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Next-generation sequencing (NGS) data provides tremendous opportunities for making new dis-

coveries in biology and medicine. However, a structure of NGS data poses many inherent chal-

lenges - for example, reads have high error rates, read mapping is sometimes uncertain, and

coverage is variable and in many cases low or completely absent. These challenges make accu-

rate individual-level genotype calls difficult and make downstream analysis based on genotypes

problematic if genotype uncertainty is not accounted for. In this dissertation, I present recent

works addressing challenges that arise in the analysis of NGS data for population genetic infer-

ences and and provide recommendations and guidelines to interpret such data with precision.

Throughout this dissertation, I focus on estimating the site frequency spectrum (SFS). The dis-

tribution of allele frequencies across polymorphic sites, also known as the SFS, is of primary

interest in population genetics. It is a complete summary of sequence variation at unlinked sites

and more generally, its shape reflects underlying population genetic processes.

First, I characterize biases that can arise inferring the SFS from low- to medium-coverage

sequencing data and present a statistical method that can ameliorate such biases. I compare two

approaches to estimate the SFS from sequencing data: one approach infers individual genotypes
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from aligned sequencing reads and then estimates the SFS based on the inferred genotypes (call-

based approach) and the other approach directly estimates the SFS from aligned sequencing

reads by maximum likelihood (direct estimation approach). I find that the SFS estimated by

the direct estimation approach is unbiased even at low coverage, whereas the SFS by the call-

based approach becomes biased as coverage decreases. The direction of the bias in the call-

based approach depends on the pipeline to infer genotypes. Estimating genotypes by pooling

individuals in a sample (multisample calling) results in underestimation of the number of rare

variants, whereas estimating genotypes in each individual and merging them later (single-sample

calling) leads to overestimation of rare variants. I characterize the impact of these biases on

downstream analyses, such as demographic parameter estimation and genome-wide selection

scans. This work highlights that depending on the pipeline used to infer the SFS, one can

reach different conclusions in population genetic inference with the same data set. Thus, careful

attention to the analysis pipeline and SFS estimation procedures is vital for population genetic

inferences.

Next, I describe a development of a novel algorithm that can speed-up the existing direct

estimation method with the EM optimization. The existing method directly estimates the SFS

from sequencing data by first computing site likelihood vectors (i.e. the likelihood a site has a

each possible allele frequency conditional on observed sequence reads) using a dynamic pro-

gramming (DP) algorithm. Although this method produces an accurate SFS, computing the site

likelihood vector is quadratic in the number of samples sequenced. To overcome this compu-

tational challenge, I propose an algorithm we call the adaptive K-restricted algorithm, which is

linear in the number of genomes to compute the site likelihood vector. This algorithm works

because in a lower triangular matrix that arises in the DP algorithm, all non-negligible values of

the site likelihood vector are concentrated on a few cells around the best- guess allele counts.

I show that this adaptive K-restricted algorithm has comparable accuracy but is faster than the

original DP algorithm. This speed improvement makes SFS estimation practical when using low

coverage NGS data from a large number of individuals.
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Finally, as an application, I analyze high-coverage sequencing data of two dogs and three

wolves to detect genetic signatures of adaptation during early dog domestication. This work is

part of a larger research effort, called the Canid Genome Project, where I take the lead in the

selection scans. We identify the importance of dietary evolution in early dog domestication,

supported by our top selection hit, a CCRN4L gene. Moreover, we observe that genes affecting

brain function, metabolism, and morphology show signatures of selection in the dog lineage.
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CHAPTER 1

Introduction

1.1 Motivation

Next-generation sequencing (NGS) technologies over the past several years led to the tremen-

dous growth in making new discoveries in biology and medicine. The ability to generate an

enormous volume of genomic data at low cost makes it possible to perform large-scale popula-

tion genetic studies that were unimaginable just a few years ago.

Despite its big promises, the structure of NGS data also poses many inherent challenges.

First, NGS data suffers from high error rates at multiple stages, including base-calling errors on

short reads and read mapping errors onto the available reference genome. These errors often

mimic single-nucleotide polymorphisms (SNPs), leading a true homozygote to be misclassified

as a heterozygote. Second, NGS data have variable depth of coverage because short sequence

reads are randomly generated from the individual genome. For those sites with low depth of

coverage (< 5X per site per individual), there is a high probability that all sequence reads are

sampled from only one of the two chromosomes in a diploid individual. This sampling variation

may lead a true heterozygote to be miscalssified as a homozygote. For those sites with no

sequencing data, we have missing data problems.

Under such circumstances, accurate individual-level genotype calling is problematic, and

there is often considerable uncertainty associated with the genotype calls for low (<5X) to

medium (5-20X)-coverage sequencing data. Uncertainty in genotype calls is an important con-

sideration in population genetic studies, in which many inferences are based on summary statis-
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tics, such as allele frequencies or the distribution of the allele frequencies. Ignoring genotype call

uncertainty can lead to biased estimates of those summary statistics and spurious conclusions in

many population genetic analyses, such as demographic inference based on the frequency spec-

trum, empirical selection scans, the identification of rare mutations, and association mapping.

These have been identified as key limitations for performing population genetic studies from

NGS data.

One method for handling uncertainty associated with genotype calls in sequencing data is to

sequence target regions at high coverage (>20X) to obtain more reliable genotypes (with more

data, more confidence in genotype calls). However, cost constraints leads to difficult choices

between increasing sequencing coverage and increasing sample sizes. With limited budgets,

we expect a category of experimental work will continue in which it is most advantageous to

maximize the number of individuals by using low coverage - for example, identification of low-

frequency variants and association mapping.

Alternatively, reducing and quantifying the uncertainty associated with genotype calling can

be accomplished using a probabilistic framework and this area has recently been the subject of

extensive research. The key quantity used in the probabilistic methods is genotype likelihoods,

which incorporate base-calling and alignment errors. Based on the genotype likelihoods in con-

junction with the genotype prior, one can infer the individual-level genotypes, and the resulting

genotype is assigned with a measure of genotype uncertainty (called a genotype quality score).

Moreover, in population genetic studies, one can directly compute population genetic summary

statistics based on the genotype likelihoods without an intermediate step of calling genotypes.

Although there are a number of statistical methods and associated computational tools avail-

able for genotype calling (GATK, SAMtools, SOAPsnp etc.) and for directly computing popula-

tion genetic summary statistics (ANGSD, etc.), there is no established guideline and recommen-

dation in the field for conducting population genetic studies using next-generation sequencing

data to avoid bias and spurious conclusions. Furthermore, there have been no studies that com-
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pare biased pattern of population genetic summary statistics and the impact on the downstream

analysis when one uses genotype calls and computes summary statistics (call-based approach)

vs. one directly computes summary statistics from the sequencing data (direct approach). Hence,

in this dissertation, we focus on addressing the challenges of using NGS data for population

genetics inferences and suggest the best NGS data analysis pipeline to minimize the bias. Fur-

thermore, we optimize computational tools that compute population summary statistics, called

the Site Frequency Spectrum, from low- to medium-coverage NGS data after taking account

for genotype uncertainty, because the existing method is computationally intractable for a large

sample size. Then, we consider an application study, in which we analyze high-coverage next-

generation sequencing data to detect genetic signatures of adaptive evolution during early dog

domestication.

1.2 Organization

The outline of the thesis is as follows. The dissertation starts with an introductory chapter.

Then, chapter 2 gives a background on NGS technologies (section 2.1) and addresses challenges

in computing summary statistics for population genetic inferences from NGS data (section 2.2).

Among many summary statistics, we focus our interests on estimating the site frequency spec-

trum (SFS). In section 2.2, we define the SFS, discuss its importance in population genetic

studies, and then review several statistical methods that were proposed to account for genotype

uncertainty in computing the SFS. Finally, in section 2.3, we give a background on population

genetic theory of adaptive evolution, because we will analyze NGS data to detect genetic signa-

tures of adaptive evolution during early dog domestication in chapter 5 as an application study.

We describe selective sweep events, and methods to detect genetic signatures of selective sweeps

in the genome.

In the following three chapters, we present our recent works in the analysis of NGS data in

population genetic studies. In chapter 3, we characterize bias in population genetic inferences
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from NGS data by using detailed, realistic simulations. We compare the called-based approach

(first inferring genotypes from the aligned short-read sequencing data and then computing sum-

mary statistics based on the inferred genotype calls) to the direct estimation approach (comput-

ing summary statistics directly from the aligned short-read sequencing data), and conclude the

chapter with guidelines and recommendations for conducting population genetic inference from

NGS data. In chapter 4, we discuss the computational challenges of using the direct estimation

approach when a sample size is large, and conduct exploratory analysis to find computational

burdens to implement the direct estimation approach. Based on the exploratory analysis, we

develop the new algorithm by which we can run the direct estimation method even for a large

sample of low- to medium-coverage sequencing data. In chapter 5, we analyze high-coverage

next-generation sequencing data of dogs and wolves to detect of genetic signatures of adaptive

evolution during dog domestication. In fact, this study was the motivation to consider all of the

analysis in chapter 3 and 4 to decide the best NGS data analysis pipeline given conditions of

our data set. Based on the results of chapter 3 that we can trust the SFS above 10X, we com-

puted summary statistics used in selection scans based on the observed SFS, rather than using

the direct estimation method to infer the SFS.

Finally, chapter 6 concludes this dissertation with discussions for future works. We describe

the extension of our works to estimate the multi-dimensional SFS (for example, 2-dimensional

SFS for a pair of populations) and discuss further computational advantages of using the new

algorithm we develop for estimating the multi-dimensional SFS.
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CHAPTER 2

Background

2.1 Next Generation Sequencing

The advent of next-generation sequencing (NGS) technologies provides tremendous opportuni-

ties in population genetics to perform large-scale comparative and evolutionary studies in not

only model organisms but also non-model organisms. Next-generation techniques were first

developed in 2005 (Margulies et al. (2005) describes the development of the first NGS technol-

ogy using the pyrosequencing method) in response to the limitations of the automated Sanger

sequencing methods, such as low throughput and high cost (Table 2.1). The major advance of-

fered by NGS is the ability to produce an enormous amount of genomic data at low cost. While

the specific methods vary by platforms (see Metzker (2010) for a review of NGS technologies

and their applications), they generally use massively parallel sequencing to obtain millions of

short reads from random locations in the genome. Table 2.1 compares some characteristics of

the Sanger sequencing methods and the NGS methods (Shendure and Ji, 2008).

Table 2.1: Comparisons of the Sanger sequencing and NGS methods.

5



Despite the promise of NGS for population genomic studies, there are some computational

and statistical challenges associated with NGS data analysis.

2.1.1 Base calling

The first step in NGS is template preparation (Shendure and Ji, 2008). A whole genome or

targeted regions of the genome (for example, exomes) is randomly digested into small fragments.

Then, these small fragments get sequenced. During sequencing, base-calling algorithms infer

the actual base from the fluorescence intensity, and then assign a measure of uncertainty to each

base call using noise estimates from image analysis (Nielsen et al., 2011). This measure is called

a per-base quality score and reported in a Phred scale given by

Q = −10 log10 P (base calling error).

NGS techniques have a high per-base sequencing error rate on short reads, ranging from 1 out

of 1000 bases to 1 out of 100 bases (Table 2.1). In the presence of sequencing errors, it is often

hard to distinguish true genetic variations from sequencing errors, in particular when coverage

is low. Moreover, NGS data have variable depth of coverage due to the stochastic nature of a

data generation procedure. This leads to different levels of confidence in the genotype calls,

especially low confidence in the genotype calls for sites with low coverage.

2.1.2 Read mapping

The next step in NGS is aligning the resulting short reads onto an available reference genome

(called read mapping)(Shendure and Ji, 2008). Because NGS techniques produce short reads

with a length of 75 to 400 nucleotides (Table 2.1), there might be uncertainty in read mapping in

a region of repeats or of structural variation, such as copy number variation, insertion and dele-

tion, and chromosome rearrangement. When short reads are misaligned, we might misclassify

alignment errors as genetic variations.
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2.1.3 Genotype calling

Finally, from a set of aligned short-read sequencing data, genotypes for each individual are in-

ferred (Nielsen et al., 2011). Variable coverage, sequencing errors and alignment errors associ-

ated with NGS data often make accurate individual-level genotype calling problematic, and there

is considerable uncertainty associated with the genotype calls. To reduce uncertainty associated

with the genotype calls, researchers may either increase sequencing coverage or incorporate

genotype uncertainty in a probabilistic framework:

Increasing coverage With more sequencing data at a a particular site, we can be more confi-

dent about the genotype call, as more data leads to a higher probability that two alleles at het-

erozygous sites are both sampled and a lower probability that sequencing errors are misidentified

as mutant alleles. However, sequencing is still expensive and cost constraints lead to difficult

choices between increasing sample size and increasing coverage. There are certain cases that

we prefer the experimental design of large samples of low- to medium-coverage sequencing

rather than small samples of high-coverage sequencing. For example, in genome-wide associa-

tion studies, we obtain more power by sequencing many individuals at low coverage rather than

sequencing fewer individuals at high coverage (Kim et al., 2010). For the identification of rare

variants (variants whose allele frequency is less than 5%), we prefer a large sample size at low

coverage (1000 Genomes Project Consortium, 2010). Moreover, cost constraints will not dis-

appear even though sequencing cost keeps dropping down, because users will continue to push

limits of a large sample size with low coverage, especially with non-model organisms.

Probabilistic methods The alternative for reducing uncertainty associated with the genotype

calls is using a probabilistic framework. The key quantity in this framework is genotype likeli-

hood which can be calculated using the per-base quality scores for each short read.

Consider aligned short-read sequencing data X for a particular individual at a particular
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site. Let Xi be the ith read among the aligned short reads and let G denote a genotype for that

individual. The probability P (Xi|G) is given by a simple function of the per-base quality score

of read Xi. For example, in the the Genome Analysis Toolkit (GATK) (DePristo et al., 2011),

assuming an equal chance of sampling one base (B) out of two bases in a genotype (G), we can

express P (Xi|G) as follows:

P (Xi|G = B1B1) = P (Xi|B = B1)

P (Xi|G = B1B2) =
1

2
{P (Xi|B = B1) + P (Xi|B = B2)}

where

P (Xi|B) =


1− P (base calling error) if B is same as the base in Xi

P (base calling error)/3 otherwise.

Assuming independence among aligned short reads, the genotype likelihood P (X|G) can be

calculated as follows:

P (X|G) =

coverage∏
i=1

P (Xi|G).

It has been suggested to take correlated errors into account when computing the genotype like-

lihood (Li et al. (2008) for MAQ, Li et al. (2009a) for SAMtools). For example, SAMtools

assumes that errors among short reads are correlated (Li et al., 2009a).

Based on the genotype likelihoods P (X|G) and a genotype prior P (G), we can compute the

posterior probability of genotype G, P (G|X), by the Bayes theorem (Nielsen et al., 2011)

P (G|X) =
P (X|G)P (G)∑
G′ P (X|G′)P (G′)

.

Then, we assign the genotype with the highest posterior probability to the individual. Either this

highest genotype posterior probability or the ratio between the highest and the second highest

genotype posterior probability is used as a measure of confidence in genotype calls (called a

genotype quality score).
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A. Single-sample calling B. Multisample calling

Figure 2.1: Single-sample and Multi-sample calling methods.

The specification of the genotype prior is related to two modes of genotype calling, i.e.

single-sampling calling and multisampling calling (Figure 2.5). With the single-sample calling

pipeline, aligned sequencing read data are analyzed for one individual at a time and then the

most likely genotypes for that individual alone are determined. Single-sample calling uses the

constant prior across all sites that is based on the population mutation rate ✓ (more description

on ✓ in section x):

P (G = AA) = 1 � 3

2
✓

P (G = AB) = ✓

P (G = BB) =
1

2
✓

where A represents an ancestral allele and B represents a derived allele. In contrast, with the

multi-sample calling pipeline, aligned sequencing read data are analyzed for all individuals in a

sample simultaneously and then the most likely genotype configurations for all individuals are

determined. Multi-sample calling first estimates the derived allele frequency q̂ from sequencing
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data of all of the individuals at each site and then computes the genotype prior assuming Hardy-

Weinberg equilibrium.

P (G = AA) = p̂2

P (G = AB) = 2p̂q̂

P (G = BB) = q̂2

where p̂ + q̂ = 1.

Finally, one can gain more precision in the genotype calls by utilizing the the pattern of

linkage disequilibrium (LD) at nearby sites. For example, one can impute the missing genotype

of a given individual by using the haplotype information of other individuals in a reference panel

(called genotype imputation). By the same token, one can gain more confidence in the genotype

call even at low coverage by utilizing the LD pattern of other individuals in a reference panel.

This approach has been taken in the 1000 Genomes Project to analyze sequencing data and it

has shown that this approach can lead to a significant improvement in genotype calling accuracy

(Durbin et al. 2010).

2.2 Estimation of Population Genetic Summary Statistics from NGS data

Population genetic inferences often proceed by compressing large-scale genetic variation data

into simple and informative summary statistics, such as allele frequencies, heterozygosity, and

nucleotide diversity. Due to genotype uncertainty associated with NGS data, the computation of

population genetic summary statistics based on the genotype calls can lead to serious biases and

possibly spurious conclusions if the coverage is not so large that the genotypes are known with

absolute certainty for each individual.

To correct for such bias in estimating population genetic summary statistics from NGS data,

several methods have been proposed. The simplest method is using strict filters to account for

uncertainty associated with the genotype calls. A common practice is to use the genotype calls
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call even at low coverage by utilizing the LD pattern of other individuals in a reference panel.
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Figure 2.1: Comparisons of the single-sample and multisample calling methods.

The specification of the genotype prior is related to two modes of genotype calling, i.e.

single-sampling calling and multisampling calling (Figure 2.5)(Han et al., 2014). With the

single-sample calling pipeline (Figure 2.5A), aligned sequencing read data are analyzed for one

individual at a time and then the most likely genotypes for that individual alone are determined.

Single-sample calling uses the constant prior across all sites that is based on the population

mutation rate θ (more description on θ in section x):

P (G = AA) = 1− 3

2
θ

P (G = AB) = θ

P (G = BB) =
1

2
θ

where A represents an ancestral allele and B represents a derived allele. In contrast, with the

multisample calling pipeline (Figure 2.5B), aligned sequencing read data are analyzed for all

individuals in a sample simultaneously and then the most likely genotype configurations for all

individuals are determined. Multisample calling first estimates the derived allele frequency q̂
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from sequencing data of all of the individuals at each site and then computes the genotype prior

assuming Hardy-Weinberg equilibrium.

P (G = AA) = p̂2

P (G = AB) = 2p̂q̂

P (G = BB) = q̂2

where p̂+ q̂ = 1.

Finally, one can gain more precision in the genotype calls by utilizing the the pattern of

linkage disequilibrium (LD) at nearby sites (Nielsen et al., 2012). For example, one can im-

pute the missing genotype of a given individual by using the haplotype information of other

individuals in a reference panel (called genotype imputation; see Marchini and Howie (2010)

for an overview of the statistical methods for imputing genotypes). By the same token, one

can gain more confidence in the genotype call even at low coverage by utilizing the LD pattern

of other individuals in a reference panel. This approach has been taken in the 1000 Genomes

Project to analyze sequencing data and it has shown that this approach can lead to a significant

improvement in genotype calling accuracy (1000 Genomes Project Consortium, 2010).

2.2 Estimation of Population Genetic Summary Statistics from NGS data

Population genetic inferences often proceed by compressing large-scale genetic variation data

into simple and informative summary statistics, such as allele frequencies, heterozygosity, and

nucleotide diversity. Due to genotype uncertainty associated with NGS data, the computation of

population genetic summary statistics based on the genotype calls can lead to serious biases and

possibly spurious conclusions if the coverage is not so large that the genotypes are known with

absolute certainty for each individual.

To correct for such bias in estimating population genetic summary statistics from NGS data,

several methods have been proposed. The simplest method is using strict filters to account for
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uncertainty associated with the genotype calls. A common practice is to use the genotype calls

that exceed some threshold for genotype quality (GQ) or depth of coverage (DP) and treat less

confident genotype calls as missing data. However, these filters can adversely affect summary

statistics estimation based on the genotype calls (Johnson and Slatkin, 2008; Kim et al., 2011).

The other method is developing statistical methods, in which summary statistics are directly

inferred from aligned short-read sequencing data. This approach makes an implicit assumption

that inferred genotypes from sequencing data are inaccurate and models this uncertainty using

genotype likelihoods and some prior information. Several approaches have been developed in

this framework (Johnson and Slatkin, 2008; Lynch, 2008, 2009; Liu et al., 2009, 2010; Kang

and Marjoram, 2011; Keightley and Halligan, 2011; Kim et al., 2011).

Among many summary statistics, we focus on the site frequency spectrum (SFS), as it is a

sufficient statistic for data from independent sites, and the shape of the spectra is indicative of

underlying population genetic processes, such as population growth, bottlenecks, and selection.

Hence, estimating the SFS is a major entry-point into many population genetic analyses, and a

number of population genetic inferences can proceed directly from the inferred SFS.

2.2.1 Site Frequency Spectrum (SFS)

The SFS is defined as a distribution of allele frequencies in a sample across many unlinked loci.

Assuming that mutations are rare enough that the observed SNPs are biallelic (this model is

called an infinite site model), one can polarize the alleles at any particular segregating site as

either being ancestral (original) or derived (mutant) with sequence data from an outgroup. For a

sample of n haplotypes from a panmictic population, the SFS is an (n− 1)-dimensional vector,

given by ξ = (ξ1, . . . , ξn−1)
′, where the i-th entry ξi represents the proportion of polymorphic

sites with i copies of the derived allele and (n − i) copies of the ancestral allele in the sample

(Figure 2.2A). Note that the SFS is sometimes defined by the absolute number of polymorphic

sites rather than the proportion of polymorphic sites. Furthermore, one can specify the SFS as an
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Figure 2.2: Site frequency spectrum. Panel A shows the SFS for a sample of 10 haplotypes.

Panel B shows the expected SFS under population growth (shown in red) and under population

decline (shown in blue) compared to the SFS under the constant size model (shown in black).

Panel C shows the expected SFS under selective sweeps. Under this scenario, we expect negative

values of Tajima’s D.

an (n+1)-dimensional vector, denoted by ξ = (ξ0, ξ1, . . . , ξn)′, where ξ0 represents a proportion

(or the absolute number) of monomorphic sites fixed for the ancestral allele and ξn represents a

proportion (or the absolute number) of monomorphic sites fixed for the derived allele. In chapter

3 and 4, we define the SFS as the (n + 1)-dimensional vector considering both monomorphic

and polymorphic sites.

2.2.2 Importance of the SFS for Population Genetic Inferences

Test for Selective Sweeps First, the SFS allows us to develop statistical tests to detect selec-

tion. The standard model of population genetics assumes that the population is at mutation-drift

equilibrium, evolves according to the Wright-Fisher model with a constant population size, and

all mutations are selectively neutral. This standard model constitutes null hypothesis in statisti-

cal testing and rejection of the null hypothesis supports alternative hypotheses, such as selection

or demographic history. These tests have been referred to as neutrality tests.

To develop statistical tests given a set of DNA sequences, population geneticists have derived
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sampling properties of summary statistics assuming that the null hypothesis holds. Under the

standard model, Fu (1995) showed that

E(ξi) =
θ

i
, for 1 ≤ i ≤ n− 1

where θ = 4Neµ is a scaled population mutation rate where Ne is the effective population size,

and µ is the locus neutral mutation rate. This shows that E(iξi) = θ and suggests any summary

statistic θ̂w that is a weighted linear combination of the SFS

θ̂w =
1∑n−1

i=1 wi

n−1∑
i=1

wiiξi

can form a basis for getting unbiased estimator of θ (Achaz, 2009). The choice of the weight wi

allows one to look at different parts of the SFS when estimating θ. For example, Watterson’s θ

estimator (Watterson, 1975) is given by taking weights wi = 1
i
:

θ̂S =
1∑n−1
i=1

1
i

n−1∑
i=1

ξi =
S

an

where S represents the number of segregating sites and an =
∑n−1

i=1
1
i
. Tajima’s θ estimator

(Tajima, 1983) is given by using weights wi = (n− i):

θ̂π =
1∑n−1

i=1 (n− i)

n−1∑
i=1

i(n− i)ξi =
2

n(n− 1)

n−1∑
i=1

i(n− i)ξi = π

where π represents the average pairwise differences between all sequences in the sample.

Neutrality tests based on the SFS compare two different estimators of the population muta-

tion rate θ to determine whether the observed SFS deviates from that expected under the standard

model. Under the standard model, all θ estimators should be consistent regardless of the choice

of weights wi, whereas under the alternative model (either selection or demographic events) two

different θ estimators will be inconsistent. Hence, a test statistic T in the neutrality test is the

difference between two θ estimators, normalized by its standard deviation (Achaz, 2009):

T =
θ̂1 − θ̂2√

V ar(θ̂1 − θ̂2)
.
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Under the null hypothesis, we expect that E(T ) = 0. Large deviations from a null distribution

of T have been used to detect local gene regions under selection, and this approach is used in

many empirical genome-wide selection scans (Andolfatto, 2007; Begun et al., 2007; Andersen

et al., 2012; Axelsson et al., 2013).

One of the neutrality tests based on the SFS is Tajima’s D test (Tajima, 1989). This test

compares θ estimator based on the number of segregating site (θ̂S) and θ estimator based on the

average pairwise differences(θ̂π):

D =
θ̂π − θ̂S√
αnθ + βnθ2

where

αn =
1

an

(
n+ 1

3(n− 1)
− 1

an

)
− βn,

βn =
1

a2n + bn

(
2(n2 + n+ 3)

9n(n− 1)
− n+ 2

ann
+
bn
a2n

)
,

an =
n−1∑
i=1

1

i
and bn =

n−1∑
i=1

1

i2
.

The rationale of the Tajima’s D test is that θ̂S is more sensitive to low-frequency alleles

compared to θ̂π (Figure 2.3A). Hence, a negative value of D indicates too many low-frequency

sites and a positive D indicates too many intermediate-frequency sites than expected under the

standard model (Figure 2.3B) (adopted from Achaz (2009)).

Demographic Inference Moreover, the SFS is very informative about population history. For

example, an excess of low-frequency mutations is consistent with recent population growth, as

the increase in population size in recent past distorts a coalescent tree such that there will be

more and shorter branches near the root and longer branches near the tips than expected under

a constant size model. Therefore, many researchers have made use of the observed SFS of

putatively neutral SNPs (for example, synonymous sites) to learn about demographic history.

For example, several recent large-sample sequencing studies (Coventry et al., 2010; Nelson
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in Figure 2. Figure 2 shows that the sensitivity of the
different tests differs although they share some com-
mon features. For example, D and F * both are nega-
tively sensitive to both low and high frequencies
(although more sensitive to low frequencies). D shows
opposite sensitivity between medium frequencies and
low/high frequency, whereas F * shows poor sensitivity to
medium-frequency polymorphisms. F and F * have oppo-
site effects on doubletons and singletons. Thus, devia-
tions that enhance both will have opposite effects. Finally,
H is oppositely skewed by low and high frequencies.

One crucial aspect of neutrality tests is their impor-
tant variance under the neutral model. This variance
induces a large confidence interval and therefore

decreases their power to detect a deviation. It has been
argued that this variance is a consequence of the tree
shape variance and that neutrality tests based on the
frequency spectrum are doomed to exhibit low power
(Felsenstein 1992b).

As a consequence, an ideal neutrality test should
minimize its variance under the standard model. The
variances of the denominator of previous neutrality tests
are given in Table 2 (for n ¼ 30 and u ¼ 1, 10, 100). It is
also important to mention that previous derivations of f,
f *, y, and y* variances give different values. Simulations
show that the new derivations are the correct ones
(supporting information, Table S1). First, it should be
noted that the original D test has a very low variance

Figure 1.—Estimators of u. A graph-
ical view of the weight vectors of four
typical estimators of u (for n ¼ 30).
All values of the normalized vector
sum to 1. In the top four panels, the
v-vectors that are defined for the un-
folded frequency spectrum (j) are given,
whereas the two bottom ones are the
v*-vectors that are defined for the
folded frequency spectrum (h). For es-
timators that can be defined in terms of
both v and v* (here ûp and ûS ), the lat-
ter can be computed from the former
with vi* ¼ vi 1 vn"i (when i 6¼ n " i)
or vi* ¼ vi (when i ¼ n " i).

TABLE 2

Basic characteristics of neutrality tests

Variance (n ¼ 30)

Test û1 û2

Mandatory
outgroup u ¼ 1 u ¼ 10 u ¼ 100

d ûp ûS 0.18 8.2 728
f ûp ûj1

No 1.62 51.9 4,084
d2 ûS ûj1

0.93 25.8 1,910
y ûp"j1

ûp"j1
0.12 6.2 558

h ûp ûH 0.98 40.0 3,417
f * ûp ûh1

Yes 1.71 63.8 5,314
d2* ûS ûh1

0.99 34.5 2,805
y* ûp"h1

ûS"h1
0.12 5.8 524

TV v1i ¼ e"0.9i v2i ¼ 1 1.19 37.1 2,895
v1i ¼ 30

i

! "
0:530 v2i ¼ 1 Yes 2.48 151.4 14,167

Frequency Spectrum Neutrality Tests 253

when compared to all other tests. This is connected to
the low variance of both ûS and ûp. Second, Y and Y *
tests have also a small variance, although they ignore an
important fraction of the data (i.e., singletons). All other
tests have a similar variance.

This predicts that D typically will be sensitive to low,
medium, and high frequencies and should be more
powerful because it has a relatively low variance under
neutrality. Therefore, it has the potential to be an
excellent neutrality test and it appears that it is often
one of the most powerful tests (Simonsen et al. 1995; Fu
1997). H is sensitive either low or high frequencies;
however, its larger variance predicts that it will be useful
only when the distortion in the u-spectrum is very
strong. In practice, it is powerful only when there is a
large excess of high-frequency polymorphisms. The
singleton tests appear to be good candidates to capture
an excess of singletons, although they neglect other
deviations in the spectrum. The Y and Y * tests have low
variance, although ignoring singletons can lead to low
power especially when they are in excess (Achaz 2008).

Building new tests: To design new neutrality tests
using this framework I started by analyzing the deviation
of the average ûi spectrum, which is expected to be
uniform under the standard models. Furthermore,
because Fu (1995) showed that the covariance between
ji’s is weak when compared to their variance, visual
inspection of the variance of ûi provides a first approx-
imation to the expected variance of ûv and therefore of
their related Tv tests. I studied two deviations from the

standard model: a severe bottleneck and isolated popu-
lations with migration.

The severe bottleneck was simulated as a sudden
change of size from N chromosomes to N/100 that lasts
for a time Tl ¼ 0.1 (in N generations). Accordingly, the
coalescent rates within the bottleneck are accelerated by
0.01 and the simulations were performed as in Simonsen
et al. (1995). Sampling was performed after a time Tb has
elapsed after the bottleneck. The mean and the stan-
dard deviation of ûi are given in Figure 3a for two times,
Tb ¼ 0.03 and Tb ¼ 0.3. Figure 3 shows that most of the
deviation comes from the sites with low frequency.
Therefore, I designed a new test that captures the
deviations within low frequencies. In this test, I used a
first vector of v1i ¼ e"ai, with a ¼ 0.9 and a second
uniform vector v2i ¼ 1. This results in an exponentially
decreasing weight for low-frequency mutations (Figure
3) that is positive for frequency i/n # 0.13. The choice of
a ¼ 0.9 was mostly empirical, although using a ¼ 0.8 or
a ¼ 1 leads to similar results (data not shown). As
stressed in the discussion, this study aims at illustrat-
ing how easy it is to create new tests with enhanced
power; power optimization deserves an entire new
study. A graphical view of the V-vector associated with
this new TV test is given in Figure 3 and its variance is
reported in Table 2. Most of the weight of this test is
given to low frequencies and its variance is comparable
to those of other neutrality tests. The power of this new
test and of D, F, and H is reported in Figure 3. Results
show that the new test outperforms the previous tests

Figure 2.—Neutrality tests. A graphi-
cal view of the weight vectors of four typ-
ical neutrality tests (for n¼ 30). Because
the V-vectors used for neutrality tests are
computed as a difference between two
normalized vectors, all values of V sum
to 0. In the top four panels, the V-vectors
that are defined for the unfolded fre-
quency spectrum (j) are given, whereas
the two bottom ones are the V*-vectors
that are defined for the folded fre-
quency spectrum (h). For estimators
that can be defined in terms of both V
and V* (here D and F *), the latter
can be computed from the former in
the way that vi* can be deduced from vi.

254 G. Achaz

A. B.

Figure 2.3: A graphical view of the weight vectors of θ estimators (A) and of neutrality tests (B)

for n = 30 (Achaz, 2009).

et al., 2012; Keinan and Clark, 2012; Tennessen et al., 2012) have found that humans have an

excess of rare variants compared to the expectation from a constant population size model and

these studies have inferred demographic models with recent exponential population expansion.

2.2.3 Methods for Computing SFS from NGS data

A number of methods have been proposed to compute the SFS directly from DNA sequence data

in the presence of sequencing errors. Yi et al. proposed an empirical Bayes approach to estimate

the joint 2-dimensional SFS between two populations (Yi et al., 2010). Li et al. and Nielsen

et al. separately proposed a maximum likelihood approach to compute the SFS for a single

population (Li, 2011; Nielsen et al., 2012). We provide a detailed review of these methods in

this section, in particular for a maximum likelihood approach with an EM algorithm, because

we use this in chapter 3 and 4.

Empirical Bayes Approach (Yi et al., 2010) Let πj be the posterior probability that a bial-

lelic SNP has a derived allele frequency of j/(2n) in a sample of n diploid individuals. In an

empirical Bayes approach, the derived allele frequency p̂ in a population is first estimated from

all of the individuals in the sample, and then p̂ is used for providing genotype priors assuming

Hardy-Weinberg equilibrium. Based on genotype likelihoods and genotype priors, a dynamic
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programming algorithm is used for calculating the posterior probability πj for each site. The

estimated values of πj can then be used for computing the SFS, either by averaging over πj or

by using a maximum a posteriori probability estimate of j.

Maximum Likelihood Approach with an EM algorithm (Li, 2011; Nielsen et al., 2012)

Consider a sample of n diploid individuals and a genetic region of length l sites. The SFS for

n individuals across l sites is denoted by a (2n + 1)-dimensional vector, ξ = (ξ0, ξ1, . . . , ξ2n)′,

where ξi represents a proportion of sites with the allele frequency in a sample of i/(2n) and∑2n
k=0 ξ = 1.

Let Dij represent aligned short reads sequencing data for an individual i at a site j, and

consider a matrix D to denote the observed sequencing data for all n individuals in a region of l

sites:

D =


D1

...

Dl

 =


D11 . . . D1n

...
...

Dl1 . . . Dln

 , i = 1, . . . , n, j = 1, . . . , l.

Let Gij denote a genotype for the individual i at the site j, defined as the number of derived

alleles (Gij ∈ {0, 1, 2}). Consider a matrix G to denote the genotypes for n individuals across l

sites:

G =


G1

...

Gl

 =


G11 . . . G1n

...
...

Gl1 . . . Gln

 , i = 1, . . . , n, j = 1, . . . , l.

Let Xi denote the total number of the derived allele for the sample of n diploid individuals at

the site i:

Xi =
n∑
j=1

Gij, 0 ≤ Xi ≤ 2n

and let X denote the vector of Xi across l sites:

X = (X1 . . . Xl)
′.
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The E step of the EM algorithm is computing the expectation of the complete-data log like-

lihoods given the previous estimate of a parameter. In this example,

Q(ξ|ξ(m)) = E[ lnP (D,X|ξ)|D, ξ(m)]

=
l∑

i=1

E[ lnP (Di, Xi|Φ)|Di, ξ
(m)] assuming independence among loci

=
l∑

i=1

2n∑
x=0

P (Xi = x|Di, ξ
(m)) lnP (Di, Xi = x|ξ)

=
l∑

i=1

2n∑
x=0

P (Xi = x|Di, ξ
(m)) ln [P (Di|Xi = x)P (Xi = x|ξ)]

=
l∑

i=1

2n∑
x=0

P (Xi = x|Di, ξ
(m)) lnP (Xi = x|ξ) + C,

=
l∑

i=1

2n∑
x=0

P (Xi = x|Di, ξ
(m)) ln ξx + C

Next, the M step of the EM algorithm is maximizing the expectation, Q(ξ|ξ(m)) with respect

to a parameter ξ. Define

Q̃ = Q(ξ|ξ(m)) + λ

(
1−

2n∑
k=0

ξk

)
Because the partial derivative of Q̃ with respect to ξx leads to

∂Q̃

∂ξx
=

l∑
i=1

1

ξx
P (Xi = x|Di, ξ

(m))− λ = 0,

we have

ξ̂x =

∑l
i=1 P (Xi = x|Di, ξ

(m))

λ

Moreover, because the partial derivative of Q̃ with respect to λ leads to

∂Q̃

∂λ
= 1−

2n∑
k=0

ξk = 0,

we have λ̂ = l. Hence, we can update each element of the SFS ξ as follows:

ξ(m+1)
x =

1

l

l∑
i=1

P (Xi = x|Di, ξ
(m))
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Because by Bayes theorem, we have

P (Xi = x|Di, ξ) =
P (Di|Xi = x)P (Xi = x|ξ)∑
y P (Di|Xi = y)P (Xi = y|ξ) =

hixξx∑
y hiyξy

where hix = P (Di|Xi = x) denotes a site likelihood for the allele frequency x/(2n), we can

update each element of the SFS, ξ, as follows:

ξ̂(m+1)
x =

1

l

l∑
i=1

hixξ
(m)
x∑2n

j=0 hijξ
(m)
j

x = 0, 1, .., 2n

To run the EM algorithm, we need to compute the site likelihood function hix = P (Di|Xi =

x) for all sites (i = 1, . . . , l) and all derived allele counts (x = 0, 1, . . . , 2n), and then store them

in l × (2n+ 1) matrix H:

H =


h1

...

hl

 =


h1,0 h1,1 . . . h1,2n

...
...

hl,0 hl,1 . . . hl,2n


where

hi,x = P (Di|Xi = x)

=
2∑

g1=0

· · ·
2∑

gn=0

P (Gi = (g1, ..., gn)|Xi = x)P (Di|Gi = (g1, ..., gn))

where Gi is a genotype configuration for n individuals at site i.

Assuming independence among individuals, we have

P (Di|Gi = (g1, ..., gn)) =
n∏
k=1

P (Dik|Gik = gk) =
n∏
k=1

Lik(gk)

where Lik(gk) = P (Dik|Gik = gk) represents a genotype likelihood for a genotype gk for

individual k at site i. Also, we can derive

P (Gi = (g1, ..., gn)|Xi = x) =

∏n
k=1

(
2
gk

)(
2n
x

)
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Figure 2.4: P (G|X)

by a probabilistic argument (Figure 2.4).

Hence, we have the following equation for the site likelihood, hi,x, for the derive allele count

x at site i:

hi,x = P (Di|Xi = x)

=
1(
2n
x

) 2∑
g1=0

· · ·
2∑

gn=0

I

(
n∑
k=1

gk = x

)
n∏
k=1

(
2

gk

)
Lik(gk).

Nielsen and co-workers implemented a dynamic programming algorithm that was originally

proposed by Li in the software package ANGSD (Li et al. 2012 and Nielsen et al. 2012). The

dynamic programming algorithm updates the site likelihood vector by adding one individual at

a time. For ease of notation, we drop a subscript i from the site likelihood vector hi at site i. To

compute the site likelihood vector h = (h0, h1, . . . , h2n)′ where

hx =
1(
2n
x

) 2∑
g1=0

· · ·
2∑

gn=0

I

(
n∑
k=1

gk = x

)
n∏
k=1

(
2

gk

)
Lk(gk),

let’s define the (2j+1)-dimensional site likelihood vector for j individuals zj = (zj0, z
j
1, . . . , z

j
2j)
′
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where

zjx =
2∑

g1=0

· · ·
2∑

gj=0

I

(
j∑

k=1

gk = x

)
j∏

k=1

(
2

gk

)
Lk(gk)

where j = 1, .., n and x = 0, 1, ..., 2j.

Given zj−1, each element of zj is computed by the following recurrence:

zjx =
2∑

g1=0

· · ·
2∑

gj−1=0

[
j−1∏
k=1

(
2

gk

)
Lk(gk)

]
2∑

gj=0

(
2

gj

)
Lj(gj)I

(
j−1∑
k=1

gk + gj = x

)

=
2∑

g1=0

· · ·
2∑

gj−1=0

[
j−1∏
k=1

(
2

gk

)
Lk(gk)

]
× [Lj(0)I

(
j−1∑
k=1

gk = x

)
+

2Lj(1)I

(
j−1∑
k=1

gk = x− 1

)
+ Lj(2)I

(
j−1∑
k=1

gk = x− 2

)
]

= Lj(0)zj−1x + 2Lj(1)zj−1x−1 + Lj(2)zj−1x−2

Finally, each element of zn is rescaled by a corresponding factor
(
2n
x

)
in order to obtain the site

likelihood vector h

hx =
znx(
2n
x

)
This algorithm requires runtime of O(n2) for each site, because updating the site likelihood

vector by adding one individual at a time is done in a triangular fashion, i.e. first computing 3

elements for one individual, then computing 5 elements for two individuals, etc. (3 + 5 + 7 +

..+ (2n+ 1) =
∑n

i=1(2i+ 1) = n2 + 2n).

2.3 Detection of Positive Selection Using Genetic Data

Now, we turn our interests to an applied problem of detecting selective sweeps. In chapter 5,

we will present our recent works of analyzing high-coverage NGS data to find genetic signa-

tures of adaptive evolution during early dog domestication and this section provides a detailed

review of the population genetic theory of the selective sweeps and existing methods to de-

tect selective sweeps in the genome. We want to emphasize that the section 2.3.1 is a part of
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the previously published review in Philosophical Transactions of the Royal Society Biological

Sciences (Human population structure and the adaptive response to pathogen-induced selec-

tion pressures. Novembre J and Han E, Phil. Trans. R. Soc. B (2012) 367, 878-886, doi:

10.1098/rstb.2011.0305).

2.3.1 Selective Sweeps: Hard Sweeps vs. Soft Sweeps

In evolutionary genetic studies of natural selection, two major outcomes of natural selection are

now distinguished, hard sweeps and soft sweeps (Pritchard et al., 2010). Hard sweeps are the

outcome of a single instance of an advantageous mutation arising and spreading through a popu-

lation. Because it arises from a single instance of mutation, the advantageous variant necessarily

begins on a single chromosome, which defines a unique ancestral advantageous haplotype (fig-

ure 2.5a). As this ancestral haplotype increases in frequency, or ’sweeps’ through the population,

it brings along neutral or nearly neutral genetic variants found on the ancestral haplotype. This

impact on linked variation owing to selection has been understood for some time and was first

called genetic hitchhiking by Maynard Smith & Haigh (Smith and Haigh, 1974).

Recombination plays an important role in determining the chromosomal extent of genetic

hitchhiking during a hard sweep. As one moves along the chromosome in either direction away

from the advantageous mutation, the chromosomes carrying the advantageous mutation will

show less and less of the ancestral haplotype because of the shuffling effects of recombination

(figure 2.5). As a result, after the advantageous allele reaches fixation (a frequency of 100%),

one finds the regions around the selected locus have a complete lack of genetic diversity (even

at neutral sites) and as one looks further from the selected locus variation is restored to back-

ground levels. This trough of diversity leaves a strong observable pattern in the genome, and is

one hallmark of a hard sweep as opposed to a soft sweep. Regions with an excess of rare vari-

ants might indicate regions where a hard sweep has finished and new mutations are entering the

population. Regions where one haplotype has low diversity relative to all others might indicate
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regions partway through the hard sweep process so called partial sweeps. The first generation

of selection scan methods was built to capture these signatures (e.g. Tajimas D (Tajima, 1989),

integrated haplotype score (iHS) (Voight et al., 2006), cross-population extended haplotype ho-

mozygosity (XP-EHH) (Sabeti et al., 2007), the composite likelihood ratio test (Nielsen et al.,

2005), composite of multiple signals test (Grossman et al., 2010)).

In contrast, models of soft sweeps are defined by the occurrence of the advantageous mu-

tation on several haplotypes (Pennings and Hermisson, 2006b). This can occur via two major

routes 1) when selection first begins to act, the advantageous mutation may be pre-existing in

the population on multiple haplotypes or 2) while selection is taking place on the first instance of

an advantageous mutation, additional mutations may arise on different haplotypes and likewise

begin to spread. Pennings and Hermison (Pennings and Hermisson, 2006b,a; Hermisson and

Pennings, 2005) have explored models of soft sweeps in depth. Major factors influencing the

rate are the total mutation rate and selection coefficient in favor of the advantageous allele and

the effective population size. After the completion of a soft sweep at a single locus, the advanta-

geous allele is fixed in the population, but neutral variants at nearby locations are often not fixed

(figure 2.5b). This process leads to much less obvious signatures of selection the signature in

single nucleotide polymorphism (SNP) data is weak because one does not expect a big reduction

in diversity at nearby loci.

2.3.2 Tests of Selective Sweeps

By using patterns of genetic variation within species (polymorphism) and between species (di-

vergence), we can detect genomic regions that have been a target of recent positive selection. The

fixation of a beneficial allele in a population distorts the patterns of neutral variation at linked

loci, thereby leaving distinct signatures in a region around the locus under selection. These in-

clude reducing nucleotide diversity around the selected locus, increasing the fraction of rare and

high-frequency derived alleles in the site frequency spectrum (SFS), and increasing the extent
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Figure 2.5: Hard and soft sweeps. (a) Hard sweeps. A de novo advantageous mutation (red

G allele) arises on a single haplotype (marked in yellow). The advantageous allele increases

in frequency and neutral or nearly neutral genetic variants at nearby locations also increase in

frequency (genetic hitchhiking). As selection proceeds, recombination shuffles alleles off the

ancestral haplotype (marked in yellow), and as a result after the completion of hard sweeps

(fixation of the advantageous mutation), there is a trough in diversity around the selected locus

with a sizeable reduction in genetic diversity at the location of the selected locus. (b) Soft

sweeps. The advantageous mutation (red G allele) is found on multiple haplotypes (marked in

yellow and green). After the completion of a soft sweep, the advantageous allele is fixed, but its

less likely nearby neutral variants are also fixed. This leads to a small reduction in diversity at

locations near the selected locus.
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of allele frequency differences between populations, and extended linkage disequilibrium (LD)

segments (Przeworski 2002, Pritchard et al. 2010). Hence, we can identify the targets of recent

or ongoing selective sweeps by searching the genome for regions that show these signatures

(Nair et al. 2003, Wright et al. 2005).

Diversity-based test: Local Reduction in Genetic Variations An important signature of

selective sweeps is a local reduction in genetic variation around the selected site relative to its

chromosomal neighbourhood or genomewide average (Smith and Haigh, 1974). Several studies

have used this feature to look for loci under selection (Oleksyk et al. 2008, and others). For

example, with a simple scan method, the genome is divided by sliding windows within which

the average polymorphism (often measured as heterozygosity or average pairwise differences) is

computed, and then regions with local dip in genetic diversity are proposed as candidate regions

under selection. While the simple scan method is easy to implement, it is often difficult to

distinguish this signature from the pattern generated by demographic history, such as population

bottlenecks or recent founder effects, which can also reduce variation across the genome. For

example, SNP analyses of domestic dogs and cats often show long stretches of homozygous

regions as a result of strong bottleneck during domestication and artificial selection during breed

formation (Lindblad-Toh et al. 2005, Pontius et al. 2007).

SFS-based test: Changes in the shape of SFS After the sweep is completed, new mutations

gradually appear in the region. These mutations are initially present at low frequency, as their

chances of increasing frequency in a population under drift are very low. Hence, in the region

under selection, the expected shape of the SFS is characterized by a relative increase in the

proportion or either low- or high-frequency mutations (Tajima, 1989; Fu and Li, 1993; Fay and

Wu, 2000). This shift in the SFS can be used in selection tests (see Neutrality tests).
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Fst-based test: Allele Frequency Differences between Populations Differential selection

pressures between populations can generate unusually high allele frequency differences between

populations than expected under drift. The classic measure of allele frequency differentiation

between populations is Wrights FST statistic (Wright, 1951). We can compute FST values across

the genome, construct an empirical distribution of FST , and then look for outliers representing

a set enriched for loci under selection.
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CHAPTER 3

Characterizing biases in population genetic inferences from

low coverage sequencing data

The work described in this chapter has been previously published in Molecular Biology and

Evolution (Characterizing bias in population genetic inferences from low-coverage sequencing

data. Han E, Sinsheimer J, Novembre J, Mol Biol Evol. (2014) 31: 723-35. doi: 10.1093/mol-

bev/mst229).

3.1 Introduction

The availability of full-genome sequence data promises to increase understanding of molecular

evolution in a broad array of organisms. These large-scale data sets also raise statistical chal-

lenges because inferred genotypes from sequencing data are often inaccurate due to high error

rates (e.g., base-calling and alignment errors) (Bentley et al., 2008; Nielsen et al., 2011). If

these errors not accounted for, population genetic inference based on the genotype calls could

be misleading (Pool et al., 2010).

Population genetic inference often proceeds by compressing large-scale variation data into

simple and informative summary statistics, such as allele frequencies, heterozygosity, or nu-

cleotide diversity. The distribution of allele frequencies across sites, the so-called site frequency

spectrum (SFS), is of primary interest, as many summary statistics are simple functions of the

SFS and a number of population genetic inferences can proceed directly from the SFS. For ex-
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ample, a family of unbiased estimators of the population mutation rate θ, called θ estimators,

is a simple function of the SFS (Achaz, 2009). These include Wattersons θ estimator that uses

the number of segregating sites (Watterson, 1975) and Tajimas θ estimator that is based on the

average number of pairwise nucleotide differences between two sequences (Tajima, 1983). In-

ferring demographic history (such as rates of ancestral population growth) can proceed from the

SFS directly (Gutenkunst et al., 2009) or using approximate Bayesian computation approaches

(Beaumont, 2010) that often rely on summary statistics of the SFS. Another use of the SFS is in

testing neutrality based on the frequency spectrum (Tajima, 1989; Fu and Li, 1993; Fay and Wu,

2000; Achaz, 2008, 2009). Neutrality tests based on the SFS compare different estimators of θ

to determine whether the observed SFS deviates from that expected under the standard constant-

size equilibrium mutation-drift model. Large deviations from a background distribution have

been used to detect local gene regions under selection, and this approach is used in many empir-

ical genome-wide selection scans (Andolfatto, 2007; Begun et al., 2007; Andersen et al., 2012;

Axelsson et al., 2013).

A number of approaches can be taken to infer the SFS from NGS data. These can be clas-

sified into two broad categories. The first of these is a call-based approach, in which individ-

ual genotypes are first inferred from aligned short reads and then the SFS is estimated based

on these inferred genotypes by allele counting. To infer genotypes from short-read sequenc-

ing data, a number of programs have been developed, which identify single-nucleotide variants

(SNVs) and call genotypes. Among them, two of the most popular tools are the Genome Anal-

ysis Toolkit (GATK) (McKenna et al., 2010; DePristo et al., 2011) and SAMtools (Li et al.,

2009a; Li, 2011). The details of the differences in the implementation of SAMtools and GATK

are presented in table 3.1. Both programs determine whether a site is polymorphic based on the

pileup of reads at a given site (SNV calling) and estimate individual genotypes if the site is vari-

able (genotype calling). Each program has two different SNV and genotype calling pipelines, a

single-sample and a multisample calling mode. With the single-sample calling pipeline, aligned

short-read sequencing data is analyzed for one individual at a time and then the most likely
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genotypes for that individual alone are determined. In contrast, with the multisample calling

pipeline, aligned short-read sequencing data is analyzed for all individuals in a sample simul-

taneously and then the most likely genotype configurations for all individuals are determined.

Imputation methods represent an extension of multisample calling in which a reference panel is

used and often linkage disequilibrium (LD) from multiple variant sites is integrated into mak-

ing calls at any one variant (Li et al., 2009b). In practice, imputation methods are generally

restricted to well-studied species with reference samples such as the 1000 Genomes panel in hu-

mans (1000 Genomes Project Consortium, 2012) and the Drosophila Genome Reference panel

in Drosophila melanogaster (Mackay et al., 2012).

Table 3.1: Comparison of a GATK and SAMtools’s multisample calling pipeline.

and then the SFS is estimated based on these inferred geno-
types by allele counting. To infer genotypes from short-read
data, a number of programs have been developed, which
identify single-nucleotide variants (SNVs) and call genotypes.
Among them, two of the most popular tools are the Genome
Analysis Toolkit (GATK) (McKenna et al. 2010; DePristo et al.
2011) and SAMtools (Li, Handsaker, et al. 2009; Li 2011). The
details of the differences in the implementation of SAMtools
and GATK are presented in table 1. Both programs determine
whether a site is polymorphic based on the pileup of reads at
a given site (SNV calling) and estimate individual genotypes if
the site is variable (genotype calling). Each program has two
different SNV and genotype calling pipelines, a single-sample
and a multisample calling mode. With the single-sample call-
ing pipeline, aligned sequencing read data are analyzed for
one individual at a time and then the most likely genotypes
for that individual alone are determined. In contrast, with the
multisample calling pipeline, aligned sequencing read data are
analyzed for all individuals in a sample simultaneously and
then the most likely genotype configurations for all individ-
uals are determined. Imputation methods represent an ex-
tension of multisample calling in which a reference panel is
used and often linkage disequilibrium (LD) from multiple
variant sites is integrated into making calls at any one variant
(Li, Willer, et al. 2009). In practice, imputation methods are
generally restricted to well-studied species with reference
samples such as the 1000 Genomes panel in humans
(Abecasis et al. 2012) and the Drosophila Genome
Reference panel in Drosophila melanogaster (Mackay et al.
2012).

The second approach is a direct estimation approach, in
which the SFS or summary statistics are directly inferred from
aligned short reads. This approach makes an implicit assump-
tion that inferred genotypes from sequencing data are inac-
curate and model this uncertainty. Several approaches have
been developed in this framework (Johnson and Slatkin 2008;
Lynch 2008, 2009; Liu et al. 2009, 2010; Kang and Marjoram
2011; Keightley and Halligan 2011; Kim et al. 2011). Recently,

Li (2011) proposed an EM algorithm and Nielsen et al. (2012)
proposed an approach using Broyden–Fletcher–Goldfarb–
Shanno (BFGS) steps to obtain the maximum likelihood
estimate (MLE) of the SFS based on individual genotype
likelihoods across all individuals and all sites. Both of these
methods are implemented in the ANGSD software (Nielsen
et al. 2012).

In this article, we use detailed, realistic simulations to
investigate the accuracy of these approaches to infer the
SFS from NGS data and the impact of bias in the inferred
SFS on the downstream analysis, such as genome-wide selec-
tion scans based on rank statistics and parameter estimates
for a given demographic model. Motivated by an interest in
populations and species that have nonexistent or poor im-
putation panels, we focused here on two-stage approaches
that use single-sample and multisample calls to infer the SFS.
On the basis of our findings, we conclude with guidelines and
recommendations for conducting population genetic infer-
ence using low-coverage sequencing data to avoid spurious
conclusions.

Results

Evaluating Accuracy of the Inferred SFS under the
Standard Model
We first evaluated the performance of the two SFS estimation
approaches (the call-based and direct estimation approach)
as a function of sequencing coverage. For this comparison, we
simulated 100 replicates of sequencing data for 10 diploid
individuals each from genomic regions of length 100 kb
under the standard model. The accuracy of the inferred SFS
was evaluated by two metrics: 1) the shape of the inferred SFS
in comparison to the ground-truth SFS (fig. 1A and B) and 2)
the distance between the inferred SFS from the ground-truth
SFS as measured by the Kullback–Leibler divergence metric
(KL divergence, see Materials and Methods) (fig. 1C).

We found that the direct estimation approach (repre-
sented as Direct) outperformed the call-based approach
(represented as Single-GATK, Multi-GATK, Single-SAMtools,

Table 1. Comparison of a GATK and SAMtools’s Multisample Calling Pipeline.

Step GATK SAMtools

[Calculating Genotype Likelihoods] For each individ-
ual, at each site, the likelihoods for 10 possible
genotypes (AA,GG,CC,TT,AC,AG,AT,CG,CT,GT) are
computed based on aligned reads.

Independent errors assumed. Dependent errors assumed.

[SNP calling] At each site, determine whether a site
is polymorphic based on posterior probabilities of
nonreference allele counts P(XajD,!) where ! is
an expected SFS under the standard model and
D is aligned reads.

A site is polymorphic if a
arg maxk PðX ¼ kjD, !Þ > 0:

A site is polymorphic if
PðX ¼ 0jD, !Þ< cutoff (default = 0.5).

[Genotype Calling] If a site is considered polymor-
phic, the maximum a posteriori genotype is as-
signed to each individual.

At each site, the same genotype prior
probabilities are used:
P(AA) = 1$ 3h/2
P(Aa) = h
P(aa) = h/2,

where h is an expected heterozygosity
(default = 0.001)

At each site, genotype prior probabilities
are computed based on the estimated
nonreference allele frequency q and
assuming Hardy–Weinberg equilibrium:
P(AA) = p2

P(Aa) = 2pq
P(aa) = q2

aX denotes nonreference allele counts in a sample of n individuals.
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The second approach is a direct estimation approach, in which the SFS or summary statistics

are directly inferred from aligned short reads. This approach makes an implicit assumption that

inferred genotypes from sequencing data are inaccurate and models this uncertainty. Several

approaches have been developed in this framework (Johnson and Slatkin, 2008; Lynch, 2008,

2009; Liu et al., 2009, 2010; Kang and Marjoram, 2011; Keightley and Halligan, 2011; Kim

et al., 2011). Recently, Li (2011) proposed an EM algorithm and Nielsen et al. (2012) proposed

an approach using Broyden-Fletcher-Goldfarb-Shanno (BFGS) steps to obtain the maximum
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likelihood estimate (MLE) of the SFS based on individual genotype likelihoods across all indi-

viduals and all sites. Both of these methods are implemented in the ANGSD software (Li, 2011;

Nielsen et al., 2012).

In this chapter, we use detailed, realistic simulations to investigate the accuracy of these

approaches to infer the SFS from NGS data and the impact of bias in the inferred SFS on the

downstream analysis, such as genome-wide selection scans based on rank statistics and parame-

ter estimates for a given demographic model. Motivated by an interest in populations and species

that have nonexistent or poor imputation panels, we focused here on two-stage approaches that

use single-sample and multisample calls to infer the SFS. On the basis of our findings, we con-

clude with guidelines and recommendations for conducting population genetic inference using

low-coverage sequencing data to avoid spurious conclusions.

3.2 Materials and Methods

To compare different approaches for estimating the SFS from sequencing data, we first con-

ducted population genetic simulations to produce haplotype data and then overlaid sequencing

errors assuming a paired-end short read sequencing approach.

3.2.1 Population Genetic Simulations

We simulated phased haplotypes for individuals by coalescent simulations under three differ-

ent scenarios: the standard model (a neutral model with a constant population size) and two

deviations from the standard models: a neutral model with an exponential population growth

and positive selection on a new beneficial allele (a hard sweep model where a newly arisen

beneficial allele increases in frequency and ultimately is fixed in a population). All coalescent

simulations were performed using MSMS (Ewing and Hermisson, 2010) with an effective pop-

ulation size of 10,000 diploid individuals, a mutation rate per-base per-generation of 2.5× 10−8
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and a recombination rate of 1× 10−8. To simulate exponential population growth, we assumed

that the population began with an initial population size of 10,000 to reach a present size of

40,000 in 16,000 generations (i.e., growth rate of 0.01%). To simulate exponential population

decline, we used the initial population size of 40,000 that reached a present size of 10,000 in

16,000 generations (i.e., growth rate of -0.01%). To simulate positive selection, we introduced

a new advantageous mutation with a selective advantage of 0.01 in the middle of the simulated

region and conditioned the simulations on the allele just reaching fixation in a population. Un-

der each scenario, we simulated 100 replicates of 100 kilobase pair (kb) genomic regions for a

sample size of 10 diploid individuals to evaluate the accuracy of the estimated SFS. To perform

genome-wide selection scans and parameter estimation for the exponential population growth,

we simulated 10 megabase pair (Mb) genomic regions for a sample size of 10 diploid individu-

als. Finally, we randomly combined pairs of haplotypes to create genotype data, an assumption

of panmixia.

3.2.2 Sequencing Experiment Simulations

To simulate 100-bp paired-end short read sequencing data for a given individual, we first sam-

pled one of two haplotypes with an equal probability and then picked a starting position of the

first read uniformly and a starting position of the second read by adding a paired-end distance

from the last position of the first read. The paired-end distance was chosen according to a Pois-

son distribution with a rate set to 204 bp based on analysis of an Illumina 100 bp paired-end

library of Drosophila melanogaster sequences (results not shown). On the basis of the two start-

ing positions for the paired reads, we generated each read based on the underlying haplotype

but with errors introduced according to the empirical distribution of base quality scores (after

recalibration) from the same sequence library. The distribution of observed error rates from

sequencing experiment simulations is shown in figure 3.11.
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3.2.3 Estimating the SFS

We assessed two ways to infer the SFS: the call-based and direct estimation approaches. With

the call-based approach, we first inferred individual genotypes from aligned sequencing data and

then computed the SFS from genotype calls by simple allele counting. In this case, we ignored

uncertainty associated with genotype calls. To infer individual genotypes, we used one of two

freely available programs, GATK (version 2.1.11) and SAMtools (version 1.4), and in each

program we used either their single-sample or multisample calling procedures. Through this

article, we refer to the results of these procedures as Single-GATK, Single-SAMtools, Multi-

GATK, and Multi-SAMtools. To reconstruct the SFS from genotype calls by allele counting,

we only used fully observable sites: the sites in which all individuals in a sample have at least

one short read covering the site (hence, a genotype is observable for all individuals). With

the direct estimation approach, we directly estimated the SFS from aligned sequencing data

without inferring genotypes (Nielsen et al. 2012). We used the freely available program ANGSD

(version 0.522) with an EM algorithm option to obtain the MLE of the SFS (Nielsen et al. 2012).

We refer to results of this procedure as Direct.

3.2.4 Computing Summary Statistics for Population Genetic Inference

On the basis of the estimated SFS, we computed θ estimators and neutrality test statistics. We

computed four θ estimators: 1) two original θ estimators, Wattersons θ estimator (θ̂s) based

on the number of segregating sites (S) and Tajimas θ estimator (θ̂π) based on the average pair-

wise differences (π), and 2) two more recent θ estimators that ignore singletons to increase

robustness to sequencing error, one derived from Wattersons θ estimator (θ̂s−1) and one derived

from Tajimas θ estimator (θ̂π−1) (Achaz, 2008, 2009). In the absence of sequencing errors and

under a strict neutral model, these θ estimators are unbiased estimators of a population muta-

tion rate θ = 4Neµ, where Ne is an effective population size and µ is a mutation rate per-site

per-generation. For neutrality tests based on the SFS, we used Tajimas D as it is a well used
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and powerful test of neutrality (Simonsen et al., 1995; Fu, 1997) and Achazs Y (Achaz, 2008),

which is derived from Tajimas D by ignoring singletons. Without sequencing errors and under

the standard model with a constant population size, the expected value of D and Y are near zero

regardless of sample size (Tajima, 1983; Achaz, 2009). The variance of D is expected to be one,

but recombination reduces the variance in D to be smaller than one (Tajima, 1989).

3.2.5 Quantification of Accuracy of the SFS Estimation

To evaluate the accuracy of the SFS estimated from sequencing data as a function of coverage,

we computed the KL divergence of the estimated SFS from the ground-truth SFS (computed

from genotype data) for each SFS estimation method. We also evaluated the accuracy of the

estimated SFS in each nonreference allele frequency bin i/(2n) in a sample of n diploid individ-

uals. For each nonreference allele frequency bin, we computed a relative deviation of the fraction

of sites with frequency i/(2n) in the estimated SFS fseq( i
2n

) from that in the ground-truth SFS

ftrue(
i
2n

):

Relative deviation (
i

2n
) =

fseq(
i
2n

)− ftrue( i
2n

)

ftrue(
i
2n

)

To compare ground-truth SFS to the estimated SFS by each allele frequency bin, we made

error matrices E of dimension (2n + 1) by (2n + 1). Each element Eij of the error matrix

E (i, j = 0, 1, ..., 2n) is the fraction of the sites where the observed counts (the nonreference

allele counts at each site computed from sequencing data) are j and the ground-true counts

(the nonreference allele counts from genotype data) are i. Hence, diagonal elements Eii of E

represent the fraction of correctly estimated sites (true positives) for each allele frequency bin

i/(2n).
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3.2.6 Genome-Wide Selection Scans

To simulate a genome-wide selection scan, we generated 10Mb genomic regions in which a new

beneficial mutation arose in the middle of the region and identified a candidate region of positive

selection by an outlier detection approach scan (Andolfatto, 2007; Begun et al., 2007; Andersen

et al., 2012; Axelsson et al., 2013):

1. Estimated the SFS by using the call-based or the direct estimation approach in sliding

windows of size 100Kb with an increment of 20Kb.

2. Computed Tajimas D associated with each window based on the estimated SFS.

3. Converted Tajimas D to empirical P values based on their ranks.

4. Identified outlier windows if the empirical P value associated with a given window is less

than 1%. The cutoff of 1% was chosen based on visual identification of an outlier mode

presumed to represent selected loci (figure 3.15).

3.2.7 Estimating Parameters in an Exponential Population Growth Model

For demographic inference, we used the python module dadi (Gutenkunst et al., 2009). Dadi

finds MLEs of parameters for a user-specified demographic model based on the observed SFS.

We simulated a 10Mb genomic region under the exponential population growth model and then

estimated the present population size (N) and time when the growth had started (T, measured in

units of 2 N generations). We found the MLEs first by a grid search to find a peak of likelihood

surface and then by BFGS steps to localize the peak.
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3.3 Results

3.3.1 Evaluating Accuracy of the Inferred SFS under the Standard Model

We first evaluated the performance of the two SFS estimation approaches (the call-based and

direct estimation approach) as a function of sequencing coverage. For this comparison, we sim-

ulated 100 replicates of sequencing data for 10 diploid individuals each from genomic regions of

length 100Kb under the standard model. The accuracy of the inferred SFS was evaluated by two

metrics: (1) the shape of the inferred SFS in comparison to the ground-truth SFS (figure 3.1A

and B) and (2) the distance between the inferred SFS from the ground-truth SFS as measured

by the KullbackLeibler divergence metric (KL divergence, see Materials and Methods) (figure

3.1C).

We found that the direct estimation approach (represented as Direct) outperformed the call-

based approach (represented as Single-GATK, Multi-GATK, Single-SAMtools,and Multi-SAMtools)

across all coverage ranges (figure 3.1). The inferred SFS by the direct estimation approach was

most similar to the ground-truth SFS. In contrast, the estimated SFS by the call-based approach

became less accurate as coverage decreased and most of the deviation came from the sites with

low allele frequency, such as singletons and doubletons (figure 3.1A and B). For higher cov-

erage data (10X per individual), the estimated SFS by the call-based methods approaches the

ground-truth SFS, but the difference does not become negligible until 20X or higher (data not

shown).

We also found that, depending on the genotyping pipeline (single-sample or multisample

calling), the call-based approach resulted in different levels of performance in estimating the

SFS. Interestingly, bias at the sites with rare variants went in opposite directions single-sample

calling led to overestimation of rare variants, whereas multisample calling led to underestima-

tion of rare polymorphisms (figure 3.1A and B). At coverage 2X, on average, singleton calls by

single-sample calling were increased by more than 100% and doubleton calls were increased by
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90%, thus leading to a skew in the SFS toward rare variants. In comparison, singleton calls by

multisample calling were decreased by 60% and doubleton calls were decreased by 10%. This

led to a distortion of the observed SFS, so that singletons were observed less often than double-

tons, which is unexpected under the standard model. Overall though, we observed that the call-

based approach with multisample calling (represented as Multi-GATK and Multi-SAMtools)

performed better than the call-based approach with single-sample calling (represented as Single-

GATK, Single-SAMtools) as reflected by the smaller KL divergence for multisample calling

(figure 3.1C).

The opposite performance of the single-sample and multisample caller (i.e., the multisample

caller leading to underestimation of rare variants, whereas single-sample caller leading to over-

estimation of rare variants) is likely because a small number of erroneous reads strongly affects

a single-sample caller, whereas a small number of correct alternate reads tends to be ignored

in multisample caller. For example, at a site for an individual, suppose that we observe three

aligned reads with two reference bases (R) and one nonreference base (V). If the base quality is

reasonable, a single sample caller will often weigh the nonreference base as a real variant and

produce a heterozygote call (G = R/V) even though a site is truly fixed for a reference allele.

In contrast, if all other individuals are fixed for the reference, the multisample caller will more

often consider the nonreference base as a sequencing error and produce a homozygote call (G =

R/R) even though a site is a truly singleton site and reads come from a heterozygous individual.

Finally, controlling for the genotype calling pipeline, the KL divergence was smaller for

SAMtools than GATK (figure 3.1C). Consistent with this, we observed that SAMtools led to

less overestimation (with single-sample calling) or less underestimation (with multisample call-

ing) problems at sites with low frequency (figure 3.1A and B). That said, SAMtools appears to

be systematically underestimating minor allele frequencies, which causes underestimation for

low-frequency nonreference alleles and overestimation for high-frequency nonreference alleles.

Around frequency 1/2, SAMtools either underestimates or overestimates nonreference allele fre-
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quencies (depending on which allele is minor) leading to the lowest accuracy around frequency

1/2 (figure 3.8). The different performance between GATK and SAMtools might be due to dif-

ferent models for calculating genotype likelihoods (step 1 in table 3.1) and different priors for

inferring genotypes (step 3 in table 3.1).

3.3.2 Impact of Filtering

When analyzing sequencing data, researchers often use strict filters to account for uncertainty

associated with genotype calls. A common practice is to use genotype calls that exceed some

threshold for genotype quality (GQ) or depth of coverage (DP) and treat less confident genotype

calls as missing data. However, these filters can adversely affect SFS estimation based on geno-

type calls (Johnson and Slatkin, 2008; Kim et al., 2011). Therefore, we explored whether it is

better to estimate the SFS with filtering or without filtering. As a filter, we used a combination

of GQ of 0 or 20, and DP of 0 or half of mean coverage (i.e., 1 for 2X, 2 for 5X, 5 for 10X,

and 10 for 20X). Figure 3.2 shows that filtering based on GQ or DP does not alleviate the bias

associated with called-based approaches.

3.3.3 Impact on θ Estimators and on Neutrality Tests under the Standard Model

Next, we investigated the impact of bias in inferred SFS on θ estimators and a neutrality test.

With the call-based approach, both θ estimators and the neutrality test were biased. The bias

direction depended on the genotype calling pipeline (figure 3.3, call-based): with the single-

sample calling pipeline, θ̂s and θ̂π were overestimated and Tajima’s D was negatively skewed

because of an excess of low frequency variants in the inferred SFS, whereas with the multisample

calling pipeline, θ̂s and θ̂π were underestimated and Tajima’s D was skewed toward positive

values due to a deficit of low frequency variants in the inferred SFS. Comparing θ̂s and θ̂π,

the bias was bigger in θ̂s than in θ̂π for a sample size of 10. This is because adding a new

artificial singleton by sequencing errors adds a new segregating site but adds only 2/10 to the
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average pairwise differences. In contrast, for the direct estimation approach, both θ̂s and θ̂π were

unbiased (mean θ̂s and θ̂π were close to true value of 0.001) and consequently Tajima’s D was

unbiased (mean D was close to zero as expected under the standard model (figure 3.3, Direct).

Motivated by the fact that sequencing errors typically appear as artificial singletons and

result in a false excess of observed singletons, Achaz (2008) proposed to ignore singletons when

computing θ estimators to reduce bias while retaining a powerful enough test to detect deviations

from the standard model. We explored if using Achaz’s correction followed by the call-based

approach can reduce bias in θ estimators and in the neutrality test (figure 3.3, call based +

correction). In our simulated sequencing data, however, his assumptions about sequencing errors

occurring as only singletons were violated. We observed sequencing errors affected not only

singletons but also other allele frequency bins (figure 3.8) and sequencing errors led to either

an excess of singletons (with the single-sample calling pipeline) or a deficit of singletons (with

the multisample calling pipeline). Nevertheless, Achaz’s correction followed by the call-based

approach could reduce bias in θ estimators and Tajima’s D across ranges of coverage.

3.3.4 SFS and Parameter Estimation under the Exponential Population Growth

To explore robustness of SFS estimation to departures from the standard model, we evaluated the

performance based on the simulated sequencing data under an exponential population expansion

model with a growth rate of 0.01% (figure 3.4). As expected, we observed that the ground-truth

SFS under the exponential population growth model showed an excess of rare polymorphisms

compared with that under the constant population size model (figure 3.13) and resulted in a

negative Tajima’s D (figure 3.4D).

We observed similar bias patterns as in figure 3.1: The direct estimation outperformed that

the call-based approach. The estimated SFS by the direct estimation approach was most similar

to the ground-truth SFS across the range of coverages simulated, whereas the estimated SFS

by the two-step estimation approach had bias in that rare variants were overestimated with the
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single-sample calling pipeline and underestimated with the multisample calling pipeline at low

coverage (figure 3.4A and B). Furthermore, bias in the estimated SFS subsequently influenced

neutrality tests: Tajima’s D with the multisample calling pipeline was more negative (figure

3.4D).

Interestingly, under the population growth model, the single-sample calling pipeline per-

formed better than the multisample calling pipeline as shown by the KL divergence (figure

3.4C). In particular, at coverage 2X, the estimated SFS with the multisample calling pipeline

in GATK was extremely distorted in that singleton calls were less than doubleton calls (figure

3.4A), which in turn led to a positive Tajima’s D showing an evidence of population contraction

(figure 3.4D). The poor performance of the multisample calling pipeline is because the Bayesian

inference for SNP discovery and genotype calling in GATK and SAMtools is based on priors

that are derived under a constant size model.

Next, we investigated how the bias in the estimated SFS affects demographic inference based

on the inferred SFS. By using dadi, we estimated parameters for the exponential population

growth model, such as a present population size (N) and a time when population growth has

started (T), based on the inferred SFS from sequencing data (figure 3.5). The MLE of the

growth rate with the direct estimation approach was almost unbiased across all ranges of cov-

erage (close to the true growth rate 0.01%), whereas the growth rate was overestimated with

the call-based approach with the single-sample calling pipeline and underestimated with the

call-based approach with the multisample calling pipeline. This bias became more serious as

coverage decreases: In particular, at coverage 2X, the growth rate estimate from GATK mul-

tisample calling becomes negative (-1%) indicating the inappropriate inference of population

contraction rather than growth.
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Figure 3.5: Estimation of a population growth rate by using dadi as a function of coverage. (A)

Inferred growth rates for each method and the true growth rate (shown in black, 0.01%). (B)

Inferred population size trajectory over time compared with the simulated trajectory (shown in

black).

3.3.5 Impact of Changes in Parameters

To assess the robustness of our results, we explored how changes in nucleotide diversity (θ),

sequencing error rates (ε), and underlying coalescent models affect the SFS estimation. To

allow a straightforward comparison, we used the same parameters as in figure 3.1 apart from

varying one parameter of interest at a time.

First, we examined the case where expected nucleotide diversity is five times smaller than the

sequencing error rate (θ = 2× 10−4, ε = 10−3) and five times larger than the error rate (θ = 5×
10−3, ε = 10−3). Figure 3.9 and 3.10 show that the SFS reconstruction methods behave almost

identically as in figure 3.1 we observe that the SFS estimated by the direct estimation method

is close to the true SFS even at 2X, whereas the SFS by the call-based approach is biased in that

the single-sample caller overestimates rare variants and the multisample caller underestimates

rare variants. However, when diversity gets smaller than the error rate, we observe that the KL

divergence is larger for the single-sample caller compared with the multisample caller (figure

3.6A). When diversity becomes larger than the error rate, the KL divergence for both single-
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sample and multisample caller becomes larger (figure 3.6A).

Next, we explored the effect of sequencing error rates on the SFS reconstruction with a fixed

diversity of 10−3 under the standard model. We observed similar bias patterns to previous cases

(figure 3.12), but when the error rate reaches 10−1, we need coverage higher than 20X for the

estimated SFS by the call-based approach to be correct.

Finally, we examined how underlying coalescent models affects the SFS reconstruction

based on sequencing data. We examined the case where the SFS is skewed to rare variants

(population growth model) and the SFS is skewed to medium frequencies (population decline

model) (figure 3.13). In both cases, we observed that the bias pattern in the inferred SFS was

similar to that for the constant population size model (figure 3.4 for the population growth model,

figure 3.14 for the population decline model). We also observed that the violation to the constant

size model led to a larger KL divergence for the multisample caller than the single-sample caller

(figure 3.6).

3.3.6 Genome-Wide Selection Scans

We next explored how error in the SFS affects the performance of genome-wide selection scans

by an outlier detection approach. For this evaluation, we simulated sequencing data of length

10 Mb where a new beneficial mutation arose around 5 Mb, increased in frequency, and became

fixed at the time of sampling. Figure 3.7B shows that at coverage 2X, Tajimas D with the direct

estimation approach was almost unbiased in both neutral and selected regions, whereas Taji-

mas D was skewed positive with the call-based approach with multisample calling and skewed

negative with the call- based approach with the single sample calling. However, after convert-

ing Tajimas D to rank-based statistics, such as empirical P values, the difference between the

direct estimation and call-based approach became negligible enough to select the same set of

windows as a candidate region of a positive selection even at low coverage (figure 3.7A). This

indicates that rank-based statistics are less sensitive to bias in the inferred SFS, and if a positive
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selection is strong enough to be distinguishable from the neutral background, one can identify

regions of positive selection with relative robustness to the SFS estimation approach used. How-

ever, over 100 replicates, the direct method had a higher power and smaller false-positive rates

than the call-based approaches, and all call-based approaches performed with similar power and

false-positive rates (figure 3.7C).

3.4 Discussion

With the rapid development of sequencing technologies, the obstacle in population genetic stud-

ies is in our ability to interpret such data with precision. The results shown here demonstrate

that, depending on the pipeline used to analyze sequencing data, one can reach starkly different

conclusions with the same data set. Simple allele counting after inferring individual genotypes

from aligned sequencing data (call-based approach) leads to bias in the estimated SFS toward the

sites with rare variants, and this bias is in opposite directions depending on the pipeline to infer

genotypes: Multisample calling leads to underestimation of rare variants, whereas single-sample

calling leads to overestimation of rare variants. Next, the bias in the inferred SFS subsequently

results in bias in θ estimators, neutrality test, and demographic inference. In contrast, we have

shown that the SFS directly estimated from aligned sequencing data (direct estimation approach)

was almost unbiased across ranges of coverage. Finally, genome- wide selection scans based on

rank-based statistics are less sensitive to bias in the inferred SFS enough to capture the correct

regions of positive selection even at low coverage. Given that many current studies using low

to medium coverage sequencing data often use inferred genotypes to precede population ge-

netic inference, our studies highlight that care is vital to avoid any potential bias problems and

incorrect conclusions.

We reason that the increased performance of the direct estimation approach over the call-

based approach is that it gains information from other individuals across all sites, whereas the

call-based approach with multisample calling gains information from other individuals only at
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a given site and that with single-sample calling considers read data only for a given individual

at a given position. Moreover, because the direct estimation approach can easily handle missing

data, more information can be utilized to infer the SFS. To estimate the SFS from genotype calls

by allele counting, we only used fully observable sites. The fraction of fully observable sites

rapidly decreases as coverage decreases. We observed that for a sample of 10 individuals, only

20% of sites are fully observable at coverage 2X, 90% of sites at coverage 5X, and 99.9% of sites

at coverage 10X. Handling missing data in SFS- based approaches has been a problem before

short-read sequencing data and approaches to ameliorate the problem include subsampling the

data down to a sample size for which most sites are observed (e.g., (Nelson et al., 2012). An

advantage of the direct estimation approach is that it can easily handle missing data during

SFS estimation: It assigns a noninformative genotype likelihood for missing genotypes and

maximized the likelihood of the SFS. In this way, it can utilize full information available in data,

though it comes at a greater computational cost associated with the EM algorithm.

It is worth noting that there exist other frequently used tools for SNP discovery and genotype

calling other than GATK and SAMtools. Among them, Stacks (Catchen et al., 2013) is a popular

pipeline commonly used. Stacks is similar to the single sample calling in that it only considers

read data for a given individual at a given site: It models read data for a single individual at a

specific site with a multinomial distribution with a sequencing error rate for each site estimated

by maximum likelihood (Hohenlohe et al., 2010). Then, it uses a likelihood ratio test (LRT)

to assess the support for the most likely genotype at a 5% significance level. If the LRT is not

significant, then the model assigns a homozygote genotype for the most commonly observed

nucleotide. Another tool, Beagle (Browning and Browning, 2009; Browning and Yu, 2009),

takes advantage of the pattern of LD at nearby sites to infer genotypes, and as a result, genotype

calling accuracy is significantly improved and missing genotypes can be imputed. However,

Beagle requires a modest sample size (e.g., on the scale of 50 individuals or higher) for LD

information and imputation, and this can be challenging for studies with nonmodel organisms.
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We should emphasize that our simulation studies are based on multiple assumptions that can

be often violated in reality. In our simulation of sequencing data, we assumed that reads had been

aligned to the reference without errors. In practice, however, this assumption is often violated

in a region with repeats, insertions, deletions, and copy number variants. Hence, it might be

important to catalog such regions to avoid potential bias due to alignment errors. Furthermore,

we assumed that the number of reads at each site for a given individual is distributed according

to a Poisson distribution. It is well known that the distribution of the number of reads follows an

overdispersed Poisson distribution. Therefore, even though we concluded that the bias is almost

negligible at mean coverage greater than 20X from our simulation studies, in reality, we might

still observe nonnegligible bias at such coverage.

One may argue that future studies will have increased coverage and many of these problems

will disappear. However, with limited budgets, we expect a category of experimental work will

continue in which it is most advantageous to maximize the number of individuals by using low

coverage. The insights gained here suggest how careful analysis of low-coverage data can pro-

vide useful population genetic inferences and that unquestioning use of basic analysis pipelines

will be problematic.
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Figure 3.1: Evaluation of accuracy of inferred SFS by the call-based and direct estimation ap-

proach based on 100 replicates of genomic regions of length 100 kb. (A) Shapes of the inferred

SFS (shown in colors in legend) compared with the ground-truth SFS (shown in gray) for cover-

age 2X (top), 5X (middle), and 10X (bottom). (B) Relative deviation of a fraction of sites with

the nonreference allele counts of 1-4. (C) Distance between the inferred and ground-truth SFS

as measured by KL divergence.
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Supp. Figure 1. Error matrices where true allele counts are shown on x-axis and 
observed allele counts based on genotype calls are shown on y-axis. The SFS is inferred 
by either GATK or SAMtools with the multi-sample calling pipeline (A) or the single-
sample calling pipeline (B). The first two columns show the error matrix with all allele 
counts and the next two columns show the error matrix with first five allele counts. 
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Figure 3.8: Error matrices where true allele counts are shown on x-axis and observed allele

counts based on genotype calls are shown on y-axis. The SFS is inferred by either GATK or

SAMtools with the multisample calling pipeline (A) or the single-sample calling pipeline (B).

The first two columns show the error matrix with all allele counts and the next two columns

show the error matrix with first five allele counts.
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Supp. Figure 2. Evaluation of accuracy of inferred SFS by the call-based and direct 
estimation approach based on 100 replicates of genomic regions of length 100Kb when 
expected nucleotide diversity is 2 ∗ 10!! and sequencing error rate is 10!!. A. Shapes of 
the inferred SFS (shown in colors in legend) compared to the ground-truth SFS (shown in 
grey) for coverage 2X, 5X, 10X, 20X,  B. relative deviation of a fraction of sites with the 
non-reference allele counts of 1-4, C. a measure of a distance between the inferred and 
ground-truth SFS (KL divergence).  

Figure 3.9: Evaluation of accuracy of inferred SFS by the call-based and direct estimation ap-

proach based on 100 replicates of genomic regions of length 100Kb when expected nucleotide

diversity is 2× 10−4 and sequencing error rate is 10−3. A. Shapes of the inferred SFS (shown in

colors in legend) compared to the ground-truth SFS (shown in grey) for coverage 2X, 5X, 10X,

20X, B. relative deviation of a fraction of sites with the non-reference allele counts of 1-4, C. a

measure of a distance between the inferred and ground-truth SFS (KL divergence).
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Supp. Figure 3. Evaluation of accuracy of inferred SFS by the call-based and direct 
estimation approach based on 100 replicates of genomic regions of length 100Kb when 
expected nucleotide diversity is 5 ∗ 10!! and sequencing error rate is 10!!. A. Shapes of 
the inferred SFS (shown in colors in legend) compared to the ground-truth SFS (shown in 
grey) for coverage 2X, 5X, 10X, 20X, B. relative deviation of a fraction of sites with the 
non-reference allele counts of 1-4, C. a measure of a distance between the inferred and 
ground-truth SFS (KL divergence). 

Figure 3.10: Evaluation of accuracy of inferred SFS by the call-based and direct estimation

approach based on 100 replicates of genomic regions of length 100Kb when expected nucleotide

diversity is 5× 10−3 and sequencing error rate is 10−3. A. Shapes of the inferred SFS (shown in

colors in legend) compared to the ground-truth SFS (shown in grey) for coverage 2X, 5X, 10X,

20X, B. relative deviation of a fraction of sites with the non-reference allele counts of 1-4, C. a

measure of a distance between the inferred and ground-truth SFS (KL divergence).
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Supp. Figure 4. The distribution of observed error rates from sequencing experiment 
simulations given the sequencing error rate we used for simulations (shown in the title). 
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Figure 3.11: The distribution of observed error rates from sequencing experiment simulations

given the sequencing error rate we used for simulations (shown in the title).
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Supp. Figure 5. Shapes of the inferred SFS (shown in colors in legend) compared to the 
ground-truth SFS (shown in grey) for coverage 2X, 5X, 10X, 20X 
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Figure 3.12: Shapes of the inferred SFS (shown in colors in legend) compared to the ground-

truth SFS (shown in grey) for coverage 2X, 5X, 10X, 20X.
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Supp. Figure 6. The SFS from simulated genotype data of length 100kb. Data are 
simulated with a constant population size (blue), an exponential population growth with a 
rate of 0.01% (red), and an exponential population decline with a rate of -0.01% (blue). 
For each scenario, the SFS from 100 replicates are shown with thin lines and the mean 
SFS over 100 replicates is shown with a bold line. 
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Figure 3.13: The SFS from simulated genotype data of length 100kb. Data are simulated with

a constant population size (blue), an exponential population growth with a rate of 0.01% (red),

and an exponential population decline with a rate of -0.01% (blue). For each scenario, the SFS

from 100 replicates are shown with thin lines and the mean SFS over 100 replicates is shown

with a bold line.
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Supp. Figure 7. . Evaluation of accuracy of inferred SFS by the call-based and direct 
estimation approach based on 100 replicates of genomic regions of length 100Kb under 
an exponential population decline model (rate=-0.01%). A. Shapes of the inferred SFS 
(shown in colors in legend) compared to the ground-truth SFS (shown in grey) for 
coverage 2X, 5X, 10X, 20X, B. relative deviation of a fraction of sites with the non-
reference allele counts of 1-4, C. a measure of a distance between the inferred and 
ground-truth SFS (KL divergence). 
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Figure 3.14: Evaluation of accuracy of inferred SFS by the call-based and direct estimation

approach based on 100 replicates of genomic regions of length 100Kb under an exponential

population decline model (rate=-0.01%). A. Shapes of the inferred SFS (shown in colors in

legend) compared to the ground-truth SFS (shown in grey) for coverage 2X, 5X, 10X, 20X, B.

relative deviation of a fraction of sites with the non- reference allele counts of 1-4, C. a measure

of a distance between the inferred and ground-truth SFS (KL divergence).
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Supp. Figure 8. The empirical distribution of Tajima’s D associated with sliding 
windows of length 100kb in a 10Mb genomic region. The dotted red line indicates top 
1% (ranked in an increasing order). 
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Figure 3.15: The empirical distribution of Tajimas D associated with sliding windows of length

100kb in a 10Mb genomic region. The dotted red line indicates top 1% (ranked in an increasing

order).
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CHAPTER 4

Fast and Accurate Site Frequency Spectrum Estimation from

Low Coverage Sequence Data

4.1 Introduction

A site frequency spectrum (SFS) describes the distribution of allele frequencies across sites in

the genome of a particular species. The SFS is of primary interest in population genetics, as it

is a complete summary of sequence variation at unlinked sites and its shape reflects underlying

population genetic processes, such as growth, bottlenecks and selection. Moreover, a number of

population genetic inferences can proceed directly from the SFS. For example, demographic his-

tory (eg. evidence for population expansions, bottlenecks, or migrations) can be directly inferred

from the SFS (using, for example, dadi (Gutenkunst et al., 2009) or (Excoffier et al., 2013). The

SFS can also be compressed down to univariate summary statistic that form the basis of popular

neutrality tests (Tajima, 1989; Fu and Li, 1993; Fay and Wu, 2000; Achaz, 2008, 2009) that

underlie many empirical genome-wide selection scans (Andolfatto, 2007; Begun et al., 2007,

e.g.). Hence, inferring the precise SFS from genetic data is crucial in many population genetic

analyses.

With the recent rapid progress in sequencing techniques, obtaining large-scale genomic data

from thousands to tens of thousands of individuals is practical (e.g. 1000 Genomes Project Con-

sortium, 2010, 2012; Nelson et al., 2012; Fu et al., 2013) and this increased sample size enables

us to conduct more accurate population genetic inference. However, current massively parallel
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short-read sequence technologies also pose many inherent challenges - for example, reads have

high error rates, read mapping is sometimes uncertain, and coverage is variable and in many

cases low or completely absent. These challenges make accurate individual-level genotype calls

difficult and make some downstream analysis based on the inferred genotypes problematic.

In a previous study (Han et al., 2014), we showed that the SFS computed from genotype calls

(a call-based estimation approach) is biased at low to medium coverage (≤ 10X), whereas the

SFS directly inferred from aligned short-read sequencing data (a direct estimation approach) is

unbiased even at low coverage. The direct estimation approach infers the maximum likelihood

estimate (MLE) of the SFS by an EM algorithm (Li, 2011) or a Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm (Nielsen et al., 2012) assuming independence across all individuals

and sites. Both of these algorithms are implemented in the ANGSD software package (Nielsen

et al., 2012).

Both of these algorithms require computation of site likelihood vectors for all sites. These

vectors contain the likelihood that an allele at a polymorphic site has each possible allele fre-

quency conditional on observed sequence reads. Based on the precomputed site likelihood vec-

tors, the MLE of the SFS is obtained by optimization, using either the EM (Li, 2011) or the

BFGS algorithm (Nielsen et al., 2012). The bottleneck in obtaining the MLE of the SFS is

computing site likelihood vectors, rather than optimization. In fact, the maximization of the

likelihood either by the EM or the BFGS algorithm takes only a small fraction of time compared

to the computation of the site likelihood vectors. This is because computation of the site like-

lihood vector at each site requires a summation over all possible genotype combinations for n

individuals and naive computation of this sum has a runtime complexity of O(3n). To overcome

this computational burden, Li (Li, 2011) proposed a dynamic programming (DP) algorithm to

effectively compute the site likelihood vector for each site in O(n2) and Nielsen and co-workers

(Nielsen et al., 2012) implemented this algorithm in the ANGSD software. However, this algo-

rithm is still not practical to use if there are large numbers of individuals, because it is quadratic
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in the number of genomes (see Figure 4.6B for runtime). Moreover, this algorithm is numerically

unstable for a large sample (Li, 2011). To solve this problem of computational inefficiency and

numerical instability, we compute site likelihood vectors in a more efficient way that still retains

the accuracy of the original DP algorithm. Our new method uses a combination of rescaling and

sensible approximation to compute the site likelihood vector.

4.2 Approach

To establish notation and background, we first review the existing DP algorithm implemented in

the ANGSD software (Nielsen et al., 2012) and then introduce our approach.

4.2.1 Dynamic Programming Algorithm used by ANGSD

Let D denote the short-read sequencing data and X represent a total count of the derived allele

for a sample of n diploid individuals at a particular site. The corresponding site likelihood

vector,= h = (h0, h1, . . . , h2n), is a (2n + 1)-dimensional vector in which each element hx(=

P{D|X = x}) is the site likelihood function for the derived allele frequency of x/(2n) in the

sample:

hx =
1(
2n
x

) 2∑
g1=0

· · ·
2∑

gn=0

I

(
n∑
k=1

gk = x

)
n∏
k=1

(
2

gk

)
Lkgk (4.1)

where I() is an indicator function and Lkgk = P (Dk|Gk = gk) is a genotype likelihood of the

individual k for genotype gk.

To calculate the site likelihood vector h efficiently, define a (2j + 1)-dimensional raw site

likelihood vector for j individuals, given by zj = (zj0, z
j
1, . . . , z

j
2j), in which each element is

defined as

zjx =
2∑

g1=0

· · ·
2∑

gj=0

I

(
j∑

k=1

gk = x

)
j∏

k=1

(
2

gk

)
Lkgk (4.2)
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where j = 1, . . . , n and x = 1, . . . , 2j. Note that this expression does not include a rescaling

factor 1/
(
2n
x

)
.

The vector zj can be iteratively updated from the vector zj−1 (raw site likelihood vector for

j − 1 individuals) by the following recurrence relation:

zjx = Lj0z
j−1
x + 2Lj1z

j−1
x−1 + Lj2z

j−1
x−2. (4.3)

In a final step, each element of the vector zn is rescaled by a corresponding factor 1/
(
2n
x

)
to

obtain the vector h (i.e. hx = znx/
(
2n
x

)
), and then because likelihoods need only be defined

proportional to a constant, the resulting vector h is standardized such that the maximum element

of the vector becomes one.

To illustrate the procedure, we show how the raw site likelihood vector is recursively updated

from z1 to zn by the DP algorithm in the ANGSD software. Each row in a lower triangular

matrix in Figure 4.1A (top) represents the raw site likelihood vector for j individuals of length

2j + 1. Figure 4.1A also shows how the raw site likelihood vector zn (middle) is converted to

the final site likelihood vector h after rescaling by 1/
(
2n
x

)
and standardization (bottom).

4.2.2 Rescaled Dynamic Programming Algorithm

In our preliminary work, we observed that the value at the mode of zn can be relatively large. In

this example with 50 diploid individuals, the mode of zn is 1531. With 500 diploid individuals,

the mode of zn can be about 8× 1012 (data not shown). This implies that the DP algorithm can

have a overflow problem for large samples because the mode of zn increases exponentially as a

sample size increases. Furthermore, the value at edges of zn is very small. In this example with

50 individuals, the value of the site likelihood function for the allele count of 100 is 10−200. With

500 diploid individuals, the value of the site likelihood function for the allele count of 1000 is

smaller than 10−300 (data not shown). This implies that the DP algorithm can have an underflow

problem for large samples because the values at the edge of zn keeps decreasing exponentially
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Figure 4.1: Updating the site likelihood vector for 50 diploid individuals at a particular site fixed

for an ancestral allele by the DP (A) or the rescaled DP (B) algorithm. The sequencing data was

simulated at coverage 3X with error rate of 0.001. Genotype likelihoods were calculated using

a GATK model. A. Top row shows how the raw site likelihood vector is recurrently updated by

the original DP algorithm. Each row in a low triangular matrix represents the raw site likelihood

vector zj for j individuals. Middle and bottom rows show how the raw site likelihood vector

zn (the last row of the lower triangular matrix) is converted to the final site likelihood vector

h by rescaling and standardization. B. Top row shows how the rescaled site likelihood vector

is recurrently updated by the rescaled DP algorithm. Each row in the lower triangular matrix

represents the rescaled site likelihood vector hj for j individuals. Bottom row shows the final

site likelihood vector h. Note that the final site likelihood vector h has a peak at the derived

allele count of zero. The gray area represents the range of values used for the original and

the rescaled DP algorithm. In this example, it requires to compute 2600 elements (because

3 + 5 + · · ·+ 101 =
∑50

i=1 2i+ 1) to update the site likelihood vector.
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as a sample size increases. Therefore, the DP algorithm can be numerically unstable because zn

has both overflow and underflow problems for large samples.

To overcome the numeric instability problem of the DP algorithm, we modified the DP

algorithm such that rescaling and standardization take place at each step of updating the site

likelihood vector. For this modified algorithm, we define a (2j + 1)-dimensional rescaled site

likelihood vector for j individuals, hj = (hj0, h
j
1, . . . , h

j
2j), of which each element is defined as

hjx =
1(
2j
x

) 2∑
g1=0

· · ·
2∑

gj=0

I

(
j∑

k=1

gk = x

)
j∏

k=1

(
2

gk

)
Lkgk (4.4)

where j = 1, . . . , n and x = 1, . . . , 2j. We can derive a recurrence relation to iteratively update

the vector hj from the vector hj−1 (rescaled site likelihood vector for j − 1 individuals) as

follows:

hjx =

(
2(j−1)
x

)
Lj0h

j−1
x + 2

(
2(j−1)
x−1

)
Lj1h

j−1
x−1 +

(
2(j−1)
x−2

)
Lj2h

j−1
x−2(

2j
x

)
=

1

2j(2j − 1)
{(2j − x)(2j − x− 1)Lj0h

j−1
x + 2x(2j − x)Lj1h

j−1
x−1 + x(x− 1)Lj2h

j−1
x−2}.

(4.5)

Because the constant 1
2j(2j−1) in both numerator and denominator in Equation (4.5) is cancelled

out during standardization, we can use the following recurrence equation to update the rescaled

site likelihood vector:

hjx = (2j − x)(2j − x− 1)Lj0h
j−1
x + 2x(2j − x)Lj1h

j−1
x−1 + x(x− 1)Lj2h

j−1
x−2. (4.6)

Figure 4.1B shows how the site likelihood vector is recurrently updated from h1 to hn by

the rescaled DP algorithm in a lower triangular matrix (Figure 4.1B, top) and the final site

likelihood vector h (Figure 4.1B, bottom). Now, all values in the intermediate site likelihood

vectors hj range between zero and one, suggesting there will be no potential overflow problem.

Importantly, we observed that the most of the cells in the intermediate site likelihood vector have

a value close to zero (shown in gray). This implies that computing all values of the site likelihood
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vector is inefficient and we can accurately approximate this vector by only computing the first

few elements and setting the rest of the elements to zero. This motivated the development of the

adaptive K-restricted algorithm.

4.2.3 Adaptive K-restricted Algorithm

For a site that is fixed for the ancestral allele, we observe that all non-negligible values of the

rescaled site likelihood vectors, h1 to hn, are consistently concentrated on the first few cells,

and the final site likelihood vector h has a peak at the allele frequency of zero (Figure 4.2A,

middle). For a site that is polymorphic, we observe that the mode typically stays at zero when

we add an individual whose best-guess genotype is 0/0 (i.e. the genotype likelihood vector of

that individual has the highest value at genotype 0/0), whereas the mode of the site likelihood

vector typically moves to the right when we add an individual whose best-guess genotype is 0/1

or 1/1 (Figure 4.2B, middle). If we add an individual whose best-guess genotype is 0/1, the

mode moves one bin to the right and the best-guess allele count increases by one. By the same

token, if we add an individual whose best-guess genotype is 1/1, the mode typically moves two

bins to the right and the best-guess allele count increases by two.

Based on these observations, we propose a new algorithm, called the adaptive K-restricted

algorithm. This algorithm first proposes left and right boundaries within which we update values

of the site likelihood vector and outside of which we set the values of the site likelihood vector to

zero. We can update left and right boundaries using the best-guess genotype. For the individuals

whose best-guess genotype is 0/0 we do not change the boundaries. For individuals whose best-

guess genotype is 0/1 we move both boundaries one bin to the right, and for the individuals

whose best-guess genotype is 1/1 we move both boundaries two bins to the right. Next, we

check whether the boundary values are greater than a very small value ε (for example, we set

ε = 10−9) and if so, we expand the appropriate boundary accordingly until the new boundary

value is less than or equal to ε. For example, we check the value at the left boundary and if the
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Figure 4.2: Updating the site likelihood vector for 50 diploid individuals by the original DP

(referred to as Original), the rescaled DP (referred to as Rescaled), and the adaptive K-restricted

(referred to as AdaptiveK) algorithm. The sequencing data was simulated at coverage 3X with

error rate of 0.001. A. A random site fixed for the ancestral allele is chosen. B. A random site

with the true derived allele frequency of 0.3 is chosen. Each row in the lower triangular matrix

represents the intermediate site likelihood vector for j individuals. For a plotting purpose, each

row is standardized such that the maximum elements is assigned to one. The gray area represents

the range of values used for all three algorithms.
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value is greater than ε, we move the left boundary one bin to the left and check the value at the

updated left boundary again. By the same token, we check the value at the right boundary and

if the value is greater than ε, we move the right boundary one bin to the right. By doing this,

at each step of calculating the intermediate site likelihood vector, we only compute k elements

of the vector, where k is the number of elements between the left and right boundary. Note that

k is dynamically changing at each updating step, but k is always much smaller than 2n + 1.

Therefore, we can update the site likelihood vector in a linear fashion (computing at most K

values at each updating step, where K is the maximum value of all k’s) rather than updating it

in a triangular fashion (computing 3 + 5 + · · ·+ (2n+ 1) values). This makes computation time

close to O(Kn) rather than original O(n2).

Figure 4.2 shows with an example how that the adaptive K-restricted algorithm captures the

important regions of the intermediate site likelihood vector. Hence, the adaptive K-restricted

algorithm is faster than the original algorithm, as reflected by the reduced computation area

(shown in gray in Figure 4.2). Moreover, we retain the accuracy of the final site likelihood

vector h with the adaptive K-restricted algorithm and it is as stable as the rescaled DP algorithm.

The shape of the distribution h is identical in all three cases (Original, Rescaled, AdaptiveK),

reflected by the same mean and variance of h in all three cases (Figure 4.2).

4.3 Methods

4.3.1 Generating Simulated Sequences

To compare the three algorithms (original DP, rescaled DP, and adaptive K-restricted algorithm)

for computing site likelihood vectors from NGS data, we generated aligned short-read sequenc-

ing data by changing sequencing coverage (3X, 5X, and 10X) and sample size (50, 100, 300,

500, and 1000 diploid individuals). For this purpose, we first conducted population genetic sim-

ulations to produce haplotype data of a given sample size assuming the standard model (with an
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effective population size of 10,000 diploid individuals, a mutation rate per-base per-generation

of 2.5× 10−8 and a recombination rate of 10−8), and then overlaid sequencing errors (with error

rate of 0.001) to generate paired-end short-read sequencing data given sequencing coverage. For

detailed descriptions of the coalescent and sequencing simulations, refer Material and Methods

section in Han et al. (2014).

4.3.2 Sequencing Data from the 1000 Genomes Project

To demonstrate the adaptive K-restricted algorithm’s utility with real data, we downloaded the

VCF file and the BAM files from the 1000 Genomes Project FTP site in order to estimate the

SFS. We used the genotype calls of 365 European and 228 sub-Saharan African individuals from

the VCF file, which contains the genotype calls for 1,092 individuals sampled from 14 popu-

lations drawn from Europe, East Asia, sub-Saharan Africa and the Americas (1000 Genomes

Project Consortium, 2010, 2012). For the BAM files, we only used low-coverage Illumina

sequencing data (coverage 2X to 4X) (1000 Genomes Project Consortium, 2010, 2012) for

these same individuals. Due to file size constraints, we downloaded only a subsection of the

genome (region of 10Mb-20Mb in chromosome 10) by using SAMtools (version 0.1.18) (Li

et al., 2009a).

4.3.3 Estimating the SFS

To infer the SFS from simulated aligned short-read sequencing data, we used the direct estima-

tion approach using the freely available program ANGSD (version 0.588) with the EM algorithm

option to obtain the MLE of the SFS (Nelson et al., 2012). We refer to results of this procedure

as Original. Then, we modified the source code of ANGSD to implement the rescaled DP (re-

ferred to as Rescaled) and the adaptive K-restricted algorithm (referred to as AdaptiveK). All

code is written in C++.

For the 1000 Genomes project data, we evaluated two approaches to infer the SFS: the call-
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based and direct estimation approaches. For the call-based estimation approach, we used geno-

type calls in the VCF file and then reconstructed the SFS by allele counting using vcfTools (ver-

sion 0.1.10) (Danecek et al., 2011). For the direct estimation approach, we directly estimated

the SFS from the BAM files with the adaptive K-restricted algorithm.

To evaluate the accuracy of the SFS estimated from simulated short-read sequencing data, we

computed the relative deviation of the inferred SFS (computed from sequencing data) compared

to the ground-truth SFS (computed from the known values for the genotype data) in each derived

allele frequency bin i/(2n):

Relative deviation (
i

2n
) =

fseq(
i
2n

)− ftrue( i
2n

)

ftrue(
i
2n

)

where fseq( i
2n

) represents a fraction of sites with a derived allele frequency i/(2n) in the inferred

SFS and ftrue( i
2n

) represents a fraction of sites with a derived allele frequency i/(2n) in the

ground-truth SFS.

4.4 Results

We evaluated whether the adaptive K-restricted algorithm is robust to different sequencing cov-

erage and the variance in the site likelihood vector. This evaluation is important because one of

the characteristics of the next-generation sequencing data is variable coverage across sites, which

affects the variance of the genotype likelihood vector at the individual-level and the variance of

the site likelihood vector at the sample-level.

4.4.1 Performance for changing sequencing coverage

First, we investigated the impact of different sequencing coverage on the performance of the

adaptive K-restricted algorithm in computing the site likelihood vector. For this purpose, we

simulated sequencing data for 50 diploid individuals under the standard model at coverage 3X,
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5X, and 10X. Figure 4.3 shows how the site likelihood vector is updated at a random site with

true allele frequency of 0.3 as a function of sequencing coverage. We observed that the site

likelihood vector h is more diffuse as coverage decreases, whereas it is more peaked around

the true allele frequency of 0.3 as coverage increases (Figure 4.3B, the variance of the site

likelihood vector h is 6.2 with 3X, 2.7 with 5X, and 0.1 with 10X). This is because the genotype

likelihood vectors tend to be more spread out at low coverage, whereas they tend to be more

peaked at the unknown individual genotype at high coverage. This implies that the choice of

K for the adaptive K-restricted algorithm should depend on coverage - the higher coverage, the

smaller K. We observed that this is automatically done with the adaptive K-restricted algorithm.

Furthermore, the resulting site likelihood vector computed by the adaptive K-restricted algorithm

has a comparable accuracy to the site likelihood vector computed by the original DP algorithm

across all coverage (Figure 4.3). The shape of the distribution h is the same, with the same mean

and standard deviation of h, for all three algorithms across coverage.

4.4.2 Performance for variation in the site likelihood vector

Next, we evaluated whether the adaptive K-restricted algorithm can capture the site-to-site vari-

ation in the site likelihood vector. For this purpose, we used low-coverage sequencing data for

50 diploid GBR individuals in the 1000 Genome Project, and then compared the site likelihood

vector computed by the three algorithms (Original, Rescaled, AdaptiveK) at multiple random

sites with the same best-guess allele frequency in the sample. Compared to the simulated se-

quencing data matched at average coverage (5X), we observed that low-coverage sequencing

data in the 1000 Genomes Project tend to have bigger site-to-site variation of the site likelihood

vector. Figure 4.4 shows how the site likelihood vector h is updated at two random sites with

the best-guess allele frequency of 0.5 in the sample. We observed that the first site (position

10,085,321 in chromosome 10) has a smaller variance in the site likelihood vector than the sec-

ond site (position 10,012,499 in chromosome 10). The variance of the site likelihood at the first
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Figure 4.3: Performance of the three algorithms (Original, Rescaled, and AdaptiveK) for up-

dating the site likelihood vector for 50 individuals as a function of sequencing coverage. The

sequencing data was simulated at coverage 3X (top), 5X (middle), and 10X (bottom) with error

rate of 0.001, and a site with the true allele frequency of 0.3 is randomly picked. A. It shows

how the site likelihood vector is updated for 50 individuals. Each row of the lower triangular

matrix represents the site likelihood vector for j individuals. The gray area represents the range

of values used for each algorithm. B. The final site likelihood vector h by all three algorithms is

shown in black (Original), blue (Rescaled), and red (AdaptiveK). Note that all three distributions

almost completely overlap, and the mean and variance are the same for all three distributions.
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site is 1.2, whereas that at the second site is 3.5 (Figure 4.4). This implies that the adaptive

K-restricted algorithm should be capable of changing K according to the observed variance of

the site likelihood vector at different sites - the larger the variance of the site likelihood vector,

the larger the value of K. Moreover, the resulting site likelihood vector computed by the adap-

tive K-restricted algorithm has a comparable accuracy to the site likelihood vector computed

by the original DP algorithm - same shape, and the mean and standard deviation with the three

algorithms (Figure 4.4)

4.4.3 Evaluating the accuracy of the inferred SFS

We evaluate the accuracy of the inferred SFS by the adaptive K-restricted algorithm (Adaptive

K) compared with the inferred SFS using the original DP (Original). For this comparison, we

simulated 100 replicates of sequencing data for 100, 300, and 500 diploid individuals each from

genomic regions of length 100Kb under the standard model. The accuracy of the inferred SFS

was evaluated by two metrics: 1) the shape of the inferred SFS in comparison to the ground-truth

SFS (Figure 4.5A) and 2) the relative deviation of the inferred SFS compared to the ground-truth

SFS at each allele frequency bin (Figure 4.5B).

We found that the adaptive K-restricted algorithm behaves equivalently to the original DP

algorithm. We observed the identical shape of the inferred SFS (Figure 4.5) with both algo-

rithms. Moreover, consistent with the previous study (Han et al. 2014), both algorithms led to

unbiased estimates of the SFS even at low coverage (such as 3X) regardless of sample sizes.

The shape of the inferred SFS was similar to the ground-truth SFS (Figure 4.5A) and the relative

deviation of the inferred SFS was close to zero in all allele frequency bins (Figure 4.5B) across

all sequencing coverage.
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Original Rescaled AdaptiveK

Original Rescaled AdaptiveK
Derived allele counts Derived allele counts Derived allele counts

Derived allele counts Derived allele counts Derived allele counts

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4: Performance of the three algorithms (Original, Rescaled, and AdaptiveK) for up-

dating the site likelihood vector for 50 GBR individuals at two random sites with the different

variance of the site likelihood vector. Each row represents the site likelihood vector for j in-

dividuals. The gray area represents the range of values used for each algorithm. A. Position

10,085,321 in chromosome 10. B. Position 10,012,499 in chromosome 10.
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Figure 4.5: The accuracy of the inferred SFS as a function of sequencing coverage for different

sample sizes. The sequencing data were simulated at coverage 3X (top), 5X (middle), and 10X

(bottom) with the error rate of 0.001 and the sample size of 100, 300, and 500. A. Shapes of the

inferred SFS (shown in colors in legend) compared with the ground-truth SFS (shown in gray).

B. Relative deviation of a fraction of sites with the derived allele counts of 110.
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4.4.4 Runtime comparisons

We next evaluated the runtime for computing site likelihood vectors by the adaptive K-restricted

algorithm (AdaptiveK) compared to the runtime by the original DP algorithm (Original). We

observed a reduction of runtime with the adaptive K-restricted algorithm compared to the orig-

inal DP algorithm for all sample sizes we tested (Figure 4.6). For example, on average, with

500 individuals we observed 5.3-fold speed-up, and with 1000 individuals we observed 8.4-fold

speed up. Moreover, consistent with our expectation, the runtime of the original DP algorithm

increases quadratically with sample size, whereas the runtime of the adaptive K-restricted algo-

rithm has a linear fit (Figure 4.6). These results imply that as a sample size increases, we will

observe even more dramatic differences in the runtimes of the two algorithms. For example,

when we extrapolated runtime from the results with n ≤ 1000, we expect 17.5-fold speed-up

with 2,500 individuals and 63-fold speed-up with 10,000 individuals. The speed improvement

with the adaptive K-restricted algorithm will greatly facilitate direct inference of the SFS even

when the number of individuals is large.

We also note that the adaptive K-restricted algorithm will have less memory usage than the

original DP algorithm, which requires memory on the order of n to store the site likelihood

vector. With the adaptive K-restricted algorithm, the memory needed is to store the K elements

of the vector, and we expect K to stay nearly constant or to scale upwards slowly in proportion

to n.

4.4.5 Application to the low-coverage 1000 genomes project sequencing data

Finally, we compared the SFS inferred by the call-based approach to the SFS inferred by the

direct estimation approach using our adaptive K-restrictive algorithm. We used 365 European

(EUR) individuals and 228 sub-Saharan African (AFR) individuals to infer the SFS. For the call-

based estimation approach, we used the genotype calls stored in the VCF file and then estimated
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Figure 4.6: Runtime comparisons for updating the site likelihood vector by two different algo-

rithms (Original and Adaptive K). The sequencing data were simulated at coverage 3X, 5X, and

10X with the error rate of 0.001 and the sample size of 50, 100, 300, 500, 750, and 1000. Results

for n ≥ 1000 are extrapolated from results with n ≤ 1000.

the SFS by allele counting. Note that the VCF file is generated by an LD-aware multisample

genotype calling pipeline (1000 Genomes Project Consortium, 2012). For the direct estimation

approach, we inferred the SFS directly from low coverage short-read sequencing data (stored in

the BAM files, coverage 2-4X) using our adaptive K-restricted algorithm.

First, we constructed the SFS for 365 EUR individuals with either the call-based approach

or the direct estimation method. We observed a striking lack of singletons in the call-based

SFS compared with the directly estimated SFS (Figure 4.7A,B). The proportion of singletons

in the inferred SFS by the VCF file is 95% less than that in the inferred SFS by the BAM

files (Figure 4.7B). This is consistent with our previous study (Han et al., 2014) that shows

multisample callers lead to underestimation of rare variants, because a small number of correct

alternate reads tend to be ignored. Consistent with this, we observed more positive Tajima’s

D for the call-based SFS compared with the directly estimated SFS (Figure 4.7C). Moreover,

we observed an excess of sites fixed for an ancestral allele in the called-based SFS, implying

75



−400

−300

−200

−100

0

100

0 5 10 15 20

R
el

at
ive

 d
ev

ia
tio

n 
(%

)

Derived allele counts

−100

−50

0

50

5 10 15 20

R
el

at
ive

 d
ev

ia
tio

n 
(%

)

Derived allele counts

B.

A.

1 70 130 220 310 400 490 580 670

0.
0

0.
1

0.
2

0.
3

Derived allele counts

Fr
eq

ue
nc

y

EUR (n = 365 )

VCF: vcftools
BAM: AdaptiveK

10 130 250 370 490 610 730

C.

VCF BAM

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

Ta
jim

a'
s 

D
Ta

jim
a’

s 
D

VCF BAM

Figure 4.7: Comparison of the called-based SFS (referred to as VCF: vcftools) and the directly

estimated SFS (referred to as BAM: AdaptiveK). The SFS was constructed for 365 EUR individ-

uals in the 1000 Genomes Project. A. Shapes of the inferred SFS (shown in colors in legend).

As the VCF file only contains sites that are inferred to be polymorphic, we only considered

polymorphic sites for the SFS inferred from the BAM files and rescaled it so that all elements

sum to one. B. Relative deviation of a fraction of sites with the derived allele count of 120. We

computed the relative deviation of the SFS inferred from the BAM files compared to the SFS

computed from the VCF file in each derived allele frequency bin i/(2n). C. Tajima’s D.
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that there might be more polymorphic sites in the genetic region we analyzed than the reported

polymorphic sites in the VCF file provided from the 1000 Genome Project (data not shown).

Next, we inferred the SFS for 228 AFR individuals and a combined sample of 593 EUR

and AFR individuals with either the call-based approach or the direct estimation approach. We

observed a similar pattern as with the European population, implying that our results apply to

all samples in the 1000 Genomes Project (data not shown).

4.5 Discussion

A large sample size enables us to infer more precise summary statistics and parameters in many

population genetic analyses. However, at the same time, we confront computational challenges

with large samples and in many cases, we have to deal with these challenges to make the method

practical with large sample sizes. We showed that although the direct estimation approach for

computing the SFS can provide the unbiased SFS even at low coverage, it does not scale up

to large sample sizes because the computation time for running this method is quadratic in

a number of diploid individuals. To overcome this problem, we developed a new algorithm,

called the adaptive K-restricted algorithm and showed that the computation time for running

this algorithm is linear in the number of genomes. This algorithm exploits the observation

that for most sites the site likelihood vector’s non-negligible values are all concentrated on a

few elements around the element corresponding to the best-guess allele count. Therefore, we

approximate this vector by curtailing computation to only the K components of the DP update

vectors. More importantly, this algorithm can adaptively choose K for each site. We showed that

the choice of K is robust to sequencing coverage and the variation of the site likelihood vector.

We also showed that the EM combined this new algorithm has comparable accuracy but is 8-fold

faster than the original DP combined with the EM algorithm when analyzing the data from 1000

individuals. Our new algorithm’s improvement in speed makes it possible to directly estimate

the SFS from very large samples of low coverage short-read sequencing data.
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Our adaptive K-restricted algorithm could be applied to other DP algorithm whose runtime is

quadratic in a sample size. For example, Yi and coworkers (Yi et al., 2010) proposed an empiri-

cal Bayes approach to estimate a posterior probability of a minor allele frequency (MAF). They

used a DP algorithm to effectively compute summation over all possible genotype configurations

for n diploid individuals, and therefore this algorithm has a runtime complexity ofO(n2) similar

to the DP algorithm introduced here. Furthermore, similar to the distribution of the site likeli-

hood vector, the distribution of the posterior probabilities of the MAF is unimodal and most of

the probabilities are close to zero. Therefore, we can apply our adaptive K-restricted algorithm

for this DP algorithm to reduce runtime complexitiy to O(Kn) rather than original O(n2).

Our adaptive K-restricted algorithm can also be directly applied to speed up estimation of the

2-dimensional SFS. Li (Li, 2011) derived the EM algorithm to get the MLE of the 2-dimensional

SFS as an extension to the 1-dimensional SFS estimation, and this requires precomputation of

the site likelihood vectors for all sites for each population independently. This implies that we

can make this method faster with the adaptive K-restricted algorithm compared to the original

DP algorithm. The computation time for running the original algorithm is O(n2
1 + n2

2), whereas

the runtime of the adaptive K-restricted algorithm becomes O(K1n1 +K2n2), where n1 and n2

represent a sample size for each population.

One might argue that uncertainty associated with genotype calls can be overcome by simply

increasing sequencing coverage and there is therefore little need for algorithms that handle low

coverage data. However, cost constraints require difficult choices between increasing sample

size and increasing coverage. There are certain cases where one should prefer a large sample

of low-coverage sequencing data over a smaller sample size with high coverage. For example,

in genome-wide association studies, one can obtain more power by sequencing a large number

of individuals at low coverage (Kim et al., 2010; Pasaniuc et al., 2012). As another example,

identification of rare variants always requires large sample sizes, and moderately rare loci will be

detectable even with low coverage data. Finally, even though sequencing cost keeps dropping,
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cost constraints will not disappear because users will continue to work with limited budgets or

push the limits with applications involving very large numbers of individuals; thus we expect

low-coverage sequencing will remain an attractive approach for many investigators.

4.6 Appendix

Below is pseudo-codes for the adaptive K-restricted algorithm.

Input: Genotype likelihood vectors for n individuals, L1,...,Ln

Output: Site likelihood vector, h

epsilon=10−9

h=array(0, length=2n+1)

/* first individual */

h[0]=L1[0]; h[1]=L1[1]; h[2]=L1[2];

left=0; right=2

for j in 2:n {
nChr=2*j

L0=Lj[0]; L1=Lj[1]; L2=Lj[2];

if(L0>=L1 and L0>=L2)

bestGuessGT=0

else if(L1>L2)

bestGuessGT=1

else

bestGuessGT=2

/* Set a left boundary and update accordingly */

left= left+ bestGuessGT

checkVal=(nChr-left)*(nChr-left-1)*L0*h[left]+2*left*(nChr-left)*L1*h[left-1]

+left*(left-1)*L2*h[left-2]
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while(check>epsilon) {
left=left-1

checkVal=(nChr-left)*(nChr-left-1)*L0*h[left]+2*left*(nChr-left)*L1*h[left-1]

+left*(left-1)*L2*h[left-2]

}
/* Set a right boundary and update accordingly */

right = right+ bestGuessGT

checkVal=(nChr-right)*(nChr-right-1)*Lj[0]*h[right]

+2*right*(nChr-right)*Lj[1]*h[right-1]+right*(right-1)*Lj[2]h[right-2]

while(check>epsilon) {
right=right+1

checkVal=(nChr-right)*(nChr-right-1)*Lj[0]*h[right]

+2*right*(nChr-right)*Lj[1]*h[right-1]+right*(right-1)*Lj[2]h[right-2]

}
/* Update the site likelihood vector by the adaptive K-restricted algorithm */

for x in right:left

h[x]=(nChr-x)*(nChr-x-1)*Lj[0]*h[x]+2*x*(nChr-x)*Lj[1]*h[x-1]+x*(x-1)*Lj[2]*h[x-2]

/* Normalization */

mymax=max(h)

for k in left:right

h[x] = h[x]/mymax

}
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CHAPTER 5

Identification of Genetic Regions of Local Adaptation During

Early Dog Domestication

Work in this chapter is part of a larger research effort of the Novembre group (Adam H. Freed-

man, Eunjung Han, Diego Ortega-Del Vecchyo, John Novembre) and the Wayne group (Rena

M. Schweizer, Pedro M. Silva, Marco Galaverni, Robert K. Wayne) for which I am included

as a co-author. In particular, section 5.2.1 Samples and Sequencing was the work of Rena M.

Schweizer, Adam H. Freedman, Holly Beale, Elaine Ostrander, Kevin M. Squire, Vasisht Tadig-

otla, Clarence Lee, Timothy Harkins, Stanley F. Nelson, Robert K. Wayne, and John Novembre

(Supplementary material S1, S2, and S3 of the original manuscript). Section 5.2.2 Quality

Filtering was the work of Adam H. Freedman, Pedro Silva, Marco Galaverni, Eunjung Han,

Robert K. Wayne, and John Novembre (Supplementary material S4 of the original manuscript).

Section 5.2.3 Detection of Selective Sweeps was the work of mine, section 5.2.4 Validation of

Selective Sweep Regions was the work of Rena M. Schweizer and me, and section 5.2.5 Gene

Ontology/Enrichment Analyses was the work of Pedro Silva (Supplementary material S13 of

the original manuscript; I am the lead author for this document). These sections are provided

here to allow better understanding of the selection scan method presented in section 5.2.3 and

the interpretation of the results pertaining to selection scans in section Results.
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5.1 Introduction

Domestic dogs are the most phenotypically diverse mammal. Dogs exhibit the extreme variation

in size and skeletal and cranial proportions (Wayne R et al. 2012). Moreover, dogs have extreme

behavioral and physiological attributes, such as herding, attentiveness, hunting, docility and the

ability to form social bonds with humans (American Kennel Club 1992; Wilcox and Walkowicz

1995). Given the unique phenotypic and behavioral traits of dogs, comparative genomics anal-

yses of dogs and wolves holds great promise for identifying genetic loci involved in complex

phenotypes.

However, there are several complications that make detection of regions under selection in

domestic dogs challenging. First, typical modes of selection during domestication is selection

from standing variation (soft sweeps). Some preexisting variants (that are neutral and subject to

random drift) in the founder population of its wild progenitor suddenly become beneficial due

to humans’ desire to acquire certain phenotypes, and therefore rapidly increase in frequency and

become fixed in the derived population. However, soft sweeps are harder to detect compared to

hard sweeps, because a signature of selection (eg. reduction in genetic variability) is more sub-

tle. Next, demographic history is another complication. Most domesticated species experience

bottlenecks during early domestication and breed formation. Often these events reduce overall

genetic variation, making it harder to detect genetic signatures of selective sweeps.

Innan and Kim (2008) quantified the power of statistical tests for detecting the signature

of soft sweeps with polymorphism data by using coalescent simulations, and concluded that

comparing the patterns of polymorphisms in both parental and derived population can improve

the power substantially rather than comparing the patterns in the focal region with those in

different regions in the derived population. Consistent with this observation, they found that

FST and ∆π = πderived/πparental are most powerful summary statistics for detecting soft sweeps.

Moreover, they found that the overall pattern is similar under different demographic parameters.
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Here, we analyze 10 million variant sites from the whole-genome data of six canids to ad-

vance our understanding of dog domestication. These data include the first whole-genome se-

quences of three individual wolves (Canis lupus), the Australian Dingo, a Basenji, and a golden

jackal (Canis aureus). With these data, we investigated the specific loci involved in selection

during early dog domestication by using combinations of summary statistics that were shown to

be powerful to detect soft sweeps.

5.2 Materials and Methods

5.2.1 Samples, Sequencing, and Genotyping pipeline

The three wolves sampled were from Croatia, Israel, and China, and were chosen to represent

the broad regions of Eurasia where domestication is hypothesized to have taken place (Europe,

the Middle East, and East/Southeast Asia) (Larson et al., 2012). The two dogs, a Basenji and a

Dingo, represent basal canine lineages and were sampled to maximize phylogenetic divergence

and geographic diversity, as the Basenji breed originated in Africa and Dingoes are free-living

dogs of Australia that arrived there at least 3500 years ago (Savolainen et al., 2004). Sequencing

the golden jackal allowed us to identify the ancestral state of variants so we could ascertain those

changes that occurred uniquely on the dog lineage.

For each of the six samples (Table 5.1), we produced high-quality whole-genome sequencing

data. For all individuals besides the Chinese wolf, we used a combination of SOLiD (single end

and long mate pair) and Illumina HiSeq paired end (PE) libraries, while for the Chinese wolf

we only used Illumina PE data, as they were provided subsequent to our sequencing efforts

for the other lineages. For most downstream analyses, we also utilized sequence information

from the Boxer reference genome (CanFam 3.0). Cumulative coverage was 72X for the wolves

(24X average per individual), 38X coverage for the two dogs (19X average per individual),

and 24X for the golden jackal, for a total of 335Gb of uniquely aligned sequence from 11.2
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Table 5.1: Sample origins, and sequencing efforts by sample, platform, and library
!!!!!!!!!Table!S1.1.!Sample'origins,'and'sequencing'effort'by'sample,'platform,'and'library.! ! '

Sample! Sample!ID! Sample!Origin Sex! SOLiD!LMPa"
SOLiD!

fragment!! HiSeqb"
Basenji' RKW 13764' Bethesda,'MD,'USA' M' 1' —' 1'
Dingo' RKW13760' Bargo'Dingo'Sanctuary,'Australia' M' 1' 2c" 1'
Israeli'wolf' RKW13759' Neve Ativ, Golan Heights, Israel F 1' 1d" 1'
Chinese'wolf' RKW13451 San Diego Zoo, CA, USA' F' —' —' 3'
Croatian'wolf' RKW 3919' Perković, Croatia' F' 1' 1d" 1'
Golden'jackal' RKW 1332' Tel Aviv, Israel' F' 2' 1.75d" 1'
a'Number'of'slides,'long'mate'pair,'1.5kb'insert,'50bp'per'end'
b'Number'of'lanes,'paired'end'400bp'insert,'100bp'per'end'
c'Number'of'slides,'75bp'
d"50bp'

'

billion sequence reads. In contrast, surveys of wolf genetic diversity to date have been limited

to shotgun sequencing with incomplete genomic coverage (Lindblad-Toh et al., 2005), small

numbers of sequence loci (Gray et al., 2009), or limited pooled sequencing (6X average from a

pool of 12 wolves, 30X average from a pool of 60 dogs) (Axelsson et al., 2013).

We implemented a sequencing alignment and genotyping pipeline customized for combining

SOLiD and Illumina HiSeq short read data, using aligners tailored to the specific platforms,

then post-processing alignments using the Picard (http://picard.sourceforge.net) and Genome

Analysis Toolkit (GATK) toolsets (DePristo et al., 2011). This pipeline converted short read

raw data to .bam format alignment files (Li et al., 2009a), and from bam files to genotype files

in vcf format (http://www.1000genomes.org/node/101). Our analyses draw on 10,265,254 high quality

variants detected by our genotyping pipeline, of which 6,970,672 were at genomic positions

with no missing data for any lineage. We estimate error rates to be low based on comparison to

genotype calls from genotyping arrays (e.g. heterozygote discordance rates of 0.01-0.04%).
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5.2.2 Quality Filtering

In line with previous studies utilizing next-generation sequencing data, we developed a series

of conservative data quality filters, implemented post-genotyping. Filters served two purposes.

First, we sought to minimize the effects of sequencing and alignment errors that might bias

downstream analyses (Jordan and Goldman, 2012; Nielsen et al., 2011). Second, we sought to

exclude regions of the genome that, irrespective of such errors, might show accelerated rates of

evolution for reasons other than positive selection on the dog lineage, and might falsely appear

as outliers in our selection scans; such regions might also be prone to misalignment of short

reads. We established sets of criteria with which to filter at both the level of genomic position

and individual lineages. Genome feature filters were applied to genomic positions based upon

intrinsic features of the reference (Canfam3) and polymorphism across samples (i.e. tri-allelic

and CpG sites), while sample feature filters were applied to individual lineage genotypes based

upon features of the data underlying the corresponding genotype call. We annotated our VCF

files according to whether genomic positions and samples passed the respective filtering criteria.

Genome feature filters Genomic positions in a VCF file were flagged as not passing the

genome feature filter according to the following four criteria.

1. Repeat Regions: We identified all genomic positions falling within repeat regions of the

reference genome identified with RepeatMasker (Smit et al., 2010) and Tandem Repeat

Finder (TRF) (Benson, 1999). We annotated our VCF file according to the class of repeat

detected, collapsing the output repeat classes into a reduced set of 14 classes: SINE, LINE,

LTR, DNA, RNA, rRNA, scRNA, snRNA, srpRNA, tRNA, Satellite, Simple repeat, Low

complexity sequence, and Unknown. Because ancient repeats can make up a substantial

portion of genomes, and because these regions will have diverged enough to allow accurate

read mapping with short read alignment algorithms, we sought to retain these, and only

mask out younger repeats prone to sequence misalignment. We considered that erroneous
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mapping of short reads to these regions should lead to increased frequency of heterozy-

gous genotype calls, and we conservatively chose 25% divergence as our minimum repeat

divergence threshold, as repeats in this interval show no increase in heterozygosity with

decreasing repeat age.

2. CpGs: Mutation rates at CpG sites are substantially higher than non-CpG sites (Hodgkin-

son and Eyre-Walker, 2011), so that regions enriched for CpGs may display elevated di-

versity and/or divergence leading to outliers in window-based analyses, independent from

any demographic or selective forces germane to our investigation of domestication. If in

any of our six lineages, a nucleotide that otherwise passed filter fell within a CpG din-

ucleotide, because at least some proportion of our data fell into that hyper-mutable site

category, we flagged the genomic position.

3. Copy Number Variants (CNVs): When true CNVs are not included in a reference genome

assembly, or when samples mapped to the reference contain novel CNVs, misalignment

of paralogous reads is more probably, and can lead to false positive SNVs that can bias

estimated levels of polymorphism and divergence. To minimize the effects of such mis-

alignment, we constructed a set of CNV regions to exclude from downstream analyses, by

combining a set of previously discovered CNVs reported in a diverse panel of dog breeds

(?), and those we discovered directly from the short read data generated for our six canid

lineages.

4. Triallelic sites: Preliminary comparisons of genotypes from sequencing with those from

the Illumina CanineHD BeadChip indicated triallelic sites were more prone to genotyping

errors, and so these sites, while making up a relatively small fraction of the genome, were

excluded.

Sample feature filters Samples were flagged as not passing the sample feature filter according

to the following four criteria.
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1. Proximity to Indel: Short reads generated by next-generation sequencing platforms are

prone to misalignment near indels, and attempts at local realignment around indels may

not fully rectify this problem. As a result, these indel-proximate misaligned regions may

be enriched for false positive SNVs. To account for this potential source of bias, for each

sample we excluded any genotype containing an alternative allele relative to Canfam3 that

was within 5bp (either up or downstream) of another SNV containing genotype within the

same sample.

2. Genotype Quality: Genotype quality (GQ) metrics output by the GATK (DePristo et al.,

2011) Unified Genotyper (UG) represent phred-scaled probabilities that the called geno-

type does not match the true underlying genotype, i.e −10 × log10P (error). We chose

a hard minimum GQ threshold of 20 (P (error) = 0.01) based upon two considerations.

First, we sought to minimize genotyping errors as measured by discordance with an inde-

pendent, high quality genotype data set from the Illumina SNP chip. Second, we sought

to balance the competing goals of retaining maximum genomic coverage while being able

to correctly identify specific mutations of functional significance, particularly those fixed

between dogs and wild canid species. Hard genotype quality thresholds may lead to un-

dercalling of heterozygotes in samples with low or moderate coverage, but works well

with those at > 20X coverage (Nielsen et al., 2011). All but one of our canid lineages

were sequenced at > 20X. Two additional lines of evidence support our use of a hard

GQ threshold. First, the majority of all emitted genotypes have GQ >20 (Basenji 83.1%,

Dingo 93.5%, Israeli wolf 95.6%, Croatian wolf 93.2%, Chinese wolf 98.9%, golden

jackal 93.7%). Second, for our lowest coverage sample, the basenji, filtering on GQ ap-

pears to exclude more low quality homozygous genotypes, as the proportion of heterozy-

gous calls shows an increasing trend with GQ above GQ=20.

3. Excess Depth of Coverage: Extremely high depth of coverage relative to the genome-

wide average likely indicates misalignment of reads generated from paralogous positions
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in the genome, particularly those containing CNVs. Indeed, excess depth of coverage is

a typical metric used to define CNV regions, but CNV filtering alone will fail to detect

finer-resolution CNV signatures. Thus, we conservatively filtered all sites where depth of

coverage exceeded twice the mean depth of coverage recorded for each lineage. GATK

UG filters out reads that fail to meet certain criteria (see above). As a result, post-GATK

filtering, depth of coverage may fall below our 2X threshold, even when the GATK filter-

ing of hundreds of reads would indicate a region that may intrinsically be prone to read

misalignment. Thus, our filtering on depth of coverage is based upon the number of reads

overlapping a genomic position prior to imposition of the UG’s internal filters.

4. Clustered SNVs: Within any sample, we excluded all SNV-containing genotypes falling

within 5 bp of another SNV-containing genotype. In identifying clustered SNVs, to be

conservative we required that proximate SNVs only have a minimum genotype quality of

10, rather than the 20 employed in our downstream evolutionary analyses.

5.2.3 Detection of Selective Sweeps

Step 1: Computation of Summary Statistics for Selection Scans Based on the results of

Innan and Kim (Innan and Kim, 2004, 2008), we chose three summary statistics, FST , ∆π and

∆TD, to detect candidate regions of selective sweeps during early dog domestication. These

three summary statistics are all standard statistics to summarize patterns of genetic variation and

are shown to be most powerful to detect soft sweeps among nine summary statistics they tested

in their simulation studies.

FST (Weir and Cockerham, 1984) measures differences in allele frequency between pop-

ulations. For a region under positive selection, we expect unusually high FST . ∆π (Innan

and Kim, 2004, 2008) is a ratio of nucleotide diversity between two populations, defined as

∆π = πwolf/πdog. The large value of ∆π can capture a local reduction in diversity around the

selected locus in dogs, which is a characteristic signal of selective sweeps. ∆TD is a difference
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in Tajima’s D, defined as ∆TD = TDwolf − TDdog. Tajimas D (Tajima, 1989) is a site fre-

quency spectrum (SFS)-based neutrality test statistic that contrasts the θ estimator based on the

number of segregating sites (θ̂S) to the θ estimator based on average pairwise differences (θ̂π).

For regions under selective sweeps in dogs, more positive values of ∆TD are expected.

Since all three statistics capture different footprints on genetic variation generated by positive

selection, we consider individual statistic separately (FST , ∆π and ∆TD) and all three statistics

jointly (joint empirical percentiles of FST , ∆π and ∆TD).

We used a sliding window approach in which we divided the reference genome into over-

lapping windows of size 100Kb with 10Kb increments. For each 100Kb-window, we computed

summary statistics using only sites that pass the genome feature (GF) filter and where genotypes

are observed and pass sample feature (SF) in both dogs and all three wolves. We considered

the boxer reference haplotype when we compute statistics within the dog sample or between the

dog and wolf sample. To facilitate these calculations, we wrote a C++ program vcfSummary to

compute the following summary statistics in each window from our VCF files:

• The number of fully observed sites: The number of sites passing the GF and SF filters in

both dogs and all three wolves.

• The number of segregating sites per base pair within the dog or wolf sample (sdog, swolf )

• Average pairwise differences per base pair within the dog or wolf sample (πdog, πwolf )

• Tajimas D within the dog or wolf sample (Ddog, Dwolf )

• Fixation indices (FST ): For each window, we took weighted averages over fully observed

sites, because the weighted averages over loci have been shown to perform better than

unweighted averages and they avoid any problems of zero denominators in computation

of FST (Weir and Cockerham, 1984).
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• Ratio of nucleotide diversities (∆π): ∆π = πwolf/πdog in each window. For the numerical

stability, we used log(∆π) = log(πwolf )− log(πdog) in each window.

• Difference of Tajimas D (∆TD): ∆TD = Dwolf −Ddog in each window.

• Recombination rates: We obtained the recombination map estimated from village dogs

from A. Boyko (personal communication) and calculated the average recombination rate

for each window.

Step 2: Filtering of windows with a low number of fully observed sites We obtained

220,020 sliding windows of size 100kb with 10kb increments genome-wide. We then discarded

any windows in which the number of fully observed sites is less than 30,000, because it is more

likely that those windows are within or close to repeat/CNV regions or regions of poor sequenc-

ing quality. Furthermore, as the variance of each summary statistic will depend on the number

of fully observed sites, we can reduce false positive signals for detecting positive selection by

discarding those windows with a low number of fully observed sites. We found that those win-

dows with a low number of fully observed sites are clustered together in the genome rather than

randomly scattered (figure 5.1, top). Thus, we clustered windows if they are within 200kb each

other and also excluded the intervening regions in the subsequent analysis. Finally, we excluded

any windows if they are within 1Mb from the telomere. After this, there remained 173,662 win-

dows (78.93%) (figure 5.1, bottom). The empirical distribution of each summary statistic used

for detecting outlier regions is shown in figure 5.2.

Step 3: Computing test statistics For each summary statistic (FST , ∆π and ∆TD), we com-

puted empirical percentiles and empirical p-values for each window. They are rank-transformed

statistics. They are computed by ranking each window by the summary statistic in question

(minimum of the summary statistic is assigned to rank 1) and then transforming the ranks ac-

cordingly.
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The empirical percentile for the window with rank x is defined as

Empirical percentile (x) =

∑n
i=1 I(Xi ≤ x)

n

where n is the total number of windows, I() is an indicator function and Xi is a rank of the ith

window. For example, the window with the maximum FST value (assigned to rank n) has an

empirical percentile of 1.

The empirical p-value for the window with rank x is defined as

Empirical p-value (x) =

∑n
i=1 I(Xi ≥ x)

n

where n is the total number of windows, I() is an indicator function and Xi is a rank of the ith

window. For example, the window with the maximum FST value (assigned to rank n) has an

empirical percentile of 1/n.

We then calculated a joint rank of all three summary statistics by computing the product

of the empirical percentiles obtained for the three summary statistics in each window (%FST ∗
%∆π ∗ %∆TD) and ranking each window by the product. We transform the joint rank into

either joint empirical percentiles or joint empirical p-values. In order to define outlier windows

and outlier regions, we transformed the joint rank defined for each window into joint empirical

percentiles. In order to draw Manhattan plots, we transformed the joint rank defined for each

window into joint empirical p-values. The genome-wide distribution of joint empirical p-values

is shown in figure 5.3.

Step 4: Defining outlier regions by clustering For each metric (FST , ∆π, ∆TD and the

joint empirical percentile), we defined the top 1% windows as outlier windows. Since the outlier

windows are often clustered together in the genome, we joined outlier windows and intervening

sequence to define outlier regions when windows were found within 200kb of each other. For

each outlier region, we computed the maximum of the empirical percentiles and the number of

outlier windows. We ordered the outlier regions by the ”maximum” of the empirical percentiles.
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Top 100 outlier regions ordered by the maximum of the joint empirical percentile are shown in

figure 5.8.

5.2.4 Validation of Selective Sweep Regions

Validating sweep signal at CCRN4L with external data To rule out the possibility that the

observed sweep signal in our top outlier regions resulted from particular features unique to the

genomes we sampled, we examined patterns of nucleotide diversity in two other data sets, (1) a

panel of 12 dog breeds sequenced to 6-8x coverage on the Illumina sequencing platform, and

the CanMap SNP data set (Vonholdt et al., 2010). In both data sets, we observed a reduction in

diversity in the dog lineage, consistent with a selective sweep at CCRN4L being a domestication-

related signal generally found across breeds (figure 5.5 and 5.6).

Assessing data quality in outlier regions To ensure that our top outlier regions are not false

positives due to a preponderance of low quality data, but instead due to observed patterns ex-

pected under selective sweeps, we examined the relationships of mean sequencing depth of cov-

erage and proportions of fully observed sites in each window with each summary statistic (FST ,

∆π, ∆TD and joint empirical percentile). In almost all cases, the correlations were not signif-

icant, and in cases in which they were, the magnitudes were negligible (figure 5.7), suggesting

that the sweep signals are not enriched for regions of low quality data.

5.2.5 Gene Ontology/Enrichment Analyses

The set of genes intersecting our outlier regions, defined by the joint empirical percentile, were

tested for significant enrichment in Gene Ontology (GO) categories, Kegg/Reactome pathways

(KGR) and Human Phenotype Ontologies (HPO) using the online tool g:Profiler (Reimand et al.,

2011) (http://biit.cs.ut.ee/gprofiler).

GO terms aim to summarize relevant information about gene function regarding their molec-
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ular activity (molecular function), the biological process they are involved in and the cellular

compartments where they are active (http://www.geneontology.org). The KGR databases are curated

reference databases for biological pathways (http://www.genome.jp/kegg/pathway.html, http://www.reactome.org).

The Human Phenotype Ontology establishes standardized terms for phenotypic abnormalities

encountered in human disease (http://www.human-phenotype-ontology.org). All the dog (Canis famil-

iaris) genes annotated in Ensembl were used as background set, and the Benjamini-Hochberg

false discovery rate (Benjamini and Hochberg, 1995) was applied to correct for multiple test-

ing. We tested for enrichment for the list of all genes found within the top 10% of selection

scan regions. We only report significantly enriched categories that included ≥5 genes and with

multiple-testing corrected p-value less than or equal to 5%. Within enriched categories, those

involved in skeletal and dental morphology were prevalent (Table 5.2)

5.3 Results

To find the top candidate regions that harbor potentially adaptive variation, we scanned the auto-

somal genome for signatures of positive selection on the dog lineage using three metrics (FST ,

∆π, and ∆TD, see Materials and Methods) that have been shown to have high power to detect

regions under selection during domestication (Innan and Kim, 2004, 2008). We flagged extreme

outliers in 100kb windows based on a joint percentile of these metrics, and then identified clus-

ters of outliers to establish candidate selection regions (see Materials and Methods for details).

The top 100 outlier regions range in length from 10-530kb (figure 5.8). Forty-one of the

top 100 regions did not contain any validated, annotated genes (figure 5.8). These regions may

harbor important non-coding functional elements, but might also include unidentified coding

regions. In support of this, we observe a 1.6-fold enrichment in CNEs in these regions relative

to the genome-wide distribution (2.5% of outlier regions without genes vs. 1.6% genome-wide,

Fisher’s exact test, P-value=2.2 × 10−16). Several of the genes in our top regions overlap with

previous studies or with a re-analysis of previous SNP array data, in which we contrasted varia-
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Figure 5.1: Genome-wide distribution of 100kb windows with the low number of fully observed

sites.

tion between wolves and basal dogs (figure 5.8).

To assess whether particular functional groups of genes were enriched in our selection scan

hits, we searched for Gene Ontology, Human Phenotype, and KEGG Pathway functional cate-

gories that are enriched across the top 10% of our selection scan hits. Functional enrichments

were dominated by categories associated with skeletal and dental morphology such as abnor-

mality of the joints of upper limbs, abnormality of the alveolar ridges, and abnormality of the

5th finger (Table 5.2). The last of these categories may underlie the development of the dewclaw

in dogs, which is absent in wild canids. Additional enrichment categories include brain func-

tion (e.g. cerebellar malformation, cerebellar vermis hypoplasia, delayed closure of fontanelles)
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Figure 5.2: Empirical distribution of each summary statistic used for detecting outlier regions.

(Table 5.2).

Our top candidate region (based upon the joint percentile of selection scan statistics, see

Materials and Methods) contains a portion of the ELF2 gene but is most strongly peaked on

CCRN4L (figure 5.10A). CCRN4L (also known as Nocturnin) is expressed in a circadian fashion

and studies in mice indicate CCRN4L activates PPAR-γ, a gene that promotes bone adipogensis

as opposed to osteoblast formation and that is a known diabetes risk locus in humans (Kawai and

Rosen, 2010). It also regulates the expression of additional genes involved in lipogenesis and

fatty acid binding and knock-out mice are resistant to diet-induced obesity (Kawai and Rosen,

2010; Green et al., 2007; Kawai et al., 2010b,a). CCRN4L also suppresses IGF1, a well-known

activator of bone growth (30) that underlies size variation amongst dog breeds (Sutter et al.,

2007; Hoopes et al., 2012).

Four of the eight top candidate regions contained genes implicated with neurological func-
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Figure 5.3: Genome-wide distribution of empirical p-values.

tions in other mammalian species: CADM2 (under the 4th hit) is a synaptic cell adhesion

molecule whose flanking regions show reduced homozygosity in autism patients (Casey et al.,

2012); SH3GL2 (6th hit) affects synaptic vesicle formation (Schmidt et al., 1999); PDE4D (7th

hit) is a mammalian homolog of the dunce gene in Drosophila whose knockout in mice shows

impaired learning (Rutten et al., 2008); and CUX2 (8th hit) is a key marker of neuronal fate

during mammalian cortex development (Franco et al., 2012) whose knockout in mice shows

deficits in working memory (Cubelos et al., 2010). These genes are important in neural de-

velopment and function, including cell type specification, synapse formation and function, and

synaptic plasticity. This is consistent with the behavioral evolution required for dogs to cohabit

with humans, although these genes may also have roles in other tissues.
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Figure 5.4: Overlap between top 1% outliers of three summary statistics
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Figure 5.5: Pattern of nucleotide diversity among 12 dog breeds sequenced to low coverage

on the Illumina platform (see Text S1), for region containing our top selection hit containing

CCRN4L, showing similar reduction in nucleotide diversity consistent with a selective sweep.

The region is depicted in coordinates for the updated dog reference genome, CanFam 3.1.
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Figure 5.6: Genotype plot derived from CanMap SNP data, surrounding our top selection hit

region containing CCRN4L. Vertical lines in graph (upper) indicate positions of SNPs relative

to the outlier region in Fig. 4A (yellow box). Columns (lower) indicate diversity at those SNP

positions; the SNP within the outlier region is indicated with red text. Diversity at this SNP

shows a marked reduction in dogs relative to wolves, consistent with a selective sweep, and the

pattern observed from dog and wolf whole genome sequencing (Fig. 4A). Blue, red, and yellow

represent the reference (dog) allele homozygote (0/0), heterozygote (0/1), and alternative allele

homozygote genotypes.
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A. Mean coverage B. Proportion of usable sites

Figure 5.7: Correlation between selection scan metrics (FST , ∆π, ∆TD and the joint empirical

percentile) and mean depth of coverage in each window (A) and proportion of fully observable

sites (B). 100
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Figure 5.9: Top 3 outlier regions.
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Figure 5.10: Top 4-6th outlier regions.
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Table 5.2: gProfiler functional enrichment analysis for top 10% joint percentile (of selection

scan statistics) outliers.

 T
er

m
 n

am
e 

C
at

eg
or

y 
T

ot
al

 #
 g

en
es

 
in

 c
at

eg
or

y 
(T

) 
T

ot
al

 #
 g

en
es

 
in

 in
pu

t l
is

t (
Q

) 
# 

in
pu

t g
en

es
 

in
 c

at
eg

or
y 

(Q
&

T
) 

Fr
ac

tio
n 

of
 

in
pu

t g
en

es
 

in
 te

rm
 

(Q
&

T
/Q

) 

Fr
ac

tio
n 

ca
te

go
ry

 
ge

ne
s 

de
te

ct
ed

 in
 li

st
 

(Q
&

T
/T

) 
Pa 

A
bn

or
m

al
ity

 o
f t

he
 jo

in
ts

 o
f t

he
 u

pp
er

 li
m

bs
 

H
P:

00
09

81
0 

16
8 

17
04

 
29

 
0.

16
0 

0.
17

3 
0.

00
19

4 
H

em
an

gi
om

as
 

H
P:

00
01

02
8 

32
 

17
04

 
9 

0.
05

0 
0.

28
1 

0.
00

34
 

V
as

cu
la

r n
eo

pl
as

ia
 

H
P:

01
00

74
2 

32
 

17
04

 
9 

0.
05

0 
0.

28
1 

0.
00

34
 

N
ar

ro
w

 c
he

st
 

H
P:

00
00

77
4 

21
 

17
04

 
7 

0.
03

9 
0.

33
3 

0.
00

34
3 

A
bn

or
m

al
ity

 o
f d

en
ta

l m
or

ph
ol

og
y 

H
P:

00
06

48
2 

38
 

17
04

 
10

 
0.

05
5 

0.
26

3 
0.

00
34

7 
A

pl
as

ia
/H

yp
op

la
si

a 
of

 th
e 

ex
tre

m
iti

es
 

H
P:

00
09

81
5 

15
9 

17
04

 
27

 
0.

14
9 

0.
17

0 
0.

00
36

1 
En

d 
st

ag
e 

re
na

l d
is

ea
se

 
H

P:
00

03
77

4 
12

 
17

04
 

5 
0.

02
8 

0.
41

7 
0.

00
46

 
A

bn
or

m
al

 n
um

be
r o

f t
ee

th
 

H
P:

00
06

48
3 

80
 

17
04

 
16

 
0.

08
8 

0.
20

0 
0.

00
51

 
A

bn
or

m
al

ity
 o

f t
he

 ra
di

us
 

H
P:

00
02

81
8 

54
 

17
04

 
12

 
0.

06
6 

0.
22

2 
0.

00
63

1 
A

bn
or

m
al

ity
 o

f t
he

 a
lv

eo
la

r r
id

ge
s 

H
P:

00
06

47
7 

13
 

17
04

 
5 

0.
02

8 
0.

38
5 

0.
00

68
6 

A
pl

as
ia

/H
yp

op
la

si
a 

in
vo

lv
in

g 
th

e 
sk

el
et

on
 

H
P:

00
09

11
5 

25
9 

17
04

 
38

 
0.

21
0 

0.
14

7 
0.

00
80

2 
H

yp
op

la
si

a 
in

vo
lv

in
g 

bo
ne

s o
f t

he
 e

xt
re

m
iti

es
 

H
P:

00
09

82
6 

91
 

17
04

 
17

 
0.

09
4 

0.
18

7 
0.

00
80

8 
O

cu
lo

m
ot

or
 a

pr
ax

ia
 

H
P:

00
00

65
7 

19
 

17
04

 
6 

0.
03

3 
0.

31
6 

0.
00

91
 

C
on

e-
sh

ap
ed

 e
pi

ph
ys

es
 o

f t
he

 p
ha

la
ng

es
 o

f t
he

 h
an

d 
H

P:
00

10
23

0 
14

 
17

04
 

5 
0.

02
8 

0.
35

7 
0.

00
98

2 
C

on
e-

sh
ap

ed
 e

pi
ph

ys
es

 
H

P:
00

10
57

9 
14

 
17

04
 

5 
0.

02
8 

0.
35

7 
0.

00
98

2 
H

et
er

og
en

eo
us

 
H

P:
00

01
42

5 
22

0 
17

04
 

33
 

0.
18

2 
0.

15
0 

0.
00

98
7 

H
yp

op
la

st
ic

 ri
bs

 
H

P:
00

00
90

8 
25

 
17

04
 

7 
0.

03
9 

0.
28

0 
0.

00
99

9 
A

pl
as

ia
/H

yp
op

la
si

a 
in

vo
lv

in
g 

bo
ne

s o
f t

he
 lo

w
er

 li
m

bs
 

H
P:

00
06

49
3 

64
 

17
04

 
13

 
0.

07
2 

0.
20

3 
0.

01
 

A
bn

or
m

al
ity

 o
f t

he
 jo

in
ts

 
H

P:
00

01
36

7 
39

4 
17

04
 

53
 

0.
29

3 
0.

13
5 

0.
01

02
 

C
le

ft 
lip

/p
al

at
e 

H
P:

00
00

20
2 

11
6 

17
04

 
20

 
0.

11
0 

0.
17

2 
0.

01
04

 
Pe

s p
la

nu
s 

H
P:

00
01

76
3 

44
 

17
04

 
10

 
0.

05
5 

0.
22

7 
0.

01
06

 
A

bn
or

m
al

ity
 o

f t
he

 5
th

 fi
ng

er
 

H
P:

00
04

20
7 

87
 

17
04

 
16

 
0.

08
8 

0.
18

4 
0.

01
18

 
Sh

or
t r

ib
s 

H
P:

00
00

77
3 

20
 

17
04

 
6 

0.
03

3 
0.

30
0 

0.
01

19
 

R
hi

zo
m

el
ic

 sh
or

te
ni

ng
 

H
P:

00
02

96
8 

20
 

17
04

 
6 

0.
03

3 
0.

30
0 

0.
01

19
 

A
bn

or
m

al
ity

 o
f t

he
 ra

di
al

 h
ea

d 
H

P:
00

03
99

5 
20

 
17

04
 

6 
0.

03
3 

0.
30

0 
0.

01
19

 
Pe

ct
us

 c
ar

in
at

um
 

H
P:

00
00

76
8 

32
 

17
04

 
8 

0.
04

4 
0.

25
0 

0.
01

23
 

A
pl

as
ia

/H
yp

op
la

si
a 

af
fe

ct
in

g 
bo

ne
s o

f t
he

 a
xi

al
 sk

el
et

on
 

H
P:

00
09

12
2 

19
0 

17
04

 
29

 
0.

16
0 

0.
15

3 
0.

01
24

 
Ph

ot
op

ho
bi

a 
H

P:
00

00
61

3 
45

 
17

04
 

10
 

0.
05

5 
0.

22
2 

0.
01

25
 

H
yp

od
on

tia
 

H
P:

00
00

66
8 

52
 

17
04

 
11

 
0.

06
1 

0.
21

2 
0.

01
29

 
A

bn
or

m
al

ity
 o

f t
he

 te
et

h 
H

P:
00

00
16

4 
22

4 
17

04
 

33
 

0.
18

2 
0.

14
7 

0.
01

3 
A

pl
as

ia
/H

yp
op

la
si

a 
of

 th
e 

rib
s 

H
P:

00
06

71
2 

33
 

17
04

 
8 

0.
04

4 
0.

24
2 

0.
01

48
 

104



A
pl

as
ia

/H
yp

op
la

si
a 

in
vo

lv
in

g 
th

e 
m

et
ac

ar
pa

l b
on

es
 

H
P:

00
05

91
4 

47
 

17
04

 
10

 
0.

05
5 

0.
21

3 
0.

01
69

 
A

tri
al

 se
pt

al
 d

ef
ec

t 
H

P:
00

01
63

1 
54

 
17

04
 

11
 

0.
06

1 
0.

20
4 

0.
01

71
 

C
er

eb
el

la
r m

al
fo

rm
at

io
n 

H
P:

00
02

43
8 

54
 

17
04

 
11

 
0.

06
1 

0.
20

4 
0.

01
71

 
A

pr
ax

ia
 

H
P:

00
02

18
6 

34
 

17
04

 
8 

0.
04

4 
0.

23
5 

0.
01

78
 

A
bn

or
m

al
ity

 o
f t

he
 c

ar
di

ac
 se

pt
a 

H
P:

00
01

67
1 

99
 

17
04

 
17

 
0.

09
4 

0.
17

2 
0.

01
86

 
Jo

in
t c

on
tra

ct
ur

es
 in

vo
lv

in
g 

th
e 

jo
in

ts
 o

f t
he

 h
an

d 
H

P:
00

09
47

3 
69

 
17

04
 

13
 

0.
07

2 
0.

18
8 

0.
01

87
 

A
bn

or
m

al
ity

 o
f t

he
 c

er
eb

el
la

r v
er

m
is

 
H

P:
00

02
33

4 
41

 
17

04
 

9 
0.

05
0 

0.
22

0 
0.

01
9 

O
st

eo
pe

ni
a 

H
P:

00
00

93
8 

48
 

17
04

 
10

 
0.

05
5 

0.
20

8 
0.

01
95

 
A

pl
as

ia
/H

yp
op

la
si

a 
in

vo
lv

in
g 

bo
ne

s o
f t

he
 th

or
ax

 
H

P:
00

06
71

1 
48

 
17

04
 

10
 

0.
05

5 
0.

20
8 

0.
01

95
 

R
ed

uc
ed

 n
um

be
r o

f t
ee

th
 

H
P:

00
09

80
4 

70
 

17
04

 
13

 
0.

07
2 

0.
18

6 
0.

02
09

 
C

er
eb

el
la

r v
er

m
is

 h
yp

op
la

si
a 

H
P:

00
01

32
0 

35
 

17
04

 
8 

0.
04

4 
0.

22
9 

0.
02

11
 

A
bn

or
m

al
ity

 o
f t

he
 a

tri
al

 se
pt

um
 

H
P:

00
01

63
0 

56
 

17
04

 
11

 
0.

06
1 

0.
19

6 
0.

02
23

 
A

bn
or

m
al

ity
 o

f t
he

 ri
bs

 
H

P:
00

00
77

2 
86

 
17

04
 

15
 

0.
08

3 
0.

17
4 

0.
02

33
 

A
bn

or
m

al
ity

 o
f t

he
 ir

is
 

H
P:

00
00

52
5 

71
 

17
04

 
13

 
0.

07
2 

0.
18

3 
0.

02
34

 
Sy

no
st

os
is

 in
vo

lv
in

g 
bo

ne
s o

f t
he

 h
an

d 
H

P:
00

04
27

8 
17

 
17

04
 

5 
0.

02
8 

0.
29

4 
0.

02
36

 
A

bn
or

m
al

ity
 o

f r
en

al
 e

xc
re

tio
n 

H
P:

00
11

03
6 

17
 

17
04

 
5 

0.
02

8 
0.

29
4 

0.
02

36
 

A
bn

or
m

al
ity

 o
f t

he
 fe

m
or

al
 h

ea
d 

H
P:

00
03

36
8 

23
 

17
04

 
6 

0.
03

3 
0.

26
1 

0.
02

4 
A

bn
or

m
al

ity
 o

f t
he

 e
pi

ph
ys

is
 o

f t
he

 fe
m

or
al

 h
ea

d 
H

P:
00

10
57

4 
23

 
17

04
 

6 
0.

03
3 

0.
26

1 
0.

02
4 

A
bn

or
m

al
ity

 o
f t

he
 st

er
nu

m
 

H
P:

00
00

76
6 

94
 

17
04

 
16

 
0.

08
8 

0.
17

0 
0.

02
41

 
A

bn
or

m
al

ity
 o

f t
he

 fo
re

ar
m

 
H

P:
00

02
97

3 
64

 
17

04
 

12
 

0.
06

6 
0.

18
8 

0.
02

44
 

A
bn

or
m

al
ity

 o
f t

he
 m

et
ac

ar
pa

l b
on

es
 

H
P:

00
01

16
3 

57
 

17
04

 
11

 
0.

06
1 

0.
19

3 
0.

02
52

 
A

bn
or

m
al

ity
 o

f t
he

 p
el

vi
s 

H
P:

00
02

64
4 

15
9 

17
04

 
24

 
0.

13
3 

0.
15

1 
0.

02
58

 
A

bn
or

m
al

ity
 o

f t
he

 m
us

cu
la

tu
re

 o
f t

he
 u

pp
er

 li
m

bs
 

H
P:

00
01

44
6 

30
 

17
04

 
7 

0.
03

9 
0.

23
3 

0.
02

74
 

A
bn

or
m

al
ity

 o
f t

he
 c

ar
di

ac
 a

tri
a 

H
P:

00
05

12
0 

58
 

17
04

 
11

 
0.

06
1 

0.
19

0 
0.

02
84

 
A

bn
or

m
al

ity
 o

f t
he

 il
iu

m
 

H
P:

00
02

86
7 

37
 

17
04

 
8 

0.
04

4 
0.

21
6 

0.
02

9 
A

bn
or

m
al

 ir
is

 p
ig

m
en

ta
tio

n 
H

P:
00

08
03

4 
37

 
17

04
 

8 
0.

04
4 

0.
21

6 
0.

02
9 

C
ol

ob
om

a 
H

P:
00

00
58

9 
44

 
17

04
 

9 
0.

05
0 

0.
20

5 
0.

02
95

 
A

bn
or

m
al

ity
 in

vo
lv

in
g 

th
e 

ep
ip

hy
se

s o
f t

he
 li

m
bs

 
H

P:
00

06
50

5 
44

 
17

04
 

9 
0.

05
0 

0.
20

5 
0.

02
95

 
Su

dd
en

 c
ar

di
ac

 d
ea

th
 

H
P:

00
01

64
5 

18
 

17
04

 
5 

0.
02

8 
0.

27
8 

0.
03

01
 

C
ar

di
ac

 a
rr

es
t 

H
P:

00
01

69
5 

18
 

17
04

 
5 

0.
02

8 
0.

27
8 

0.
03

01
 

A
rte

rio
sc

le
ro

si
s 

H
P:

00
02

63
4 

31
 

17
04

 
7 

0.
03

9 
0.

22
6 

0.
03

25
 

Th
or

ac
ic

 h
yp

op
la

si
a 

H
P:

00
05

25
7 

31
 

17
04

 
7 

0.
03

9 
0.

22
6 

0.
03

25
 

A
bn

or
m

al
ity

 o
f t

he
 p

al
at

e 
H

P:
00

00
17

4 
22

2 
17

04
 

31
 

0.
17

1 
0.

14
0 

0.
03

3 
A

bn
or

m
al

ity
 o

f t
he

 sc
ap

ul
ae

 
H

P:
00

00
78

2 
38

 
17

04
 

8 
0.

04
4 

0.
21

1 
0.

03
37

 
A

bn
or

m
al

ity
 o

f t
he

 lo
w

er
 li

m
b 

H
P:

00
02

81
4 

43
8 

17
04

 
55

 
0.

30
4 

0.
12

6 
0.

03
51

 
N

eo
pl

as
m

 o
f t

he
 sk

in
 

H
P:

00
08

06
9 

75
 

17
04

 
13

 
0.

07
2 

0.
17

3 
0.

03
55

 

105



D
el

ay
ed

 c
lo

su
re

 o
f f

on
ta

ne
lle

s 
H

P:
00

00
27

0 
25

 
17

04
 

6 
0.

03
3 

0.
24

0 
0.

03
56

 
A

bn
or

m
al

ity
 o

f f
em

or
al

 e
pi

ph
ys

es
 

H
P:

00
06

49
9 

25
 

17
04

 
6 

0.
03

3 
0.

24
0 

0.
03

56
 

A
bn

or
m

al
ity

 in
vo

lv
in

g 
th

e 
ep

ip
hy

se
s o

f t
he

 lo
w

er
 li

m
bs

 
H

P:
00

06
50

0 
25

 
17

04
 

6 
0.

03
3 

0.
24

0 
0.

03
56

 
C

on
tra

ct
ur

es
 o

f t
he

 jo
in

ts
 o

f t
he

 u
pp

er
 li

m
bs

 
H

P:
01

00
36

0 
83

 
17

04
 

14
 

0.
07

7 
0.

16
9 

0.
03

65
 

Pa
te

nt
 d

uc
tu

s a
rte

rio
su

s 
H

P:
00

01
64

3 
53

 
17

04
 

10
 

0.
05

5 
0.

18
9 

0.
03

73
 

D
is

lo
ca

te
d 

ra
di

al
 h

ea
d 

H
P:

00
03

08
3 

19
 

17
04

 
5 

0.
02

8 
0.

26
3 

0.
03

76
 

Ju
ve

ni
le

 o
ns

et
 

H
P:

00
03

62
1 

13
2 

17
04

 
20

 
0.

11
0 

0.
15

2 
0.

03
95

 
Sh

or
t l

on
g 

bo
ne

s 
H

P:
00

03
02

6 
69

 
17

04
 

12
 

0.
06

6 
0.

17
4 

0.
04

18
 

A
bn

or
m

al
ity

 o
f t

he
 fe

m
or

al
 n

ec
k 

an
d 

he
ad

 re
gi

on
 

H
P:

00
03

36
6 

54
 

17
04

 
10

 
0.

05
5 

0.
18

5 
0.

04
19

 
C

er
eb

ra
l e

de
m

a 
H

P:
00

02
18

1 
26

 
17

04
 

6 
0.

03
3 

0.
23

1 
0.

04
25

 
A

bn
or

m
al

ity
 o

f t
he

 th
or

ax
 

H
P:

00
00

76
5 

26
2 

17
04

 
35

 
0.

19
3 

0.
13

4 
0.

04
33

 
A

bn
or

m
al

ity
 o

f t
he

 e
ye

br
ow

 
H

P:
00

00
53

4 
85

 
17

04
 

14
 

0.
07

7 
0.

16
5 

0.
04

38
 

A
bn

or
m

al
ity

 o
f t

he
 e

pi
ph

ys
es

 o
f t

he
 p

ha
la

ng
es

 o
f t

he
 h

an
d 

H
P:

00
05

92
0 

20
 

17
04

 
5 

0.
02

8 
0.

25
0 

0.
04

61
 

A
bn

or
m

al
ity

 o
f t

he
 e

lb
ow

 
H

P:
00

09
81

1 
78

 
17

04
 

13
 

0.
07

2 
0.

16
7 

0.
04

72
 

Ph
os

ph
or

ic
 d

ie
st

er
 h

yd
ro

la
se

 a
ct

iv
ity

 
G

O
:0

00
80

81
 

62
 

17
09

 
19

 
0.

01
6 

0.
30

6 
0.

05
 

A
ut

os
om

al
 d

om
in

an
t i

nh
er

ita
nc

e 
H

P:
00

00
00

6 
75

1 
17

04
 

87
 

0.
48

1 
0.

11
6 

0.
05

 
C

he
m

ok
in

e 
si

gn
al

in
g 

pa
th

w
ay

 
K

EG
G

:0
40

62
 

15
4 

17
09

 
28

 
0.

05
4 

0.
18

2 
0.

05
 

a   C
or

re
ct

ed
 fo

r m
ul

tip
le

 te
st

in
g.

 
 

 
 

 
 

 
 

!

106



CHAPTER 6

Conclusions

6.1 Contribution

This dissertation addresses the challenges of analyzing NGS data for population genetics in-

ferences and provides recommendations and guidelines to interpret such data with precision. In

this dissertation, we emphasize the importance of the pipeline used to analyze NGS data to avoid

any potential bias problems and incorrect conclusions. We showed that depending on the NGS

data analysis pipeline, one can reach starkly different conclusions with the same data set. Sim-

ple allele counting after inferring individual genotypes from aligned sequencing data (call-based

approach) leads to bias in the estimated SFS toward the sites with rare variants, whereas the

SFS directly estimated from aligned sequencing data (direct estimation approach) was almost

unbiased across ranges of coverage. Furthermore, we demonstrated that the bias in the inferred

SFS subsequently results in bias in θ estimators, neutrality test, and demographic inference.

Next, we proposed the new adaptive K-restricted algorithm by which we can speed-up the

original dynamic programming to compute site likelihood vectors. This algorithm exploits the

observation that for most sites the site likelihood vectors probability mass is concentrated on

a few cells around the best-guess allele counts and approximates the site likelihood vector by

curtailing computation to only those K components of the dynamic programming update vectors.

We showed that the adaptive K-restricted algorithm has comparable accuracy, but is faster than

the original dynamic programming algorithm. Moreover, as a sample size increases, there will

be even more dramatic differences in the computation time of the two algorithms. This speed
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improvement with the adaptive K-restricted algorithm will greatly facilitate direct inference of

the SFS even when the number of individuals is large.

Finally, as an applied study, we analyzed high-coverage sequencing data of two dogs and

three wolves to detect genetic signatures of adaptation during early dog domestication. Our

top selection hit, a CCRN4L gene, showed the importance of dietary evolution in early dog

domestication. This gene might be also involved in bone growth, because it affects cell fate

via the growth regulator, IGF1. Furthermore, 4 of our top 8 selection regions each contain

a gene known to impact memory and behavior in mice and humans. This confirms previous

studies which concluded that domestication focused on genes involved in cognition. Finally,

we found that gene categories involved in skeletal and dental morphology, and genes in these

categories are enriched for our top selection hits, implying that genes in these categories may

have contributed to early dogs having shortened, broader skulls, more extreme tooth crowding,

smaller carnassials, and reduced body size. (I want to emphasize that Adam H. Freedman,

Robert K. Wayne, John Novembre and I were all involved in the interpretation of the results

pertaining to selection scans.)

6.2 Future Work

Estimation of 2-dimensional SFS As an extension to the EM algorithm for estimating the

1-dimensional SFS, we can also derive an EM algorithm for estimating the 2-dimensional SFS.

Suppose that we have sequencing data from two populations, denoted by D1 and D2, with

a sample size of n1 and n2, respectively. The 2-dimensional SFS is defined as a (2n1 + 1) ×
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(2n2 + 1) matrix:

ξ =


ξ0,0 ξ0,1 . . . ξ0,2n2

ξ1,0 ξ1,1 . . . ξ1,2n2

...
...

...

ξ2n1,0 ξ2n1,1 . . . ξ2n1,2n2


where ξi,j represents a proportion of sites with the derived allele frequency of i/(2n1) in popu-

lation 1 and the derived allele frequency of j/(2n1) in population 2.

By the EM algorithm, we can iteratively update the 2-dimensional SFS as follows:

ξ(t+1)
x,y =

1

l

l∑
i=1

P (D1,i, D2,i|X1,i = x,X2,i = y)ξ
(t)
x,y∑2n1

k=0

∑2n2

l=0 P (D1,i, D2,i|X1,i = k,X2,i = l)ξ
(t)
k,l

=
1

l

l∑
i=1

P (D1,i|X1,i = x)P (D2,i|X2,i = y)ξ
(t)
x,y∑2n1

k=0

∑2n2

l=0 P (D1,i|X1,i = k)P (D2,i|X2,i = l)ξ
(t)
k,l

by conditional independence

=
1

l

l∑
i=1

h1i,xh
2
i,yξ

(t)
x,y∑2n1

k=0

∑2n2

l=0 h
1
i,kh

2
i,lξ

(t)
k,l

where h1i,x denotes a site likelihood function for a derived allele frequency of x/(2n1) in pop-

ulation 1 and h2i,y denotes a site likelihood function for derived allele frequency of y/(2n2) in

population 2.

As this calculation includes a computation of site likelihood vectors for each population

independently (i.e. boldh1i and h2
i separately), this implies that we can make the direct estimation

method even faster and more efficient with the adaptive K-restricted algorithm - the computation

time for running the original algorithm is O(n2
1 + n2

2), whereas the runtime of the adaptive K-

restricted algorithm becomes O(K1n1 +K2n2).

However, we found that estimation of the 2-dimensional SFS is not as precise as estimation

of the 1-dimensional SFS (Figure 6.1). This is because we have a lot more parameters to estimate

for the 2-dimensional SFS compared to the 2-dimensional SFS. Hence, future works are required

to improve the performance of the direct estimation method for estimating the 2-dimensional

SFS.
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Figure 6.1: Evaluation of the accuracy of the inferred 2-dimensional SFS. We simulated 100

replicates of sequencing data for 10 diploid individuals for each population each from genomic

regions of length 100Kb under the standard model. A. Shapes of the inferred 2-dimensional SFS

(right) compared with the ground-truth SFS (left) for coverage 3X (top), 5X (middle), and 10X

(bottom). B. Relative deviation of a fraction of sites with the derived allele count of 1-20.
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Direct estimation method vs. multisample calling with genotype imputation With the se-

quencing data from the 1000 Genomes Project, we observed a lack of rare variants in the SFS

inferred from the genotype calls (using the VCF file) compared to the SFS inferred directly from

the aligned short-read sequencing data (using a set of the BAM files). To conclude that this

difference is not the result of artifacts, we need to verify the results using simulations. We can

simulate sequencing data with the same sample size used in the 1000 Genomes Project using

the inferred human demographic model (such as one in Nelson et al.), and then compare the

inferred SFS with the direct estimation method to the inferred SFS with the call-based approach

(genotypes are inferred with a multisample calling pipeline and genotype imputation).
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