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Tests of the genetic structure of empirical populations typically focus on the correlative relationships between population connec-

tivity and geographic and/or environmental factors in landscape genetics. However, such tests may overlook or misidentify the

impact of candidate factors on genetic structure, especially when connectivity patterns differ between past and present popu-

lations because of shifting environmental conditions over time. Here we account for the underlying demographic component of

population connectivity associated with a temporarily dynamic landscape in tests of the factors structuring population genetic

variation in an Australian lizard, Lerista lineopunctulata, from 24 nuclear loci. Correlative tests did not support significant effect

from factors associated with a static contemporary landscape. However, spatially explicit demographic modeling of genetic differ-

entiation shows that changes in environmental conditions (as estimated from paleoclimatic data) and corresponding distributional

shifts from the past to present landscape significantly structures genetic variation. Results from model-based inference (i.e., from

an integrative modeling approach that generates spatially explicit expectations that are tested with approximate Bayesian compu-

tation) contrasts with those from correlative analyses, highlighting the importance of expanding the landscape genetic perspective

to tests the links between pattern and process, revealing how factors shape patterns of genetic variation within species.

KEY WORDS: Coalescent, demographic simulation, gene flow.

Although temporal scale is one of the primary distinguishing

factors of landscape genetic and phylogeographic study, such a

distinction is not only unnecessary, but also potentially problem-

atic. For example, landscape genetics studies how contemporary

habitat suitability and connectivity influence population genetic

structures spatially (Manel et al. 2003; Storfer et al. 2007). Phylo-

geography typically focuses on historical processes that generated

the patterns of genetic variation (Avise et al. 1987; Knowles 2009).

There may certainly be cases in which one of the two processes

predominates (e.g., Knowles et al. 2007; Hull et al. 2008; Xu et al.

2009; Mendez et al. 2010; Perrier et al. 2011). Yet, because such

studies are often pursued under one of the two perspectives, their

joint influence can be overlooked, risking the misidentification of

factors structuring patterns of genetic variation.

As both landscape genetic and phylogeography shift toward

the analysis of multilocus data, and specifically as next-generation

sequencing technologies become widely applied (e.g., Gompert

et al. 2010; Thomson et al. 2010), concerns over molecular mark-

ers as a distinguishing factor between landscape genetics and

phylogeography (e.g., Wang 2010) will certainly diminish. Simi-

larly, the greater power and resolution provided by such data sets

opens up new possibilities for expanding methodologies that can
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test causation of, as opposed to seeking associations with, the

underlying patterns of genetic variation.

The melding of disciplines is represented in the approach

advocated here, which we illustrate with an empirical example—

specifically, a test aimed at revealing how geography and the en-

vironment shape patterns of genetic variation in a lizard, Lerista

lineopunctulata. This lizard is distributed along the southwestern

Australian coastal sand plains or dunes (Fig. 1; Cogger 2000;

Wilson and Swan 2008). Sea-level changes in glacial and in-

terglacial periods expanded or contracted suitable costal sand

habitats for the species (Storr and Harold 1978; Hocking et al.

1987). Consequently, it is conceivable that population divergence

could reflect the contemporary habitat configuration, which lim-

its migration among the small geographically isolated populations

(Excoffier et al. 2009), or colonization associated with historical

shifts in the species distribution (Zellmer and Knowles 2009),

given that a habitat specialist would track climate-induced habi-

tat shifts. We first conduct both individual- and population-level

correlative tests to identify potential factors structuring genetic

variation, including geography, climatic, and soil characteristics

(see also Edwards et al. 2012). We then move beyond these tradi-

tional descriptive landscape genetic analyses (Legendre and Fortin

2010) with an approach that provides quantitative species-specific

predictions that account for the interaction between abiotic and

biotic factors (i.e., the environmental factors and the life-history

characteristics of taxa that mediate the impact of these factors

on survival and movement patterns; see Knowles and Alvarado-

Serrano 2010; Brown and Knowles 2012). Specifically, we gener-

ated a large multilocus data set to test whether the current genetic

structure reflects (i) the geographic configuration of populations;

(ii) the contemporary environment; or (iii) the dynamic history

of shifting environmental characteristics since the last glacial

maximum.

Our work highlights the potential synergy between tradi-

tional landscape genetic approaches and model-based inferences

by translating hypotheses identified from correlative analyses into

a suite of alternative demographic processes that can be for-

mulated as models (see also Bruggeman et al. 2010; Epperson

et al. 2010; Landguth et al. 2010; Morgan et al. 2011; Shirk

et al. 2012). Our approach contrasts with the tradition of in-

tuiting qualitative phylogeographic hypotheses from ecological

niche models (ENMs; reviewed in Knowles 2009). Here quan-

titative information about variation in the habitat suitabilities

across space and time is used to inform a spatially explicit de-

mographic model whose parameters are then used for coales-

cent simulations. As a consequence, predicted patterns of genetic

variation are species specific, reflecting the interaction between

the physical environment and biological parameters (e.g., local

population sizes and migration rates) that determines the level

and pattern of gene flow across the landscape (see Knowles

and Alvarado-Serrano 2009; Morgan et al. 2011; Brown and

Knowles 2012). In addition, we rigorously test these models us-

ing approximate Bayesian computation (ABC; Beaumont et al.

2002), and assess the quality of parameter estimates using pseudo-

observed datasets, pods (see Bertorelle et al. 2010; Robert et al.

2011).

With reference to the empirical study of L. lineopunctulata,

we highlight how extrapolating causation from descriptive cor-

relates of genetic variation with the environment and geography

would be misleading (see also Meirmans 2012), but was avoided

by applying model-based inference with an expanded repertoire

of models (i.e., not only isolation-by-distance [IBD], but also

models that include additional environmental factors, and tempo-

ral shifts in habitats across the landscape). This approach, iDDC

modeling, integrates distributional, demographic, and coalescent

models to generate predictions for species-specific patterns of ge-

netic variation. With the intent that the methods proposed here

can be generally applied to different biological systems that had

experienced nonstatic demographic history, we include a discus-

sion of not just the promise of iDDC modeling (see approaches

described in Ray et al. 2005; Neuenschwander et al. 2008), but

also the limitations.

Methods
SAMPLING AND MOLECULAR DATA

Lerista lineopunctulata tissue samples (N = 89) were field col-

lected or obtained from the Western Australian Museum and Aus-

tralian Biological Tissue Collections (South Australian Museum;

Table S1) for full geographic coverage of the species, with mul-

tiple individuals sampled from each of the delimited populations

(see Edwards et al. 2012, for details about population assign-

ment). Note that the southern populations, formerly assigned to

L. lineopunctulata, are considered a separate species under tax-

onomic revision (D. L. Edwards, P. Doughty, and J. S. Keogh,

unpubl. data) and have not been included in this study (see also

Edwards et al. 2012). Also note that the number of loci in this

study was expanded considerably from 3 to 24 (a prerequisite for

testing hypotheses, as opposed to describing genetic variation, as

in Edwards et al. 2012).

Anonymous nuclear loci were developed from a Roche 454

sequencing run (procedures similar to Bertozzi et al. 2012), and

supplemented with sequences for loci from published primers

(see Table S2). Marker development from a 454 run used one

individual of the focal taxon, L. lineopunctulata, and one indi-

vidual of Lerista praepedita. Note that L. praepedita was used to

identify variable markers while avoiding ascertainment bias that

results from using intraspecific screening sets (see Carstens and

Knowles 2006). Details regarding preparation of DNA samples

for developing markers are given in Gompert et al. (2010). This
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Figure 1. Predicted contemporary and past distribution of Lerista lineopunctulata in southwest Australia (see inset for location in

continent) based on climatic and paleoclimatic variables, respectively (see text for details). Habitat suitability scores are shown as

ranging from the lowest (lightest) to the highest (darkest) suitability. Dashed lines separate populations (as determined from barriers

associated with breaks in suitable habitat; see Edwards et al. 2012) and population names along with sample sizes (in parentheses) are

shown with dots that mark sampling sites. In contrast to the linearly distribution of suitable habitat along the coast today, refugial areas

for the species 21 kya were more circumscribed and extended westward of current populations SB and P (dashed outline marks the

current coast line), given the emergence of vast areas of coastal sand habitats during glacial maximum (Hocking et al. 1987; Mory et al.

2003).

entailed the construction of a reduced representation library for

each species from genomic DNA digested with EcoRI and MseI

enzymes. Unique barcodes were ligated for each species and size-

selected fragments in equimolar concentrations were used for the

Roche 454 sequencing. The sequences were trimmed and quality

filtered using custom perl scripts and assembled using the NGen

sequence assembler version 2.0 (DNASTAR); settings used in the

assembly are provided in Table S3. Contig consensus sequences

were screened against BLAST to ensure loci were not mtDNA or

transposable elements and did not belong to known gene families.

Primers were designed for amplifying and sequencing fragments

between 150 and 700 bp using traditional Sanger-sequencing at

the University of Michigan DNA core facility.

A total of 24 nuclear loci were sequenced in both direc-

tions in each individual (GenBank KC545970–KC549439), al-

though there were some missing data due to polymerase chain

reaction (PCR) failures (Table S4). Eighteen loci were identified

from the 454 run that produced clear bands, with single-copy

sequences and contained at least one variable site between the

two species (L. lineopunctulata and L. praepedita). In addition,

we sequenced six loci using published primers (see Table S2

for references). PCR reactions were run in 20 μL volumes with

2 μL 10× reaction buffer, 0.8–2.5 μL 50 mM MgCl2, 1 μL

10 mM dNTPs, 0.4 μL bovine serum albumin (10 mg/mL),

0.8 μL of each 10 μM primer, 1U Taq polymerase, ∼100 ng

gDNA and the volume made up to 20 μL with ultra-pure H2O.
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PCR cycles were 95◦C 1 min; 30 cycles of 95◦C 30 sec, 59–65◦C

20 sec, 72◦C 45 sec; 72◦C 4 min (see Table S2 for specific con-

ditions and exceptions). Haplotype phase was determined using

PHASE (Scheet and Stephens 2006).

SPECIES ECOLOGICAL NICHE MODELING

In addition to our collected samples, occurrence data of L. lineop-

unctulata were collated from OZCAM (www.ozcam.org.au) and

geo-referenced (see Edwards et al. 2012). Projections of current

species distributions based on habitat suitability was estimated

from 19 current climate layers from the WorldClim global cli-

mate database (www.worldclim.org). The ecological niche mod-

els (ENMs) were generated with MaxEnt version 3.3.3k (Phillips

et al. 2006) from 10 cross-validation runs, which accurately pre-

dicted the species distribution (area under the curve [AUC] value

of 0.971). The model was also used to predict the past distribution

of the species at the Last glacier maximum (LGM) using the same

19 climate layers from the Community Climate System Model

derived from PMIP2 database available on WorldClim database

(Hijmans et al. 2005).

TESTS OF ASSOCIATIONS WITH GENETIC STRUCTURE

The potential impact of environmental factors on genetic struc-

tures was tested at both the individual and population level.

Distance-based redundancy analysis (dbRDA; Legendre and An-

derson 1999) was used to test for the relationship between in-

dividual pairwise genetic distances and corresponding climatic

and soil variables (i.e., the score at the sampling site where the

individual was collected), conditioned on geographic distances

(i.e., removing the effect of geographic distance separating in-

dividuals). Distance-based redundancy analysis is a multivariate

technique for testing a distance-based matrix (in this study, the ma-

trix of pairwise genetic distances) against rectangular predicting

variables, in which the relationship between the principal coordi-

nates of the distance matrix and the variables are then analyzed.

For analyses of an association between environmental factors and

population-level genetic structure, pairwise FST-values were cal-

culated among populations using Arlequin 3.5 (Excoffier and Lis-

cher 2010) and the environmental differences among populations

were summarized for an isolation-by-resistance test.

Individual pairwise genetic distances were calculated in

Arlequin 3.5 with Tajima and Nei’s correction (Tajima and Nei

1984). For this analysis, the multilocus data were condensed into

two haplotypes per individual by concatenating one of the two

alleles (selected randomly) for each locus across loci. Positions

with more than 60% missing data (across individuals) were not in-

cluded in the calculation of individual pairwise genetic distances.

Calculations of environmental distances were conducted on the

principal component 1 (PC1) from a principal component analy-

sis (PCA) of the 19 climate layers extracted from ArcGIS10 due

to correlation across climatic layers (Manel et al. 2001; Hirzel

et al. 2002; Peterson et al. 2011). We performed PCA directly

on the climate layers instead of values extracted from sampling

points because we want to capture the variation in the environment

but avoid any bias in the sampling points. This climate PC1 ex-

plained 90% of the variation in the climatic data. We also charac-

terized the spatial variation in soil characteristics. Soil properties

were derived from the soil-type data in the Atlas of Australian

Soils (Northcote et al. 1960) from the Australia Soil Informa-

tion System (http://www.asris.csiro.au) and interpreted following

McKenzie et al. (2000) as 13 measurements of the soil profiles

including percentage of clay, thickness, water flow, nutrients (see

Table S5), which were summarized with a PCA. This soil PC1

explained 85% of the total variation in the soil data and was re-

tained for analysis with dbRDA. Pairwise Euclidean geographic

distances among all individuals were calculated in ArcGIS 10.

Because dbRDA only relates a matrix to rectangular predictors,

the geographic Euclidean distance matrix was transformed into

continuous rectangular vectors via principal coordinates analy-

ses using the pcnm function of the Vegan package (Oksanen

et al. 2012) in R (R Core Team 2012). Each of the three poten-

tial predictors (geographic distance, climate-PC1, and soil-PC1)

were tested separately against genetic distance using the capscale

function in the Vegan package, as well as tests of climate-PC1 and

soil-PC1 conditioned on geographic distance (i.e., partitioning out

the effect of geographic distances).

For the analyses of isolation-by-resistance (McRae 2006)

used in the population-level tests of association between envi-

ronmental factors and genetic variation, the average resistance

among populations was estimated in Circuitscape version 3.5.8

(Shah and McRae 2008) using habitat suitability score as per-

cell conductance. Specifically, for each population, a convex hull

(i.e., a polygon) that encompassed the minimum population area

from sampling localities was used to define the region from which

Circuitscape calculated resistance scores to represent the connec-

tivity among populations. Isolation-by-resistance was tested using

Mantel and partial Mantel tests in IBDWS version 3.23 (Jensen

et al. 2005) for population-level associations of genetic variation

and environmental factors by considering the habitat suitabilities

modeled from contemporary climatic variables, as well as the

average habitat suitability of the current and past climatic condi-

tions (i.e., an intermediate landscape shown in Fig. 2). We chose

to use partial Mantel tests because all the explanatory factors are

distance-based matrices (Legendre and Fortin 2010) and the pri-

mary interest here is on the change in correlations between the

predictor matrix and the genetic distance, and therefore the issues

surrounding the interpretation of P-values with partial Mantel

tests (Raufaste and Rousset 2001) and reduced power in detecting

relationships compared to dbRDA (Legendre and Fortin 2010) is

not a critical problem as applied here.
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Figure 2. Schematic of the three spatially explicit models used in

the demographic simulations to evaluate how environmental fac-

tors, as well as changing environmental conditions associated with

the Pleistocene glaciation, might be causality related to patterns

of genetic variation. For each model, variation in the underlying

environmental components used for the demographic simulations

is shown (see Knowles and Alvarado-Serrano 2010). The respec-

tive models are: (i) isolation-by-distance (IBD); (ii) contemporary

ecological niche model (cENM); and (iii) dynamic ENM (dENM; as

described in detail in the text); shown for each model is the spa-

tially explicit layer that formed the basis for the demographic

simulations. Note that both the IBD and cENM models are static

in the sense that the habitat suitability scores used for the de-

mographic modeling were the same across generations, whereas

with the dENM model is dynamic with habitat suitability scores

changing over time from the last glacial maximum to the present

in a step-wise fashion, as shown (see Supporting Information for

details). After each forward-time demographic simulation, coales-

cent simulations were run for sampled individuals backward in

time.

INCORPORATING SPATIALLY EXPLICIT

DEMOGRAPHIC HISTORY INTO MODEL TESTS WITH

ABC ANALYSES

We apply the iDDC-modeling approach so that we can examine

if correlations between environmental factors or historical shifts

in distributions might (or might not) reflect causal relationships

with the processes governing population genetic structure. Specif-

ically, with iDDC-modeling a population demographic model is

used to make explicit predictions for patterns of genetic vari-

ation (Currat and Excoffier 2004; Wegmann et al. 2006; Sork

et al. 2010), where the population demography is informed by the

underlying environment (i.e., it takes into account spatial and tem-

poral heterogeneity of the environment in a species-specific man-

ner; see details in Knowles and Alvarado-Serrano 2010; Brown

and Knowles 2012). To test whether the current genetic struc-

ture results from (a) the geographic configuration of populations,

(b) the contemporary environment, and (c) the dynamic history

of shifting environmental characteristics associated with the dif-

ferences between the present and the last glacial maximum, we

constructed three corresponding demographic models and used

coalescent simulations to predict genetic variations. In contrast

with the studies to date utilizing iDDC modeling, we then use

these simulations for identifying the most probable model and

estimating parameters using approximate Bayesian computation

(ABC; see Beaumont et al. 2002 for an overview of ABC).

The general procedure involves translating the habitat suit-

ability scores from an ENM into spatially explicit population

parameters for demographic simulations, which are then used for

a spatially explicit coalescent simulation to generate expected

patterns of genetic variation (for details about the procedures, see

Knowles and Alvarado-Serrano 2010; Brown and Knowles 2012).

This flow of information provides direct links between process

and pattern. Specifically for this study, we statistically downscaled

the maps from the ENMs for the current and past climatic condi-

tions to 0.1 decimal degree (∼121 km2 per cell) to have a tractable

number of demes for demographic simulation. All spatially ex-

plicit demographic simulations were performed in SPLATCHE2

(Currat et al. 2004), with population carrying capacities scaled

proportionally to the local habitat suitability score (i.e., the rela-

tive values per grid cell differed depending on the predicted habitat

suitability derived from the ENM generated with MaxEnt). Pat-

terns of genetic diversity were then generated from coalescent

simulations based on the specific demographic simulation (i.e.,

genetic variation differed across the landscape depending on the

probability of coalescence and migration across demes; Excoffier

et al. 2000; Currat et al. 2004). We ran 24 coalescent simulations

for each demographic history corresponding to each of the 24 sep-

arate loci in the empirical data set (see Supplementary Tables),

such that these independent realizations of the coalescent pro-

cess generated genealogies for simulating sequence data for each

3 3 9 0 EVOLUTION DECEMBER 2013



SPECIAL SECTION

locus, where the sampled individuals from the simulated data sets

matched those in the empirical data. DNA sequence data were

also simulated according to the empirical DNA sampling condi-

tions (e.g., the same gene length and amounts of missing data).

Relative mutation rates among loci matched those from empirical

π estimations (Table S6).

The three models tested here were selected to test hypotheses

motivated by the correlative analyses described earlier (Fig. 2).

Specifically, the hypotheses tested were that patterns of genetic

variation reflect: (i) genetic drift associated with the geographic

configuration of habitats—tested using a model of IBD; (ii) ge-

netic drift associated not only with the geographic configuration

of habitats, but also differences in local population sizes and the

amounts of gene flow as defined by the suitabilities of contem-

porary environment—tested using a model of the contemporary

ENM (cENM); and (iii) genetic drift associated with distributional

shifts caused by changes in environmental conditions—tested us-

ing a dynamic ENM (dENM) model. These models again differ

with respect to input layers used for the demographic simulations

(see Fig. 2). Note that the cENM model considers the impact of

habitat heterogeneity on patterns of genetic variation, whereas the

IBD model only considers the influence of geographic distance,

but both of these models are “static” models in that the layer in-

forming the demographic model does not change over time. In

contrast, the dENM also considers how a shifting distribution,

and the accompanying colonization process, impacts patterns of

genetic variation (Fig. 2). Temporal variation in habitat suitability

was modeled in a step-wise fashion (i.e., using the habitat suit-

ability scores from three period-specific ENMs; see also Brown

and Knowles 2012). Specifics regarding the simulation details for

all the models are given in the Supplemental Methods. Note that

each generation during the demographic simulation, m proportion

of the population migrates out of the local deme; migration oc-

curs in the adjacent four cells (north, south, west, east) and the

allocation to different directions are defined by the friction score

(see Supplemental Methods); after exchange of individuals, pop-

ulations grow logistically at the rate of 1 regulated by the carrying

capacity inferred from habitat suitability. Ecological niche model

maps and the settings for demographic modeling in Splatche2 are

deposited in Dryad.

Model selection and parameter estimation were conducted

using ABC with ABCestimator in ABCtoolbox (Wegmann et al.

2010). We performed 1,000,000 simulations for each model un-

der a standard ABC rejection sampling approach (Tavare et al.

1997; Beaumont et al. 2002). In addition to comparisons of the

performances of different models, we also estimated four critical

demographic/mutation parameters: maximum carrying capacity

(Kmax), migration rate (m), ancestral population size prior to ex-

pansion (NAnc), and average mutation rate (μ) because each model

would have different estimates of these parameters that generate

simulated data closest to empirical ones. The ABC inference was

based on a total of 34 summary statistics calculated within, be-

tween, and across all populations using Arlequin (see Table S7 for

the full list of summary statistics). They include segregating sites

S for each population and across populations, private segregating

sites for each population PrS, the mean number of pairwise ge-

netic differences of each population π, and pairwise population

FST (Weir and Cockerham 1984). To remove the effects of inter-

actions between summary statistics, as well as reduce “the curse

of dimensionality” (i.e., when too many statistics are included,

the distance between the simulated and empirical values system-

atically increases, reducing the accuracy of parameter estimates

and making it more difficult to distinguish among models), par-

tial least squares (PLSs) components (Boulesteix and Strimmer

2007) were extracted from all predictor variables. This treatment

extracts orthogonal components from data with high dimension-

alities while maximizing the covariance of summary statistics

and the parameters of interests (Wegmann et al. 2009; Wegmann

and Excoffier 2010). Partial least squares were calculated in the

“PLS” package (Mevik and Wehrens 2007) with boxcox treat-

ment (Box and Cox 1964) in R for the first 10,000 runs for each

model. The root mean squared error (RMSE) prediction of each

parameter was examined before deciding upon the number of PLS

components to be used (see Fig. S1).

Five thousand simulations (0.5%) that were closest to the

empirical observation were retained from each model for model

selection. Postsampling regression adjustment were applied us-

ing ABC-GLM (general linear model) function (Leuenberger and

Wegmann 2010) to obtain posterior distributions of the parame-

ters, which assumes that the accepted PLS is produced by a GLM

from the parameters. We use Bayes factors for model selection,

which is the ratio between marginal densities of two models. The

higher the ratio is, the more supported the first model is. Under

the GLM model, the likelihood of the empirical data (i.e., the

observation) can be evaluated and compared with the likelihoods

of other retained simulations. The fraction of simulations that

have a smaller likelihood than the empirical data was shown as

P-value to check if the model is capable of generating the ob-

served data. Very small P-values indicate that a model is highly

unlikely (Wegmann et al. 2010). Coefficient of variation (R2) of

each parameter explained by the six used PLSs was computed

as an indicator for the power of estimation (Neuenschwander

et al. 2008). After selecting the highest supported model, we

validated the accuracy of parameter estimation in the most sup-

ported model. A total of 1000 pseudo-observations were gener-

ated from prior distributions of the parameters. If the estimation of

the parameters is unbiased, posterior quantiles of the parameters

from pseudo runs should be uniformly distributed in [0,1] (Cook

et al. 2006; Wegmann et al. 2010). The posterior quantiles of true

parameters for each pseudo run were also calculated based on the
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posterior distribution of the regression adjusted 5000 simulations

closest to the pseudo-observation. Average RMSE of the mode

estimates for parameters of pseudo-observations was calculated

to check for the accuracy of estimation.

Results
The anonymous nuclear markers were all variable (see Table S6

for summaries of molecular variation), but differed in the mutation

rates (θπ ranges from 0.009 to 0.1). These per-locus differences

were incorporated into all correlative tests and simulations used

to test hypotheses about the link between patterns and process

with ABC.

ASSOCIATIONS BETWEEN PATTERNS OF GENETIC

DIVERGENCE AND ENVIRONMENTAL FACTORS

A significant association between geographic distance and ge-

netic differentiation was detected with both individual-level

and population-level analyses (i.e., results from dbRDA and

FST analyses, respectively). Specifically, tests of IBD with

dbRDA explained 59% of the genetic variation among individuals

(Table 1). A strong geographic signal was also evident from the

regression of linearized FST-values against pairwise Euclidean

distances between populations (Fig. 3A).

Contemporary climatic differences are also significantly as-

sociated with patterns of genetic divergence; however, when con-

ditioned on the geographic distances between individuals (i.e.,

controlling for the effects of geographic isolation), the effects

are not significant (Table 1). For example, although PC1 of the

climatic variables was significant when tested alone, when con-

ditioned on the geographic distance separating individuals, it

was not, and the proportion of genetic variation explained de-

creased from 9% to 2% (Table 1). Soil-PC1 was not significant

irrespective of conditioning on geography. For tests of associ-

ations between population-level divergences and environmental

differences separating populations as measured by an analysis

of isolation-by-resistance (McRae 2006) from habitat suitability

scores for per-cell conductance, a significant association is de-

tected (Fig. 3B, C). However, when controlling for geography

with a partial Mantel tests (Table 2), the genetic differentiation

actually shows an inverse relationship, as measured by the resis-

tance from the current ENM alone, where genetic differentiation

was greater for lower resistance (rather than a positive relation-

ship between genetic differentiation and levels of resistance). We

discuss this enigmatic pattern later, but further analyses suggest

it could reflect the confounding influence of past environmental

conditions. For example, when pairwise FST-values are regressed

against pairwise resistance-scores calculated from a composite

ENM map (i.e., the average habitat suitability scores from the

ENMs of past and current climatic conditions; see Fig. 2), correla-

tion coefficients are much higher than considering only the current

climate (r = 0.84 vs. r = 0.46; see Table 2), and remain signifi-

cant if controlling for the effect from current climatic conditions

(Table 2) using a partial mantel test. However, the highest correla-

tion is with the average pairwise Euclidean geographic distances

separating populations (Table 2), and the effect of the averaged

habitat suitability over time (i.e., from past and current ENM)

is not significant after controlling for the influence of Euclidean

geographic distances. Yet, it would seem highly unlikely that the

Euclidean geographic distance among individuals or populations

reflect dispersal patterns given the shape of the coastline and the

distribution of species (i.e., the animals would have to traverse

inhospitable habitat, including the ocean, especially for popula-

tions P and SB; Fig. 1). This raises the question of whether the

association of geography and genetic divergence actually arose

under an IBD model? Second, would a model of the population

demography produce patterns of genetic variation that are likely

to have arisen under IBD? Finally, even though the isolation-

by-resistance takes into account possible paths (McRae 2006),

it does not take into account the demographic consequences of

moving through the habitat. Consequently, could environmental

factors (either present or past) actually impact patterns of ge-

netic variation, but go undetected with correlative tests? The an-

swers to these questions, which again are motivated by the afore-

mentioned correlative analyses, are discussed in the following

section.

TESTS OF THE LINKS BETWEEN PATTERN AND

PROCESS

For the ABC analyses, we selected the first six PLSs for calculat-

ing the distance between simulations and the empirical observa-

tion because RMSE of the four parameters in four models does not

decrease significantly with additional PLSs (see Fig. S1). Based

on the marginal density for each model calculated from the 5000

closest simulations for each model, the dENM model—the model

of the colonization history under dynamic ENMs (Fig. 2)—best

explains the patterns of genetic divergence observed within L.

lineopunctulata. The two static models that only consider aspects

of the current landscape, the IBD and cENM, have significantly

lower marginal densities. For example, even though the cENM has

much higher support than the IBD model, the difference in Bayes

factors between the cENM and dENM is more than 300 (a sub-

stantial difference; Jeffreys 1961). Moreover, the dENM model

has a high P-value, suggesting a significant correspondence be-

tween the observed empirical data and the simulated data under

this models, whereas the P-values for the cENM and IBD model

are close to 0 (Table 3). Based on these model comparisons, we

may conclude that (1) demographic models that include disper-

sal regulated by habitat suitability produce models that explain
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Table 1. Tests of an association between genetic distances with geographic distance and/or environmental differences (as captured

by two sets of environmental predictors, climate-principal component 1 (PC1) and soil-PC1) among sampling sites of individuals using

distance-based redundancy analysis (see Fig. 1 for a map of sampling sites). Results are given for each geographic and environmental

variable separately (i.e., the marginal tests), as well as conditioned on the effects of geographic distance (i.e., the relationship between

the predictor and the response matrix controlling for geographic distance as a covariate; see text for details). Shown are the multivariate

F-statistics, associated P-values, and the percentage of variance explained by each variable; significant P-values are shown in bold.

Marginal tests Conditional tests

Variable F P-value % Variance F P-value % Variance

Distance 2.876 0.005 58.554
Climate-PC1 8.430 0.010 9.120 1.173 0.230 2.061
Soil-PC1 1.981 0.160 2.304 0.736 0.550 1.293

the genetic divergence patterns within L. lineopunctulata (e.g.,

comparing the cENM and dENM to the unlikely IBD model); and

(2) a demographic model that involves habitat shifts is much more

likely to explain intraspecific divergence within L. lineopunctu-

lata than static landscape models (e.g., comparing the dENM to

the cENM; Table 3).

Given the dENM best explains the data, analyses were con-

ducted to validate the accuracy of the dENM. The estimation

accuracy of the four parameters differs significantly (Table 3;

Fig. 4). Posterior probability of maximum carrying capacity

(Kmax) is much flatter than the other three parameters (notice the

density of the highest peak; Fig. 4) and there is limited power to

estimate carrying capacity, as indicated by a R2 = 0.046 (Table 3)

and RMSE plot (Fig. S1). Testing of estimation bias of the pa-

rameters shows that posterior distribution of K is too narrow and

that of μ is too wide (Fig. 5; histograms of the posterior quantiles

significantly deviate from a uniform distribution after Bonferoni

correction for multiple testing, P-value < 0.01). The other two pa-

rameters are more or less uniformly distributed so that migration

rates (m) and ancestral population size (NAnc) before expansion

are better estimated parameters from the set of four parameters.

The ancestral population of the species is estimated to be about

26,000 (Fig. 4), and the mode of the migration rate is about

0.0.027 per 10 years per deme (∼121 km2), that is, about 3% of

the population per deme emigrates in 10 years.

Discussion
Detecting spatial structure and identifying correlates of patterns

of spatial structure are themselves arguably important endeav-

ors and have received enormous attention in landscape genetics

(Storfer et al. 2007, 2010; Guillot et al. 2009). What has yet

to be fully explored, and remains underdeveloped, are statistical

frameworks for exploring the links between such patterns and the

processes that capture biological phenomena critical to address-

ing issues such as how the environment shapes patterns of genetic

variation within species (Cushman and Landguth 2010; Balken-

hol and Landguth 2011; Shirk et al. 2012) through the modeling

of expected patterns of genetic variation.

Our study highlights the need for expanding the traditional

perspective and foci of landscape genetics (as discussed later),

while also presenting one approach for establishing and testing

the links between pattern and process. As such, the study repre-

sents a promising new direction for expanding landscape genetic
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Fitted line of the points and its R2 are also shown.
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Table 2. Results of isolation-by-resistance as calculated using Mantel and partial Mantel tests (with geography and the current ecological

niche model [ENM] as covariates) between the pairwise FST-values with geographic distances and resistance matrices (i.e., rescaled

geographic distances according to the suitability of habitats) separating populations (see also Fig. 3). Two resistance matrices are tested:

the first is calculated from current habitat suitability score, and the second from the average of past and current suitability. Correlation

coefficients (r) and the P-values from 1000 permutation tests are shown. In partial Mantel tests, covariates are listed on the second row;

significant tests are shown in bold.

Mantel tests Partial Mantel tests

Geography Current ENM

Matrices r P-value r P-value r P-value

Average pairwise Euclidean
distance

0.868 0.005 – – – –

Resistance-values calculated
from a map of habitat
suitabilities from the current
ENM

0.460 0.050 − 0.729 0.007 – –

Resistance-values calculated
from a composite map of
habitat suitabilities from
current and past ENMs

0.839 0.010 0.024 0.499 0.892 0.008

study. Nevertheless, we also recognize aspects of such complex

models that would greatly benefit from further attention. These

are discussed with the intention of motivating future development,

but also drawing attention to aspects of the analyses that should

be interpreted cautiously.

IMPORTANCE OF EXPLORING THE LINKS BETWEEN

GENETIC PATTERNS AND PROCESS IN LANDSCAPE

GENETICS

Different demographic processes may lead to the same genetic

patterns (Csillery et al. 2010). As a consequence, an explicit model

Table 3. Properties of models and the prior and posterior distributions of estimated parameters. Bayes factor is the ratio between the

highest marginal density among models and that of each model. Kmax = carrying capacity of the deme with highest suitability; m =
migration rate per deme per generation; μ = average mutation rate; NAnc = ancestral population size before expansion from the refugia.

Logarithmic of all priors are uniformly distributed and have the same prior ranges across models. R2 = coefficient of determination

between a parameter and the six used partial least square components, show the power of estimating certain parameters. HPDI 50 and

90 are the interval of 50% and 90% parameter regions with the highest posterior density.

Posterior
Marginal density Prior

Models (P-value) Bayes factor Parameters [min, max] R2 Mode HPDI 50 HPDI 90

IBD 2.14 × 10−14 9.12 × 108 log10(Kmax) [3, 5.3] 0.080 3.465 [3.256, 3.697] [3.000, 4.301]
(<0.0002) log10(m) [−4, −0.3] 0.012 − 3.290 [−3.701, −2.767] [−4.000, −1.832]

log10(μ) [−8, −6] 0.223 − 6.040 [−6.061, −6.000] [−6.162, −6.000]
log10(NAnc) [3, 5] 0.546 3.848 [3.768, 3.929] [3.626, 4.071]

cENM 5.82 × 10−8 334.72 log10(Kmax) [3, 5.3] 0.145 3.000 [3.000, 3.116] [3.000, 3.279]
(0.0216) log10(m) [−4, −0.3] 0.045 − 3.851 [−4.000, −3.589] [−4.000, −3.028]

log10(μ) [−8, −6] 0.910 − 6.000 [−6.061, −6.000] [−6.061, −6.000]
log10(NAnc) [3, 5] 0.744 3.929 [3.849, 4.030] [3.667, 4.192]

dENM 1.95 × 10−5 – log10(Kmax) [3, 5.3] 0.046 4.975 [4.487, 5.230] [3.604, 5.300]
(0.1514) log10(m) [−4, −0.3] 0.541 − 1.571 [−1.870, −1.309] [−2.243, −0.898]

log10(μ) [−8, −6] 0.915 − 6.242 [−6.343, −6.142] [−6.505, −6.020]
log10(NAnc) [3, 5] 0.737 4.414 [4.293, 4.535] [4.131, 4.717]

cENM = contemporary ecological niche model; dENM = dynamic ecological niche model; IBD = isolation-by-distance.
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that can generate explicit patterns of genetic variation under dif-

ferent scenarios is critical (Knowles 2008, 2009). For example,

patterns of shared polymorphism may not necessarily reflect re-

cent hybridization (Green et al. 2010), but instead be a case of

incomplete lineage sorting, especially if ancient population struc-

ture contributes to longer coalescent times (Eriksson and Manica

2012). Similarly, although geographic barriers might generate

substantial genetic differentiation among populations (Knowles

2001), such a pattern might be generated without geographic iso-

lation through the colonization process associated with climate-

induced habitat shifts (e.g., Knowles and Alvarado-Serrano

2010). With explicit modeling, a spectrum of factors capable of
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Figure 5. Distribution of posterior quantiles of parameters for the most probable model—the dENM—for evaluating potential bias in

the parameter estimates, as measured by a departure from a uniform distribution using a Kolmogorov–Smirnov test; analyses are based

on 1000 pseudo-observations. Estimation of m and NAnc seem to be unbiased whereas posterior distribution of K is too narrow and that

of μ is too wide.
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producing the observed genetic patterns can be explored, thereby

cautioning against interpretations without considering alternative

processes.

As this study demonstrates, the essential importance of mod-

eling the link between genetic pattern and process also extends

to interpretations of the role of the environment in shaping pat-

terns of genetic variation. This is perhaps exemplified best by

contrasting the conclusions that might have been drawn from

the descriptive association between genetic and geographic dis-

tance with the actual likelihood of an IBD as the most probable

model explaining the data. Specifically, a highly significant as-

sociation is detected with both individual- and population-level

analyses between genetic and geographic distances (see Fig. 3;

Tables 1, 2). Moreover, the effects of environmental variables,

whether measured from current or past climatic variables, become

inconsequential after controlling for the effect of geography, re-

inforcing that geography may indeed be the primary determinant

of patterns of genetic variation, rather than aspects of the environ-

ment. Yet, the ABC tests clearly show that genetic drift associated

with geographic distance alone (i.e., the IBD model; Fig. 2) is sig-

nificantly less likely than models that consider varying aspects of

population connectivity as impacted by environmental variables

(i.e., the cENM and dENM are both more probable; see Bayes

factors in Table 3), with the dENM that takes into account shift-

ing habitat suitabilites over time as the most probable. So what

explains this apparent contradiction between the conclusions that

might be drawn from the descriptive patterns of genetic variation

(see also Edwards et al. 2012) versus the models of the actual

processes involved? Could such discrepancies reflect problems

with the modeling procedure, such as biases in parameter esti-

mates? These issues and their relevance in terms of the biological

implications for L. lineopunctulata are discussed later.

DEMOGRAPHIC MODELING AS A TOOL FOR

EVALUATING AND INTERPRETING GENETIC

CORRELATIONS

Many statistical analysis tools have been developed to examine

the correlation between genetic variation and geographic and/or

environmental factors (e.g., Mantel 1967; Smouse et al. 1986; ter

Braak and Verdonschot 1995; Epperson and Li 1996; Legendre

and Anderson 1999; Legendre et al. 2002; Adriaensen et al. 2003;

McRae 2006; Lee and Mitchell-Olds 2011; Wang et al. 2012).

Although these approaches differ with respect to their statistical

power to detect important factors (Legendre and Fortin 2010),

none actually model the underlying processes generating the pat-

terns (Balkenhol et al. 2009; Meirmans 2012). Although a virtue in

some respects (e.g., such approaches are generally broadly appli-

cable and are not particularly computationally demanding), there

are also inherent limitations with respect to (i) evaluating how

such factors might produce patterns of genetic variation; or (ii)

distinguishing among alternative hypotheses about the putative

factors underlying patterns of genetic variation.

The merit of model-based inferences has become widely ac-

cepted in studies of genetic data (Knowles and Carstens 2007;

Knowles 2009), especially with increased knowledge about the

high variance of mutational and coalescent processes (Hudson

2002). As computational constraints are overcome algorithmi-

cally and with improved computing resources, the incorporation

of biological realities has become feasible. For example, methods

that model genetic diversity and divergence at the same time and

regress against environmental factors (Foll and Gaggiotti 2006;

Faubet and Gaggiotti 2008) can be used to evaluate which en-

vironmental factors (if any) might influence genetic divergence;

although such models cannot control for spatial autocorrelation

among factors (in contrast to the approach used here). Moreover,

the flexibility and versatility of tools for evaluating and inter-

preting models (e.g., with ABC: Neuenschwander et al. 2008;

Itan et al. 2009; Jaquiéry et al. 2011) can expand the repertoire

of biological models that might be considered. This includes the

incorporation of factors that are typically overlooked in descrip-

tive correlative approaches (e.g., dbRDA, PCA, MDS), such as

changes in population size and/or distribution, because of diffi-

culties with their incorporation.

This later point, we argue, may underlie some of the apparent

discrepancies in the relative importance of geography compared

to environmental factors in the descriptive versus model-based

approach applied here. Specifically, even rescaled distances that

incorporate aspects of the environment for testing for an asso-

ciation between environmental differences and genetic variation

make a number of implicit simplifying assumptions. For example,

even though a method like McRae’s (2006) isolation-by-resistance

considers multiple possible paths (as opposed to the least-cost

path; Adriaensen et al. 2003), and gives a weighted average of

the connectivity between the populations, this approach is only

valid when landscape does not change over time. However, when

a habitat is less stable over time, the level of population connectiv-

ity changes depending on the impact of habitat shifts on dispersal

dynamics and population sizes (see Brown and Knowles 2012).

These demographic consequences that are a direct extension of

the underlying environment would necessarily impact patterns of

genetic variation (i.e., changes in migration probabilities and local

population sizes would impact the relative probabilities of gene

lineage coalescence within demes and the times to coalescence;

Excoffier et al. 2009). Consequently, when we actually model

the demographic process of population movements across a land-

scape, whether it follows an IBD model where the environment

does not impact population demographic patterns or one of the

alternative models in which the environment does influence mi-

gration rates and deme sizes (e.g., the cENM and dENM; Fig. 2),

it is perhaps not surprising that the results from the ABC analyses
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(Table 3) and the descriptive correlative analyses (Tables 1 and 2)

do not match up. However, can the results from the model-based

tests be trusted justifying the trade-off between the simplicity of

correlative analyses for what are admittedly complex models?

MODEL INTERPRETATION, VALIDATION, AND

IMPLICATIONS FOR THE FACTORS STRUCTURING

GENETIC VARIATION

Model validation is very important in ABC given that ABC

approximates the likelihood of models with summary statis-

tics (Pritchard et al. 1999; Beaumont et al. 2002), unlike full

likelihood-based models that uses all of the data (Kuhner et al.

1998; Beerli and Felsenstein 2001; Hey and Nielsen 2004, 2007;

Kuhner 2006; Nielsen and Beaumont 2009; Hey 2010). Post-

sampling adjustment, such as regression (Beaumont et al. 2002)

or GLM (Leuenberger and Wegmann 2010), can pose problems

when the relationship between parameters and summary statistics

is extrapolated beyond the region of the observed data set. More-

over, ABC can always produce posterior distribution even if the

model is wrong (Bertorelle et al. 2010).

Given the model complexity, one of the concerns was whether

the data would be sufficient to discriminate among probable and

relatively improbable models, as well as give unbiased parameter

estimates. Nevertheless, the several approaches used to validate

the models in this study suggest that the results are generally

robust.

Our primary objective is to test alternative demographic mod-

els (as opposed to a focus on specific parameter values), there-

fore, we used standard rejection sampling scheme (Beaumont

et al. 2002). Although it takes longer computational time than

other methods, such as ABC–MCMC, population Monte Carlo

(PMC), and adaptive PMC (Beaumont et al. 2009; Wegmann

et al. 2009; Moral et al. 2012), it does not create bias among

models since performance of Monte Carlo methods are sensitive

to the choice of tolerance level and proposal range (Wegmann

et al. 2009). To show the support of the models, comparison of

marginal densities of each model, as measured by Bayes factor

alone is not enough. Rather, the P-value of observed data under

the GLM model also needs to be checked to examine the per-

centage of the simulated data that match the empirical data. IBD

and cENM models can be easily rejected based on the Bayes

Factor (Table 3). In addition, the dENM has a higher probability

of generating simulations with smaller or equal likelihood than

the empirical observation, compared to the cENM (see P-value

in Table 3). In other words, even though some idiosyncratic com-

bination of parameters can produce data sets that match the data

under the cENM, the dENM has much wider parameter regions

that generate data close to the observation, which is the prerequi-

site for accurate parameter estimations. Posterior distributions of

the parameters in the two models only differ significantly in the

estimation of Kmax. However, Kmax has the least power to be in-

formed by the PLSs in the ABC analyses (see R2 < 0.1 in Table 3).

The estimation of maximum carrying capacity Kmax and average

mutation rate μ show some level of bias in estimation based on

the tests of uniformity of posterior quantile distributions from

pseudo-observations (Fig. 5) in that posterior distribution of K is

too narrow and that of μ is too wide. Because both of the two

parameters are hyper priors that control the change of a series

of local parameters, it might be harder for accurate estimation

(Wegmann et al. 2010). This contrasts with the two parameters,

migration and ancestral population size, that are estimated well

with low-average RMSE of mode (0.19 and 0.15, respectively)

and not biased (Fig. 5).

We acknowledge that the models informed by the ENMs

may not capture all the potential historical scenarios that might be

tested. However, this is a huge improvement over simple generic

models that limit biological insights (Knowles 2009; Bertorelle

et al. 2010). Moreover, the class of models generated from the

iDDC approach, especially the incorporation of information from

past distributions, permits tests of hypotheses that could not oth-

erwise be identified (e.g., the impact of climate-induced distri-

butional shifts on patterns of genetic variation; see also Hugall

et al. 2002; Strasburg et al. 2007; Moussalli et al. 2009; Knowles

and Alvarado-Serrano 2010). There may also certainly be other

aspects of ENMs that introduce error into projected species dis-

tributions (see Stockwell and Peterson 2002; Graham et al. 2004;

Araújo and Guisan 2006; Phillips et al. 2006; Lozier et al. 2009).

This is an active area of research and the field of ENMs will no

doubt see significant advances in the near future. Again, despite

these sources of errors, we argue the potential gains outweigh

the negatives (which again we note, should become minimized

with the advances in ENMs). With respect to L. lineopunctulata

specifically, this includes avoiding the misleading conclusions

that would have resulted from extrapolating causation from de-

scriptive correlates (i.e., only geography was consistently identi-

fied as a primary factor structuring variation; Tables 1 and 2) or

considering a limited sphere of models (i.e., IBD was the least

probable model, which was only apparent with the inclusion of

the additional ENM-based models; Table 3).

Finally, despite the aforementioned caveats regarding the

models and estimation of parameters, the iDDC modeling pro-

cedure that infuses the coupled ENM and coalescent models

(Knowles et al. 2007; Richards et al. 2007) with ABC repre-

sents an intriguing new advance beyond past applications (Heckel

et al. 2005; Cushman and Landguth 2010; Knowles and Alvarado-

Serrano 2010; Balkenhol and Landguth 2011; Morgan et al. 2011;

Brown and Knowles 2012; Shirk et al. 2012). Moreover, what this

study highlights is the synergy between more traditional land-

scape genetic approaches and these model-based inferences for

addressing the critical issue in model-based inference—how to
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identify models to be tested (Knowles 2009). Our study shows

the intriguing possibilities of using the descriptive approaches

from landscape genetics, which detect associations between ge-

netic and environmental factors, for developing suites of alterna-

tive hypotheses that can be translated into models for testing with

ABC.

BIOLOGICAL IMPLICATIONS AND THE IMPORTANCE

OF INTEGRATING HISTORICAL AND CONTEMPORARY

ENVIRONMENTS

With limited information from the lack of ecological study of

L. lineopunctulata, this study can provide important biological

insights. It is noteworthy that because of the ABC framework,

we can evaluate the probability of fairly contrasting views on the

population demography of this lizard species. Specifically, with

endemism along the coast (Fig. 1), the relatively high FST-values

(i.e., values above 0.095, Table S8, except for the comparison

between the two historically stable regions, P and SB; see also

Carnaval et al. 2009) could be explained by different combinations

of parameter. The high divergence level could reflect the lack of

migration with small population sizes (the expected pattern under

an IBD model), restricted migration due to barriers associated

with the contemporary habitat configuration, or colonization as-

sociated with a shifting species distribution, as a habitat specialist

would track climate-induced habitat shifts. All are plausible hy-

potheses for L. lineopunctulata, an abundant subterranean lizard

restricted to sandplain and dune habitats of coastal southwestern

Australia, a region subject to pronounced climate shifts during the

Pleistocene (Fig. 1). The genetic data suggests that L. lineopunc-

tulata exhibits fairly strong habitat specialization such that (i) not

only is the IBD model unlikely compared to those incorporating

an environmental component, but (ii) that the species most likely

tracked shifts in their habitat as climate changed from the last

glacial maximum (i.e., the dENM model is more probable than

the cENM). Because the dynamic model that accounts for shift-

ing species distributions (dENM) is more probable than a static

model of the contemporary landscape (the cENM), the population

parameter estimates from the ABC analyses also suggest that L. li-

neopunctulata has higher ancestral population size (∼26,000) and

much higher migration rate (∼0.03 per 10 years) than if only the

contemporary landscape had been considered (contrast estimates

for dENM and cENM in Table 3). This could have ramifications

for developing effective conservation management plans, support-

ing initiatives for preserving the processes contributing to genetic

divergence (Moritz and Faith 1998).

As a recognized biological hotspot (Cincotta et al. 2000;

Myers et al. 2000), our findings provide some valuable perspec-

tive on not only the factors promoting divergence within the fo-

cal species, but perhaps also those promoting diversification. A

combination of an expanded sandplain habitat caused by late-

Quaternary sea-level fluctuations, local geological activity, and

climate-induced distributional shifts are postulated to have driven

diversification of the southwest Australian herpetofaua (Storr and

Harold 1978, 1980; Hopper and Gioia 2004; Rabosky et al. 2004;

Edwards 2007; Melville et al. 2008). Yet, the lack of detailed

spatially and temporally explicit hypotheses have made it diffi-

cult to generalize how the SW Australian fauna would have been

impacted by past geologic and climatic factors. Within the geo-

graphic area of study are a number of other endemic lizard species,

many of which are codistributed with L. lineopunctulata, but also

show a variety of ecological preferences, despite occupying sim-

ilar habitats (Cogger 2000). This raises the question of whether

this lizard community has responded similarly to past climatic

events, or whether species-specific responses have predominated

(Edwards et al. 2012). It may be that L. lineopunctulata has a

higher dispersal ability compared to other Lerista species, for ex-

ample, which lack both forelimbs and hind limbs (Cogger 2000;

Bush et al. 2007; Wilson and Swan 2008). The iDDC approach ap-

plied here could be expanded into a comparative analysis, where

species-specific characteristics (e.g., differing degrees of habitat

specialization or vagility) can be taken into account when testing

sets of biologically informed models for landscape genetic study.
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Figure S1. Root mean square error (RMSE) of parameter estimation against number of partial least squares included under four

demographic models: (a) isolation-by-distance (IBD), (b) contemporary ecological niche model (cENM), and (c) dynamic ENM

(dENM).

Table S1. Geographic locations of sampled individuals and their assigned population (see Fig. 1 for distributional details).

Table S2. List of nuclear loci sequenced in this study.

Table S3. Settings for NGen sequence assembler (DNASTAR) used for the 454 data set in the discovery of polymorphic loci.

Table S4. Length of each locus and sampling per populations for each locus.

Table S5. Soil properties used in the construction of soil layers for the principal component analysis analyses (for detailed

description see McKenzie et al. 2000).

Table S6. Molecular indices calculated per locus and presented for each population separately (see Fig. 1 for distributional

information), as well as across all populations, including heterozygosity (H) and the standard deviation (H_sd), the number of

segregating sites (S), the number of haplotypes (K), and nucleotide diversity (π).

Table S7. List of summary statistics used in approximate Bayesian computation analyses.

Table S8. Pairwise FST of the six populations ordered from north to south (lower triangle) and the significance (upper triangle).
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