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A MODIFIED CAP MODEL: CLOSEST POINT SOLUTION ALGORITHMS
G. Hofstetter!, J.C. Simo? and R L. Taylor®

ABSTRACT

An aplication of the return mapping algorithm for the inviscid two invariant cap model, origi-
nally proposed by DiMaggio and Sandler, is presented. This cap model serves as an example for
nonsmooth multisurface plasticity. Precise conditions for discrete loading in all possible modes are
derived from the discrete Kuhn-Tucker conditions and new unconditionally stable closest point pro-
jection algorithms are presented. These are characterized by reducing local iterations on the constitu-
tive equations to the solution of one nonlinear scalar equation for each of the different modes of the
cap model. Tangent operators, consistent with the integration algorithm are derived, thus preserving
the quadratic rate of convergence in a Newton solution procedure. It is shown that the original cap
model does not obey the principle of maximum plastic dissipation, because the hardening law for the
cap is nonassociative, which leads to the undesirable feature of unsymmetric consistent tangent
moduli. To overcome this drawback an associative hardening law is proposed for a restricted class of

problems.

1. INTRODUCTION

The cap model, originally proposed by DiMaggio and Sandler [1] (see also Sandler, DiMaggio
and Baladi [2]), allows the control of dilatancy by means of a hardening cap that intersects a fixed
failure envelope in a nonsmooth fashion. A commonly accepted interpretation of this model (see,
e.g. Chen [3], Chen and Baladi [4], Desai and Siriwardane [S] or Simo, Ju, Pister and Taylor [6])
assumes a one-to-one correspondence between hardening of the cap and plastic volume change. How-
ever, if a one-to-one hardening law is postulated, softening response may occur when the stress point
is located at the compressive comer region. Motivated by this softening behavior, Sandler and Rubin
[7] proposed a modified hardening law which prevents softening response.

The main thrust of our work is the development of a systematic algorithmic treatment of the
cap model within the framework of the closest point projection algorithms. In particular we consider
the following aspects:

i) The functional form for the cap is reformulated to make it suitable for the application of

a closest point projection algorithm.

ii)  Consistent algorithmic loading/unloading conditions for all possible modes of response are
precisely formulated by exploiting appropiate discrete Kuhn-Tucker conditions. As
recently shown in Simo et al. [8] the Kuhn-Tucker conditions lead to a useful characteri-
zation of plastic loading for multisurface plasticity in an algorithmic context.

iii) Return mapping algorithms are formulated for the tension cutoff, tension cutoff corner,
failure, cap and compressive corner modes by a straightforward application of an implicit
backward Euler integration scheme based on Koiter’s generalized fiow rule [9]. In partic-
ular, new dosest point projection schemes, characterized by reducing local iterations to
the solution of one nonlinear scalar equation, are presented for loading in the cap and
failure modes. These exhibit quadratic rate of convergence, whereas the secant iteration
scheme proposed by Sandler and Rubin [7] is only superlinear.

iv)  Based on the general return mapping algorithm for nonsmooth multisurface plasticity (see
Simo et al. [8]) consistent tangent moduli for the cap model are derived. When used
with a Newton type solution these preserve a quadratic rate of convergence. All the steps
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to obtain the so called algorithmic moduli are performed algebraically, thus avoiding time
consuming numerical inversions.

v) It will be shown, that the commonly accepted hardening law [3, 4, 5, 6] for the cap
model is nonassociative in the sense that it is not derived from a potential [10]. To over-
come the drawback of nonsymmetric consistent tangent moduli, caused by the nonassoci-
ative hardening law, an associative hardening law is proposed.

vi) The effectiveness of the proposed algorithms is demonstrated numerically.

2. FORMULATION OF THE CAP MODEL

The two invariant, rate independent cap model is defined by a convex yield surface, which con-
sists of a failure envelope f (o), an elliptical cap f,(o,k) and a tension cutoff region f 3(o), where o
denotes the stress tensor and k is the hardening parameter. In contrast to the strain hardening cap,
the failure envelope and the tension cutoff region are characterized as ideal plasticity surfaces. The
functional forms for these surfaces are (Fig. 1):

fl(()') = ‘Sl"F¢ (11) fOI'TS]l < K (1)

where
F.(I) = a —\exp ™ + 6l (2)
fa(ox) = F.(Isl J,k) —F, (x) forx =1y = X(x) (3

where

%

F.(Isl ,1;,x) = |S|2+';%{h'~L(K»2 (4)
falo)=T -1 forly =T (5

where o, B, A, 8 and R are material parameters for the cap and failure envelope; T is a material con-
stant referred to as the tension cutoff; /; and |s!| are the first invanant of the stress tensor o and the
norm of the deviatoric stress tensor s, respectively. The deviator stress, s, is defined as

s=0~%hl (6)

where 1 is the second order unit tensor. Thus, /; = (o) and the norm of s is Is| = Vs:s. In
(4) L(x) is defined as

k ifu>0
L(k)=<k>= 14 it <0 ™

Following standard conventions in soil mechanics, compression and compaction is assumed to be
positive. The point of intersection of the cap with the /, - axis is defined as

X(k) =k+RF,(x) (8)

The functional form for the cap (3) differs from the form given in Sandler and Rubin [7] or Simo,
Ju, Pister and Taylor [6], where
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f2000) = Vi = EVIx(0 ~LWF ~[1 ~L(K)P ©)

For comparison of (9) and (3) we note that

F, (K)= 5.(511;_1"& s = \/ 2J2p

k4

Application of the closest point projection algorithm may lead to trial values for 7, which are greater
than X(x). In this case (9) leads to a square root of a negative number and may not be used in the
context with a closest paint algorithm. Use of (3) leads to a failure surface with similar functional
form to (9) but avaiding possibility of the negative square root.

Analogous to (6) the deviatoric strain tensor e is defined as

1 o
e=e—/1 (10)

where € denotes the strain tensor and /; = tr(e). The hardening parameter is implicitely defined as a
functional of the plastic volumetric strain IT . Sandler and Rubin [7] propose a relationship whose
qualitative shape is deduced from a hydrostatic test

& = W (1 —expPX() (11)

in which W and D are material parameters and &, is the effective volumetric plastic strain, defined
by integrating
L, (i ifl}>00r k>0and k>1,
v = {O otherwise (12)

According to this proposal, if the stress point is at the compressive comer point, movement of the
cap is prevented and the model behaves as in perfect plasticity, thus avoiding a softening response.

'The form of the elastic domain is defined in terms of the three yield surfaces as
f1(0)<0andfz(a,x)<Oandf3(o)<O (13)

For multisurface plasticity an appropiate statement of the flow rule relies on Koiter's generalization
[9] which in the present case of an associative flow rule takes the form

b 2. O,
¢ = gl‘wj‘;&“ (14)
where v, i = 1,23, are the plastic consistency parameters. Plastic loading or elastic

loading/unloading is formulated in Kuhn-Tucker form by means of the relations (see Simo et al. [8])
?1207 fisoandﬁifizoa l=1a2)3 (15)

This form of the loading/unloading conditions is standard and plays a fundamental role in subsequent



developments.

3. INTEGRATION ALGORITHM

3.1. Return Mapping Algorithm

The return mapping algorithm [11, 12] basically consists of two major steps, the formulation of
the eclastic trial stress o774, also referred to as an elastic predictor and the return mapping to the
vield surface, which can be interpreted as a closest point projection of the trial stress onto the yield
surface, also referred to as a plastic corrector. For multisurface plasticity application of an implicit
backward Euler integration scheme on the generalized flow rule (14) yields the following return map-
ping algorithm

P _ P+A P . P+ E A afi,n+1
€1 T & €x+1 T €, z ’Yi,n+1 Fy. )
i=1 a4+

o = Ci(e,11—€]) (16)

— . P = gy lrial . P
Tpr1 = C'(En-fl —€n+1) = 0,4 MC'AEndrl

where Ay, ,.1=AtY;,4+1 and C is the elasticity tensor. In addition, from (15) one obtains the
discrete Kuhn-Tucker conditions that govern the evolution of the discrete consistency parameters
Ayi,nﬁ-l

A‘Yi,n+120afi,n+1$03nd A71m+1fi,n+lzoy i =1,2:3' (17)

As in single surface plasticity plastic loading can be characterized in an algorithmic context solely on
the basis of the elastic trial stress due to the convexity assumption on f;. To this end one computes

o =0 OsT ey

FEely = Fiel (sfieh ey x,) (18)
fiia, = el e
where
s = 2G (ey+1 —¢f) 1Ty = 3K (I 01 —110) (19)

It is intuitively clear and can be shown (Simo and Hughes [10]) that the convexity assumption
implies f; ,41 =< f77, , i = 1,2,3. Thus from conditions (18) it follows that

S <0~ fipe1<0= Ay, =0, =123, (20)

and, thus, the process is elastic. On the other hand, if f77%/; >0 for some i € [1,2,3] then the
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process is plastic. In this latter case it is necessary to determine Ae’., (or Aef.; and A]T,,,ﬂ ) and
K,+1. Finally, the stresses are obtained from (16;)

; ; P
Sue1 = STH —2G Aef Iipey = 1138 3K Al 40y (21)

3.2. Loading in the Various Modes of the Cap Model

In the following sections the return mapping algorithm for the different modes of the cap
model, (consisting of the failure envelope mode, cap mode, tension cutoff mode, the compressive
comer mode at /; = k, and the tensile corner mode at 7; = T) is described in detail. The conditions
that characterize loading in each mode are deduced from the discrete Kuhn-Tucker conditions.

3.2.1. Loading in the failure envelope mode

Loading in the failure envelope mode is characterized by f]7%; >0, Ay,,.1>0 and
AY; 441 = Av;3 .41 = 0. From egs.(16,), (1) and (2) one obtains

Sn+1

P —
Ae, g = A'y1ﬂ+1nn+la My = 1S, 01 ]
n +

(22)
dFe (11)
dl

-
AII;H—l = “3A71ﬁ+1

Substituting egs.(22) into (21), noting that (see Simo and Taylor [11])

Sp+1 ; snT i“il

Trial

= 23
ISpey! A )

Bye1 =

and adding the desired condition f; ., =0 (1), we can write

I$pir ! = lSnTrFuill -ZGA‘Y1;1+1
. dF
I iy =17 + 9KA71,1¢+1"C'1']‘1€" (24)
ISpr1l = Fp(Iyps1)

These three equations can be combined into a nonlinear scalar equation for /, , 4,
. dF,
gt +9KA'Y1,.+1'ZI’;’—11,,;+1 =0 (25)

where

s 8| —F (I1,+1)

A’YI,I! +1 = 2G » (26)

which can be solved by a Newton iteration technique. Once I, ., is known, Avy; -1 and the stress
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can be calculated. Note, that the hardening law is not involved in this stress update. The update
procedure for the hardening parameter x will be discussed in section 3.2.6.

3.2.2. Loading in the tension cutoff mode

Loading in the tension cutoff mode is characterized by fi5el, >0, Ays,.q > 0 and AYy e
= Ay, ,4+1 = 0. From (16,) and (5) we obtain

Bef 1 =0, AT, = 38y;,., 27)
Since I .y = T, substitution of (27) into (21) yields s,.; = s77/ and

T ___I{rial
BYsper = —g2— (28)

Again, the update of the hardening parameter is not involved in the determination of the stress.

3.2.3. Loading in the tensile corner region

Loading in this comer region requires that AY15+1>0, Ay3,41 >0 and Av; .1 = 0. Note
that in multisurface plasticity, if more than one yield criterion is active, then f [ral, > 0 does not
necessarily imply that Ay; ., > 0 (see Simo et al. [8]). Consequently the discrete version of Koiter's
generalized flow rule (16,) yields

Ae:+1 = A‘Yl,n +18, 41
(29)

dF,(T)
NTJ+1‘°=—‘3(A’YU1+1 d + AY3 1)

Since both the failure envelope and the tension cutoff surface behave as in ideal plasticity, the return
point o, is the intersection of these two surfaces

Ihine1 =T, 18,011 =F,(T) (30)

Substituting egs.(30) and (29) into (21) and consideration of (23) give

lSnT’j‘ill —"Fe(T)
A'Yl,n-\‘-l = 2G
(31)
T -1, dr,(T)
A'Y3,n#-l = 9K’"+ - A71,n+1 dll

Since f172; > 0 and enforcing AY1,+1>0 and Av; ,,; >0 we obtain the inequalities that charac-
terize loading within the corner region at 7, = T

M4, <T and F(T)< s <F,(T)+ 26 T 15, (32)
A+l e n+1 ‘ 9K dF, (T ydI,



3.2.4. Loading in the cap mode
Loading within the cap region requires that f17%, >0, Ay, , .1 > 0and Ay, .1 = Avys,
= 0. (16;), (3) and (4) give

af2ﬂ+1 Sn+1
pefs = A A
1 Y2a+1 98, 41 72#+1Fc(|sn+1'?’l,n+1’K"+1)
(33)
afz 1 3(11 +1""Kn+l)
AT,y =34 — = ;
1La+1 Y2.n+1 T Y2m+1 RZFC(‘SAH i ,11’"+15Kn+1)
Substituting (33) into (21), using (3), (4) and (23), yields
ISpe1] = |71 —2GA et
n+1 n+1 'Yzﬂ*‘FC(ianI,11,,,+1,K,,+1)
) I T Rn
Iipsey =112 —9K Ayy ey o 39

Rch(lsn-H l Jl,n+1’Kn+1)

Fc(‘sn+1 I ’11,n+laKn+1) —Fe(KrH-l) =0

Eqgs.(34) provide three equations in the unknowns Is, ./, I1p+1, AY; 54y and k, ;. The hardening
law ((11) and (12)) and application of an implicit backward Euler scheme give the fourth equation

AT ey = W(ep ) —exp Xy = H(k,.y) (35)

(34) and (35) can be reduced to one nonlinear scalar equation for k,.; which can be solved by a
Newton iteration technique. Accordingly, using (343) in (34;) and (34,) vields

|77l |
ZGA’YZ;I +1
Fe (Kn +1)

Isn+1| =
1+

(36)
I{,rnmil T Kp+1

Il,n+1—"Kn+l =
9K A
1+ ; Y2n+1
R Fe(Kn-f'l)

Inserting (36) into (343) one obtains

IsTi | F,(k, 2 e, 2
+1 ( +1) } {,n+l Ky 41 ”Fg(’(f.-u) =0 (37)

Fe (KIH—I) + ZGA'YZ;H-I R + 9KA'Y2,n +1/(R Fe (Kn+l))

A relationship between Ay, ,.; and k,, . is obtained by combining (33,), (343) and (35) to give

RZH(KrH-l)Fe (Kn+1)
3(11,n+1 —‘Kn+l)

AYypay = (38)



Finally, inserting (35) into (21,) yields
Tiper = 32 —3KH (x4 41) (39)

Substitution of (39) into (38) and inserting the result into (37) gives the desired scalar nonlinear
equation in terms of k,.;. In (38) it can easily be seen that the denominator is zero if
Iin+1 = Kav1. Since in this case (34;) leads to Iy,.; = /{7, and subsequently (39) gives
Ks+1 = Ky, the right hand side of (38) is an indeterminate expression. However, since K, -+ DNOW 18
known a priori, Ay, , . can be obtained fram (37) as

tsTial| —F,(x,) . ..
A‘Y2,n+l = A 2G ( ) if I{,’:ail = Ky (40)

3.2.5. Loading in the compressive corner region

Loading within this region requires that AYip+1 > 0, Ayy,eq > 0 and Ay .41 = 0. From
the hardening law it follows that the failure envelope and the cap behave as in ideal plasticity. There-
fore the final stress point must lie at the intersection of the cap and the failure envelope

11,n+1= Kp |Sn+1' =Fe(Kn) (41)
Application of the generalized flow rule (16,) and consideration of (41) yields

By = (AY1p41 + Ay pa1)pay

(42)
dr, (x,)
AT, = 341541 d,
Inserting (41) and (42) into (21) and considering (23) give
A . Ky ”I{:n‘ail
Y1 = oK dF (x, ydl,
(43)

IsThali —F, (x,)
AYz,uﬂ = = %G - “’A'Yl,n-n

Finally, enforcing Ay, ,.1 > 0 and Ays , 1 > 0 one obtains the inequalities that characterize loading
within the corner region at I, = «

I{;ail < K"
(44)
2G K, ‘—I{:lmil

Tr‘hll > ‘e
ler-H Fe(Kn) oK dFe(K,,)/dll



3.2.6. Update of the hardening parameter

Since for the cap «,.; is calculated directly and for the compressive comner x,.; = k, the
update procedure for the hardening parameter described in this sectlon applies only for the faxlure
envelope, the tension cutoff and the tensile corner mode. In (35) All nt1 is now a fixed, known
quantity and thus, if k,+; is replaced by k, .1, (35) is a nonlinear equation in «,.,, which can be
solved by a Newton iteration technique. Once x,.; is known, certain limitations on the cap move-
ment need to be considered.

i)  According to Sandler and Rubin [7] shrinkage of the cap is limited to x = 0.

ii) To prevent the cap from overtaking the stress point on the failure envelope and thus

preventing softening behavior k, . s set t0 k, 1 = max(K,+1, 11 4+1)

iii) According to Sandler and Rubin {7] for the "rock” material the cap is prevented from

retracting, setting x,,; = max(x, ,k,+1) and thus allowing large amounts of dilatancy, as
observed in rocks.

If none of the above limitations apply, then x,.1 = K,41.

3.3. Consistent Elastoplastic Tangent Moduli

Use of tangent moduli, consistent with the integration algorithm is essential in order to
preserve the quadratic rate of convergence that characterizes Newton methods (see Simo and Taylor
[11]). In contrast to contiuum elastoplastic tangent moduli, which are obtained by enforcing the con-
sistency condition on the contiuum problem, consistent algorithmic tangent moduli are obtained by
enforcing consistency on the discrete algorithmic problem. Let us first deal with the easier case of
ideal plasticity, which applies for all the regions of the cap model except for the cap itself. We then
turn to the strain hardening cap, characterized by a yield surface which is a function of o and the
hardening parameter k.

3.3.1. Consistent tangent moduli for regions characterized by ideal plastic behavior

Differentiation of the elastic stress-strain relationship (16;) and the discrete flow rule (16)
vields (see Simo et al. [8])

do,. = C:(derm-l _def-é-l)

(45)
3 i azf:
d€n+l = z(dA'YuH-l py A+l +A'Yi,n+17£2£ill—:don+l)
Combining these two equations gives
3 af,
Ao, = Epyq:(de,yy ’“EdAYi,nﬂ a{,’nﬂ)
=1 A+l
where
(46)
azfl,n+l -

3
Epi1= |CH+ DAY 001
i ST eely
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In (46,) the coefficients d Av; , . are obtained by differentiating f; ,.; = 0

a .
Yot g5 =0, j € Ty (47)
60,,+1

where j € J,, indicates that only active yield functions, for which Avy; ,,; > 0 holds, are differen-
tiated. Substituting (46,) into (47) yields a system of m equations for the coefficients Ay, ,+ of m
active yield conditions. Accordingly,

O j A+l Of i p+1 Of j n+1 .
e B b1 L —d A, = b B i d €J 48
T 00, 4 n+l 00, 41 Yin+1 00, +1 n+1:d€n+y tJ act ( )
Rearranging terms in (48) gives
f ja+l =
Egji,n*IdA‘Yi,n-’rl = aJ”Hh :‘:n+1:d€n+l .
i Ty +1

where
(49)
f j a1 e f i n+1 .
8jin+1 = a;ﬁjl - PSR a(;JH-l i € Jao
”n B+
which leads to
_ f ja+1 ey
dA’Yi,n+1 = 28;‘,‘,}:»«1 ['5“(;1’“5:-’1”1 1d€n+1] (50)
j n+1

where g7, are the coefficients of the inverse of the matrix g, ,,. Finally, inserting (50) into (46,)
one obtains the expression for the consistent tangent moduli for multisurface ideal plasticity

dcn 1 Ll o
Je :1 = Bpe1 — 22 &ijh+1 Niac1 ® N
n i
where
(51)
Of i n+1 .
Nips1 = Bpopt 52— i € Jaa
3.3.2. Consistent Tangent Moduli for the Cap Mode
For the cap mode f , = f 5(o,x) and (45,) is replaced by
Of 2,n+1 *f 2041 Ff 21
deysy dA'YZ;H'l 30,1 + A‘YZ,'H-I [ 30‘3+1 1d0, 4 30, 410K, 11 dKpsq (52)
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Inserting (52) into (45,) yields

af2ﬁ+1

Ao,y = Byyyide, o — B, ! j;o,"—l"dﬂ‘izﬁﬂ —BYipe1Bpar: a—g—‘”l—(’;;“-l—d'(nn (53)
n n+19K,4

Since only one yield function is active, the sum over the active yield conditions has been omitted.
Differentiation of f(6,+1,5,+1) = 0 gives

f 2041

d
do, .+ f 2041

Kp+1

60',,+1 dKu+1 =0

(54)
Rewriting (38) using (33,) and (345) vields

1 Of 25+1
'3"H(Ku+1) —Ayy iy 2

=0
all,n-H,

and differentiation of this equation leads to the third equation for the determination of the consistent
tangent moduli for the cap

1 ‘H(Kn-H) afZ,n-H
3 -d—Kn:—l——-dK,‘H dAY; 1 T
(55)
2f 5, &2
—AY2 541 (——[—z—f——lw—;dgm + o

(0104100, 41

Knt+1t = 0
0y p+1 0Ky "

Substitution of (53) into (54) and (55) leads to

sz +1 3%f2 +1
dAvy 41 = aii L B ideg i rap, o ——L = ide
Y2n+1 11a+1 30,1 n+1 n+1 12”+130n+13'<n+1 n+1 A+1
(56)
af &f
-1 241 e 28+1
Avrpi1dKasy = agitnyg =

. =1 o
ne1id€q 1t an,qa =
60n+1 "o

Y~ S B, § S
Op+10Ky+1

where the coefficients a;7} 41, i,j = 1,2, are the components of the inverse of a matrix a,.1. The
coefficients of a, ,; are given by

2 _ a1 = O ga
ast = Go i Ener 5
iy = 0f 2n+1 Eyap Pf 2041 1 faan
e | -1
" aqn+l " aun+la’(n+l AYZ,»+1 aKn+1
(57)
B = e 1 9f2a+1
Ap+1 = T

- bt gy +1 >
00, .1 0Ky 4y 00, 41 A‘YZ,n-H all,n+1
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&f 201 0%f 2041 L1 Ffoner 1 dH(kesy)
aUn+laKn+1 et acn+la'(n+1 A72,11+1 611;1+16Kn+1 3A'Y§,n+1 dKn‘»l

m

aZZ,n +1 =

In (56) and (57) use of

foper  _ Pfaan
all,n+laon+l 6Ku+1aan+l

has been made. Finally, inserting (56) into (53) gives the expression for the consistent tangent
moduli for the cap mode

d(rn—i-l o me 2. 2 -1
P = S+l ”E 2 a1 Nips1 ® Nj,n+1 (58)
€41 i=1j=1
where
N I e N e *f 2041
1a+1l ™ mmpg+i - "o 2.a+1 T gl T T
” 8 acn+1 ' " " acn+l aKn+l
and
azf2ﬁ+1 . (T10+1 = Kn+1)Sp+1 = 18541121
aan+laKn+1 RzFes(Kn+l)

Note, that because of ay; .1 # @31 ,+1 Or more precisely because of

f 25+1 e _Sonn

0Ky +1 011541
where
W an+1 _ Iy g1 —Kpiy
01 p+1 R2F (18,41 ! A1 p+1:Kn+1)
and
(59)
fon+r _  apr1  dF(Kisy)
aKn+1 aIl,n-H dKrH-l

the tensor of the consistent tangent moduli is not symmetric. The asymmetry is caused by the fact,
that the cap model does not obey the principle of maximum plastic dissipation, which, as shown by
Simo and Hughes [10], implies not only associativity of the flow rule but also of the hardening law.
For the cap model these conditions imply

. 3. 9f; . 3. of;
P = .——-—! = e N ———-’
5 Z.:lv, s K g_lv,D.(x) Folt (60)
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where D;(x) is the plastic modulus. From (11) and (12) a rate form of the hardening law for the cap
model is given by

. . 1 af 2
K = 3y (61)
dX(k) . px(y 9
WD —ga—)—exp
Noting that only f; depends on x from (60,) it follows that
. . 3f 5o k)
k= —Dy() =S (62)

and therefore the commonly accepted hardening law for the cap model is nonassociative and leads to
unsymmetric tangent operators. To overcome the drawback of unsymmetric tangent moduli an asso-
ciative hardening law, only permitting expansion of the cap, will be presented in section 4.

3.3.3. Algebraic inversion of 5,7,
In a finite element implementation of the cap model the numerical inversion of the expression

azfi,n+l ]“1

80’3+1

3
[C-l + EA‘Yi,n-H
i=1

to obtain the algorithmic moduli =, ., (46;) needs to be done for each integration point in each
iteration step. This inversion can be done algebraically applying the Sherman-Morrison formula. To
this end let us first deal with the smooth regions of the yield surface, where only one yield condition
is active. The second derivatives of the yield functions with respect to o are

azf1ﬁ+l 1 dZFe
= I, — - —1 1
303+1 !Sn-*l | (Dev nn+1 ® nn+1] dl%ﬁ_ﬂ ®
3%f 3 541 1 f2a+1 o 2041 , 1
= Iy ——2—Q —/———+ —1®1 63
30'3+1 F, (Kn+1) i 00,1 00, 41 R? (63)
62f3ﬁ+1 =0
daliy

where Ip,, is defined by s = Ip,, :0. Therefore for both the failure envelope mode and the cap
mode the basic structure of B, ., is

-1
B, = [C—1+011M+C21®1”C19®P] (64)

For the failure envelope ¢y, ¢,, and p in (64) are given by

AYI 1 szc
. Ccy = *A.Yl’“'ncﬂ% ) s
St

= P = My

‘S,,+1I ’
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whereas for the cap

AY3 541 cy _ S 2an

C po—g ——n—--—-n—-—-—-v" C = ———-, p
L F, (Kee1) 2T R? 00, 41

For the tension cutoff mode use of (63;) gives E,, ., is equal to C.
Inserting

Al=Cl+cp, +c1®1 (65)
into (64) and applying the Sherman-Morison formula one obtains

E,l+1=A-£P—@-——A——:£-. (66)

Note that the inversion of A™! to obtain A can also easily be done algebraically. Even for the corner
regions the basic structure of &, ., remains unchanged. Because of (63;), 5, ., for the tensile corner
mode is identical with =, ; for the failure envelope mode. For the compressive corner, because of
(41), one obtains

0f 2.m+1
60n+l

= n,,ﬂ . (67)

Fe(Kn+1) = Fe(Kn) = IS,,+1|,

Inserting (67) into (63,) and combining (63;) and (63,) yields (64) where now

AYy i1+ Ay 44 d’F, AY; 441
= [——— +
‘1 F o) 0 T TAengm et e )

P= N, (68)

4. AN ASSOCIATIVE HARDENING LAW FOR THE CAP MODEL

In order to formulate an associative hardening law (60,) is obtained by analogy with Koiter's
generalized flow rule for nonsmooth multisurface plasticity. The f, and f; given by (1) and (5).
Tespectively, do not depend on the hardening parameter k. Hence, from (62), it is not possible to
formulate an associative hardening law, permitting contraction of the cap, without changing the yield
functions f 1 and f3. In other words, for an associative hardening law contraction of the cap can only
be modelled, if f, and f; also depend on the hardening parameter k. Therefore this chapter only
deals with the case of an expanding cap, which, as pointed out by Sandler and Rubin {7] applies to
the material rock. In (62) the plastic modulus D,(x) is chosen as

1
W, D, d)fixx D, X(x)

Dy(k) =

and D, and W, are the hardening parameters for the associative hardening law. Integration of (62)
by a backward Euler method and rearranging terms yields

Ak, g 3f2,n+1

—e - A = () 69
Dz(K,H.l) Y2n+1 aK,,+1 ( )
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(69) and (37) can be solved by means of a Newton iteration technique to obtain Avy; .y and k..
For the determination of the consistent tangent moduli linearization of (69) gives

dD(Kp +1)
Dalkn1) + Apy dx "“; 0f 2n+1
A+ ¥ ]
dx 4 =d Ay
D22(Kn+1) nel aKn+1 et
(10)
aZfz +1 82f2 +1
+ A —2 e do + -2 dk =
o [a'(nﬂ 00,41 el 6K3+1 n

Eq.(70) replaces (55). Combining (53), (54) and (70) again yields (56), but now in contrast to (57;)
and (57,) one obtains

Sanst . Ffaact 1
a(’rl-d-l el 60n+laKn+l A'YZ,n-i»l aKm-*l

Dp+1 = AP p+1 =

2 2
. _ ¥fan L a1 Ffoan
2atl aan-frl aKu+l e ao'.'H'l aKu+l A”YZJH-l aKZ*—l

It

(71)

dDZ(KrH-I)
Dy(Ky ) + Aky o —nt
3 1 2( n 1) +1 dKn+1
A'Y%JH-I D% (Kn +1)
where
a2f2,u-+1 - Is‘rH-llz _ sze(Kn-H)
6K3+1 Rch(Kn+l) dKr%-rl

It can be seen that the consistent tangent moduli are symmetric. For the associative hardening law
the compressive corner point does not act as in ideal plasticity, but also exhibits hardening, when the
stress point lies within this corner region. At the compressive corer

9f 4
Fra 0 and 1,41 = Knus

hence, the discrete hardening law for the compressive corner region follows from (59) and (69) as

AKn+1 ﬁe (Kn+l)

e = (. 72
DZ(KIH-I) Ton+1 dKn+1 ( )

This nonlinear scalar equation also can be solved by means of a Newton iteration technique. Once
Kn+1 1S known the consistency parameters Ay, , .1 and Avy; , 41 can be calculated by means of (43), if
K, is replaced by x,.;. The consistent tangent moduli for the compressive comer region now are
given by

3
= Ep41 ”z ax‘;vl|+1 N +1 ® Nj,n+1 (73)

W
LA

-
i
A
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where &, .1 can be determined according to (64) and (68) (again, k, must to be replaced by K,.q)
and

. afl,n'f—l
n+l-
ao'n-+-l

i

Nu-ﬂ =

Nypot = By 0f 2.0 +1
+1 = Bpupl
» n 60',,+1

2

N = %2
Ba+l = Bp4ll T

g 80, 41 9Ky 11

and the a;j}+; are the coefficients of the inverse of a matrix a,,;. The coefficients of a,.; are
given by

a _ afl,n+1 L . afl,n+1
I1a+1 ao__n+l s betpy ] o 60H+1
a -4 _ a1 0f 241
Rt =TT e, T e,
_ _ ian o Ff2pe1
A3 a+1 = A3 p41 & T M, T
90, 41 aGrz-ﬁ»laKnﬁ-l
4 _ a1t om0 2a
2att 00, .+ el 90, 41
4 - 21 . Pfope 1 0f2,+1
WBa+1 7 SRa+1 T T eyt ] -
00, 4+ 00, 410Ky 11 A'Y2,u+1 OKp 1
2
Pfopns1 . 9 f 2041 1 a1

A33p+1 = e Rk -
00 +1 0Ky 41 00, +1 0Ky 41 A'YZ;H'I 3K3+1

dDZ(Kn+1)

DZ(Kn+1) +AKn+1 dx )
"+

B AY%JI+1 D%(Kn-*l)
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5. NUMERICAL EXAMPLES
5.1. Tests for the Nonassociative Hardening Law

5.1.1. Tests based on the Colorado Concrete Data

Based on the Colorado Concrete Data [13] an extensive study of the predictive capabilites of
the cap model has been performed by Simo et al. [6]. The bulk modulus K and the shear modulus G
are specified in [13] as 2100 ksi and 1700 ksi, respectively. The other parameters for the modified
cap have been computed using the fit criteria described by Simo et al. [6]. The same tests described
by Simo et al. [6] were employed for this parameter fit procedure. Table 1 contains a comparison of
the parameters for the present study and those obtained by Simo et al. [6].

parameter  Simo et al. [6]  present study unit
o 3.86 4.34 ksi
6 0.11 0.33 e
A 1.16 1.80 ksi
B 0.4 0.54 kesi ™1
R 4.43 2.89 -
D 0.0032 0.0032 ksi 1
W 0.42 0.42 ———
T 0.30 0.30 ksi
X (ko) 16.0 16.0 ksi

Table 1 - Parameters for Colorado Concrete

Figure 2 contains a plot of the initial yield surfaces resulting from the two different sets of
parameters. The root-mean-square errors, found from backprediction, are nearly identical to the
values specified by Simo et al.[6]. Based on the new parameters for the cap model the tests 1-2, 2-2
and 3-5 have been calculated and the results are nearly identical to those obtained by Simo et al.
[6].

5.1.2. Plane strain, flexible footing problem

In order to demonstrate the effectiveness of the algorithm developed here, a plane strain, flexi-
ble footing problem is analyzed. The two finite element meshes, consisting of 72 four-node bilinear
isoparametric quadrilateral elements and 72 nine-node quadratic Lagrangian elements, respectively,
used for the calculation are shown in Figure 3. The parameters for the cap model are determined by
means of an optimization procedure for the uniaxial strain test for McCormick Ranch Sand (Fig.4),
given in Sandler and Rubin [7], and are listed in Table 2. X (xy) was chosen as 0.175 ksi. In [7] the
bulk modulus K and the shear modulus G are specified as 66.67 ksi and 40.0 ksi, respectively.

parameter value unit
a 0.27 ksi
] 0.02 -
A 0.17 ksi
B 0.67 ksi 1
R 2.50 -
D 0.67 ksi 1
w 0.0064 —_
T 0.30 ksi
X (xg) 0.175 ksi

Table 2 - Parameters for McCormick Ranch Sand
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The uniformly distributed reference load is chosen as py = 0.05 ksi. Figure 5 contains a plot of
the load-displacement curves obtained by means of the two finite element meshes for the point
located in the symmetry plane directly beneath the applied load. The calculation has been performed
by means of the arc-length method and the termination criterion for the Newton solution strategy
was chosen in terms of the energy norm E, which is computed from the residual force and the incre-
mental displacement vector as

AES), = 10°AE(D,

where the subscript n+1 denotes the load step and the superscripts refer to the first or i-th iteration
step, respectively. The number of iterations, necessary to achieve this condition never exceeded four
for the four-node element and never exceeded five for the nine-node element.

5.2. Tests for the Associative Hardening Law

5.2.1. Colorade Concrete Data

Since only the hardening law has been changed, an optimization for the cap parameters only
leads to new values for the parameters D and W, now called D, and W, , respectively. The numerical
values are D, = 0.0086 ksi~! and W, = 0.14. Again, with the new parameters, the tests 1-2, 2-2
and 3-5 have been calculated and there are no significant differences for the predicted stresses, com-
pared with those obtained by Simo et al.[6]. Nevertheless it should be mentioned that, although the
two different hardening laws lead to the same qualitative behavior under pure hydrostatic loading,
the associative hardening law leads to a considerably different response for hydrostatic strains which
are larger than those observed in the experiments. The hydrostatic range of the strains for the experi-
ments did not exceed #r(€) = 0.025 and within a region which is even six times larger there is good
agreement for the two different hardening laws (Fig.6). Since the hydrostatic behavior for the region
i (e) > 0.025 is only obtained by extrapolation and because the stresses and strains for the region
tr(€) > 0.15 are too large for concrete there are no experimental data available for this part and the
considerable differences for #(€) > 0.15 (Fig.6) are only hypothetical and have no influence on the
stress predictions.

5.2.2. Plane strain, flexible footing problem

The optimization procedure, based on the uniaxial strain test for McCormick Ranch Sand only
changes the parameter W, now called W, . The numerical value is W, = 0.031. Both the nonassocia-
tive and the associative hardening law lead to the same shape of the hydrostatic curve, but there is a
difference in the maximum amount of predicted hydrostatic plastic strains for these two hardening
laws (Fig.7). However, this observation does not contradict the assumptions made by DiMaggio and
Sandler [1], who pointed out that they only used the qualitative shape of the plot of the hydrostatic
test results to set up the hardening law for the cap model. The differences observed for the two dif-
ferent hardening laws have litte influence on the load-displacement curve for the plain strain, flexible
footing problem, obtained by means of the 4-node element (Fig.8).

6. CONCLUSION

An algorithmic treatment of the cap model based upon a dosest paint projection method has
been considered in detail. Consistent algorithmic loading/unloading conditions far all possible modes
of response have been farmulated by exploiting the discrete Kuhn-Tucker conditions for nonsmocth
multisurface plasticity.

New closest point projection algorithms have been derived for the cap and the failure envelope,
characterized by reducing local iterations to the solution of a nonlinear scalar equation by a Newton
method and thus exhibiting a quadratic rate of convergence, whereas the secant iteration scheme.
proposed by Sandler and Rubin [7], is only superlinear.
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It has been shown that the original cap model does not obey the principle of maximum plastic
dissipation, because the hardening law is non-associative. This leads to the undesirable feature of
unsymmetric tangent moduli. To overcome this drawback an associative hardening law, which does
not permit cap contraction, has been proposed. In addition it has been pointed out, that an associa-
tive hardening law, which permits contraction of the cap, cannot be developed without changing the
yield conditions for those regions which act as in ideal plasticity. Inclusion of this aspect is left to a
subsequent study.
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Fig.1 - The yield surface of the cap model
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