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Formal Models for Imaginal Deduction

George W. Furnas
Bell Communicaitons Research

Abstract

Systems with inherently spatial primitives have advantages over traditional sentential
ones for representing spatial structure. The question is how such representations might
be used in reasoning. This paper explores a simple kind of deductive reasoning where
picture-like entities, instead of symbol-strings, are given first-class status. It is based on a
model of deduction as the composition of mappings between sets, and allows generalized
notions of unification and binding, which in turn permit the definition of various formal,
"imaginal” deduction systems. The axioms and rules of inference are all pictures or
fundamentally picture-based, and are used to derive pictorial “theorems"”. After sketching
the generalized theory needed, several possible strategies are mentioned, and a prototype,
the BITPICT computation system, is described in some detail.

1. Introduction

The role of imagery in reasoning, human or artificial, remains unsettled. In cognitive psychology
Shepard!!!, Kosslyn!?!, and others have argued that imaginal representations exist and certain geometric
transformations of them (rotations, scanning, zooming) can be used to answer spatial questions. Explicitly
addressing inference, Lindsay®! has argued that images are important because of their ability to
implement geometric constraints automatically and that this is what distinguishes imaginal reasoning
from "calculus-plus-proof-procedure," deductive systems. A different view is offered here: that imaginal
deductive inference is possible, and specially empowered by the ability of images to implement spatial
constraints.

Consider a simple example from a conventional deduction system, shown in Figure 1(a). This might be
part of a system which manipulates arithmetic expressions while preserving their arithmetic value. The
figure shows Axiom 1, representing the commutative law of addition, and Axiom 2, representing the
right-zero-additive-identity law. These two axioms are put together in a deductive chain to yield the
indicated Theorem, the left-zero-additive identity. In this algebra example, the rules link expressions that
are one-dimensional arrangements of symbols. The goal here is to have the rules link picture-like objects.
A domain that yields a fairly intuitive example is in classical Euclidean geometry proofs, illustrated in
Figure 1(b). Axiom 1, expressed in English, would be something like, "If one angle of a transversal of
two parallel lines is designated as being of interest, the corresponding second angle may be designated as
its equal." Here, however, the axiom is meant to stand on its own as a statement in a formal system, with
the rule linking the left-hand picture to the right-hand picture, and no underlying representation of the
form "L1 parallel L2 transversed by L3..." The second axiom asserts in pictures the congruence of
opposite angles of intersecting lines. The goal of the work here is to describe such formal systems,
wherein picture axioms support formal deductions as rigorously as algebraic ones shown in Figure 1(a).
Though the geometry rules of Figure 1(b) suggest what it might be like to do imaginal deductive
inference, the example is very incomplete. In particular, the deduction requires that Axiom 2 be applied to
the picture on the right-hand side of Axiom 1. No machinery has been defined that lets Axiom 2, which
has only two lines in its picture, apply to the right-hand side of Axiom 1, where there are three lines.
Somehow the left-hand side of Axiom 2 must stand for more than what meets the eye, more than the
exact two-line picture on the paper. In conventional logics, like those illustrated in Figure 1(a), the
corresponding problem is handled by the well-articulated mechanisms of variables, quantification,
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AXIOM1: (X)(y)X+y ~—>y+Xx AXIOM 1: # -a-#
AXIOM 2: v) y+0 —>y AXIOM 2: ‘ ‘

THEOREM: (Y)0+y—> y+0 >y THEOREM: # —.—#*#
Theoren: (y)0+y —> ¥ Theorem: # —_— #

Figure 1. (a) A deductive system for algebra manipulation, showing the chaining of axioms for
commutativity and zero-right-additive identity to get zero-left-additive identity. (b) A structurally
analogous deduction in a hypothetical picture system to do Euclidean geometry proofs. In each
case the first version of the resulting theorem preserves the intermediate link in the deductive
chain, the second one omits it.

unification, bindings, etc. But where are the variables and quantifiers in the graphical axioms of Figure
1(b)? How can something like unification be accomplished? Since these mechanism have no direct
analogs in the imaginal domain, it has been necessary to analyze what these mechanisms accomplish, to
produce a list of generalized properties needed in a deductive formal system. These desired properties can

2. Introduction to a General Theory of Deduction

The difficulty for pictorial deduction in Figure 1(b) arises from the need to take the pictures in Axiom 2
other than literally. Consider the alternative, illustrated with the "Happy Face" system of Figure 2.
Assume that exactly the picture appearing as the left-hand side [LHS] of Axiom 1 yields exactly the
picture on the right-hand side [RHS] of Axiom 1, and exactly the picture appearing as the LHS of Axiom
2 yields exactly the picture on the RHS of Axiom 2. From these two axioms, one can conclude the
"Happy Face Theorem", that exactly the LHS picture of Axiom 1 yields exactly the RHS picture of
Axiom 2. Given a different frowning face, one of a different size or shape, even a single deductive step
would be impossible, to say nothing of a chain of two.

2.1 The generative power of high-level rules

The literal deduction of the Happy Face Theorem is perfectly rigorous; it is also very impoverished.
Many literal (low-level) rules would be needed to even approach some interesting behavior. What is
required is a way to write high-level rules, i.e., a notational system whereby a whole set of low-level rules
are specified at once. Such generative power is one of the important accomplishments of variables and
quantifiers in standard sentential formalisms. Thus, the algebraic rule, Vx Vy x+y — y +x, can
really be considered as the name for a set of low-level arithmetic rules, {1+3 — 3+1,
247 - 7+2, 0+4 — 4+0, - --}. Familiar machinery here generates the set of instance rules
from the high-level algebraic expression using the Cartesian product of the instantiations of the
universally quantified variables. For pictures, where it is not at all clear where or how to put in variables,
a more general understanding of high-level rules is needed.

Low-level rules of a system associate ordered pairs (@ = b, ¢ —>d, e > f, b = f, etc.) of "low-
level" objects, for example, pairs of individual expressions of arithmetic or pairs of specific pictures of
faces. The basic deductive inference is of the form, "given @ and a — b, conclude b," and enables
deductive chaining of the low level rules, like,
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Figure 2. The "Happy Face Theorem". If the rules here are taken literally, i.e., as applying to only
exact matches to the faces shown, a rigorous but impoverished deductive system results.

Given a - b and b > f, conclude a —f.
The happy-face deduction of Figure 2 , is an example of such a low-level chain.

A high-level rule specifies a whole set of such low level rules at once. This set of low-level associations
defines a mapping between two sets of low-level objects. So a high-level rule is fundamentally a
mapping,

f:A = B, ie, a;—b,, a;—b,y, -

between two sets (its Left- and Right-Hand sets), and as such may admit specification mechanisms other
variables and quantifiers. Thus for a deductive system in a given domain of low-level objects (e.g.,
pictures), one needs devices for

(P1) the specification of sets of low-level objects, and

(P2) the specification of mappings between those sets,
that are suitable for the objects in the domain, and computationally tractable. Suitability, for example, is
at issue for the straightforward application of the device of variables and quantifiers for the specification
of sets of pictures. Computational tractability is required for the operations implicit in the application of
the function, f, to a candidate object x. In particular, both the applicability of the function (the test of
whether x€ A ) and the actual result of the function must be computable with reasonable resources.

2.2 The deductive power of high-level rules

The generative power of high-level rules, i.e., their ability to specify a whole set of low-level rules at
once, is only one important desideratum of a deductive system; a second is the ability to do high-level
deductive chaining. A high-level deductive chain takes two high-level rules f and g and derives a third
high-level rule /, subject to the condition that the low-level rules in 4 are all implied by those of f and
g . That is, whole sets of low-level rules are deductively chained by chaining high-level rules. In this
way, high level axioms are chained, as shown in Figure 1, to derive new "theorems". In terms of treating
high-level rules as mappings, one wants to take two mappings, f:A — B and g: C — D and say as
much as possible about applying one to the output of the other, i.e., forming a function composition. If
the sets B and C are equal, the composition is straight forward,

Given f:A — B and g:C — D and B =C, conclude gof:A — (B=C) - D.

However if B#C then the maximal composition is mediated by the intersection, BN C. Writing a bit
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loosely (i.e., applying f and g to sets in the obvious way), we have
Given f:A — B and g:C — D, conclude f'BNC) - BNC) - gBNC).

The computation of maximal partial composition may be thought of as having three critical steps. First is
the computation of the intersection BN C. In standard deduction, this is accomplished by unification
and yields information on variable bindings (e.g., y is bound to O in the algebra example of Figure 1(a)).
The second and third steps map this intersection backwards by f ~! into A and forwards by g into D . In
standard deduction, this is accomplished by substituting the variable bindings resulting from the
unification, into the LHS of the first rule and the RHS of the second rule. Thus in any system where (P1)
and (P2) above were defined, any mechanism for

(P3) the computation of BN C, and

(P4) the computation of f "' (BN C)and g (BN C),

i.e., a way to test whether a,;€ f V(BN C), and if so to find die g (BN C),

would then enable high-level deductive chaining.

While the ideal is to have a system that supports (P3), one could settle for less. For example, if it were
only possible to compute subsets of BN C, one could still make valid, though not maximal, high-level
deductions. Note also that systems with no high-level deductive chaining could still be useful. For
example, most current expert systems never prove theorems. They use only the generative power of
high-level rules, taking some particular low-level instance from the world and cranking it through a rich
system of high-level rules to deduce new low-level conclusions. Thus it is quite possible that a picture
system that only satisfied (P1) and (P2) could still be quite important.

2.3 Candidate mechanisms for (P1)-(P4)

There are many strategies that can be used to satisfy various of the desiderata, particularly (P1) and (P2)
(specifying sets of pictures and picture-to-picture mappings). A few of the more promising general
approaches, fairly different in character from the use of quantified expressions of variables, are sketched
below. Versions of the first two of these have been used in the the BITPICT system (see below), a
version of the third in another system we are working on.

2.3.1 Instance-plus-transformation strategies. A set can be specified by a canonical instance @ o and a set
T={t;} of permissible transformations of that instance. A rule can similarly be defined by giving a
canonical low-level rule, ag—b ), and a set of transformations, 7. The corresponding high-level rule is
taken to map #; (ag)—t; (bo). For example, if T is the set of size rescaling transformations, and a g—b ¢
is the low-level, "sad-face" rule (Axiom 1) of Figure 2, then the result is a high level rule which maps the
sad face at size i to the neutral face resized to size /. Similarly taking T to be the set of affine
transformations of the plane! and the axioms of the Euclidean Geometry example as canonical rules,
would yield a rigorous high-level picture deduction system (though still providing only part of the needed
generality).

2.3.2 Feature-set strategies. One class of systems that fulfill all of (P1)-(P4) quite naturally arises if
low-level objects can be characterized by sets of features. Then subsets of features can be used to specify
sets of objects possessing the given features. There is a natural partial ordering of both object and feature
sets by containment, forming a dual lattice structure upon which the intersections required for unification
can be easily calculated, and for which there are natural notions of generalized binding.

1. Note that affine transformations are typically discussed in conventional sentential algebraic terms (e.g., by certain matrix
multiplications), but that is not inherent. They can be represented and implemented otherwise (e.g., optically).
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2.3.3 Grammar-based strategies. Another way to specify a set is as the language of a grammar. Thus, for
example, most standard logics have a context-free string grammar that specifies the well-formed formulas
of the formalism. The axioms map between certain specified subsets of the well-formed formulas. In
particular, the left-hand side of many rules can be thought of as generated by a sub-grammar (e.g., "X +
Y" as "expressionl : plus-operator : expression2"). A parser builds a parse-tree over the input to the left-
hand side of the rule, and gets the object on the right side of the rule by manipulating the parse tree (e.g.,
flipping the two descendants of the "+" operator, to get "Y + X").

Such an exercise need not be restricted to string systems. There are various grammars for spatially
structured objects, for example array and matrix grammars (! 1) or picture grammars!®). Collaborations
with Karen Lochbaum led towards a system that specifies sets of simple pictures for the LHS of rules
using context-free array grammars,with high-level rules operating by transformig the resulting spatially
structured parse-trees.

3. The BITPICT deduction system

Several of the strategies just outlined have been combined in a particular system, the BITPICT system,
and a prototype virtual machine now exists, running on a Symbolics Lisp Machine. It is a particularly
simple formal system which, though not powerful enough to handle the Euclidean geometry example in
full generality, is sufficient to give a better sense of what picture deduction systems might be like.

The architecture of the BITPICT system is similar to that of standard production systems. That is, like
classical production systems 71 81 [°] it has a set of rules that interact via a shared blackboard. Each rule
has a left-hand side that constantly looks at the blackboard for a match. When a rule finds a match, its
right-hand side directs how to change the contents of the blackboard. The change is made, and the process
iterates. The rules are engineered so the evolution of the blackboard solves the intended problem.

Unlike standard production systems, where the structures on the board and in the rules are typically
strings of symbols, in the BITPICT system they are simple picture fragments. Picture fragments are
matched and replaced and problems are solved by the fragment-by-fragment evolution of the picture on
the blackboard.

The universe of pictures considered by the BITPICT system are bitmaps, i.e., regular grids of picture
elements (pixels) that are either black or white. A bitpict is a small such bitmap, and is meant to be the
specifier for a whole set of other bitmaps, in this way performing a function analogous to quantified
algebraic expressions specifying sets of arithmetic ones. A bitpict specifies the set of all bitmaps which
contain that bitmap fragment somewhere. A bitpict rule is an ordered pair, LHS->RHS, of conformal
bitpicts, and is taken to specify a mapping between the two corresponding sets of pictures. The mapping
simply associates left- and right-hand pictures that differ only in that the LH bitpict has been replaced by
the RH one. (See Figure 3.) There are two components to how bitpicts specify sets of pictures: (1) the use
of a piece of a picture to specify the set of pictures containing that piece and (2) translation invariance,
i.e., fact that the piece may occur at any vertical or horizontal position. The first is an example of a
feature-set strategy: a pixel being black or white is a feature, and picture sets are specified by a spatially
defined collection of such features. As mentioned earlier, notions of unification fall out easily from the
resulting lattice. Let A and B be two bitpicts (but with translation disallowed, i.e. each at fixed
positions). The intersection of their corresponding picture sets is a set whose specification is the pixel-
wise union of A and B (or nil if they disagree at points of overlap). The second aspect, translation
invariance, is an example of the instance-plus-transformation strategy: the i,j -th translation of the left-
hand bitpict is mapped into the corresponding i ,j-th translation of the right-hand bitpict. In fact, the
BITPICT system can variously allow translations, rotations (0, 90, 180, or 270 degrees), and reflections.
(The small crossed vertical and horizontal lines appearing like "+" sign, under the circle bitpict is an icon
indicating that this particular rule holds for vertical and horizontal translations only.)
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Figure 3. (a) A BITPICT rule mapping the 3x3 grid of pixels containing a circle to the 3x3 grid
containing a cross. (b.1) and (c.1) show pictures in the left-hand set of the rule. (b.2) and (c.2)
show the corresponding pictures in the right-hand set.

3.1 A BITPICT example: Counting the tangled forest

An example of the the BITPICT system solving a spatial problem with graphical deductions is presented
in Figure 4. The problem, counting the disconnected components in a tangled forest of bifurcating trees,
is not easy to represent in a sentential way, yet has a very natural solution with bitpicts.

Part (a) of the figure shows a sample tangled forest. The first set of rules, (b), simplify the problem,
basically by nibbling back the tips of the branches, nibbling at straight, cormer and "T" sections
respectively. The rules neither create nor destroy connected components, and so each component is
gradually reduced, (b.1), to a dot (b.2).

The next rules, (c), move the dots down, and when they hit the bottom of the window, to the right, as
shown in (c.1), until they are all canonically aligned in the lower right comer, (c.2). Again the invariant
of number of components is preserved, and the problem of counting trees has been reduced to counting
these neatly arrayed dots.

The final rules, (d) count the aligned dots by converting each to a vertical bar (an "I") and from there to
Roman numerals, with rules for simplifying (e.g., five I’s to a V), maintaining alignment (e.g., shifting
V’s and X’s right as needed), and sorting (e.g., VX to XV). The final result is the Roman numeral, XII,
indicating the number of trees in the original tangled forest.

The critical computational point is that the evolving state of the blackboard is governed by the picture-
to-picture mapping rules, with no need for underlying sentential representation.
4. Discussion

In addition to solving certain spatial problems and implementing graphical symbol manipulation
algorithms (e.g., Roman numeral counting and arithmetic), the BITPICT system is also useful for
auto-animation (e.g., cartoon figures that move themselves according to rules), for certain kinds
of naive physics models (e.g.,Figure 5), and for the analysis of graphical computer interfaces.
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The BITPICT system has a number of limitations, arising from its tie to the rectangular pixel
grid, its current 2-D character, and the flatness of its representations (without the structural depth
of grammar approaches), but it has been important in showing what imaginal deduction might be
like.
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Figure 5. Balls and ramps - a naive physics model. (a) Rules for straight fall (translation
invariant) and rolling down a piece of ramp (translation and reflection invariant). (b.1) An initial
configuration. (b.2),(b.3) Samples from intermediate states in the deduction. (b.4) Final
configuration.
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