain misclassified observations. In other words, a
discrete choice dataset can be decomposed into /, ..., n branches representing the choice
set available to the decision maker. Each & branch in the choice set contains a stem k that
groups data that is accurately classified and may contain up to n — 1 stems that cluster
misclassified observations that should be included in a different branch. Caudill (2006),
describes the methodology that can be used to produce parameter estimates with a dataset
containing misclassified dependent variables, as is the case here. The procedure is based

on a transformation of the standard multinomial logit likelihood function into a missing
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data formulation to which the EM algorithm can be applied. Caudill and Mixon Jr.
(2005) use this methodology to study misleading responses provided by students in a
survey that collects information on undergraduate cheating behavior. Caudill et al. (2005)
use the LMNL approach to estimate the proportion of fraudulent claims for car damage
that are inaccurately classified as honest by a Spanish insurance company (Caudill et al.,
2005). The LMNL methodology is also used by Caudill (2006) to estimate the impact of
misclassified observations on an analysis of hidden unemployment in six European
countries. The author finds statistical evidence to argue that workers who are wrongly
reported as own-account self-employed in the survey represent an additional 0.5% of
hidden unemployment in the studied economies. More recently, the study by Caudill et
al. (2011) uses an unconstrained version of the LMNL model to analyze hypothetical bias
(the situation in which stated willingness to pay is higher than the actual willingness to
pay) in a contingent valuation problem. The LMNL methodology offers a straightforward
procedure to handle misclassified land use information. The specifics of the particular
model implemented in this chapter are presented in the following section.
4.3 Empirical Problem and Methodology

Most of the spatially explicit models of land use decisions in rural areas have been
focused on analyzing how driving forces of deforestation reconfigure pristine landscapes
affecting the provision of environmental services (Andersen, 1996; Chomitz & Gray,
1996; Geist & Lambin, 2002; Puri, 2006). Nevertheless, the growing recognition that
agroforestry production systems can provide forest-like services as well as biodiversity

corridors between patches of forested or protected areas have highlighted the need of
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understanding land use decisions in those areas (Avalos-Sartorio & Blackman, 2010;
Bhagwat et al., 2008; Dinata Putra et al., 2005; Huang et al., 2002; Kursten, 2000;
Schroth, 2004; Shanker & Solanki, 2000; Swallow et al., 2006). Worldwide, shade-
grown coffee plantations are one of the most important agroforestry production systems
not only for their socio-economic relevance providing livelihood opportunities to many
farmers (Albers et al., 2006; Aoki & Suvedi, 2012; Blackman et al., 2012; Jordan-Garcia,
Collazo, Borkhataria, & Groom, 2012; Oxfam, 2002), but also for the ecological services
that those plantations provide (Escamilla Prado, 2007; Messer, Kotchen, & Moore, 2000).
In Mexico small-scale farmers across the country depend upon shade grown crops, with
coffee being the leader both in terms of cultivated land area and value of production.
Escamilla-Prado (2007) reports that around 3 million people in Mexico depend on coffee-
related activities and that approximately 90% of the coffee-cultivated area lays under
diversified shade. Unfortunately, the steady decline in the international coffee prices
observed during the 1990’s and first years of the 2000’s forced coffee farmers to find
alternative sources of income. Some farmers opted for coffee certification schemes to
obtain a price premium for implementing environmentally friendly production
techniques, while others decided to clear their coffee plantations to transition to a
different land use or abandoned their plantations to look for employment opportunities in
other economic sectors and/or geographical locations (Blackman et al., 2008; Lewis &
Runsten, 2008; Nava-Tablada & Martinez-Camarillo, 2012).

As stated in chapter 2, the spatially explicit dataset of land use decisions used in

this chapter was constructed using maximum likelihood supervised classification with

66



ground thruthing on six Landsat images for the years 1984, 1989, 1993, 1996, 2000,
2003, and one Spot image for the year 2006. The spectral information contained in the
remotely sensed data was used to map the landscape in the geographical region under
analysis into six land use categories: secondary forests, shade grown coffee, banana,
citrus, pasture, and corn. To reduce classification errors disaggregated land uses were
integrated into three general land use categories: agroforestry (AG) which is composed
by shade grown coffee plantations and secondary forest; perennial crops (PC) integrated
by citrus or banana plantations; and grasslands and cornfields (GC). The main criteria
used to construct the aggregated land use categories are that their components share
similar tree canopy density, profitability and conversion costs. Additionally,
understanding that under some circumstances agents would prefer to let their land fallow
and look for alternative income sources, for instance when the land use profitability falls
below some threshold level, I constructed an additional land use category composed by
fallowed parcels (FA). This land use type was assigned to some parcels after analyzing
the sequence of land use decisions produced with the remotely sensed data. I consider
that a temporary land use transition that last at most six years (roughly two observation
intervals) from GC or PC to AG and then back to the previously observed land use
indicates that that parcel was in fact fallowed during the period detected as AG. An
example may clarify the procedure. Consider that after classifying the remotely sensed
data the land use in parcel s is classified as GC during 1996, AG during 2000 and again
GC in 2003. This land use sequence is not logical either by economic or biological

reasoning. In cases like this I consider that parcel s was in fact fallowed during 2000 and
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that the classifier algorithm categorized the land use as AG after detecting an increase in
biomass that was likely generated because the landowner forwent maintenance activities
in that parcel. This procedure allowed us to identify potential fallowed parcels mainly in
the GC category since temporary land use transitions between PC and AG represent less
than 0.15% of the sample dataset. This is a relevant drawback of the procedure to detect
FA parcels in the PC category since land abandonment of citrus or banana plantations is
not common given the potential impacts on future yields that the lack of maintenance
activities may have.

Nevertheless, there are some undeniable complications in the method that I use to
construct the FA category. On the one hand, the procedure makes it practically
impossible to detect AG parcels that are in fact fallowed plots during any period. This is
potentially a relevant issue, since Albers et al. (2006) reports that at least 75% of farmers
in a coffee growing region in Oaxaca, Mexico forwent maintenance activities during the
coffee crisis period (1990 — 2004). Empirical observations of coffee growing parcels in
the study region indicate that abandoned AG parcels were common at least after 2000.
On the other hand, the transition observed in some parcels between GC and FA may be
part of a rotational production system used to recover soil productivity (Adiku, Kumaga,
Tonyigah, & Jones, 2009; Kolawole, Salako, Idinoba, Kang, & Tian, 2005; Tian, Salako,
Kolawole, & Kang, 1999). This means that it is possible that some of the parcels
classified as FA are in fact GC following a rotational scheme and that the land use of
those parcels has not actually changed. Alternatively, it is also possible that grasslands or

cornfields with a relative increase in biomass are in fact parcels that have not received
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maintenance activities during the period in which the remotely sensed data was collected.
Unfortunately, these types of misclassification problems cannot be addressed using
algorithms based on spectral information. Nevertheless, we can use the LMNL model to
estimate the probability that an AG parcel is actually fallowed as well as the probability
that a parcel classified as FA is in fact a GC plot that has been temporarily abandoned.
The approach used to detect misclassified land use decisions is framed in the
context of the widely implemented random utility discrete choice models. As described in
Chapter 3, these types of models consider that variations in the socioeconomic, cultural

and ecological systems drive land use changes through their impacts on the expected

payoffs that landowners use to determine their decisions. Let X, represent the matrix of

observable variables that determine the expected net revenue for all the optional land uses

in the choice setJ for agent i with i =1,...,n; S, represent a vector of coefficients for the
explanatory variables that affect the payoff of land use j; and «, represent the alternative j

specific constant term; under the assumption that the unobservable components that
determine land use j payoffs are independent Gumbel distributed variates the probability

of agent i selecting land use j, can be computed as

a/-+ﬁ X

Pr, (d,.j = I‘X[, ‘,.,aj) = e—Vj,k eJ

ij @+ X

e
keJ

where d; =1if land use j is selected by agent i, and d; = 0 otherwise.
Defining t = aiUBiVj e J, the log-likelihood function under the assumption that

all land use decisions are accurately classified can be represented as:

69



Logl(1) = ZHZZdH InPr,

=1 jeJ
Since in our analysis J ={4G,PC,GC,FA}

N

Logl(t)= Z(di’AG In Pri’AG+ di,PC In Pr.

i,PC
i=1

+d.

i,FA

InPr.

i,FA )

+ di,GC In Pri,GL

As previously stated, agroforestry plantations normally have high biomass density
which makes it practically impossible to identify fallowed parcels using only remotely
sensed data. In the study area I consider that after years of low coffee prices farmers may
not have had enough economic incentives to cultivate their plantations. Therefore, it is
possible that some parcels classified in the Agroforestry category are in fact abandoned
lands that should be categorized in the Fallow group. Additionally, some parcels that are
classified as grass or corn may be incorrectly included in the Fallow category if as part of
a rotational system those parcels were left uncultivated during some years to recover soil
nutrients.

Considering that the proportion of parcels classified as AG may include a
percentage of misclassified FA parcels, and that the latter class can have observations that

should be in the GC category; we can represent the log likelihood function using missing
information indicators to represent the hidden proportions. Let d*i’ acpa Indicate the
proportion of land use decisions in the AG category (branch) that are misclassified FA

observations, and d*iy rc.ac Tepresent the proportion of accurately classified observations
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in the AG category satisfying the constraint d*i’ roac Td e =1 ; and similarly for

* *

SR and dirage . We can represent the log likelihood function as,

d i,AG,AG In Pri,AG,AG+ d i,AG,FA In Pri,AG,FA
N | +d. .. lnPr

PC PC

Logl.(t) = Z 1 1
i-1

+ di,GC In Pri,GC,GC

+d e 0P+ d oo In Py e
Unfortunately, since the proportions of land use observations that are correctly

and incorrectly classified, d".., , is unknown we cannot identify the parameter estimates

ik
that maximize the log-likelihood function following the standard procedure.

Nevertheless, we can replace the unknown proportions by their conditional expectations

(Caudill, 2006).
E(d*v e ) _ CXP(G’AG,AG + B'A(},A(}Xi)
PAGRGTE RS exp (ar\G,AG + B',—\G,,—\GXi) +exp (CX‘AG,FA + B'AG,FAXi )
B (d*. o ) _ eXp(a’AG,FA + B'AG,FAXi)
PG A exp (a,—\G,,—\G + B',—\G,,—\Gxi ) +exp (a,—\G,Fr\ + B'AG,F,—\Xi )
. . exp (aFA on B X )
Eld iapald s )= . : 3 .
( PR \) eXp(aF/\,F,\ +B FAPAK ) + eXp(aF/\,GC +B FAGEKS )
B (d*i,FA,Gc d*i,pA) _ eXp(aF/\,GC + B'F/\,GCXi)

exp (G’FA,FA + B'FA,FAXi ) + eXp((x‘FA,GC + B'FA,GCXi )

where E(d*i’AG’ AG ‘d*i’AG)indicates the conditional expectation that parcel i

classified as AG 1is actually an AG parcel, and E(d*i’AQFA ‘d*i,AG)represents the
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conditional expectation that a parcel classified as AG is in fact FA (the remaining
conditional expectations have similar interpretations).
Defining
p= eXpl:aAG,AG + ﬂ'AG,AGXz] + eXpI:aAG,FA + ﬂyAG,FAXi J + eXpl:aPc +f PCXi:| +
eXPI:aGc +p VGCXi] + exp[aFA,FA +p VFA,FAXi:I + exp[aFA,GC +p VFA,GCXi:|
The probabilities of observing agent i selecting each of the land use categories can

be computed as

a6, ;8 46X

Pr 6, (di,AG,j = I‘XiﬁﬂAG,jﬁ) = eT forj = AG, FA
eaFA,k+ﬂvFA,kxi
Pr, i (di,FA,k = I‘Xi’ﬂFA,k) = T Jork = FA, GC
e“/*ﬁ'lef
Pr,(d,=1X,.8)= forl = PC, GC

»

Under this modeling assumptions the log likelihood can be re-stated as,

()i exp(a,\g,,\g(: BroncX) e B0 o) lnexp(%,m(: BromX )
nE di,ﬂzmem(a"c(:ﬁ X
Logl (1) = ; . e (%C .\ B'GcXi)
’ P
B[y d*i’FA)lneXp(%\’m(: BrariX) +E(d e di,FA)lneXp(a“’GC(: BranX)

To avoid identification problems the parameters associated with the stems of the

branches that contain misclassified information need to be equivalent to the parameter

72




estimates of the branches in which the parcels should be accurately classified. Therefore I

set
B,—\G,AG = BAG;
B,—\G,FA = BFA;
BFA,FA = BFA;
BFA,GC = BGC

Caudill (2006) highlights the relevance of the intercepts in the model since as

a,.r4 —> —© the probability of identifying fallowed parcels that are misclassified as
agroforestry goes to zero. Similar reasoning applies when a,,, ;. — —o0. To test that the

LMNL model can be used to detect misclassified observations, we estimate profile
likelihood confidence intervals (defined below) on those intercepts to tests that they are
statistically different from —oo. This will also constitute evidence that the related branch
has misclassified parcels.
The procedure to determine the proportions of misclassified data and to compute
the parameter estimates that maximize the likelihood function follows these steps:
1. Control for local maxima.
Set a global solver or grid search algorithm to define vectors of initial
values for the alternative specific parameters that will be estimated. This
step is necessary since this LMNL modeling approach is related to a finite
mixture model (Caudill et al., 2011) and during the computation of the
parameter estimates we need to control for multiple local maxima of the

likelihood function.
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Expectation step.
Use the observed data X, and one of the vectors estimated in step 1 as

initial values of the parameter estimates )

to compute the conditional
expectations of the misclassified and accurately classified land use
proportions, d, " .
Maximization step.

Estimate the vector of parameters that maximize the likelihood function,

1, and the corresponding value of the likelihood function at that point
LogL(%*).

Iterate between the expectation and maximization steps using T to update

the conditional expectation of d,,” and utilizing those values to re-

compute t  until the log-likelihood function convergences to a maximum

value within a certain tolerance level (i.e., until

k+1

abs(LogL (%*)k — LogL. (%*)M) <tolerance value. Store LogL(%*) and

Return to step 1 and repeat the process for a different vector of initial

(0)

values 7' until exhausting the set of defined vectors in step 1.

Identify the T that produces the global maximum from the set of

evaluated starting values.
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4.4 Empirical model of land use decisions with misclassified data.

The dataset described in Chapter 2 is used to test for the presence of misclassified
land use decisions and to evaluate the potential impact of such misclassification on the
estimation results from a multinomial logit model. The modeling assumptions are similar
to those described in Chapter 3, in the sense that I consider that agents’ decisions are
driven by changes in the relative expected net revenues across parcels. One difference
with the mixed conditional logit model used in chapter 3 is that in this chapter for
comparison purposes with commonly used models in the land use literature, I consider
that revenue is a parcel specific characteristic. This can be justified by appealing to
variations in unobserved components that impact yield quality/quantity or affect markets
prices received by farmers in the study area. Additionally, instead of using the FA
category for normalization purposes I normalize the coefficients of the PC since I am
trying to assess whether or not there are misclassified observations within the FA group.

The model was coded within the Matlab environment using the global
optimization toolbox to identify the parameter estimates that maximize the log-likelihood
function. Overall the results indicate that around 11% of the observations contained in
the sample are misclassified. Table 4.1 shows the parameter estimates ordered by
branches and stems as well as the sum of the probabilities in each stem that indicates the
number of observations accurately and inaccurately classified within each branch. At the
stem level the first column shows the estimated coefficients that correspond to

observations accurately classified as agroforestry as well as the number of observations
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that are contained in that subcategory. The second column contains the parameter

estimates that correspond to misclassified FA observations within the AG branch.

Table 4.1. Latent multinomial logit model parameter estimates.

BRANCHES
Agroforestry Grass and Fallow
Corn
STEMS
Agroforestry Fallow (:::;s Fallow Grass and Corn
Corn
Revenue 0.1184 *** 0.1549 ** 0.1002 *** 0.1549  *** 0.1002 0.1184
9.0117 5.0535 5.2245 5.0535 5.2245 9.0117
Slope 0.3549  ** 9.2943 k% -0.2077 9.2943  *xx -0.2077 0.3549
4.1403 5.3017 -2.1372 5.3017 -2.1372 4.1403
Distance to 0.3760 * 66.6943 %% 09913 k¥ 66.6043 <+ 09913 0.3760
market
1.9271 5.5119 5.7421 5.5119 5.7421 1.9271
Distance toroad  1.3163 ***  46.7071 *** 1.2370 ***  46.7071 *** 1.2370 1.3163
4.0694 5.4901 3.9381 5.4901 3.9381 4.0694
Poverty - -
0.0835 156.9003 -0.1447 156.9003 -0.1447 0.0835
0.4365 -4.8884 -0.6993 -4.8884 -0.6993 0.4365
Soil texture - -
0.0875 180.2229 -0.5086 180.2229 -0.5086 0.0875
0.4844 -6.1153 -3.1839 -6.1153 -3.1839 0.4844
Elevation ey - ) - }
5.1065 2217704 2.4227 221.7704 2.4227 5.1065
7.1205 -4.8692 -3.5045 -4.8692 -3.5045 7.1205
Population -0.2368 25.3460 -0.4954 25.3460 -0.4954  -0.2368
-3.3417 4.7849 -6.8403 4.7849 -6.8403  -3.3417
Constant -3.3241 -9.0654 0.9822 * -35.4194 0.9822  -3.3241
-5.9694 -0.1129 1.8411 0.0000 1.8411  -5.9694
n
> Pr, 547 52 536 0 108
i=1

Notes: The parcel specific coefficients of the Perennial Crops category were normalized to zero for
model identification. The parameter estimates are shown in bold numbers; the numbers below each
parameter estimate indicate the correspondent t-ratios. Significance codes: “***’ significant at the
0.1% level; “**’significant at the 1% level; “*’ significant at the 5% level; ‘.” Significant at the 10%.

The results indicate that 52 observations that are categorized as AG in the sample
are in fact FA parcels. Those observations represent 8.7% of the parcels originally

classified as AG. Recall that for identification purposes those slope coefficients are
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constrained to equal the corresponding estimates for the accurately -classified
observations within the FA branch. Similarly, the columns associated to each stem of the
FA branch show the corresponding estimated coefficients and number of observations
that should be classified in each stem. The results indicate that the procedure used to
construct the FA category is suspect because all the observations in the FA branch-FA
stem are considered misclassified by the LMNL procedure. In other words, the analysis
provides evidence to argue that parcels that appear to be FA lands are in fact part of a
rotational production system or parcels that continue under cultivation but that have not
received maintenance activities during the time of data collection of the remotely sensed
data utilized to produce the land use maps.

To test whether these results are statistically significant I compute profile

likelihood confidence intervals for the intercepts a,; ., and a,, ;. using a grid search

procedure described by Stryhn and Christensen (2003). The lower and upper bounds of

a profile likelihood confidence interval for a parameter «, are the ones that satisfy the

Ak 1 A Ak . . .
equation LogL(r )—5 27 (0.95) < LogL(%,), where Tare the maximum likelihood

parameter estimates (MLE) of 7, 7 (0.95)indicates the 95% quantile of a chi-squared
distribution with one degree of freedom, and 7, is a vector that contains the MLE of ¢
obtained after setting the parameter of interest to a fixed value x (ie., «,, =x), and

treating the remaining parameters in the model as nuisance parameters. The

aforementioned grid search procedure identifies the values of x for which the inequality

77



LogL(f*)—% 2:(0.95) < LogL(%,) holds. The profile likelihood confidence interval for

Ao ra 18 [-17.1, 15.2] and for  a,, ;. is [-1.29, 0.77]. Clearly the corresponding lower

bounds are bounded away from —oo, which provides evidence that the number of
misclassified observations is statistically significant greater than zero. Figure 4.1 shows
the profile likelihood confidence intervals for both parameters of interest.

A depiction of the differences between the land use proportions in the sample data
and the percentages estimated with the LMNL model is presented in Figure 4.2. The
results indicate that the AG category is overrepresented in the sample during all the study
period due to the presence of misclassified observations. On the other hand, the GC
category is underrepresented in the sample since it should contain all the observations
categorized as FA in the sample dataset. For the same reason, the FA category appears to
be overrepresented during all the period of analysis. A potential explanation for this
finding is that small-landowners that rely primarily on household labor are less likely to
abandon their plantations (Albers et al., 2006) specially if the current land use provides
means to satisfy household subsistence constraints.

To analyze the impacts of misclassified observations on the magnitudes and
directions of the parameter estimates I use the original sample dataset and the
reconstructed sample based on the LMNL analysis to estimate a multinomial logit model
of land use decisions. Table 4.2 shows the estimated coefficients, significance levels and

standard errors.
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Figure 4.1. Profile likelihood confidence intervals for &, ., and &, . -
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Figure 4.2. Land use proportions in the sample data and estimated
proportions using the LMNL model.
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Overall the significance levels and values of the AG and GC parameter estimates

are similar in the analysis of the two sample datasets. The values of the coefficients

associated to the FA category appear to be significantly different in magnitude and in

some cases the signs change using the LMNL-based sample.

Given the significant

reconfiguration of the observations contained in the FA category the differences in the
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corresponding parameter estimates was expected. Since the coefficients of parcel specific
variables do not directly allow us to infer how changes in the independent variables affect
the probability of observing any of the land uses considered in the analysis, I computed
the change in the probability of observing land use j in parcel 7 resulting from a marginal
change in the magnitude of each of the independent k variables included in the
multinomial land use model. The individual calculations were averaged across parcels
and land uses and the results are shown in Table 4.3. In general, most of the marginal
effects estimated with the two datasets have the expected directions (See chapter 2 for a
detailed description of the expected marginal effects). According to the analysis there is
statistical evidence to argue that parcels with higher degrees of slope will be more likely
to be used for agroforestry production, and areas with low slope are preferred for
cornfields or grasslands. The average marginal effects of the distance from a parcel to the
nearest markets are statistically significant and have the expected signs. The probability
of observing cash crops (AG or PC) reduces as the distance to a market increases. On the
other hand, the likelihood of an agent selecting the GC or FA category increases as the
distance to the nearest market increases, which is consistent with the intuition that if a
parcel is located far away from a market transportation costs may reduce the profitability
of some of the land uses reducing the choice set to subsistence crops (such as corn), land
uses that require a large area (such a cattle ranching activities), or land abandonment. A
similar explanation applies to the average marginal effects of the variable measuring the

distance from a parcel to the nearest road. Although, the marginal effect for this variable
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has the expected direction only in the estimation output corresponding to the reconfigured
dataset.

Table 4.2. Multinomial logit parameter estimates using the original sample data and
the reconfigured sample data generated with the LMNL model.

Original sample data Redistributed sample data
Estimate Std. Error Estimate Std. Error Difference
(A) (B) A-B
Constant AG -3.3421 0.5539  *** -3.3805 0.5630  *** 0.0384
GC 1.2527 0.5424 * 1.1672 0.5365 * 0.0855
FA 0.5276 0.8060 2.1882 2366.36 -1.6605
Slope AG 0.3789 0.0841  *** 0.3505 0.0848  *** 0.0284
GC -0.2557 0.0946  ** -0.1956 0.0937 * -0.0601
FA -0.1833 0.1389 3.1100 0.6253  *** -3.2934
Distance to market AG 0.5782 0.1685  *** 0.3214 0.1784 . 0.2567
GC 0.8627 0.1713  *** 1.0540 0.1805 *** -0.1913
FA 0.9732 0.2086  *** 21.1698 42179 *** -20.1966
Distance to road AG 1.4016 0.3185  *** 1.3174 0.3267  *** 0.0841
GC 1.2489 0.3119  **=* 1.2305 03118  *** 0.0184
FA 1.0312 0.3852 ** 16.1232 3.1221  *** -15.0920
Poverty index AG -0.0154 0.2328 0.1164 0.2320 -0.1318
GC -0.2802 0.2344 -0.1733 0.2267 -0.1069
FA 0.7179 0.3157 * -45.4773 9.7809  *** 46.1952
Soil texture AG 0.0896 0.1642 0.0728 0.1656 0.0168
GC -0.5437 0.1655 ** -0.5168 0.1610  ** -0.0268
FA -0.3428 0.2533 -62.3399 2366.38 61.9971
Elevation AG 4.6620 0.7143  *** 5.2670 0.7357  *** -0.6051
GC -1.9084 0.7206 ** -2.6215 0.7295  *** 0.7130
FA -2.7255 1.1215 * -64.3404 14.3039  *** 61.6149
Population AG -0.2124 0.0664  ** -0.2149 0.0674  ** 0.0025
GC -0.4901 0.0739  *** -0.5067 0.0734  *** 0.0165
FA -0.5253 0.1291  *** 6.7800 1.5575  *** -7.3054
Revenue AG 0.1090 0.0127  *** 0.1196 0.0132  *** -0.0105
GC 0.0852 0.0188  *** 0.1013 0.0192  *** -0.0161
FA -0.0123 0.0114 0.1846 0.0384  *** -0.1969
Log-Likelihood: -1492.4 -1187.4
McFadden R"2: 0.16417 0.2939

Notes: The parcel specific coefficients of the Perennial Crops category were normalized to zero for model
identification. Significance codes: “***’ significant at the 0.1% level; ‘**’significant at the 1% level; ‘*’
significant at the 5% level; °.” Significant at the 10%.
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Table 4.3. Average marginal effects.

Original sample data Redistributed sample  Difference

A) B) B-A)
Expected Estimate Standard Estimate  Standard
sign Deviation Deviation

Slope AG + 0.103 0.032 0.077 0.056 -0.026
GC - -0.085 0.028 -0.089 0.067 -0.003

FA + - -0.011 0.009 0.020 0.099 0.031

PC - -0.007 0.021 -0.009 0.021 -0.002

Distance to market AG - -0.007 0.037 -0.116 0.275 -0.109
GC + 0.070 0.033 0.071 0.442 0.000

FA + 0.021 0.015 0.132 0.647 0.111

PC - -0.084 0.051 -0.087 0.067 -0.003

Distance to road AG - 0.103 0.063 0.049 0.216 -0.054
GC + 0.052 0.055 0.004 0.325 -0.048

FA + -0.005 0.012 0.097 0.473 0.102

PC - -0.150 0.089 -0.150 0.093 0.000

Poverty index AG - 0.013 0.014 0.144 0.601 0.131
GC + -0.076 0.038 0.130 0.946 0.207

FA + 0.056 0.044 -0.294 1.440 -0.350

PC - 0.008 0.008 0.020 0.098 0.012

Soil texture AG + 0.084 0.032 0.215 0.821 0.131
GC - -0.104 0.031 0.139 1.296 0.242

FA +- -0.006 0.009 -0.402 1.967 -0.396

PC + 0.025 0.025 0.048 0.135 0.023

Elevation AG + 1.140 0.354 1.378 0.936 0.238
GC +- -0.793 0.303 -0.846 1.490 -0.053

FA +- -0.208 0.137 -0.419 2.048 -0.211

PC - -0.140 0.239 -0.113 0.325 0.027

Population AG + 0.025 0.021 0.007 0.097 -0.019
GC - -0.054 0.020 -0.092 0.145 -0.039

FA - -0.013 0.009 0.046 0.227 0.059

PC e 0.041 0.026 0.039 0.033 -0.002

Revenue AG + 0.011 0.005 0.009 0.006 -0.003
GC + 0.005 0.006 0.003 0.006 -0.001

FA + -0.006 0.005 0.001 0.003 0.006

PC 4 -0.010 0.006 -0.013 0.008 -0.002

Expected direction codes: ‘ + * indicates that a positive marginal effect is expected, * — * indicates that a

negative marginal effect is expected, ¢ + - * indicates that the marginal effects can go in either direction.
See chapter 2 for a detailed description of the expected direction of the marginal effects.
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The results corresponding to the poverty index are statistically significant only for the FA
category. I would expect that richer areas have higher probability of selecting cash crops
although this does not correspond to the results from the LMNL dataset. None of the
parameter estimates for the variable that controls for soil texture are statistically
significant, and besides considering that the GC category should be more likely to be
selected in areas with finer soil texture, it is difficult to argue about the expected direction
of the marginal effects on the remaining categories. All the parameter estimates of the
elevation variable are statistically significant and the directions of the marginal effects of
the AG and PC categories are consistent with the agroecological requirements of the
crops in those land use classes. Since corn and grass can be produced in parcels located at
different elevation gradients, the direction of the marginal effects could go in either
direction depending on the location of the parcels in the dataset. The results for the
original and modified sample data indicate an inverse relationship between elevation and
the probability of observing GC and FA. The parameter estimates corresponding to the
population variable are statistically significant and the marginal effects have the expected
signs indicating that higher population density may increase the probability of observing
labor intensive land uses and vice versa.

Perhaps the most relevant results after the sample data reconfiguration are related
to the statistical significance of the estimated coefficients of the revenue variable and the
signs of the corresponding marginal effects. The parameter estimates computed with the
original dataset, that contains misclassified data, are statistically significant at the 0.1%

level for the AG and GC category and the marginal effects have theoretical consistent
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signs. Nevertheless, the marginal effects of changes in revenue on the probability of an
agent selecting the FA or PC categories indicate a counterintuitive direction. Those
inconsistencies appear to be partially corrected with the reconfiguration of the dataset
based on the results of the LMNL model. Specifically, the sign of the revenue related
marginal effects for the FA category have the expected sign although the multinomial
logit model still cannot provide parameter estimates that explain how despite a
continuous decrease in the revenue of the PC category, some of the farmers decided to
transition to that land use category.

4.5 Conclusion.

Given the limited availability of historical high resolution remotely sensed data,
land use change analyses are often restricted to the study of transitions between a reduced
set of choices. In some cases coarse datasets are enough to accomplish relevant research
objectives, for instance in the study of deforestation processes. Nevertheless, in most of
the spatially explicit land use analysis coarse land use classifications are implemented as
a mechanism to reduce classification errors. Unfortunately, even in land use datasets
composed by a reduced number of categories, classification errors are still a potential
modeling issue. Consider for example an analysis that uses only two categories, forested
and agricultural lands, to study deforestation drivers in a particular region. In this case it
is possible that some of the observations classified as forested areas are in fact fallowed
parcels devoted to agricultural production, or even grasslands that have not received
weed control activities during the time of data collection of the remotely sensed data.

Unfortunately, those types of classification errors are difficult to reduce using only pixel-
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based algorithms, particularly if the available land use information is part of a cross-
sectional dataset, or time series data with many years of separation between the observed
periods.

As an alternative to reduce classification errors, in this chapter I implement a
post-classification procedure to identify misclassified land use data that cannot be
detected using pixel-based classification algorithms. The Latent Multinomial Logit
methodology has been implemented in several contexts to detect misclassified categorical
data (Caudill et al., 2005, 2011; Caudill & Mixon Jr., 2005; Caudill, 2006) but to our
knowledge it has not been applied in the land use change literature. The analysis
implemented in this chapter is based on land use information generated with remotely
sensed data collected during seven points in time throughout the period 1984 -2006, with
a maximum separation of five years between observations. The data correspond to land
use transitions observed in a Mexican coffee growing region in which relatively high
rates of tree canopy removal were observed as a result of the clearing of shade-grown
coffee plantations. I analyze land use dynamics between agroforestry parcels, perennial
crops, grass and corn, and land abandonment. The category corresponding to fallow lands
was constructed analyzing the sequence of land use decisions observed in each parcel and
setting a parcel equal to fallow when the land use oscillated between GC or PC and AG
within a period of at most six years.

The implementation of the LMNL model provides statistical evidence to argue
that the procedure used to construct the FA category, while reasonable and objectively

defensible, fails to recognize that temporary increases in biomass that appear to indicate a
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change in the corresponding land use classification to AG, may be a result of a
production system that requires land abandonment as a mechanism to recover soil
productivity; or simply an indication that the parcel has not been maintained during the
time in which the remotely sensed data in that region were collected. On the other hand,
the results indicate that the LMNL procedure can be used to identify parcels within the
AG category that have a high likelihood of being fallowed only using the information
produced with pixel-based classification algorithms without making any assumptions
about the land use sequence followed by each landowner. With regard to the impact on
the values and magnitudes of the parameter estimates and marginal effects of the data
statistically identified as misclassified, we can observe that in general the reclassification
of the parcels based on the LMNL model increases the magnitudes of the marginal effects
in the theoretically expected direction. Particularly, the marginal effect of changes in
revenue associated with the FA category becomes statistically significant with the
theoretically expected direction.

Unfortunately, the available land use information does not allow us to assess the
accuracy of the LMNL model. I do not have data to confirm that the parcels identified as
misclassified land use observations are in fact devoted to a land use that is different to the
one detected by the classification algorithms. Simulated data or a sample of land use
decisions validated with interviews of landowners could help to test the performance of
the approach used here. Additionally, we can test the argument that fallowed parcels in

the PC category are not a common situation by expanding the LMNL model to let it
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estimate whether or not there are some parcels in that category that statistically appear to

be misclassified lands.
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Chapter 5

Structural estimation of stochastic dynamic agent-based
land use decisions.

5.1. Introduction

The main objective of this paper is to investigate the bias associated with the use
of a reduced form static (myopic) model in the analysis of a dynamic land use decision
process. Similar investigations have been conducted previously in the broader resource
economics literature but apparently have gone largely unnoticed by land use change
modelers. Baerenklau and Provencher (2005) analyze the implications of using a static
model to study recreation site choices that presumably are the outcome of a dynamic
process. They conclude that even if a reduced form static model provides a good fit to the
observed data it fails to produce unbiased and theoretically consistent estimates. Hicks
and Schnier (2006) reach a similar conclusion after analyzing site choices for commercial
fishing. Despite these related efforts, the vast majority of the agent-based land use
change literature still overlooks the fact that landowners tend to be dynamic forward-
looking agents who consider the future consequences of their current decisions and who
maximize uncertain payoffs over multiple time periods.

The number of studies that use dynamic frameworks to analyze land use
decisions appears to be very limited, and usually not focused on the estimation of the
structural components of the decision making process. The Forest and Agriculture Sector

Optimization Model (Adams et al., 1996) uses a deterministic dynamic programming
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approach to identify optimal land use allocations among competing activities but does not
undertake parameter estimation. Schatzki (2003) observes that land use models that fail
to incorporate uncertain returns and conversion costs may overestimate the price
responsiveness of decision makers and produce inaccurate policy assessments. The
author shows that option value models can provide a better analysis of conversion
decisions, but his approach assumes land use choices are irreversible which can introduce
significant bias into the model predictions if decisions are, in fact, reversible (Baerenklau
and Knapp, 2007). Song, Zhao and Swinton (2011) expand Schatzki’s (2003) model to
allow for the possibility of reversible decisions but focus on the impact of alternative
stochastic return processes on land use choices, rather than estimation of the underlying
decision problem.

In perhaps the most comprehensive study to date, De Pinto and Nelson (2008) use
a dynamic discrete choice model that incorporates agent expectations about future prices,
short term irreversibility of decisions, sunk costs and parcel specific characteristics (e.g.,
slope, elevation, soil quality) to analyze landscape transformation in a Central American
country. That paper constitutes the first attempt to estimate the structural parameters that
describe the land use decision processes in a particular geographical area, and to contrast
those parameters with those generated by static models. The authors find that the
dynamic model produces more accurate predictions than the static models, and the
parameter estimates appear to be statistically different, although no formal analysis is
presented to validate that observation. The De Pinto and Nelson (2008) analysis

constitutes a relevant contribution to the land use literature, but nevertheless exhibits
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some shortcomings. The discretization of the state space is very coarse, and instead of
constructing a discrete state space with equidistant points distributed within a range with
lower and upper bounds defined around the observed minimum and maximum values of
the stochastic variables, the authors use the observed values as the reference discrete
states, 1.e., assume that future realizations of those variables are centered at one of the
historically observed values. The data is similarly coarse in the temporal dimension, and
makes the common assumption that land use changes occur in the observation year. This
assumption fails to consider that the observed land use at time ¢ may have been in fact
selected at time ¢ — n, as a result of the state of the world and subjective expectations at
that time. Last, the estimation method sacrifices efficiency for computational speed. The
present work aims to address these issues and provide clearer insight into the implications
of static modeling of dynamic land use change processes.

The empirical application focuses on explaining landscape dynamics in a Mexican
coffee growing region during the period 1984-2006. In that time a substantial amount of
tree canopy was lost as farmers moved out of shade coffee and into other crops like corn,
citrus and banana. One of the motivations of this chapter is to model how commodity
price fluctuations impact canopy loss and how price policies might be used to mitigate
such losses. Supervised classification methods are implemented on seven satellite images
that cover the study period with an average separation between observations of 3.7 years.
To develop a panel dataset, the resulting classification is coupled with topographic and
socioeconomic data that affect land use productivity/returns (e.g., slope, distance to

markets, soil type, population, distance to nearest communities, output prices, conversion
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costs). To reduce the effects of spatial autocorrelation in the analysis systematic random
sampling is used to identify a subset of parcels representative of the landscape
configuration and land use changes observed in the study region. Additionally, the
available remotely sensed data is used along with the physiological constraints of the
crops to estimate land uses for the periods in which land use observations could not be
obtained.

Agent-based land use decisions are modeled as dependent on future returns
expectations, conversion costs, and parcel characteristics within a framework that allows
for the possibility that land use decisions can be reversed. I analyze output prices
received by farmers in the study area and approximate the subjective price expectation
process followed by those agents. A multinomial logit structure is imposed on each
choice occasion and Rust’s (1987) efficient nested fixed-point algorithm is implemented
to solve the associated Bellman equation. To accelerate the numerical estimation, spline
interpolation is used in the analysis. Estimating the vector of structural parameters that
best describes the observed land use choices requires solving the stochastic dynamic
optimization problem many times “inside” a maximum likelihood parameter estimation

routine.

5.2 Stochastic dynamic discrete choice land use model

As stated in previous chapters, land use analysis based on discrete choice random
utility models typically assume that the state of different socioeconomic and

environmental factors at a particular time ¢ =1,...,7, for T <o, determines the choice
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set of land uses available to decision maker i at different ¢ periods, C,, with

it °
ien= {1,2,...11}. For a specific geographic region an analyst can identify a finite set of

feasible land uses J = UC .- 1 assume that landowners are forward-looking agents who

ien
observe, at the beginning of each period, the realizations of the variables that determine
current payoffs, and use that information to update their estimates of future values for the
stochastic variables present in their decision making process. I assume that each agent
selects the land use j €J that maximizes the present value of his current and expected
future flow of payoffs. According to Rust (1994) for Markovian discrete decision
processes Blackwell’s theorem implies that with perfect information on all the state
variables that determine agent’s choices, an adequate modeling approach would be able
to accurately predict the observed behavioral process. Nevertheless, since only a subset
X of the state variables is observed by the analyst, I assume that deviations from the

model predictions are explained by state variables, ¢;, that determine the payoffs of each

land use j €J and that are only observed by each landowner.

Recognizing that the land use decisions considered in this study are reversible, I
model land use choices as part of an infinite horizon optimization problem followed by
agents that try to maximize a time-homogeneous utility function in which the
unobservable components enter the utility function in an additively separable (AS) way

that can be represented as
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u,(x)+s, Vjed (1)

with an additional assumption that agents use a time invariant transition probability

function to estimate future states of the stochastic land use drivers, and a constant
S €[0,1) to discount future payoffs. These assumptions correspond to a stationary
Markovian structure of land use decisions and imply that future expected payoffs depend
exclusively on the current state of the land use drivers and the current land use decision.
In other words, if an agent at time ¢ and at time ¢ + k reaches a situation in which the land
use drivers are in state s, the optimal decision rule and value function should be
equivalent (Rust, 1994). Therefore, we can represent the agent’s value function
associated to the Bellman equation as

V(x, 5)=max[uj(x)+gj+,8{V(x', 5')p(x', e

jeJ

x, & j)}] @)

where p(x', e'x, &, j ) represents a transition probability equation used by landowners

to estimate the likelihood of observing the realization of the stochastic components of the

observable and unobservable land use drivers (x', 6") conditional on their current

realizations (x, 6‘), and land use during the current period. Under the assumption of

conditional independence (CI) the transition equation can be represented as

p(x',g' x,g) = q(€'|x')7r(x' x.j)
This decomposition implies that the probability of a land use driver assuming a particular

realization during the next period only depends on the current period realization of that
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state variable, and on the agent’s land use choice. This also implies that any serial
dependence between &'and ¢ is contained in the next period realization of the

observable state variables x' (Rust, 1987). More importantly, the AS and CI assumptions
allow us to estimate a system of conditional choice probabilities, Pr, (dj = 1|x) where
d;=1 if land use j is selected and d, =0 otherwise, that can be used to estimate the
structural parameters of the discrete choice dynamic problem(Rust 1994).

Therefore under the AS and CI assumptions the value function (2) can be

rewritten as,

V(x, &)= max[uj (x)+&,+BE,V (X, 5')7r(x'

jeJ

%, j)] (3)

Following Card (2008) we can define

V(x)=EJV(x¢)

78 [ ' . (4)
=E, [rr}gjx[uj (x) +e,+pV (x') 7Z'(X X, ])ﬂ
Representing the expected payoff to land use j as,
v (x)=u, (x)+ AV (x") z(x'|x, /) (5)

we can rewrite equation 4 in a way that resembles the model specification of a static

discrete choice problem

V(x)=E, [max[vj (x)+ afﬂ

jel
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Assuming that the unobservable state variables are i.i.d. standard extreme value type |

deviates

jeJ

V(x)=E, [max[v}. (x)+¢, ﬂ = log{;exp(\/j (x))} +y (6)

where y =0.5772151is the Euler-Mascheroni constant.

The probability of an agent selecting land use j can be computed using the commonly

known expression

Cexp(v,(x))
Pr( ._1|x) ZeXp(,(X) (
leJ 7)

exp[ (x)+ BV (x) ( 'x,j)]
Zexp[u, )+ BV (x") (x'x,l)]

leJ

As mentioned in previous chapters, the payoffs of the different land uses available
to the decision maker are determined by several factors that include a parcel’s
characteristics, an agent’s characteristics, the regional climate, governmental policies, etc.
Following the land use literature we can model the systematic component of the utility
function, u; (x), as a linear-in-parameter specification of the observable state variables.
Furthermore, we can decompose the vector X into variables that represent parcel specific
characteristics that do not change through time and parcel specific stochastic variables.

Therefore, we can define the current period payoff to land use j from the observable

components in equation 7 as,

u(x)=w,'s,+a,'k,
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where K. is a vector of parcel i specific variables, S, is a vector of stochastic variables,
and @; and «; are structural parameters of the decision making process associated with
each land use in the choice set.

With a set of observed land use decisions made by i = /, ..., N agents, at different
time periods 7 = 0, ..., T, we can compute the parameters, @; and ¢, that maximize the

likelihood function and characterize more accurately the decision making process

followed by landowners in the study region:

L(a),a ,

J)= HHHP

i=1 t=0

or in log-likelihood functional form,

:ﬁ;id 1og§;i£[v1 ]] VIje

53 Empirical application

As stated in the description of the study region, from an economic, ecological and
social perspective, agroforestry production is a significant activity in Mexico. Small-scale
farmers across the country depend upon shade grown crops, with coffee being the leader
both in terms of cultivated land area and value of production. It has been estimated that
around 3 million Mexican people depend on coffee-related activities and that

approximately 90% of the coffee-cultivated area lays under diversified shade providing
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forest-like environmental services (Escamilla Prado, 2007). The modeling efforts
implemented with the dataset described in chapter 2, so far consists of a multinomial logit
model implemented by Ellis et al. (2010), and Baerenklau et al. (2012), the mixed
multinomial — conditional logit described in chapter 3 and the Latent multinomial logit
model presented in chapter 4. None of those models have the methodological structure to
appropriately model inter-temporal aspects associated to forward-looking behavior.
Recognizing the limitations of those analyses this paper focuses on implementing an
analysis of the structural components of the dynamic decision-making process followed
by landowners in the low lands of Atzalan, Veracruz, Mexico. The following subsections
present a description of specific modifications made to the dataset described in chapter 2,
and additional state variables generated to implement Rust’s (1987) nested-fixed point

algorithm.

5.3.1 Land use choice set.

The choice set of land uses available to landowners in the study region is defined
by the categories described in chapter 2, Agroforestry (AG), Perennial crops (PC), Grass
and Corn (GC), and Fallow lands (FA). In this chapter, I use information from the sample
of 210 parcels of land use decisions obtained with remotely sensed data collected during
1984, 1989, 1993, 1996, 2000, and 2006. The observations in the FA category

correspond to the parcels that were identified as abandoned lands after analyzing the
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sequence of land use transitions derived from the classification based on remotely sensed

data’.

5.3.2 Transition probability matrices for the price indices

Recall that the AG price index is defined as the average rural price received by
coffee growers at the State level. The PC price index is a weighted average price per-ton
according to the area harvested for each product in this category. The GC price index is a
per-hectare weighted price according to the average productivity of grasslands and
cornfields. The FA price index is based on the yearly minimum wage for construction
workers, which is a proxy of the alternative income that farmers can obtain if they decide
to let their land fallow and work off farm. To reduce the dimensionality of the state space
we normalize the price indices using as a reference the FA category. This will allow the
estimation of the dynamic model with only three stochastic variables although the
normalization will limit our analysis to a multinomial (rather than conditional) logit
specification.

In this chapter I assume that landowners at the beginning of the period observe the
realizations of each of the price indices for the land uses under analysis, and update their
subjective price expectations to estimate the profitability of changing to an alternative
land use or continuing the current land use for at least one additional period. Since one of
the assumptions required to implement the nested fixed-point algorithm is that the

transition probability function is stationary, I needed to ensure that the time series of the

? The reclassification generated with the latent multinomial logit model described in chapter 4 is not used in
the dynamic analysis described in this chapter. I decided not to use that classification since it has not been
validated, but mainly because a more robust implementation of the latent multinomial logit model would
include the dynamic components of the land allocation process.
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observed prices do not exhibit structural breaks that induce changes in the subjective
price expectation process used by decision makers during the period of analysis.
Particular attention was paid to the analysis of the AG price index, since the international
coffee market suffered a reconfiguration in 1989 at the end of the International Coffee
Agreement, moving from an export quota system to an unregulated export market. To test
for structural breaks in the time series of the normalized price indices I use the
strucchange R package (Zeileis, Leisch, Hornik, & Kleiber, 2002) to implement
generalized fluctuation tests and F-tests (see Kuan, Leisch, and Hornik 2000). In general,
these analyses do not indicate statistical evidence to reject the null hypothesis of

structural stability for the time series considered in the model.

Given that price indices are considered stochastic components of the land use
model under analysis, it is necessary to estimate the associated transition probability
functions that are used by agents to elicit future price expectations. Arguably the most
reliable method to do this involves collection of experimental survey data from decision-
makers. Because such surveys are costly and time consuming and thus beyond the scope
of this thesis, I instead base my approach on findings from a recent study by Hill (2010)
that does this for Ugandan coffee growers. Using survey data, Hill (2010) demonstrates
that recent coffee prices are one of the main determinants of farmers’ future expectations.
Therefore, consistent with these findings as well as the requirements of my estimation
framework, I assume a first-order auto-regressive process for the normalized coffee price.
Furthermore, because coffee production in the study region was one of the most

important sources of income during the 1950s — 1990s, I assume that farmers use a
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similar auto-regressive structure to estimate prices for other crops as well. Although it is
possible that different processes could be driving price expectations for each farmer in
the study region, to make the empirical model tractable, and for comparison purposes
with the work by De Pinto and Nelson (2008), I apply a common set of parameter

estimates to all farmers. Estimation results are shown in Table 5.1.

Table 5.1. First order autoregressive parameters of the price indices used in the
estimation of the transition probability functions.

Parameter AG PC GC
Unconditional mean 02306 0814  0.3968
Autocorrelation coefficient 0.6742 0.5050 0.8213

Standard deviation of the shocks 0.0758 0.0215 0.0425

To estimate the associated transition probability matrices, I follow a two-step

process. First, I discretize each normalized price index into a finite set of states

Price_ = {Prices’1 ,Prices’z,...,Prices’n} for s= AG, PC, GC and compute the 7 X nmarginal

probability transition matrix [ =[nﬁ] , Where T, represents the probability of
S ij=1,.0 !

Price_ moving next period to Pricesi Vi j=1,..,n; ys >0 and Znﬁ=l V i. To

3t 2

J
populate the Hsmatrixes I implement Tauchen and Hussey's (1991) approximation
algorithm of AR(1) processes with Markov chains. In the second step, under the

assumption of price independence we compute the n’ x n’ joint transition probability
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matrix as the Kronecker product of the marginal probability transition matrices

H join: HAG ®HPC ®HGC .

5.3.3 Age of the plantations

In a dynamic forward-looking framework, the age of the land uses is a key
variable since it determines the expected yields for the AG and PC categories, and
consequently the expected revenues for those land uses. Recall that in the original dataset
the largest separation between land use observations occurs between 1973 and 1984, and
that to define a starting value for the age variable, I identified 210 parcels that did not
change land use during those periods. In that sample it is assumed that the minimum age

of each land use 7 at the beginning of 1984 is 11 years, age, =11. It is likely that most

, 1984
of the land uses in that sample in 1984 are actually older than 11 years, but since at that
age it is assumed that all the land use categories have reached maturity, the assumption

that age; 5, =11 seems an adequate starting point to construct a yearly dataset of land

use ages during all the study period (1984 — 2006).

To estimate ages after 1984, recall that the dataset contains land use observations
for the periods at which the satellite images were collected (1984, 1989, 1993, 1996,
2000, 2006). Unfortunately, after land use is changed in a particular parcel the new land
use observed during the next observation period does not necessarily correspond to a one-
year old plantation. For instance, if the land use of parcel i in 1984 is AG and in 1989 is
PC, the land use change may have happened at any date after the data collection time of

1984, and the age of the PC plantation in that parcel at the beginning of 1989 may, for
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modeling purposes, range from one to five years. Let (¢, ") = {(1984,1989); (1989,1993);
(1993,1996); (1996,2000); (2000,2003); (2003,2006)}, indicate the observed land use at
the beginning and end of the intervals for which we have land use information. To
construct a yearly dataset of age values I assume that if the land use at ¢’ is the same as
the one at ¢, then it is not economically rational and physiologically possible to change to
a different land use during the intervening period and then back to the observed land use

at ¢, especially in the case of perennial crops. On the other hand, if diﬁ =0and di/‘t' =1 the
land use transition to land use j might have happen any time after ¢ during the years for
which we do not have land use observations or at time ¢". Letting age; ,represent the age
of land use j in parcel i at the beginning of year ¢, and age; , indicate the age at the

beginning of next year ¢’ for which there is land use information, we can consider that the

age associated to the observed land uses in all the parcels can be represented as,

0 ifd, =0
agel.j,t,z 26{1,2,...,t'_[} ifdijt:()anddijt'zl V] eJ
age, ,+t'-t ifd, =landd, =1

With perfect information we will be able to identify the land use transition time for each
parcel with land use change, determine the value of z, and incorporate that information
in the computation of the likelihood function. Given data limitations I investigate the
sensitivity of three procedures to assign a transition time to all the observed land use
changes. The first procedure, which is generally assumed in most of the spatially explicit

land use models, considers that the observed land use change was made in the
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observation period, which implies that age, ,=1 if d;, =0, and d,; =1. The second
procedure reconstructs a yearly dataset of land use age values assumes that the observed

land use change happened during the year following period ¢, (i.e., age; . =t'-t if

dijl =0, and d,.ﬂ, =1). The third procedure assumes that the land use transition happened
in the middle of the transition period ¢ — ¢* using the average age; , = t'= % if d[jt =0,

and d[j,. =1). 1 tested these procedures and find that the results are not significantly

different, arguably because the time separation between the observed land use decisions
is at most 5 years, which is not common in the land use literature. I decided to follow the
assumption that the observed land use change occurred in the middle of the transition
periods to construct a yearly dataset of land use age information. In addition, I impose an
upper bound of 25 years in order to reduce the size of the state space under the

assumption that the returns from older plantations become indistinguishable at this age”.
5.3.4 Parcel specific characteristics

Given the computational requirements to estimate the maximum likelihood
parameter estimates associated with the land use problem under analysis, I decided to use
a reduced set of parcel specific variables. During the model calibration process, the
variables that account for elevation, distance to nearest markets and poverty level were

observed to be statistically relevant to the dynamic analysis, whereas slope, population,

* An alternative to estimating the age variable is to consider it as a “missing completely at random”
(MCAR) data problem generated by the lack of information about the specific time in which land use
change occurred. Under this assumption, the EM algorithm and multiple imputation, then deletion method
(MID) (Enders, 2010; Young & Johnson, 2010) can be applied, albeit at a significantly additional
computational cost.
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distance from each parcel to the nearest road and soil texture were not and were thus
omitted from the dynamic analysis. Table 5.2 shows a summary of the parcel-specific

variables that are used to estimate the dynamic model.

Table 5.2. Summary statistics parcel specific variables used in the dynamic model

Variable Description Mean Min Max
Elevation Meters above sea level 353.95 85 726.40
Poverty Poverty index 0.316 -0.798 2.109
Distance to nearest Distance from each parcel to nearest 14.36 2.93 35.52
market market (m)

Summary statistics are computed for all parcels during the period 1984-2006.

5.4 Results and discussion
To compute the maximum likelihood parameter estimates (MLE) of the structural
land use model, the nested fixed point algorithm was implemented using the student

version of Matlab R2012a. For a discretized set of values of the discount factor £ €[0,1)

, the Global Optimization toolbox was used to implement first a scatter-search algorithm
to produce vectors of starting coefficient values; and then a gradient-based constrained
nonlinear optimization procedure to estimate the local optimum within the neighborhood
of each vector of starting values. The local solutions were stored and the values of the
log-likelihood function were compared to identify the global optimum in the set of tested
starting coefficient values. Once a MLE was associated with each of the initial £ values,
a derivative-free unconstrained procedure was implemented to refine the parameter
estimates. This last step was used because during the model calibration process it was
detected that, for some coefficient values, the gradient-based procedures apparently

reached relatively flat regions of the log-likelihood function, thus making it difficult for
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the solver to identify a direction to move to increase the log-likelihood value. The
derivative-free procedures helped to ensure that no further improvements, within the
neighborhood of a tolerance value, could be made to the values of the parameter
estimates to increase the value of the objective function.

To expedite the computational procedure, as is common in dynamic models with
continuous stochastic variables, the state space corresponding to each of the normalized
price indexes of the AG, PC, and GC categories was discretized into 12 equidistant points
distributed through a range with lower and upper bounds defined by the minimum and
maximum values observed during the observation period. The corresponding transition
probability matrixes generated with those sets of discretized values is shown in Tables
5.3 — 5.5. Additionally, to estimate value functions associated with observed price
realizations that are different from the discrete points used in the analysis, I use cubic
spline interpolation. Furthermore, the main computational scripts and functions used in
the analysis were configured to run in parallel to use more efficiently the available

computing resources.

5.4.1 Sensitivity of the model to different discount factors

To initiate the computational estimation the discount factor, £, was discretized
into the set of points £ = {0.05, 0.25, 0.5, 0.75, 0.85, 0.95}. The grid search procedure
used to estimate the discount factor indicates that a value around 0.5 provides relatively
good estimates of the observed land use proportions and of the inter-temporal land use

trajectories. Therefore, the discrete state space for the variable discount factor was further

106



LOT

Discrete
points

0.09323
0.12826
0.16328
0.19831
0.23333
0.26836
0.30338
0.33841
0.37343
0.40846
0.44348
0.47851

0.09323

0.11218
0.01801
0.00220
0.00020
0.00001
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.12826 0.16328

0.37913
0.16850
0.04910
0.01016
0.00153
0.00017
0.00001
0.00000
0.00000
0.00000
0.00000
0.00000

0.35409
0.37507
0.22920
0.09374
0.02697
0.00553
0.00080
0.00008
0.00001
0.00000
0.00000
0.00000

Table 5.3. Transition probability matrix
of the discretized state space corresponding to the AG normalized price index

0.19831

0.13094
0.30838
0.37249
0.28513
0.14913
0.05478
0.01415
0.00251
0.00029
0.00002
0.00000
0.00000

0.23333

0.02187
0.11030
0.25507
0.35488
0.32805
0.20996
0.09404
0.02910
0.00598
0.00075
0.00005
0.00000

0.26836

0.00173
0.01828
0.07964
0.19839
0.31951
0.35135
0.26920
0.14311
0.05123
0.01154
0.00141
0.00006

0.30338

0.00006
0.00141
0.01154
0.05123
0.14311
0.26920
0.35135
0.31951
0.19839
0.07964
0.01828
0.00173

0.33841

0.00000
0.00005
0.00075
0.00598
0.02910
0.09404
0.20996
0.32805
0.35488
0.25507
0.11030
0.02187

0.37343

0.00000
0.00000
0.00002
0.00029
0.00251
0.01415
0.05478
0.14913
0.28513
0.37249
0.30838
0.13094

0.40846 0.44348

0.00000
0.00000
0.00000
0.00001
0.00008
0.00080
0.00553
0.02697
0.09374
0.22920
0.37507
0.35409

0.00000
0.00000
0.00000
0.00000
0.00000
0.00001
0.00017
0.00153
0.01016
0.04910
0.16850
0.37913

0.47851

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00001
0.00020
0.00220
0.01801
0.11218

Sum
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801

Discrete
points

0.04854
0.05614
0.06375
0.07135
0.07895
0.08655
0.09416
0.10176
0.10936
0.11696
0.12457
0.13217

0.04854

0.01371
0.00209
0.00031
0.00004
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.05614 0.06375

0.14541
0.04745
0.01347
0.00330
0.00069
0.00012
0.00002
0.00000
0.00000
0.00000
0.00000
0.00000

0.36025
0.22532
0.11138
0.04548
0.01553
0.00443
0.00104
0.00020
0.00003
0.00000
0.00000
0.00000

Table 5.4. Transition probability matrix
of the discretized state space corresponding to the PC normalized price index

0.07135

0.32685
0.37192
0.30628
0.20003
0.10687
0.04714
0.01710
0.00502
0.00115
0.00020
0.00002
0.00000

0.07895

0.12841
0.25849
0.34625
0.35377
0.28957
0.19361
0.10608
0.04717
0.01661
0.00441
0.00080
0.00007

0.08655

0.02333
0.08188
0.17624
0.27855
0.34558
0.34656
0.28389
0.18935
0.10103
0.04147
0.01204
0.00197

0.09416

0.00197
0.01204
0.04147
0.10103
0.18935
0.28389
0.34656
0.34558
0.27855
0.17624
0.08188
0.02333

0.10176

0.00007
0.00080
0.00441
0.01661
0.04717
0.10608
0.19361
0.28957
0.35377
0.34625
0.25849
0.12841

0.10936 0.11696 0.12457

0.00000
0.00002
0.00020
0.00115
0.00502
0.01710
0.04714
0.10687
0.20003
0.30628
0.37192
0.32685

0.00000
0.00000
0.00000
0.00003
0.00020
0.00104
0.00443
0.01553
0.04548
0.11138
0.22532
0.36025

0.00000
0.00000
0.00000
0.00000
0.00000
0.00002
0.00012
0.00069
0.00330
0.01347
0.04745
0.14541

0.13217

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00004
0.00031
0.00209
0.01371

Sum
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Discrete
points

0.24610
0.27442
0.30274
0.33105
0.35937
0.38769
0.41601
0.44433
0.47265
0.50096
0.52928
0.55760

0.24610

0.35188
0.07675
0.00953
0.00073
0.00003
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.27442

0.43990
0.33177
0.11868
0.02396
0.00291
0.00022
0.00001
0.00000
0.00000
0.00000
0.00000
0.00000

0.30274

0.17594
0.38222
0.33704
0.15609
0.04180
0.00669
0.00064
0.00003
0.00000
0.00000
0.00000
0.00000

Table 5.5. Transition probability matrix
of the discretized state space corresponding to the GC normalized price index

0.33105

0.02982
0.17145
0.34674
0.34460
0.19108
0.06214
0.01194
0.00132
0.00008
0.00000
0.00000
0.00000

0.35937

0.00237
0.03442
0.15355
0.31600
0.35066
0.22426
0.08430
0.01833
0.00218
0.00013
0.00000
0.00000

0.38769

0.00009
0.00325
0.03135
0.13115
0.28623
0.35393
0.25588
0.10759
0.02520
0.00298
0.00014
0.00000

0.41601

0.00000
0.00014
0.00298
0.02520
0.10759
0.25588
0.35393
0.28623
0.13115
0.03135
0.00325
0.00009

0.44433

0.00000
0.00000
0.00013
0.00218
0.01833
0.08430
0.22426
0.35066
0.31600
0.15355
0.03442
0.00237

0.47265

0.00000
0.00000
0.00000
0.00008
0.00132
0.01194
0.06214
0.19108
0.34460
0.34674
0.17145
0.02982

0.50096

0.00000
0.00000
0.00000
0.00000
0.00003
0.00064
0.00669
0.04180
0.15609
0.33704
0.38222
0.17594

0.52928

0.00000
0.00000
0.00000
0.00000
0.00000
0.00001
0.00022
0.00291
0.02396
0.11868
0.33177
0.43990

0.55760

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00003
0.00073
0.00953
0.07675
0.35188

Sum

— e e e e e ek e e e e



refined around 0.5. Table 5.6. shows the maximum likelihood parameter estimates
corresponding to some values of the expanded discretized state space for the discount
factor. All but one of the signs of the parameter estimates remain unchanged across all
the tested discount factor levels, the only changes are in the magnitudes of the coefficient
estimates. Nevertheless, since the model is based on a multinomial logit procedure, the
signs of the coefficients do not necessarily indicate the direction of the marginal effects.
Before proceeding with the estimation of the marginal effects it was necessary to
identify the discount factor that provides the best approximation to the decision making
process in the study region. Typically, the discount factor that produces the highest log-
likelihood value is the one selected as the “true” value used by agents to discount future
payoffs. Consistent with observations on market interest rates, previous studies generally
have estimated relatively high values of the discount factor, for instance De Pinto and

Nelson (De Pinto & Nelson, 2008) find that a £ value of 88.5% maximizes the likelihood

function associated to their dynamic model of land use change. However, despite testing
alternative model specifications, I find that lower discount factors —as low as 5% —
consistently produce higher likelihood values for the present analysis (figure 5.1).
Because a 5% discount factor seems unrealistically low, I applied three alternative
selection criteria for the “true” discount factor. First, I analyzed how accurately the model
predicts land uses at the parcel level within the sample. The results also indicate a
negative relationship between the per-parcel prediction accuracy, and the discount factor
(figure 5.2). Second, following Keane and Wolpin (2009), I analyzed how accurately the

model predicts land uses at the parcel level out of sample. To do this, I use observed land
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uses in 2011 derived from Google Earth imagery for the sample parcels. Figure 5.3 shows
that discount factors ranging from 5% to 75% can predict the observed land uses in 2011

with an accuracy of around 82% without significant variation. The third, method focuses

Table 5.6. Maximum likelihood parameter estimates

Discount 5% 25% 45% 50% 57% 75% 85% 95%
factor

Revenue  AGF 6.8409 6.1905 5.2345 5.3644 5.2383 4.6461 4.9333 3.9098
PC 17.5313 13.7274 9.6098 9.7398 8.0886 6.1316 5.3308 2.4381
GC -0.7963  -1.8549 -2.1703  -2.3847 -2.4524  -8.6514  -9.0646 -10.4484
Intercept AGF -1.4843 -1.5304 -1.8057  -2.0392 -2.2148  -4.6034 -4.9291 -5.6746
PC -1.1761 -1.2194 -1.8500  -2.0835 -2.1615  -6.3249  -6.6509  -6.8180
GC 2.5626  3.6150 3.8647 3.9945 3.8612 8.5354 8.2832 7.4046
Elevation AGF 3.9908 3.4868 5.0454 5.1753 4.7987 144728 11.6728 11.2371
PC 5.1013 3.9738 6.4255 6.5554 6.2144 18.4690 15.5218 16.2920

GC 0.4177  -0.6338 -0.9282  -1.1617 -1.2286  -0.1473  -0.1536  -0.1651

Distance ) op 3181 03705  -04737  -0.6034  -0.6240 -14868 -1.5901  -1.8421
to market
PC  -1.1639 -1.0512  -12713  -1.5048  -1.5465 -2.9611 -3.3425 -3.4118
GC  -0.0796 -0.0706  0.0067 -0.0660  -0.0681 -0.2754 -02927  -0.2872
Pi(:l‘;fel:y AGF  -0.8622 -0.1057 -0.1863 -0.3160  -0.3139 -2.7023 -2.7513  -2.7264
PC  -12323 -0.7091  -0.9519 -1.1854  -1.1989 -2.0393 -2.0740  -2.0558
GC  -0.8003 -0.4151 -0.4174 -0.5471  -0.5778 -1.3513 -1.3651  -1.7872
_ Log 2631 2807 -3202 23368 3680 <7089  -10041  -19882
likelihood
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% of per parcel correct predictions

% of per parcel correct predictions

Figure 5.1. Discount factor and Log Likelihood values
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Figure 5.3. Out-of sample percentage of per-parcel accurate predictions.
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on analyzing the estimated land use proportion during all the study period and at each
year for which there available land use information. The results indicate that a dynamic
model with a 57% performs well in the estimation of the aggregate land use proportions
during the study period (see figure 5.4), as well as during the years for which there is land
use data (see figure 5.5). Additionally, in table 5.6 we observe that despite the relatively
good predictive performance of the model at a discount factor of 5%, it overestimates by
10.8% the percentage of parcels devoted to the GC category, which represents an
overestimation of 29.7% of the parcels allocated to this land use category. Additionally,
at that discount factor the model does not predict any of the parcels identified as fallowed
lands. On the other hand, we can also observe in figure 5.4 and table 5.6 that as the

discount factor approaches 100% the model tends to under predict the proportion of land
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in the AG, PC, and GC categories, and over predicts the percentage of land that is

fallowed.

Overall, the results from the first two applied alternative procedures to detect the
“true” discount factor appear to indicate that a discrete choice model with a discount
factor equal to or close to zero is a good instrument to describe the behavioral process
followed by agents in the study region. Furthermore, such a discount rate would imply
that agents do not take into account future payoffs when making land use decisions, and
would call into question the dynamic modeling approach. However, it is necessary to
proceed with caution before drawing such a conclusion. As emphasized by Provencher
and Baerenklau (2005), measures of fit are problematic tools for assessing whether an
underlying decision process is dynamic. For example, under some circumstances even a
low order polynomial can be used to accurately predict decisions that are inherently
dynamic, but such a “reduced form” model lacks any insight into the structure of the
decision making process. Instead, Provencher and Baerenklau (2005) argue that other
information about the decision making process should be brought to bear on this question
rather than relying on the data to answer it. Therefore, although a near-zero discount
factor could be justifiable for annual crop production, particularly in regions where
agents face subsistence constraints, it would be difficult to defend that farmers with
coffee, banana or citrus plantations do not care about future flows of net revenue during
their decision making process. Following this reasoning, a discount factor of 57% is used
in the remainder of this analysis since it not only performs relatively well under each of

the three selection criteria but also is more consistent with forward-looking behavior.
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Figure 5.4. Estimated and observed use proportions at different levels of the
discount factor.
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Figure 5.5 Observed versus estimated land use in the sample data at different
discount factor values
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Table 5.7. Observed and predicted land use proportions at different levels of the discount factor.

Observed
land use
proportions
Agroforestry 40.7%
Perennial 15.5%
crops
Grasslands 36.5%
and cornfields
Fallow lands 7.3%

Deviations from observed
Agroforestry

Perennial

crops

Grasslands

and cornfields

Fallow lands

Sum of absolute deviations

5%

39.9%

12.8%

47.3%

0.0%

-0.7%

-2.7%

10.8%
-71.3%

21.6%

25%

39.5%
12.2%

48.4%

0.0%

-1.2%

-3.3%

11.9%
-1.3%

23.8%

Estimated land use proportions at different

45%

39.5%
12.9%

36.9%

10.7%

-1.2%

-2.7%

0.5%
3.4%

7.8%

50%

38.6%

13.1%

36.3%

12.0%

-2.0%

-2.4%

-0.2%
4.7%

9.4%

Discount factor values

57%

39.3%
13.1%

36.7%

10.9%

-1.4%

-2.4%

0.3%
3.5%

7.6%

60%

38.0%
12.6%

36.7%

12.7%

-2.7%

-2.9%

0.3%
5.3%

11.2%

63%

38.1%
12.4%

36.8%

12.7%

-2.6%

-3.1%

0.3%
5.3%

11.3%

75%

36.3%
14.3%

24.1%

25.2%

-4.4%

-1.2%

-12.3%
17.9%

35.8%

85%

32.2%
16.1%

16.7%

35.1%

-8.5%

0.5%

-19.8%
27.8%

56.6%

95%

25.1%
7.6%

1.4%

65.9%

-15.6%

-7.9%

-35.1%
58.6%

117.1%



5.4.2 Comparison of the magnitudes and directions of marginal effects

between static and dynamic models.

For comparison purposes, with the reduced set of explanatory variables
considered in the dynamic model, I estimated a mixed conditional-multinomial model
that uses non-normalized moving average prices to approximate agents’ price
expectations, and the average expected yield for a new plantation during the first 25 years
of production to approximate farmers’ expectations on plantation productivity to
construct the revenue indexes (see chapter 3 for a description of this type of model).
Additionally, similar modeling assumptions but using Fallow normalized prices were
used to implement a standard multinomial logit model. Given that the parameter
estimates produced by multinomial logit based models, both under static and dynamic
frameworks, do not indicate the direction of the marginal effects, I computed the change
in the probability of observing AG, PC, GC or FA in each sample parcel resulting from a
marginal change in the magnitude of each of the independent variables included in the
dynamic model. Table 5.8 shows the estimated marginal effects, statistical significance of
the parameters estimates’, and expected directions of the marginal effects produced with
the aforementioned static models, and with the two versions of the dynamic model

defined at discount factors of 5% and 57%.

> Since the values and signs of the parcel specific parameter estimates do not allow us to make direct
comparisons or inferences, those results are not shown in the table
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Table 5.8. Marginal effects estimated with static and dynamic models.

Mixed Standard Dynamic 05% Dynamic 57%
Multinomial Multinomial logit
Conditional logit
Expected Estimate Estimate Estimate Estimate
sign

Revenue AG + 0.0047 . 0.2648 0.2593  w¥* 0.7634

PC + -0.0133 e -0.0866  *** 0.8615  *** 0.7745  *%*

GC + -0.0108 * -0.2480 ** 09888 -1.5326

FA 1 -0.0059 ek 0.0698 -0.1321 -0.0053
Elevation AG + 1.1352 ek 1.1341  *** 0.1579  *%* 0.6447 *

PC - 0.0774 RS 0.0793  #*= 02117  #*=* 0.5143 e

GC +- -0.9866 -0.9889 -0.2820 -1.1507

FA +- -0.2261 -0.2245 -0.0876 -0.0083
Distance to market AG - -0.0141 o -0.0117  ***  -0.0049 -0.0164

PC - -0.1105 iy -0.1133  ***  -0.0535 -0.1375  ®**

GC + 0.0995 0.1003 0.0438 0.1517

FA + 0.0251 0.0247 0.0146 0.0022
Poverty index AG - -0.0190 ek -0.0181  ***  -0.0061 0.0790

PC - -0.0645 ek -0.0658  ***  -0.0269 -0.0852

GC + 0.0167 ek 0.0169  ***  -0.0239 0.0029

FA + 0.0669 0.0670 0.0569 0.0034

Notes: 1) Bold numbers indicate that the estimated marginal effects have the expected signs.

2) The parcel specific coefficients of the Perennial Crops category were normalized to zero for model identification.
Significance codes: “***’ significant at the 0.1% level; “**’significant at the 1% level; ‘*’ significant at the 5% level; .’
Significant at the 10%.

3) Expected direction codes: ‘ + ¢ indicates that a positive marginal effect is expected, * — © indicates that a negative marginal
effect is expected, * + - ’ indicates that the marginal effects can go in either direction. See chapter 2 for a detailed description of
the expected direction of the marginal effects.



Since the static and dynamic models have different modeling assumptions about
the process followed by decision makers to estimate the profitability of the available land
uses, it is not possible to draw comparisons between the magnitudes of the marginal
effects. Nevertheless, the directions of the marginal effects allow us to compare the
performance of the implemented modeling approaches. Perhaps the most relevant finding
is that the results from the dynamic model, at the tested discount factor levels, indicate
theoretically consistent directions in the marginal effects for the two cash crops
categories, AG and PC, by contrast the static models produce counterintuitive estimations
for the PC category. The results for the GC and FA categories do not coincide with the
expected direction, which may be due to the fact that the proportions of those land use
categories remained relatively stable during the period of analysis. This, in turn, may be
related to household consumption constraints, particularly for parcels devoted to corn
production.

On the other hand we can observe that the estimated marginal effects for the
parcel specific variables are very similar across the static and dynamic models. This is
not entirely unexpected since the variables considered in the analysis are spatially
heterogeneous but assumed to be time invariant at least during the period of analysis. All
the implemented models indicate that higher altitudes increase the likelihood of
observing coffee based agroforests, which as mentioned in previous chapters is consistent
with the requirements to produce high quality coffee. The results also indicate that land
use categories comprised of cash-crops are more likely to be in parcels located closer to

markets, and that land uses that require large land areas, e.g., grasslands, or that may be
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devoted to producing goods for household consumption, e.g., cornfields, are more likely
to be found relatively far from markets. With regard to the relationship between poverty
levels and land use decisions, all the models indicate that citrus or banana plantations, the
components of the PC category, are more likely to be found in areas with higher welfare
status.

5.4.3 Welfare effects from a price floor policy simulation

The complications associated with the estimation of structural discrete choice
dynamic programing models are usually justified in terms of their usefulness in the
evaluation of counterfactual scenarios or policies (Keane & Wolpin, 2009). In the context
of land use modeling, structural models can be used to analyze the impact of improving
access to financial credit for small-holder farmers, price subsidies or price floors,
technology assistance to improve parcel productivity, reduction in travel time to
commercialize yields through road improvements, etc. Programs such as these were
implemented by the Mexican government in response to the dramatic decline in coffee
prices received by farmers during the 1990°s and early 2000’s that reached levels that
were too low to cover production costs. There were two main programs: the Coffee
Stabilization Fund, which was a price floor program aimed at guaranteeing a price of 340
dollars per ton of cherry coffee to help farmers to cover the production costs of
plantations located in areas suitable to produce high quality coffee (usually areas located
at elevations higher than 900 meters above sea level); and the Productive Reconversion
Program which was focused on partially funding the removal of coffee plantations in

low-altitude areas that cannot produce high quality coffee. Coffee growers in the study
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area were potential beneficiaries of the Productive Reconversion Program, and were
eligible to receive two lump-sum transfers of around 80 dollars during two years to
transition to a different land use. However participation was generally low because that
amount is not enough to pay the costs associated with the removal of coffee plantations,
let alone the expenses related to establish a new crop. Additionally, the information about
the participants in that program is confidential, so we do not have data to explicitly model
the effects of that policy in the observed land use decisions. Therefore the potential
effects of such policy in the observed landscape dynamics are captured in the
unobservable components.

Both of these programs fundamentally were income support programs for small
holder farmers although they have two different objectives. A natural question that arises
is: how well the Coffee Stabilization Fund would perform as conservation tools focused
on preservation of shade canopy in low land areas? A study implemented by Avalos-
Sartorio and Blackman (2010) to investigate the performance of the Coffee Stabilization
Fund as a conservation tool in the higher elevations, finds that farmers in areas that were
more likely to experience coffee plantation removal had low levels of participation in the
program, and that the price floor was not high enough to affect land use change decisions.
Given the observed tree canopy loss in the present analysis, and as an additional
mechanism to contrast the performance of the static and dynamic models, here I evaluate
the welfare implications and landscape configurations resulting from implementation of a
similar price floor policy in my study area. Specifically I evaluate a policy that would

have extended the Coffee Stabilization Fund price floor to the lowland regions
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throughout the period of analysis. Figure 5.6. shows the fallow-normalized agroforestry
price index used in the dynamic model (which is entirely based on the average price per
ton received by coffee growers), along with its average value. The same figure also
shows the inter-temporal trend of a normalized price floor corresponding to a price of 340
dollars per ton of coffee. The upward trend in the normalized price floor is generated by
the continuous decline in the price index of the FA category observed during the study
period. Because the land use profitability estimation in the mixed conditional—
multinomial logit and standard multinomial logit models rely on assumptions that differ
from those in the dynamic model, in this section I use the parameter estimates for the
dynamic model with discount factors of 5% and 57% to implement an unbiased
comparison of the effects of the simulated price floor policy, assuming that the dynamic
model with a discount factor of 5% is a close representation of a static model.

The analysis of the welfare effects and land use decisions resulting from the
aforementioned price floor policy was implemented using two procedures based on the

analytical expression of the expected payoff derived from discrete choice logit models
J
E[max{v,+&,...v, +&,}|= aneXp(vj)+ 0.57722
Jj=1

where v, is described in equation 5, and J indicates the total number of land use

categories contained in the choice set. The first procedure consisted on using the
observed realizations of the AG price index and the parameter estimates generated with
the dynamic model with discount factors of 5% and 57%, to estimate the baseline welfare

and land allocation without the policy. After computing the baseline the observed AG
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prices located below the normalized floor price were replaced by the corresponding floor
value. Additionally, under the assumption that farmers would know that the price floor
would be implemented during all the study period, the structure of the AR1 process used
to estimate the transition probability matrix of the AG price was re-estimated to account
for the change in the minimum expected price and long run mean of the AR1 process.
After those adjustments, the welfare effects and land use decisions generated under the
simulated policy were computed using the two reference discount factors. The welfare
estimates are shown in figure 5.7, and the proportion of land allocated to each land use

category are presented in figure 5.8.

Figure 5.6 Time series trends of the normalized Agroforestry price and the
normalized price floor.

g 7 Normalized AG prices

* Normalized price floor

* Mean of normalized prices without floor
v |
o

04

Normalized AG price
03
1
)

I
]

I
]
|
)
|
]

I
]
|

S —
- 4
N
P i e v :;—::-—-‘—‘— -----------------------
o e
-
-
-
--—"’
S
o
=g
T T T T T
1985 1990 1995 2000 2005
Year

123



Figure 5.7. Welfare change of a simulated price floor policy using the observed price
realizations as reference for the analysis.
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Figure 5.8. Aggregated land use proportions with and without the simulated price

floor policy
Baseline Price Floor Baseline Price Floor
Policy Policy
HAG mPC mGC mFA HAG MPC mGC mFA
Discount factor = 57% Discount factor = 5%

124



The results generated with this procedure indicate that, as expected, the simulated
price floor policy would produce higher welfare levels than the baseline, especially
during periods in which the market price plummeted below the simulated price floor. On
the other hand, the welfare estimates of the dynamic model that assumes a 57% discount
factor are 39.8% higher than the estimations generated assuming a discount factor of 5%.
With regard to the impact of the simulated policy as a conservation tool to reduce the
removal of shadow coffee plantations, the model at a discount rate of 57% indicates an
increase in the agroforestry category of 3.6%, while the model with a 5% discount factor

indicates an increase of 2% in the land corresponding to the same land use category.

Given that the aforementioned procedure used to analyze the impact of the
simulated price floor policy is based only on the observed realization of the agroforestry
price index, an additional analysis was implemented under the same general assumptions
but this time simulating different price paths and estimating the average baseline welfare
level and land use decisions, as well as identifying the corresponding average results of
the simulated price floor policy. In general terms this second procedure followed the next
steps:

I. Compute 500 random price paths based on the ARI1 structure of the

normalized AG price index and store those values as representatives of prices

without policy.
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2.

In each price path replace the values that are below the normalized price floor
with the price floor value and store those price paths to evaluate the impacts of

the simulated price policy.

Re-estimate the structure of the AR1 process used to estimate the transition
probability matrix of the AG price, to account for the change in the minimum

expected price and long run mean of the AR1 process.

Estimate the value function corresponding to the discretized state space and

the modified AGP price transition probability matrix.

Use cubic spline interpolation to estimate the optimal decision rule at each of
the simulated random AG prices as well as welfare for each sample parcel,

and average the results.

Figure 5.9. shows the average welfare levels, and figure 5.10 shows the average

land use proportions estimated with the simulated random price paths. We can observe

that on average, at both levels of the discount factor, the model predicts an increase in

welfare derived from the simulated price floor. On the other hand, the dynamic model

with a 57% discount factor predicts welfare estimates that are 40.06% higher than the

estimations generated with a discount factor of 5%, which is very close to the 39.8%

detected with the first procedure. Nevertheless, a significant difference with the previous

procedure is that the results from the low discount factor model indicate that the price

policy would not alter the proportion of land allocated to agroforestry production. On the

other hand, the analysis with the model that uses a 57% discount factor indicates that an
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increase of around 2% in the agroforestry category could have been observed in the study
area if a price floor policy similar to the Coffee Stabilization Fund had been implemented
during all the period of analysis. Furthermore, this model indicates that the additional
percentage of coffee plantations correspond to land uses that should have been allocated
to the GC category; a land use type that requires very low tree canopy density.

Figure 5.9. Average welfare change of a simulated price floor policy using 500

simulated price paths.
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Overall the results appear to support the reports by Avalos-Sartorio and Blackman
(2010) that indicate that the price floor policy promoted by the Mexican government did
not target coffee growing areas that were more affected by the international coffee crisis.
Although their analysis focuses on high altitude coffee growing regions, and during the
period in which the policy was actually implemented, the simulation exercise

implemented in this section indicates that such a policy would have helped to preserve
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agroforestry plantations in marginal coffee growing areas if agent’s discount factor is in
fact around 57%.

Figure 5.10. Aggregated land use proportions with and without the simulated price
floor policy using 500 simulated random price paths

0, 0,
Baseline Price Floor Policy Baseline Price Floor Policy
mAG mPC mGC mFA mAG mPC mGC mFA
Discount factor = 57% Discount factor = 5%

5.5 Summary

This chapter presents a description of the implementation of a discrete choice
dynamic programming model of land use decisions. The empirical application focuses on
investigating the structure of the decision making process followed by farmers in a
Mexican coffee growing region during the period 1984 — 2006.The estimation of the
maximum likelihood parameter estimates associated with the behavioral process under
analysis is implemented using Rust’s (1987) nested fixed point algorithm. For

comparison purposes | implement a mixed conditional multinomial logit model and a
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multinomial logit approach using the same reduced set of independent variables

considered in the dynamic analysis.

The results indicate that the dynamic model can provide highly accurate
predictions for the data used to calibrate the model at low levels of the discount factor.
Nevertheless, the dynamic model at a discount factor of 57% provides a substantially
better fit to the observed inter-temporal trajectory of land uses and provides greater
consistency with the presumed structure of land use decisions. The directions of the
marginal effects corresponding to parcel specific characteristics that are considered
constant during the period of analysis have in general the expected directions in both the
static and dynamic models. The analysis also indicates that the implemented static
models fail to produce theoretically consistent results for the revenue variable
corresponding to the PC category. The dynamic approach even at a 5% discount factor
has the ability to produce marginal effects for the PC revenue variable that have the
expected direction. Nevertheless, none of the tested models can provide theoretically
consistent marginal effects for the revenue variable of the GC category. In the particular
framework defined by the observed inter-temporal land use trajectories and average
prices received by farmers in the study region during the period of analysis, the empirical
application of the dynamic model is helpful for understanding land use decisions during
the relatively long period of sustained low output prices. Such situation was observed to
produce counter-intuitive parameter estimates in the implemented static models.
Furthermore, analysis of a simulated price floor policy aimed at reducing deforestation in

agroforestry systems indicates that welfare levels estimated with a dynamic model are
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around 40% higher than under a model that assumes a discount factor close to zero, and
predict a slight increase in the proportion of agroforestry parcels. Nevertheless, further
work needs to be done to improve the dynamic analysis; for instance, by relaxing the risk
neutrality assumption implicit in the modeling approach used in this chapter, or by
evaluating alternative subjective price expectation procedures to the AR1 structure used

in the empirical model.
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Chapter 6

Conclusions

Through intrinsically dynamic and multidirectional patterns and processes,
socioeconomic and environmental variables interact to influence agents’ land use
decisions. A comprehensive analysis of the complex interlinkages of the driving forces of
land use change observed at different temporal and spatial scales, and across systems, can
be difficult to model. One commonly used approach to handle this issue is to divide the
relevant patterns and processes into modules that are separately analyzed by economists,
ecologists, etc. Once the relevant interactions are represented, at the module-level, the
results can be aggregated and linked to produce an accurate representation of the
landscape configuration process. In this thesis the attention centers on addressing
methodological issues that impact the performance of spatially explicit discrete choice
agent-based land use models that are estimated with remotely sensed data. On the
empirical side this research focuses on the study of land use transitions between coffee-
based agroforestry systems, perennial crops (citrus and banana), grasslands and corn, and
fallow lands in a Mexican region in which relatively high rates of tree canopy removal

were observed as a result of the clearing of shade-grown coffee plantations.

As a starting point of the analyses implemented in this thesis, a Mixed
Conditional — Multinomial Logit (MCML) model was implemented to highlight

assumptions and limitations associated with the use of spatially explicit discrete choice
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random utility models in the analysis of land use decisions. Particularly, the structures
that were used to model agents’ price and yield expectations are shown to be limited
approximations of two key elements used in the estimation of the profitability of land use
choices. The estimated marginal effects corresponding to the parcel specific land use
drivers have in general the expected directions. However, the model produces
theoretically inconsistent parameter estimates for the revenue variable associated with
three out of four land uses considered in the analysis. Particularly this model cannot
produce parameter estimates that could be used to provide an economically rational
explanation for the observed increasing proportion of perennial crops in the study region,
and the concomitant decrease in the associated market prices. On the other hand, the
MCML model can accurately predict 59% of the observed land use decisions at the parcel
level, which is similar to results obtained with a multinomial logit approach that uses
normalized prices and considers that revenue can be modeled as a parcel specific variable
(Baerenklau et al., 2012). As a reference to compare the predictive performance of the
MMCL model, random guessing should produce 25% accurate predictions, given that the
choice set is composed of four land use categories. Nevertheless, an analysis of the ability
of the model to predict decisions at each of the observation points for which there is land
use information indicates that the model accuracy decreases through time, a trend that is
observed to continue in an out-of-sample validation exercise using land use data collected

in 2011.

To investigate whether the counterintuitive marginal effect estimates for most of

the revenue variables are generated from misclassified land use data, a Latent
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Multinomial Logit model was implemented. This approach allowed the identification of
land use observations that have a high likelihood of being wrongly -classified.
Furthermore, it provided evidence that the procedure implemented to construct a fallow
lands category is likely misinterpreting temporary increases in biomass in the grasslands
and corn category as land use change. Such changes in biomass instead may be the result
of a production system that requires temporary land abandonment as a mechanism to
recover soil productivity, or simply an indication that the land had not been maintained
during the time in which the remotely sensed data were collected. A reconfiguration in
the dataset based on the results from this model indicates that the original sample over-
represents the proportion of land classified in the agroforestry category, under represents
the percentage of land classified as grass and corn, and over represents the observations
classified as fallow lands. With regard to the parameter estimates, the results indicate that
a reclassification of the land use data, based on the latent multinomial logit model,
increases the magnitudes of the marginal effects of the analyzed land use drivers in the
theoretically expected directions. Particularly, the marginal effect of changes in revenue
associated with the fallow lands category becomes statistically significant and shows the
theoretically expected direction. Nevertheless, this model still fails to produce a
theoretically consistent explanation of the observed decisions to increase the proportion
of perennial crops in the study area despite the continuous drop in price of the crops
associated with that land use. Unfortunately, the dataset cannot be used to evaluate the
performance of the model in the estimation of misclassified data. Simulated land use

observations or a highly accurate (i.e., groundtruthed) empirical land use dataset could be
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used to artificially introduce misclassification in the reference data and then test the

ability of the LMNL approach to reconstruct the original land use classification.

A drawback of the implemented LMNL model is that it does not explicitly
consider how land use classifications at the pixel level are temporally linked, i.e., it does
not incorporate directly in the analysis the state of each pixel before and after the
observation year to help the model identify more accurate states of the pixel by removing
classifications that do not present economically rational sequences. In this context, the
misclassification problem could be analyzed with a state-space model, and the Kalman
filter could be used to keep track of the state of each pixel at every observation point (i.e.,
the land use assigned to each pixel at any point in time), to produce information about the
uncertainty of the land use classification assigned to each pixel, and generate parameter
estimates (Knapp & Konyar, 1991). This would be a logical extension of the work

accomplished in this thesis.

Since static discrete choice models require limiting assumptions that potentially
oversimplify the behavioral process followed by landowners, effectively undermining the
role of future expectations in current decision making, this thesis considers that the
interactions between immediate and underlying driving forces of landscape change are
better explained using a stochastic-dynamic (i.e., forward-looking) framework. This
justifies the implementation of a modeling approach focused on identifying the structure
of a more realistic behavioral model that assumes that land managers are forward-looking
and act to maximize their discounted flow of current and future expected utility within a
stochastic environment.
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To reduce the dimensionality of the model, a reduced set of explanatory variables
was used in the estimation of the dynamic model. Elevation, distance from a parcel to the
nearest market, and welfare status were used as parcel specific characteristics that are
relatively constant during the study period. These land use drivers were identified during
the calibration process as relevant variables to the analysis. Furthermore, transitions rules
were determined to control for the evolution of the age of the plantations, and the price
elicitation process followed by land managers was assumed to have an AR structure

approximated by a Markov chain.

The structural parameters that govern the decision process followed by farmers to
allocate their land between competing options were estimated using the nested-fixed
point algorithm. One of the key elements in that modeling approach is the assumed
discount factor that agents use to estimate the net present value of expected flows of
payoffs corresponding to the different land use paths that could be implemented in their
parcels. To identify the discount factor level that best approximates the “true” discount
factor used by agents in the study region, a grid search procedure was implemented.
Typically the discount factor that maximizes the nested likelihood function or that
produces better predictions is selected. Nevertheless, the results indicate that as the
discount factor approaches zero the log-likelihood value and the percentage of per parcel
accurate predictions in the data used to calibrate the model both increase. Additionally,
the dynamic model with a discount factor within the interval (0, 0.75] is found to
produce highly accurate out-of sample predictions. Further analysis into the effects of

different discount factor levels in the estimated land use proportions revealed that a
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discount factor of 57% provides the closest approximation to the observed inter-temporal
landscape dynamics. Despite low values of the discount factor generating highly accurate
predictions at the parcel level and higher values for the log-likelihood function, those
types of measure of fit should not be used to assess whether an underlying decision
process is dynamic (Provencher & Baerenklau, 2005). Since land use decisions are
inherently dynamic the discount factor of 57% is considered to be more consistent with
forward-looking behavior. Furthermore that discount factor was found to perform

relatively well under the commonly used aforementioned selection mechanisms.

The comparison between static and dynamic models shows that the directions of
the marginal effects corresponding to time-invariant parcel-specific variables generally
have the expected directions independent of the selected modeling approach. More
importantly, the marginal effect estimates for the cash crop revenue variables (i.e.,
agroforestry and perennial crops) have the expected direction in the dynamic model. By
contrast the myopic modeling approaches generate counter-intuitive results for the PC

revenue variable, which make those results unusable for policy design.

A policy simulation exercise showed the sensitivity of welfare estimates to the
discount factor selected as representative of the true value used by decision makers. The
results of the simulated price floor policy with discount factors of 57%, and 5% indicate
that the price floor set by the Mexican government after 2001 to help coffee growers
maintain their plantations seems to be insufficient to influence agents’ decisions in the
study region, which is representative of the areas that were more severely affected by the
international coffee crisis. These results are consistent with the analysis implemented in a
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different Mexican coffee growing region by Avalos-Sartorio and Blackman (Avalos-

Sartorio & Blackman, 2010).

A more robust analysis of agent based land use decisions in the study area could
be achieved in several ways. First, the latent model specification could be incorporated in
the discrete choice dynamic model. Such an implementation has the potential to provide a
more realistic and accurate analysis of the underlying structure of the behavioral process
followed by land managers, when the information available to the analyst is suspected to
have a significant percentage of misclassified data. Unfortunately, the computational cost
of a latent discrete choice multinomial logit model would be high and thus is not
attempted here. Second, controlling explicitly for spatial autocorrelation in the modeling
approach, instead of implementing systematic random sampling to produce a sample of
spatially independent observations, could help to improve the robustness of the modeling
assumptions and the validity of the estimated marginal effects. Third, during recent years
the approach of using probability formats to elicit expectations has become a common
approach in the economic arena, and several studies offer empirical evidence that
supports its validity (Delavande, Giné, & McKenzie, 2011; Manski, 2004). Therefore, to
provide a more realistic assessment of the process followed by decision makers in the
estimation of future revenue expectations, survey methods could be implemented to elicit
the subjective price expectation process followed by representative agents in the region
under analysis. Of course, ad hoc rules (e.g. moving averages, ARIMA processes) can be
used as a proxy of the expectation formation process, but these rules might not be

empirically justified. Alternatively, the AR1 parameters could be endogenously estimated
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using the nested fixed-point algorithm®. Fourth, a modeling approach based on recursive
preferences could help to relax the risk neutrality assumption implicit in discrete choice
dynamic models, which is difficult to justify in land uses change analysis with categories
that involve high up front investments and volatile prices, or that are implemented in
relatively poor regions. In general, future research derived from this thesis should control
for an adequate definition of the environment that surrounds the agents (e.g. land use
distribution, soil quality, infrastructure, governmental policies, climate patterns, water
availability, etc.); the state of the agents in that environment (e.g. property regimes,
institutions, social connections), and their decision-making criteria (e.g., profit
maximizing agents with rational or subjective expectations, degree of risk aversion,

influence of non-monetary elements in their payoff function, etc.).

% This approach was tested during model calibration stages but it was observed that gradient based
constrained optimization solvers had difficulty moving away from the starting values of the AR1 parameter
estimates.
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