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microTrait: A Toolset for a Trait-Based
Representation of Microbial Genomes
Ulas Karaoz1* and Eoin L. Brodie1,2

1Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 2Department of
Environmental Science, Policy and Management, University of California, Berkeley, CA, United States

Remote sensing approaches have revolutionized the study of macroorganisms, allowing
theories of population and community ecology to be tested across increasingly larger
scales without much compromise in resolution of biological complexity. In microbial
ecology, our remote window into the ecology of microorganisms is through the lens of
genome sequencing. For microbial organisms, recent evidence from genomes recovered
from metagenomic samples corroborate a highly complex view of their metabolic diversity
and other associated traits which map into high physiological complexity. Regardless,
during the first decades of this omics era, microbial ecological research has primarily
focused on taxa and functional genes as ecological units, favoring breadth of coverage
over resolution of biological complexity manifested as physiological diversity. Recently, the
rate at which provisional draft genomes are generated has increased substantially, giving
new insights into ecological processes and interactions. From a genotype perspective, the
wide availability of genome-centric data requires new data synthesis approaches that
place organismal genomes center stage in the study of environmental roles and functional
performance. Extraction of ecologically relevant traits from microbial genomes will be
essential to the future of microbial ecological research. Here, we present microTrait, a
computational pipeline that infers and distills ecologically relevant traits from microbial
genome sequences. microTrait maps a genome sequence into a trait space, including
discrete and continuous traits, as well as simple and composite. Traits are inferred from
genes and pathways representing energetic, resource acquisition, and stress tolerance
mechanisms, while genome-wide signatures are used to infer composite, or life history,
traits of microorganisms. This approach is extensible to any microbial habitat, although we
provide initial examples of this approach with reference to soil microbiomes.

Keywords: functional traits, functional guilds, ecological strategy, trait-based model, profile hidden markov model,
microbial genome, fitness traits, trait inference workflow

IMPORTANCE

The rapid adoption of high-throughput microbial sequencing is leading to accumulation of microbial
genomes at an ever-increasing rate. These genomes represent instances from not only isolated
microbes but also microbial populations in their native environmental context as metagenome-
assembled genomes (MAGs) or single-cell amplified genomes (SAGs). We believe that an ability to
efficiently predict ecological traits directly from primary sequence data is a necessary interface
between microbial omics information and trait-based microbial ecology, and success here will
significantly advance our ability to uncover generalizable features of microbiomes and their
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environmental context. To streamline the process of going from
genome sequences to putative ecological traits, we developed
microTrait, a set of tools to efficiently discover and distill the trait-
based representation of a microbial genome.

INTRODUCTION

Linking microbiome structure and dynamics to ecosystem
functioning globally in a predictive way and in face of global
change has been a long-standing goal of microbial ecology (Finlay
et al., 1997; Prosser et al., 2007; Van Der Heijden et al., 2008; Todd-
Brown et al., 2012; Bier, Bernhardt et al., 2015). Efforts towards this
goal traditionally included taxon-centric measurement approaches
(Thompson et al., 2017; Ramirez et al., 2018) (Madin et al., 2020).
Genetic, physiological, and ecological characterization of cultured
isolates provided links between specific taxa and ecosystem
processes like contributions to elemental and nutrient cycles,
and biomass production. With the commoditization of high-
throughput sequencing of taxonomic marker sequences, much
effort in taxon-centric approaches shifted to extrapolating what
is learned from representative isolates in the lab to their
phylogenetic nearest neighbors detected with environmental
community sequencing (Langille et al., 2013; Asshauer et al.,
2015). Such approaches to infer functional groups via
phylogenetic markers inherently assume strong phylogenetic
conservation of microbial traits. Furthermore, without any
whole-genome data, they are limited to taxa with cultured isolates.

Microbial-biogeochemical models are crucial tools in linking
microbiome dynamics, environmental responses, and ecosystem
processes across scales. Wide-spread availability of taxon-centric
microbial measurements have naturally popularized taxon-
centric models including few species or functional groups
dominant at the local scale of interest. The upward scalability
of such models would be limited given the fact that no single taxa
would dominate at larger scales and with a limited number of
parameter sets, the model would have poor adaptive capability
both across scales and environmental conditions. Moreover,
trying to approach the complexity of real systems at larger
scales by adding more taxa or functional groups lead to
increasingly complex models with a continuous demand for
more parameters. Given these limitations of taxon-centric
approaches in modeling the diversity and activity of microbes
globally and with changing environmental conditions, trait-based
representation of microbes is becoming increasingly popular.

Trait-based approaches represent an intermediate approach to
modeling complex populations while also preserving key
mechanistic properties that determine fitness in dynamic
systems. The trait-based framework represents microbes with
traits that can be summarized by few parameters and that are
constrained by environmentally-dependent trade-offs. These
approaches were developed in the field of plant ecology
(Westoby and Wright 2006; Ackerly and Cornwell 2007), and
have more recently been applied within microbial ecology at
various scales, including global oceans and terrestrial
environments (Follows et al., 2007; Allison 2012; Bouskill et al.,
2012). The main underlying assumption is that combination of

traits determines physiological performance which influences
individual fitness and life history evolution. By abandoning the
taxon concept, the trait-based framework strives to achieve a
succinct description of the microbial communities with few
essential communities, avoiding the complexity trap of taxon-
centric modeling approaches. The challenge with this approach
is to identify the key properties or traits of members of microbial
communities and how these traits are regulated or trade-off against
other traits, and to use this information to parameterize or
constrain the functional potential of the modeled communities.

Traits may be identified through ‘omic approaches (e.g.
potential to produce or the detected activity of an extracellular
enzyme, the genes for a specific metabolic pathway, the genomic
capacity to replicate rapidly etc) or through physiological studies
(e.g. enzyme, substrate uptake or growth kinetics, cell surface
area, biomass stoichiometry, composition of storage pools etc.) or
they may be inferred by manipulation experiments such as stable-
isotope tracing with substrates at various concentrations to
determine relative affinities. The paradigm shift from a taxa-to
a trait-centric representation of microbiomes is partly stimulated
by the wide-use of omic technologies to illuminate the functional
potential of environmental microbial communities and their
interactions with each other, higher organisms, and their
environment (Sharon and Banfield 2013; Anantharaman et al.,
2016; Gupta et al., 2016; Sangwan et al., 2016; Woodcroft et al.,
2018). In particular, focusing on genome rather genes as
ecological units makes the incorporation of many concepts
from ecological and evolutionary theory into models possible
therefore increase the value of the omic data for trait-based
modeling (Prosser 2015). The rate at which isolate genomes,
single-cell assembled genomes (SAGs) and metagenome-
assembled genomes (MAGs) are being generated provide an
unprecedented resource to study patterns in fitness trait
conservation, trait linkage (i.e. co-occurrence patterns of traits
within ecological units), trait trade-offs, and trait-environment
relationships across scales. This continuous stream of microbial
genomes necessitates development of computational tools that
can efficiently and robustly extract potential traits from genome
sequences.

Currently, the methods used to infer functional traits from
genome sequences include 1) pairwise sequence alignments and
database search (Shaffer et al., 2020), 2) statistical learning
methods (Feldbauer et al., 2015; Weimann et al., 2016), and 3)
phylogenetic inference (Goberna and Verdu 2016). Homologous
inference from sequence alignments with tools like BLAST
(Altschul et al., 1990), USearch (Edgar 2010), or DIAMOND
(Buchfink et al., 2015) have large memory requirements and long
run times, which makes these methods challenging to scale for a
typical user to thousands of genome sequences. In addition, for
the detection of remote homologs, the sensitivity of alignment-
based methods is lower than the profile methods (Brenner et al.,
1998). Statistical learning methods to predict microbial traits
depend on the availability of extensive training sets to establish
genotype-phenotype relationships. Such data exist only for a very
limited set of core phenotypes and therefore the resulting models,
while they can be highly accurate, offer a narrow view of the
microbial trait space (Yabuuchi 2001; Ruan 2013). Phylogeny-
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based methods predict missing trait values of new genomes based
on the traits of their evolutionary relatives. While phylogenetic
conservatism of certain traits has been documented for bacteria
and archaea, prokaryotic traits of ecological relevance have
overall weak phylogenetic signal (Martiny et al., 2013). In
addition, as the bulk of the current information on
phenotypes are centered around organisms of biotechnological
and medical interest, the accuracy of the phylogenetic trait
prediction remains low (Goberna and Verdu 2016).

To fill this need, we developed an R package, microTrait, that
provides a conceptual framework and associated pipelines to
translate a microbial genome into a suite of potential fitness traits.
microTrait maps a genome sequence into a hierarchical trait
space that covers energetic, resource acquisition, stress tolerance,
and life history traits that underlie microbial strategies describing
environmental microbes (Malik et al., 2020). Our pipeline makes
use of literature-supported omics markers defining trait-based
microbial strategies to quantify trait profiles for microbial

genomes. Given a genome sequence, individual gene markers
are detected with a model-based approach using a new HMM
database of protein families. The models have been trained with
protein sequences that represent sequence diversity from
genomes and metagenomes and their accuracy measured
independently with KEGG orthology database. The traits are
inferred from gene markers based on their presence/absence
patterns and presented in a hierarchical manner.

RESULTS

Microbial Traits With Genomic Basis
The overarching goal of our approach is to reduce the
dimensionality and complexity of the genomic information
such that a genome is represented as a feature vector where
individual features represent one or more aspects of an ecological
strategy (Lajoie and Kembel 2019). Microbial traits span a wide

FIGURE 1 |Conceptual overview of genome-derivable traits (gray boxes) underlying ecological strategies (blue boxes) represented inmicroTrait based on literature
surveys. For each trait, genomic features are indicated. Supplementary Table S1 provides full details for the microTrait hierarchy. Supplementary Table S8 lists
references for genomic features underlying ecological traits.
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range of phenotypic, ecological, and metabolic characteristics.
The choice of specific traits and their representational granularity
depend on the research question of interest. We first review the
genome based traits inferred by microTrait, rationalize their
choice primarily following the frameworks proposed by (Green
et al., 2008) and more recently (Malik et al., 2020) (Figure 1).

At the very fundamental level, our approach takes as input a
genome sequence and maps it to a trait space in a computationally
scalable way. Here we adopt a microbial counterpart of the widely
used definition of “functional traits” for macroorganisms as
measurable characteristics that “impact fitness of an organism
via its effect on growth, reproduction, or survival” at the
individual level (Violle et al., 2007; Violle et al., 2014). Unlike
for macroorganisms, measuring traits at the individual microbe
level in complex communities is currently not feasible, although
single-cell imaging and ‘omic technologies are beginning to expand
our understanding of population heterogeneity at these native
scales (Wang and Bodovitz 2010; Bock et al., 2016). Genomes
have recently been proposed as the ecological units (Prosser 2015;
Turaev and Rattei 2016) at which genome-inferred traits should be
measured. Advances in DNA sequencing and computational
protocols has led to a more or less continuous stream of
provisional genomes not only from cultured isolates but also
from single-cells (SAGs) and metagenomes (MAGs) (Sharon
and Banfield 2013). Though as an ecological unit, the resolution
represented by MAGs may not currently match its counterpart for
macroorganisms, possibly representing mosaics and distorting or
masking intra-population differences, they nevertheless provide an
unprecedented window into complex microbiomes and provide
especially valuable insights into the physiology and metabolism of
uncultivated organisms in their natural environments. As such, a
genome-centric lens to traits allows scaling of organism level traits
to communities (through incorporation of genome abundances)
and therefore at larger scale as well as studying trait linkage across
ecologically relevant units.

We identified genomic features that can be mapped to
microbial ecological strategies, conceptualized under four
dimensions (Figure 1) organized as a hierarchy (“microTrait
hierarchy”: Supplementary Table S1). Within each strategy, the
trait information is organized as a hierarchy whose leaf nodes
map to specific genome derived features. Supplementary Table
S8 lists the full list of references that establish the links between
each genome derived feature and the ecological strategy at the
most granular level. Here we give an overview of the traits for
each ecological strategy:

Resource Acquisition Traits
A tremendous variety of substrates ranging from simple
inorganic ions to complex organic molecules serve as
resources for microbes. Microbes have adapted a suite of
concrete strategies with genomic basis to be competitive in a
wide range of environments with spatiotemporally variable
resource profiles. Many microorganisms have the potential to
produce exoenzymes that can disassemble complex resources
(substrate degradation), which can then be acquired through
uptake (substrate uptake) via membrane transporters (Berntsson
et al., 2010; Arnosti 2011; Zimmerman et al., 2013; Arnostil et al.,

2014; Courty and Wipf 2016; Bergauer et al., 2018). Thus, one
aspect of resource acquisition strategy concerns the investment in
both the number and diversity of exoenzymes and membrane
transporters a microbe would maintain in a microbial genome.
Substrate uptake is linked to substrate assimilation traits that
determine the capacity for assimilation of inorganic compounds.

Resource Use (Energy Generating) Traits
Redox reactions underlie all biological energy metabolism and
redox chemistry provides an organizing principle to connect
microscale to global scale processes (Falkowski et al., 2008;
Ramirez-Flandes et al., 2019). Genes whose protein products
catalyze redox reactions, their coupling to energy conservation,
and their genomic organization determine the basis for microbial
metabolic strategies. Historically, in the pre-genomic era, single
metabolic traits were evaluated in isolation to define “metabolic
functional groups” but genomic data has underlined the
tremendous metabolic flexibility of microbes (Anantharaman
et al., 2016). As a result, classical enumerations of microbial
metabolism are not sufficient to represent the linkage of
metabolic traits. Representation of microbes as a suite of
energy metabolism traits provides a more complete picture
and a data driven definition of metabolic guilds.

Stress Tolerance Traits
Stress may be induced by physical, chemical, or biological
conditions that adversely affect microbial growth and survival.
Microbes that use stress tolerance strategies respond to a variety of
stressors using several physiological and evolutionary mechanisms.
Though the specific stress response depends on the particular
suboptimal conditions, common traits with genomic
underpinnings have been broadly identified (General Stress
Tolerance Traits). These include increasing the concentration of
some molecular chaperones (stress proteins/heat-shock proteins)
to combat biomolecular damage in response to stress. This is a
universal feature across all domains of life but the relative
importance of genetic (i.e., diversity and gene copy number) or
regulatory (transcriptional, translational, and post-translational)
processes under different stressors is less clear (Feder and
Hofmann 1999; Hecker and Volker 2001; Yu et al., 2015).

Genomic bases of microbial traits that underlie stress tolerance
to specific physiochemical and chemical factors have also been
identified: 1) Temperature stress: a suite of heat shock genes serving
as chaperones and proteases are involved in the protection, repair,
and degradation of denatured/misfolded proteins. Response to cold
shock involves adaptation of the membrane via an increase in the
proportion of unsaturated fatty acids and activation of chaperone
cold shock proteins to restore mRNA functionality. 2) Desiccation,
osmotic, salt stress: Knownmolecular strategies to tolerate drought
and freezing include production or uptake of osmolytes like
trehalose and glycine betaine to reduce water potential and
maintain hydration or synthesis of extracellular polymeric
substances (Csonka 1989; Ko et al., 1994; Mindock et al., 2001;
Costa et al., 2018). 3) Oxidative stress: The response to oxidative
stress is a complex one that involves the coordinated regulation of
many genes most critically involving enzymes that scavenge
reactive oxygen species. The activation of such regulons requires
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redox sensing (two-component redox sensors and redox-sensitive
TFs). 4) pH stress: Similarly to general, oxidative, and temperature
stress, molecular mechanisms for protection from acid stress
include investment in chaperones, proteases and the ability to
sense and respond to redox conditions through two-component
systems and TFs. Unique mechanisms for maintenance of
intracellular pH include the consumption and extrusion of
intracellular protons by acid-inducible amino acid

decarboxylase-antiporter and urease systems, and the enzymatic
conversion of unsaturated fatty acids into cyclopropane fatty acids.

Life History Traits
Ecological and evolutionary processes leave their signatures in
overall microbial genome content and organization. A key
dimension of any ecological strategy is growth. Optimal
growth characteristics of microbes are key to understand how

FIGURE 2 | Overview of microTrait. (A) microTrait pipeline consists of a library of gene-level Hidden Markov Models (microTrait-HMMs) for detection of genome
features and logical rules (microTrait-rules) that map these features to traits. The output from the pipeline are trait matrices (genomes × traits) at different granularities
corresponding the levels of the microTrait hierarchy. (B) Workflow for construction of microTrait-HMMs. Each HMM models the diversity of sequences from IMG/M at
gene-level. (C) Benchmarking of microTrait-HMMs. The trusted cutoffs for microTrait-HMMs were determined through cross-references to KEGG orthologs
(whenever available).
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the key traits regarding resource acquisition, resource use, and
stress tolerance are realized to adapt to a particular environmental
niche. Traits that concern these characteristics are classified as life
history traits. Codon usage bias and ribosomal RNA (rRNA)
operon copy number are linked to maximum growth rate, a life
history trait constraining all other functional traits (Weider et al.,
2005; Vieira-Silva and Rocha 2010; Weissman et al., 2021).
Another key life history trait closely linked to the overall
genomic adaptation is optimal growth temperature (OGT).
Temperature is a master regulator of enzyme activity and
overall cell machinery. A combination of quantifiable
proteome-wide features predictable from genome sequences
allows OGT to be hypothesized solely from genomic sequence
(Zeldovich et al., 2007; Sauer and Wang 2019).

microTrait Pipeline
The computational pipeline to infer traits from primary genome
sequences has two major components (Figure 2A): 1) a database
of gene HMMs (microTrait-HMM) to model the diversity of
protein families based on sequences from genomes and
metagenomes with independently established accuracy to
detect genetic loci (Figure 2B and Supplementary Table S2),
2) a set of rules (microTrait rules) encoded in predicate logic to
infer traits from presence and absence of the set of loci modeled in
microTrait-HMM (Supplementary Table S4). The model-based
detection of genetic loci ensures decreased run-times and
interoperability across datasets (given model and scoring
cutoff). The rule-based framework to infer traits from primary
features gives the user the flexibility for redefinition and
refinement.

Cross References to External Databases
From microTrait-HMM
The statistical models inmicroTrait-HMM reflect the most recent
sequence diversity from both cultured and uncultured microbes
and therefore should have improved accuracy over existing
methods to detect genes underlying traits covered in
microTrait. To ensure interoperability of the microTrait
pipeline with the existing HMM databases and relevant
sequence database resources, for each gene model we provide
database cross references to KEGG (Kanehisa and Goto 2000),
Transporter Classification Database (Saier et al., 2016), and
Enzyme nomenclature database (through EC numbers) (1999).

Performance of Gene HMMs and
Assignment of Trusted-Cutoffs
We assessed the performance of each microTrait-HMM by first
determining the corresponding orthologous group (KO number)
in KEGG orthologs database (when the loci was represented in
KEGG) (Figure 2C). A test dataset for the gene model in question
was built by using IMG/M sequences labeled with the determined
KO number (“true positives”) and the remaining KO numbers
(“true negative”). IMG/M database was scanned with the profile
HMM using HMMER/hmmsearch. F-scores (harmonic mean of
precision and recall) were calculated as a function of “hmmsearch

scores” based on the test dataset with R using ROCR package
(Sing et al., 2005). The smallest score that maximizes F-scores was
assigned as the trusted cutoff. Supplementary Table S3
summarizes the performance of each model in microTrait-
HMM. Overall, at the determined trusted cutoffs, the
overwhelming majority of microTrait-HMMs (94.2%-1,686 out
of 1790 HMMs) had high sensitivity (≥75%) and low FPR (false
positive rate), with 92% of HMMs having an F-score >=0.8
(Supplementary Figure S1).

microTrait Pipeline: Derivation of Traits
From Genome Sequences
The input to microTrait is a genome sequence (.fa) or the
corresponding protein coding genes (.faa) in FASTA format.
When genomic rather than protein coding gene sequences are
supplied, Prodigal is used to predict open reading frames (Hyatt
et al., 2010). For each genome, protein sequences are scanned
against microTrait-HMM with HMMER/hmmsearch to generate
a count table for the detected genemodels. Binary and continuous
traits are assigned using the count table and predefined logical
rules mapping the presence/absence of genes(s) or other rules to
specific traits (Figure 3). The rules can be edited by the users
within the R package. Their role is twofold: On one hand they
allow modifications in the way some binary traits can be defined
(for instance based on one or more proteins in a large complex, or
one or more steps in a pathway) giving the user flexibility. They
can also be used to increase detection sensitivity for provisional or
lower quality genomes (i.e., SAGs and MAGs).

Modular Trait Definitions With Predicate
Logic
microTrait uses Boolean algebra to map protein family content
into traits through microTrait rules (Supplementary Table S5).
In this framework, each protein family is a Boolean variable (i.e.
equals 1 if detected, 0 otherwise) whose value is determined by the
output of the corresponding microTrait-HMM. The traits are
represented by rules whose arguments are one or more protein
families, other rules, or a combination of these. Conceptually, the
rules map to representations of protein complexes with multiple
subunits or a series of enzyme catalyzed reactions that transform
one molecular species into another. While the standard package
comes with a predefined set of rules, the rules themselves and the
mapping of rules to traits are modular and can be modified by the
user. As an example, consider denitrification traits (Figure 3A).
The canonical denitrification pathways, excluding accessory and
regulatory proteins, involve 4 protein complexes (NarGHI: the
inner membrane-bound nitrate reductase; NapAB: the
periplasmic nitrate reductase; NorBC, NorVW: nitric oxide
reductases) and 3 proteins (NirS, NirK: nitrite reductases;
NosZ: nitrous oxide reductase). Together, these are
represented by 12 protein families (italicized gene names in
Figure 3A) and the four individual enzymatic steps are
represented by 4 rules. From these rules, several denitrification
traits corresponding to individual functional guilds can be
defined.
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For transporters and polymer specific extracellular enzymes,
we compiled a list of the experimentally reported substrates of
each enzyme using the Transporter Classification Database
(TCDB) (Saier et al., 2016) and the Database of carbohydrate-
active enzymes (dbCAN) (Yin et al., 2012). We then classified
each reported substrate into broad substrate classes (Figure 3B
and Supplementary Table S6). The relevant rules for
transporters and extracellular enzymes let the user quantify
the number of protein complexes with a given substrate or
substrate class.

A challenge in assigning traits to genomes based on the
protein family signatures is the modularity of the underlying
pathways. This modularity might be truly reflecting the
genomic variation within a set of isolates, MAGs or SAGs
but also be an apparent manifestation of incomplete and noisy
genomic information. Starting with genomic sequences,
microTrait allows the investigation of this modularity across
a set of genomes. The resulting information can be used by the
user to define custom logical rules to assign traits based on the
protein family content.

Comparing microTrait With a
Taxonomy-Based Inference of Microbial
Functional Groups
Linking taxonomic classification with function is a commonly
used method to infer microbial traits. Faprotax is a manually

curated database that maps taxa to functional groups based on the
physiological studies for the cultured representatives of these taxa
(Louca et al., 2016). The taxonomic resolution is typically at
species or genus level but can also be less specific (i.e. family or
higher). Using a large collection of isolate genomes from
environmental ecosystems (refer to Materials and Methods for
construction of the genome collection) and literature references
for functional affiliations based on taxonomic names in Faprotax
(Supplementary Table S11), we have quantified the extent to
whichmicroTrait-rules recovered the validated culturable taxa for
different microbial functional groups. For each functional group,
we first matched the taxonomic names from literature, primarily
genus/species names but also extending to higher ranks for
certain functional groups, to canonical NCBI taxonomic
names. All available genomes from environmental ecosystems
with the respective taxonomic affiliation were considered as a
“positive” for that functional group according to the Faprotax
approach (Supplementary Table S12). We have then tested how
many of these assumed Faprotax positives themicroTrait pipeline
was able to recall solely based on the functional trait predictions
from genomes. In addition, for each functional group, we have
also evaluated the specificity of genome-based calls based on the
assumption that all negatives via the Faprotax taxonomic
affiliation were “true negatives” (Supplementary Table S13).

Among 41 functional groups, 29 had a recall rate over 70%.
Functional groups for which microTrait had low recall rates
included anammox (0 microTrait+ genomes out of 7

FIGURE 3 | Trait inference with microTrait rules. microTrait rules use simple boolean logic to map presence/absence of microTrait-HMMs (italicized) to traits. The
reconfigurability of the rules makes the exploration of the effect of different trait definitions on the microbial guilds possible and therefore enables a flexible microbial trait
extraction pipeline. Examples for trait definitions from rules for (A) denitrification traits. Rule-based inference allows flexible definition of traits, for example by end products
of denitrification. (B) substrate uptake.microTrait represents substrate uptake traits using the range substrates documented in TCDB (Transported Classification
Database) (shown as word cloud colored by substrate class). Traits relevant to the uptake of substrates (example for monosaccharides) can be defined in a hierarchical
manner with rules defined from other rules and microTrait-HMMs.
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Faprotax+ genomes; 0/7), dark iron oxidation (10/16), iron
respiration (19/86), aerobic nitrite oxidation (6/13), chlorate
reducers (3/6), dark sulfide oxidation (49/93), anoxygenic
photoautotrophy Fe oxidizing (9/16), dark sulfur oxidation
(71/124), sulfur respiration (82/139), thiosulfate respiration
(88/145). A close examination of the taxonomic identity of the
genomes “missed” by microTrait suggested a variety of
explanations for the functional groups with poor recall.

A primary advantage of inferring microbial traits directly from
genomic sequences rather than by taxonomic names is the ability
to resolve diversity (species or strain level), which increases the
prediction accuracy. We have observed that for many functional
groups defined in Faprotax, the genomes that were assigned to the
taxonomic clades lacked the required genetic repertoire for the
metabolic function in question. Some prominent examples are for
the “anammox” and “dark iron oxidation”. For anammox, among
the diversity of taxa (genus and species), only P. mendocina had
corresponding genomes in the isolate set (n = 7) and none of
those had the genomic features for anammox suggesting that this
is a strain specific trait for P. mendocina. Similarly, for dark iron
oxidation, genome features suggested that the trait can be strain
specific. Among 15 R. palustris and 2 M. ferrooxydans, a limited
number (9 and 1 genome respectively) was genome-supported to
carry the trait. There were also cases where the genomic evidence
suggested that trait conservation was limited to deep taxonomic
levels so a taxonomic inference at genus or family level would
have impacted the accuracy of Faprotax method. For instance,
methanotrophy is associated with Methylocystaceae (family) and
Methylocapsa (genus) yet the trait was specific to subfamily/
subgenus. Among 7 Methylocystaceae genera with genome
representatives, 2 genera (Methylocystis and Methylosinus)
had genome support for the trait. Similarly, 2 out 3
Methylocapsa species with genomes had evidence for the trait.

It should be noted that, there were also cases for which the
absence of the genomic signal reflected limited knowledge for the
genetic underpinnings of the trait. A typical example was for iron
respiration, a trait for which current evidence suggests that
electron transport for iron reduction proceeds in a different
and unknown mechanism in acidophiles compared with
Ferrimonas and Shewanella (Malik et al. 2018). Another
example was for chlorate reduction, a process whose genomic
trait sits in a region prone to horizontal transfer (Clark et al.,
2013) which impacts the accuracy of a gene-level profile HMM
approach. Overall, these disagreements between taxonomic and
genome-based approaches suggests that, a genomic feature-based
approach such as microTrait increases prediction accuracy and
precision, even when one considers single traits (such as
functional groups).

High-Throughput Extraction of Microbial
Traits from Genomes with microTrait
As an example of scalable extraction of traits from genomes, we
applied microTrait to publicly available isolate genomes and
MAGs. The datasets we used included 1) isolate genomes
from environmental ecosystems from IMG/M (n = 6,157), 2)
MAGs from an aquifer system (n = 2,545) (Anantharaman et al.,

2016), 3) MAGs from a thawing permafrost (n = 1,530)
(Woodcroft et al., 2018), 4) MAGs from hydrothermal
sediments (n = 666) (Dombrowski et al., 2018), and 5) MAGs
from publicly available metagenome samples, referred to as
Uncultivated Bacteria and Archaea Dataset (UBA) (n = 7,902)
(Parks et al., 2017). This compendium of datasets (genome
compendium) resulted in a total number of 20,062 genomes.

We tested microTrait on a machine with a 2.3 GHz 16-core
Intel Xeon Processor E5-2,698. When run using a single core,
with a single genome processed using that core, microTrait
processed that genome in 3.94 ± 2.59 min, with an average of
1.11 min/Mb of genome sequence (Supplementary Figure S2).
From these, we predict that microTrait can process an average
microbial genome of size 4 Mb in approximately 4.5 min. In all
runs, the memory footprint of microTrait was not larger than
60 MB. In a multiprocessor compute environment, microTrait is
easily parallelizable using a typical data-level parallelization
scheme (for instance using R’s parallel package (distributed as
part of R-core)) mapping genomes to separate logical processors.
In our tests, when run in a 64 processor compute node, the
processing of the compendium of 20,062 genomes (total size =
47.9 Gb) took 12.47 h.

microTrait Trait Matrix
When applied to multiple genomes, microTrait outputs a trait
matrix of “genomes x traits” with three types of qualitative
variables. Binary trait variables are calculated as presence/
absence of a specific functional capacity and span 1) energy
generation via specific electron acceptors/donors, 2) capacity
to degrade, assimilate, or acquire specific substrates.
Continuous trait variables are of two groups. The first group
of continuous traits are calculated starting from counts of specific
functional capacities in the genome and span 1) acquisition of
chemical classes of substrates with transporters or via
extracellular breakdown, 2) investment in extracellular
polysaccharides and osmolytes. For each genome, the counts
are normalized by genome size. The second group represent life
history traits and include 1) minimum generation time (unit: h−1)
predicted based on indices of codon-usage bias in ribosomal
protein genes (a proxy for highly expressed genes) (Vieira-Silva
and Rocha 2010) (Weissman et al., 2021), 2) optimal growth
temperature (unit: °C) predicted from a suite of features derived
from the nucleotide and protein sequences of the genome (Sauer
and Wang 2019).

Refinement of Functional Guilds Using
microTrait
To exemplify the use of microTrait in refining functional guilds,
we explored how denitrifier guilds can be defined based on the
genomic distribution of denitrification traits in the isolate
genomes from our compendium of genomes. Denitrification is
a key biologically catalyzed process by which nitrogen available to
plants is transformed to the atmospheric nitrogen pool as gaseous
forms of nitrogen as molecular N2 or as an oxide of N.
Denitrification occurs as a step-wise reduction of nitrogen
oxides with gaseous products. Four reductases are involved in
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the denitrification, NAR, NIR, NOR and N2OR, sequentially
catalyzing the reductions of NO3 -→NO2 -→NO→N2O→N2.
Several previous studies reported both genomic and phenotypic
evidence for truncated versions of the denitrification pathway but
a global genomic analysis is not currently available (Sanford et al.,
2012; Jones et al., 2014; Lycus et al., 2017; Liu et al., 2018; Gao
et al., 2019).

We used the microTrait pipeline to explore all of the publicly
available environmental genomes from the IMG/M database
(Supplementary Table S9). This resulted in a “genomes X
rules” matrix specifying for each genome whether each of the
rules was asserted as TRUE or FALSE. The matrix was subset to
rules underlying denitrification traits and the genomes were
clustered based on their denitrification trait profiles. The
clustering gave 13 denitrification-associated functional guilds,
with 58.3% of the screened genomes involved in at least one
denitrification-related process (Supplementary Figure S3). Only,
a small proportion of these had the genomic capacity to perform
complete denitrification to N2. Overall, the guilds correspond to
generation of the same end products from different starting
nitrogen compounds (e.g. guilds 1–4, 5−7, and 8−9 generating
N2, N2O, and NO respectively), or multiple end products with
missing steps (e.g. guilds 11–13). The default trait matrix in
microTrait defines denitrification traits by the end products of
denitrification (Supplementary Table S7) yet the workflow of
going from genomic features to traits via microTrait rules makes
redefinition of traits possible.

Testing Trait Dimensionality of Microbial
Genomes from a Given Ecosystem
microTrait hierarchy maps a microbial genome to a high-
dimensional space of putative functional traits of ecological
relevance. In trait-based ecological modeling, trait selection is
of central importance not only for biological but also for
computational, statistical, and practical reasons (Lajoie and
Kembel 2019). In our conceptualization of the relevant traits
for terrestrial ecosystems, the set of selected traits are assumed to
approximate the intrinsic (i.e. true underlying but unobserved)
dimensionality of microbial traits. Unlike for plants for which
accumulated evidence suggests that the intrinsic dimensionality
of functional trait space is low (Laughlin 2014), the intrinsic
dimensionality of the trait space of microbes in specific
ecosystems remains largely unknown. However, we can
assume that if the selected trait proxies are largely
independent of each other then, taken jointly, they should
represent the underlying functional differences, and improve
our ability to explain and predict microbial distributions.

To investigate whether the selected traits in microTrait are
largely independent, we used an extensive dataset of genomes of
microbes isolated from terrestrial ecosystems to study the
correlation structure of their microTrait profiles. The trait
matrix (at granularity 3) for a total of 4,116 genomes of
organisms isolated from terrestrial environments (ST9) was
computed using microTrait. A non-parametric rank-order
correlation metric was used to estimate the degree of
relatedness between all trait pairs, visualized as a correlation

matrix and reordered to elucidate the potential hidden structure
and pattern in the matrix (Figure 4A).

Overall, the bulk of the correlations were weak (|ρ| < 0.3)
suggesting that microTrait trait dimensions map to largely
independent traits (Figure 4B). On the extremes, strong
positive correlations would be indicative of redundancy of trait
dimensions while negative correlations would be indicative of
underlying tradeoffs for the ecosystem in question. Few strongly
positively correlated blocks corresponded to phototrophic
resource use traits linking the variety of phototrophic
pigments and photosystems.

Dimensionality Reduction with
Guild-Centric Analysis of Microbial
Genomes With microTrait
Metagenomics allow the recovery of the genomes of all detectable
members of an ecosystem along extensive spatiotemporal gradients.
The genomes then provide support for co-occurrence of ecologically
relevant traits of the members that together underlie the ecosystem
function. A typical genome-centric microbiome study involves the
analysis of hundreds to thousands of genomes leading to trait
matrices of high genomic dimensionality. This high
dimensionality poses a particular problem for statistical analyses
(Johnstone and Titterington 2009). Further, when attempting to
leverage the information from these genomes for downstream
modeling applications, there is both a practical need and
discovery opportunities in quantify and reducing this
dimensionality in a tractable manner. Organizing microbial
members of an ecosystem community into “putative guilds” can
reduce the dimensionality of ametagenomic dataset and hypothesize
the functional niche of community members and computationally
explore their interactions independently of their taxonomic origin.
Here, using the soil ecosystem as an example, we show how to define
microbial guilds in a data-driven manner using microTrait.

Given a set of genomes representing a habitat, microTrait can
be used to discover and define functional guilds, parameterize the
defined guilds with life history traits (minimum doubling time
and optimal growth temperature), and reduce the dimensionality
of the trait space in a quantifiable way. Figure 5 outlines the
guild-centric pipeline starting with a trait matrix leading to the
definition and characterization of the microbial guilds. Since
microTrait encompasses both continuous and binary traits, the
similarity between genomes are measured using a distance metric
suitable for mixed data types (Wishart 2003) (see Methods). The
resulting distance matrix (genomes x genomes) is clustered with
unsupervised hierarchical clustering, visualized with trait
presence/absence (i.e., treating continuous traits as binary
variables), and annotated with the distribution of life history
traits and trait prevalence across the dataset (Figure 5A).
Quantifying relationships between genomes based on their
trait profiles gives the opportunity to dynamically define guilds
in a data-driven way for any dataset. The proportion of inter-
guild variance explained can then be quantified as a function of
the number of guilds (Figure 5B). A larger number of guilds
corresponds to a smaller information loss at the expense of
greater complexity for downstream applications. The user
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decides here where to operate along the curve depending on the
shape (rate of change in steepness with increasing guilds) and the
application of interest. Once determined, the guilds can be
defined which results in a list of guilds, each representing a
number of genomes and the joint distribution of traits captured
by them. It is often useful to examine the distribution of the
number of genomes that underlies each guild as on average the
within-guild trait variance would be higher for guilds supported
by a smaller number of genomes. The user can filter the guilds by
number of genomes to generate a dataset that represents guild
profiles, that is a fingerprint of the co-occurrence of traits for each
guild and the within-guild distribution of life history traits
(Figure 5C and ST 16).

We applied the microTrait data-driven guild-definition
pipeline to soil isolate genomes from IMG (3,430 genomes
with GOLD Ecosystem Type = “Soil OR Rhizoplane OR
Rhizosphere OR Root”). All traits except “anaerobic ammonia
oxidation (anammox)” were detected at least once in the dataset
resulting in a trait matrix of dimensionality 3,430 genomes X 190
traits. To date no pure culture isolates of anammox organisms
have been obtained (Jetten et al., 2005). Clustering analysis
indicated that a total of 196 guilds captured 70% of the inter-
guild variance, with 16 guilds supported by at least 50 genomes.
Comparison of the trait profiles across guilds elucidates the
differentiating trait features of a set of guilds with respect to
other guilds.

FIGURE 4 | Correlation matrix for microTrait defined traits. The strength of the correlation (Spearman’s rho) is represented by the color intensity (positive: blue,
negative: red). Left upper panel: the distribution of trait-to-trait correlation values, left lower panel: comparison of the distribution of trait-to-trait correlations within and
between ecological strategies.
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For example, the top three guilds supported by the highest
numbers of genomes (guild 3, guild 23, and guild 4; 383, 375, and
340 genomes respectively) were each enriched in specific traits

under resource acquisition and resource use strategies (ST16).
Guild 23 compared to guild 3, and 4 was marked by enrichment
of the ability to assimilate simple C compounds, use 2 C

FIGURE 5 | Primary use cases and graphical outputs ofmicroTrait workflow. (A) Trait matrix provides clustering of a set of input genomes using trait profiles from
microTrait outputs based on a distance metric taking into account mixed data types (i.e. for binary and count traits). Heatmap visualization use presence (red)/absence
(white) of traits, with trait prevalence (% genomes positive) shown at the top panel. Life history traits (minimal doubling time and optimum growth temperature) are overlaid
on the right panel in continuous scale. (B) Trait variance across genomes based on the genome clustering is quantified as a function of the number of guilds using
analysis of variance using distance matrices. Guilds can be defined either at a fixed number of guilds or based on percent explained within-guild variance, which results in
a size (number of supporting genomes) distribution of guilds. (C) Visualization of trait profiles for the defined guilds (guilds × traits), with mean trait values visualized across
a color scale. Traits are ordered by ecological strategies (red: resource acquisition, green: resource use, blue: stress tolerance). For each trait, top panel shows the
statistical significance of comparison of mean trait values across guilds. The distribution of life history traits are shown on the right side panels.
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compounds in the absence of glucose via glyoxylate cycle, uptake
a variety of N compounds (elemental N and urea) as well
aromatic acids and biopolymers, and fix elemental nitrogen for
biomass. On the other hand, compared to guild 23, guild 3, and 4
represent a different strategy for incorporation of N compounds
into biomass through assimilatory nitrate reduction and a unique
ability to assimilate P compounds. Notably, although all three
guilds were enriched in the capacity to utilize glucose, guilds 23
and guilds 3, and 4 differed in their preferred glycolytic pathways
(canonical Embden-Meyerhoff-Parnass (EMP) pathway in guilds
3, and 4 vs. less common Entner–Doudoroff (ED) pathway in
guild 23) reflecting differing preferences in balancing production
of ATP (energy yield) and cost of protein synthesis to achieve
maximum fitness (Flamholz et al., 2013). Across these three
guilds (3, 23, and 4) differences in enrichment for stress
tolerance mechanisms were not apparent, however, other
guilds did display enrichment in specific stress tolerance
strategies. For instance, among all the guilds supported by at
least 50 genomes, guilds 7 and 14 were uniquely enriched in traits
for desiccation and pH stress tolerance respectively.

DISCUSSION

Genome sequencing, from a data perspective, now provides a
primary window into the traits that regulate fitness and function
across Earth’s microbiomes. Genomes are increasingly
recognized as a fundamental unit in the study of
microorganisms, however, the integration of this information
is required to understand how such genome units relate to
ecologically coherent behavior. Exploration of feedbacks
between microorganisms and their environments requires
numerical modeling approaches, and the assimilation of
genomic information has substantially lagged its generation.
This assimilation of microbiome information into numerical
models in an automated fashion remains a significant
challenge as microbial communities are ultra-diverse,
physiologically plastic, and dynamically adaptive. Trait-based
approaches to microbial ecology provide a framework to
represent microbial diversity in a way that facilitates
prediction, integration and generalization (Lajoie and Kembel
2019) and the rate at which isolate and metagenome-assembled
genomes are being generated provide an unprecedented resource
to explore patterns in microbial trait conservation and linkage.
The resulting information can be used to initialize and
parameterize mechanistic trait-based models spanning a scale
of complexities to explore the drivers of patterns in the
distribution and co-occurrence of microbial traits. With
microTrait, our goal was to provide an extendable toolset and
computational pipeline to infer microbial traits from genomic
data and show how the resulting information can be used to
define microbial guilds with varying parameters.

Our approach to infer ecological traits from genomic data
couples profile search methods with reconfigurable simple
predicate logic. This coupling provides important advantages
for deriving microbial traits from large numbers of
phylogenetically diverse microbial genomes. Profile methods

represent information across a family of evolutionarily related
sequences from a multiple sequence alignment and increase
sensitivity by incorporating position-specific information into
a model. Moreover, the set of sequences from which gene-level
microTrait-HMMs have been trained were selected from an
extensive sequence database (IMG/M (Chen et al., 2019)) that
not only includes genomes of cultured isolates but alsoMAGs and
SAGs, the majority of which had been derived from
environmental samples. Given that the bulk of the stream of
incoming genomes from new studies is expected from MAGs
with higher phylogenetic diversity compared to isolate genomes,
the ability to detect remote homologs underlying microbial traits
and explore sequence diversity from environmental samples is
critical to increase the accuracy of trait prediction. With future
releases of IMG, new sequences can be incorporated into multiple
sequence alignments and consecutivelymicroTrait-HMMs can be
updated.

To benchmark and determine the score thresholds for each
gene-level microTrait-HMM, we used the corresponding genes
from the corresponding KO (KEGGOrthology) group.While this
approach makes a systematic assessment of model accuracy
possible by balancing model precision and recall, it should be
noted that the computed thresholds may be overly strict for
certain applications. Sequences in the KO database correspond to
a highly curated set of sequences with a limited phylogenetic
scope, this may lead to high precision and low recall with respect
to the true labels especially for phylogenetically divergent or novel
genomes not well represented in KEGG (Jaffe et al., 2020). Since
the true orthologs for the underlying protein families are not
known but can only be inferred, the accuracy of the model can
only be estimated using independent labels such as those from
KEGG. For applications where a higher recall at the expense of a
lower precision is desired, it would be desirable to lower the
HMM cutoff thresholds depending on the user input. We leave
the implementation of such modifications for future work.

In this work, we focused on mechanistically well-studied traits
whose genetic underpinnings have previously been documented
and which can be conceptualized as Boolean rules. In addition to
extraction of microbial traits with a rule-based system, further
opportunities exist for unsupervised discovery of traits. For
example, genomes with metadata labels determined
experimentally or through text-mining (Alneberg et al., 2020)
(Brbic et al., 2016) indicating the ecological niches of the
organisms can be leveraged for exploring the genetic basis of
organismal adaptation. Statistical modeling of the organismal
niche and inference based on domain or gene content would be
the classical approach towards this (Zhalnina et al., 2018; Ceja-
Navarro et al., 2019). In addition, the exponential increase in the
availability of high-quality MAGs with rich metadata will make
feasible machine learning approaches that focus on prediction
rather than explainability using a much larger number of features
also feasible (Drouin et al., 2019).

Despite the increasing availability of genomic and
physiological data of microbes, the adoption of trait-based
approaches in microbial ecology is relatively recent. Unlike
plants and animals, working definitions of microbial traits and
conceptual frameworks to define functional guilds from these are
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lacking. The large diversity of microbial lifestyles manifest as a
large number of potential traits some of which might be
unobserved. Even with thousands of diverse genomes, the
high-dimensionality of the potential trait space poses a
challenge to define functional guilds for microbes. Here we
adopted an operational definition of microbial guild as
“groups consisting of diverse microorganisms with similar
traits” based on a synthesis of a relatively small number of
master traits that define microbial lifestyles. Depending on the
specific analysis goals, a user might want to fine tune the
granularity at which traits are defined (e.g., selection of
different pathway endpoints as in denitrification or
transporter/enzyme substrate classification). In microTrait, the
reconfigurability of the rules makes the exploration of the effect of
different trait definitions on the microbial guilds possible and
therefore enables a flexible microbial trait extraction pipeline.

Finally, a trait-based microbial ecology framework has the
potential to integrate ecological and genomic data. For this
promise to be achieved however, the availability of metadata
on the provenance and biogeochemical/ecological identification
of the underlying biological samples is essential. Environmental
metadata give essential context for genome data but current
isolation of metadata resources (GOLD (Mukherjee et al.,
2019) and NCBI’s BioSample (Barrett et al., 2012)) and lack of
rich ontological and data standards hinder interoperability and
reusability. Reusability of metadata is further hampered by
inability to download metadata in bulk. Even within a single
resource with a relatively consistent data schema, the fill rates for
the existent terms are very low leading to existence of a large
number of genomes without any usable metadata. For example,
within 162,711 bacterial and archaeal GOLD genomes (accessed
on 04/2021), only 17% had the Ecosystem field (GOLD: Study
Fields: Ecosystem) completed with one of the three categories
(Environmental, Engineered, or Host). Among the
Environmental genomes, only ~41% (7,868 genomes) had even
the broadest ecosystem classification completed (GOLD: Study
Fields: Ecosystem Category) leaving an overwhelming majority of
genomes unusable. For a trait-based framework to fulfill its full
potential in elucidating microbial trait-environment
relationships, significant community efforts towards higher
quality metadata standards and metadata enrichment such as
that led by National Microbiome Data Collaborative (NMDC,
https://microbiomedata.org/) towards higher quality metadata
standards and metadata enrichment will be much needed.

METHODS

Implementation
microTrait is implemented in R. Besides R-base functions, it
depends on R packages dplyr, tidyr, tidyverse, readr (Wickham,
2019; Hadley et al., 2018; Wickham et al., 2019; Wickham and
Henry, 2019) for efficient data access, manipulation and storage,
doMC (Weston and Calaway 2015) to implement multicore
functionality. microTrait is available from https://github.com/
ukaraoz/microtrait.

Construction of a Gene HMM Database of
Protein Families (microTrait-HMM)
We constructed an HMM database that model gene loci underlying
functional traits (called microTrait-HMM) based on archaeal and
bacterial sequence diversity from 1) genomes of cultured organisms,
2) single cell genomes, 3) metagenome-assembled genomes, and 4)
metagenomes from environmental, host associated and engineered
microbiome samples. For each gene loci, a profile HMMwas trained
as follows. Seed protein sequences were collected from the non-
redundant IMG/M database (img_core_v400) based on “EC
Number”, “Gene Symbol”, and “IMG Term and Synonym”
(Chen et al., 2019). Multiple sequences alignments (MSA) were
generated from the seed sequences using MAFFT with an accuracy-
oriented parameter set (--maxiterate 1,000 --localpair--anysymbol)
(Katoh et al., 2005). Profile HMMs were built with HMMER/
hmmbuild (Eddy 2008). We call the set of HMMs microTrait-
HMM (Supplementary Table S2). All seed sequences, MSAs, and
profile HMMs are available at https://github.com/ukaraoz/
microtrait-hmm.

Estimation of Life History Traits (Minimal
Doubling Time and Optimum Growth
Temperature)
To estimate minimal doubling time from genome-wide codon
usage bias, microTrait uses gRodon R package (Weissman
et al., 2021) using multiple linear regression models trained
on the dataset of maximal growth rates compiled by Vieira-
Silva and Rocha (Vieira-Silva and Rocha 2010). Optimum
growth temperature is estimated with the multiple linear
regression models based on the same features of tRNA and
16S rRNA genes, ORFs and translated ORFs determined by
Sauer and Wang (Sauer and Wang 2019), but reimplementing
their python pipeline in R as part of the microTrait package
itself to increase computational efficiency.

Inference of Guilds
Ecological guilds were inferred from microTrait trait matrix
with variance partitioning and clustering analysis. Trait values
for “count traits” were normalized by genome size to express
them as “per base-pair genomic investments”. The normalized
trait matrix was used to calculate genome-to-genome distances
using Wishart distance metric for mixed variable data
(Wishart 2003) as implemented in R kmed package.
Wishart distance is similar to the Gower distance (Gower
1971) for mixed variable data but applies a variance weight
rather than a range for the numerical variables and uses a
squared distance component. The resulting distance matrix
was used to cluster genomes using hierarchical clustering with
complete linkage. Next, we quantified variance in the genome
to genome distances as a function of the number of defined
guilds. We first cut the tree from hierarchical clustering into
clusters ranging from 2 clusters to the total number of genomes
in the dataset. Then, for each cut that corresponds to a given
number of clusters, we quantified the variance in the distance
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matrix using cluster identity as a source of variation (using
adonis2 in R vegan package) and plotted the resulting
coefficient of determination (R2) as a function of the
number of clusters. This allows the user the option to pick
the number of guilds capturing a given level of trait variance
across the dataset, and vice versa. Given a threshold for a trait
variance or a number of guilds, we then assign each genome to
a guild based on the corresponding tree cut from hierarchical
clustering. Finally, we visualize the trait profiles for the defined
guilds using trait positivity as a metric.
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Supplementary Figure S1 | Performance of microTrait-HMMs with respect to
cross-reference to KEGG orthologous families (KO). Each point corresponds to a
gene-level HMM with the estimated sensitivity (true positive rate) and specificity (as
false positive rate or 1-specificity) corresponding to the scoring threshold that

maximizes F-score. The inset shows the cumulative distribution for the maximum
F-scores.

Supplementary Figure S2 | microTrait runtimes. Distribution of running times for
isolate and metagenome-assembled genome sets normalized for genome size
(measured as time (minutes) per Mb of sequence). Each point in the distribution
corresponds to a genome. The normalized running times depend on the genome
content, with more HMM hits requiring longer processing.

Supplementary Figure S3 | Refinement of functional guilds using microTrait.

Supplementary Figure S4 | ExamplemicroTrait trait matrix for soil isolate genomes
as in Figure 5A, in high resolution.

Supplementary Table S1 |microTrait hierarchy. Hierarchical mapping of genome-
derived features into ecological function of increasing granularity in microTrait.
microTrait hierarchy is an unbalanced hierarchy with 3 levels, with certain leaves
spanning all 3 levels. References supporting the inference of traits from genome
derived features are given in Supplementary Table S8.

Supplementary Table S2 | microTrait HMMs. List of gene-level HMMs underlying
microTrait pipeline (“microTrait-HMMs”), with cross-references (“dbxref”) to KEGG,
EC, and Transporter Classification Database.

Supplementary Table S3 | Evaluation of microTrait HMMs. Performance of
microTrait-HMMs with respect to cross-reference to KEGG orthologous families
(KO). For each model, the model score maximizing F-score for the corresponding
KO is used as a trusted cutoff.

Supplementary Table S4 | microTrait rules. Each microTrait rule is a boolean
expression for presence/absence of microTrait HMMs or other microTrait rules.

Supplementary Table S5 |Mapping ofmicroTrait rules to themicroTrait hierarchy.
microTrait traits are either of type binary or count. Count traits can be counted by
themselves or by their substrate (microtrait_rule-type = “count_by_substrate”) in
case of transporters. Refer to ST6 for the mapping between substrates and the
microTrait hierarchy.

Supplementary Table S6 | Classification of substrates for substrate uptake and
degradation by chemical class.

Supplementary Table S7 | microTrait traits by strategy, type (i.e. binary, count),
and granularity.

Supplementary Table S8 | References for genome-derived features underlying
ecological traits.

Supplementary Table S9 | Selected GOLD genomes of organisms isolated from
aquatic or terrestrial environments. Environmental isolate genomes
(GOLD_organisms:Cultured == “Yes” AND GOLD_organisms:Ecosystem ==
“Environmental”) from GOLD database (https://gold.jgi.doe.gov/) were selected
and filtered using ecosystem category and sample collection site (GOLD_
organisms:Ecosystem Category == “Aquatic OR Terrestrial” OR GOLD_
organisms:Sample Collection Site (MIGS-13) == “soil OR sediment OR
rhizosphere”).

Supplementary Table S10 | Taxonomic breakdown of selected GOLD genomes.

Supplementary Table S11 | Mapping between taxa and functional groups based
on Faprotax database. Faprotax (Functional Annotation of Prokaryotic Taxa) (http://
www.loucalab.com/archive/FAPROTAX/lib/php/index.php?section=Download) is a
database that maps prokaryotic clades (e.g. class, order, family, genus, species) to
metabolic functions. For comparison with microTrait rules for the same metabolic
functions, we resolved the listed taxa names to standard names, which are listed in
this table (column: taxa).

Supplementary Table S12 | Mapping of Faprotax taxa name to the NCBI taxa
name.

Supplementary Table S13 | Functional group assignments with Faprotax and
microTrait. Each GOLD genome was assigned to a Faprotax functional group by
taxonomy (i.e. based on Faprotax database as in ST11) and bymicroTrait (i.e based
on genome sequence).

Supplementary Table S14 | Evaluation of microTrait traits (genome-based) with
respect to Faprotax functional groups (taxonomic name based). For each functional
group, validity of microTrait predictions is evaluated based on Faprotax
classifications (T: number of microTrait predicted positive genomes, N: number
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of microTrait predicted negative genomes, TP: number of true positive genomes,
TN: number of true negative genomes, FP: number of false positive genomes, FN:
number of false negative genomes, TPR: true positive rate, TNR: true negative rate).

Supplementary Table S15 | Correlations between traits. Spearman’s rank
correlation coefficient between pairs of traits.

Supplementary Table S16 | Guild trait profile matrix. Trait profiles (microTrait
granularity 3) for defined guilds as mean trait values.

Supplementary Table S17 | Guild taxonomic profiles. Taxonomic profiles for
defined guilds as relative abundance of genome taxonomy (phylum, class, order,
family, genus).
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