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ABSTRACT OF THE DISSERTATION

Infinite-Dimensional Generative Models through the Transport of Measure

By

Gavin Kerrigan

Doctor of Philosophy in Computer Science

University of California, Irvine, 2024

Distinguished Professor Padhraic Smyth, Chair

A pervasive and often tacit assumption in generative modeling is that our data distribution

is finite-dimensional. These finite-dimensional distributions frequently arise from a discrete

representation of some continuous underlying signal. Images, for instance, are represented as

a finite collection of pixels, and generative models are typically built directly on top of this

pixel-level representation.

However, our world is not made of pixels, and building faithful models of our world requires

moving beyond this assumption. This is particularly true for data modalities like partial

differential equations and time series, where the multi-scale or irregularly sampled nature of

this data is a key feature. In this dissertation, we develop both the theory and methodology

necessary to build generative models for infinite-dimensional data. In particular, we focus on

a class of models which can be understood through the lens of measure transport.

We begin with an overview of this class of models and a review of the necessary mathematical

background. We build upon this background to develop techniques for building diffusion

and flow-based generative models for infinite-dimensional data. Our focus then shifts to

conditional generation tasks and the application of optimal transport techniques within

flow-based models. Finally, we apply flow-based techniques to forecast continuous-time event

data before concluding with a discussion of several remaining challenges.
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Chapter 1

Introduction

Can a machine compose a symphony? Paint a portrait? Author an ode to a loved one? Write

code, prove a theorem, be a friend? A mere decade ago, the answer to these questions would

likely have been a resounding no. Today, though, paradigm-changing advances in generative

modeling have unequivocally narrowed the gap between machine and man.

At its core, generative modeling seeks to build artifacts which allow us to ingest and

understand a collection of data, and to produce new data using the information thus gleaned.

Contemporary methods are chiefly probabilistic, where a dataset is understood as a collection

of samples from some probability distribution. The principal goal of generative modeling,

then, is to obtain a faithful representation of this data generating distribution. Depending on

the task at hand, this representation can be leveraged to draw new samples, evaluate existing

data, or otherwise enhance our understanding of the underlying mechanisms which produced

the data we observed.

Representations of the data we collect are, of course, discrete entities, and existing generative

models are typically built directly on top of this discrete representation. However, many

phenomena of interest, ranging from vision and audio to time series and fluid dynamics, are
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most naturally thought of as a arising from a continuous underlying signal. For instance, an

image, saved as a finite collection of pixels, is a discrete representation of the corresponding

physical phenomenon. Such signals can often be thought of as functions living in some

infinite-dimensional space.

In this dissertation, we aim to move beyond the assumption that our data is finite-dimensional

and develop generative models which are able to both respect and leverage the underlying

functional nature of many data sources. To do so, we develop methodological techniques for

building generative models in infinite-dimensional spaces as well as the theoretical properties

which serve as the foundation for such models.

This has several distinct advantages across a number of domains. For instance,

• Time Series. By considering a univariate time series as a function, one can build

generative models to perform probabilistic forecasting of these models which allows

one to incorporate data which is observed at irregular intervals, as well as forecast at

arbitrary times.

• PDEs. Solutions to partial differential equations (PDEs) are functions. By treating

these objects as functions, one may incorporate assumptions on the structure of the

solutions, such as smoothness, providing a rigorous link between contemporary data-

driven approaches and classical mathematical techniques.

• Natural Images. When generating natural images, it is typical to work at a single, fixed

resolution. However, there may be scenarios in which one is interested in dynamically

choosing the size of an image, e.g., reducing the size of an image when it is being

generated on a mobile device in order to limit energy usage. By posing a generative

model of images which is functional, one may generate images at an arbitrary resolution

chosen at test-time.
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• Point Processes. A fruitful point of view on point processes is to consider them as an

infinite collection of joint distributions, with the nth distribution representing the event

times given that exactly n events have occurred. By modeling this infinite-dimensional

distribution, one is able to overcome limitations with existing autoregressive models,

which are trained only to represent univariate one-step-ahead predictions.

1.1 Generative Models and Measure Transport

One of the most broad and successful classes of contemporary generative models are those

based on the notion of measure transport, and this dissertation is focused on this setting. These

models approximate the data distribution by transforming a simple reference distribution

(e.g., a Gaussian) over many steps. This iterative process is naturally seen as occurring over

time, and treating these models as dynamic processes is a fruitful point of view. In this

section, we provide an informal and conceptual treatment of generative models through this

lens, and we will see how this perspective allows us to both unify and generalize existing

approaches.

1.1.1 Curves in the Space of Measures

Suppose we are interested in sampling from a probability measure µ1 supported on X = Rd,

but we only have indirect access to this distribution. For instance, we often find ourselves in

situations in which we only have i.i.d. samples from µ1, or in which we only know the density

of µ1 up to a multiplicative constant.

When X = R and the CDF F of µ1 is known, a classical technique is inversion sampling.

To produce samples from µ1, we begin by drawing a sample x0 from the uniform measure

µ0 on [0, 1]. This source sample is transformed via the inverse CDF F−1 to obtain a data

3



sample, i.e., x1 = F−1(x0) is a sample from µ1. From a global perspective, the distribution

µ1 is obtained via the pushforward µ1 = F−1
# µ0 of µ0 along the inverse CDF.1

Can we play a similar game in higher dimensions and without knowing the CDF of µ1? We

might hope that we can transform a tractable source distribution µ0 into the data distribution

µ1 through some learned mapping T : X → X with µ1 ≈ T#µ0. A natural strategy is to

learn a mapping T which minimizes a discrepancy measure of the form D(µ1, T#µ0), such

as the KL divergence, between the true data distribution µ1 and our learned approximation

T#µ0. Some models, such as GANs [Goodfellow et al., 2014], indeed carry out this plan.

Finding such a transformation T is challenging. Any model which directly transforms pure

noise into, say, a realistic image, must be quite sophisticated. Contemporary generative

models, such as diffusions [Song et al., 2021] and flows [Lipman et al., 2023], instead decompose

this generative process into a sequence of easier-to-learn steps. By composing many small

transformations, one hopes to learn a complex transformation while sidestepping the need to

directly model it. Taking this perspective to its extreme, we might seek to learn infinitesimal

transformations, which are composed not through a sequence of discrete steps, but rather via

continuous dynamics.

To make this idea more precise, let us use P(X) to represent the space of probability measures

over X = Rd. This space will serve a geometric backdrop in which we may build generative

models. We begin by fixing a reference measure µ0 ∈ P(X), which should be thought of as

a point in the geometric space P(X). Our goal will be to design or otherwise learn a curve

(µt)t∈[0,1] in P(X) which (approximately) interpolates between our reference measure µ0 and

the data measure µ1.

To describe the infinitesimal evolution of such a curve, we will need some notion of its tangents.

1Slightly more formally, if T : X → X is a given transformation, the pushforward measure ν = T#µ is given
by ν(A) = T#µ(A) = µ(T−1(A)). In terms of probability densities, this is the familiar change-of-variables
formula. That is, if ν admits a density q and µ admits a density p, then q(x) = p(T−1(x))|DT−1(x)|.
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It turns out that the correct notion is that of a time-dependent vector field vt : X → X

[Ambrosio et al., 2005]. To see why this is the case, suppose x0 ∼ µ0 is a sample from our

reference distribution. If we begin at x0 and flow this sample along the vector field vt, then

its position at any later time t is described by the flow map ϕt : X → X. That is, xt = ϕt(x0)

is the solution of the ordinary differential equation

dϕt(x0) = vt(ϕt(x0)) dt ϕ0(x0) = x0 t ∈ [0, 1]. (1.1)

By drawing many reference samples x0 ∼ µ0 and flowing each independently along vt, we

obtain their distribution µt at any later time t ∈ [0, 1] via the pushforward µt = [ϕt]#µ0.

In other words, the vector field vt describes the local dynamics of our process, transporting

individual samples, whereas the global dynamics of our process are captured by the path of

measures (µt)t∈[0,1]. The key link between the local and global perspectives is the continuity

equation

∂tµt + div(vtµt) = 0 t ∈ [0, 1]. (1.2)

That is, when a pair (vt, µt) solve the continuity equation, they describe the same dynamics,

where Equation (1.1) describes the transport of individual samples and Equation (1.2)

describes the corresponding transport of measure.

Interestingly, a given path of measures (µt)t∈[0,1] can also be described via stochastic dynamics,

where the evolution of an individual sample is now described by a stochastic differential

equation of the form

dxt = vt(xt) dt+
√

2σt(xt) dWt x0 ∼ µ0 t ∈ [0, 1] (1.3)

where Wt is a Brownian motion on X = Rd, v : [0, 1]×X → X is a drift vector field, and
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σ : [0, 1]×X → R is a scalar diffusion coefficient. In this case, the Fokker-Planck-Kolmogorov

equation [Bogachev et al., 2022] plays the role of the continuity equation:

∂tµt + div (µtvt) = ∆(gµt) (1.4)

where the Laplacian ∆(gµt) accounts for the stochastic component of the local transport in

Equation (1.3).

Overall, this interplay between the local and global perspective is a recurring theme in

contemporary generative modeling, and many techniques are predicated on an analysis of the

corresponding continuity equation.

1.1.2 Generative Models as Curves

So far, we have described a fairly abstract perspective on generative models, where our stated

aim is to design an interpolant between a given reference measure µ0 and the data measure

µ1. Broadly, there are two strategies for obtaining such an interpolant. In the first, we do

not specify a particular path of measures, but rather allow the model to discover the path

itself. In the second and more performant approach, we as practitioners explicitly define the

path of measures.

In all cases, the object we parametrize in practice is the vector field which generates the

corresponding path of measures. Upon learning this vector field, samples from the model

distribution are drawn by sampling a source point x0 ∼ µ0 and numerically solving the

corresponding (potentially stochastic) flow differential equation. Let us now make this

procedure somewhat more concrete by focusing on several classes of generative models.
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Normalizing Flows The earliest class of generative models which fit into this framework

are normalizing flows [Papamakarios et al., 2019]. In particular, continuous normalizing flows

[Chen et al., 2018] learn a parametric vector field vθt : X → X which implicitly defines a path

of measures via the continuity equation. These models are trained via maximum likelihood,

i.e. minimizing the KL divergence KL [µ1∥[ϕ1]#µ0] between the true data distribution and the

distribution [ϕ1]#µ0 obtained by flowing samples from µ0 along the learned vector field vθt .

Although this approach has the advantage of decomposing the generative process, it suffers

from several limitations. Foremost, evaluating the KL divergence during training requires

flowing samples along the learned vector field, which is computationally expensive. However,

a more conceptual disadvantage is that we are asking the model to do the hard work of

finding an interpolating path of measures (µt)t∈[0,1]. It is thus difficult to regularize the

corresponding path of measures, e.g., encouraging the model to learn short paths which are

cheap to simulate.

Diffusion Models On the other hand, diffusion models, particularly continuous-time

variants [Song et al., 2021], define a priori a path of measures which we seek to learn. This

is achieved by first specifying an SDE which interpolates between the data distribution µ1

and a reference measure µ0.
2. This step requires no learning, as we are merely turning our

data into noise. For instance, when µ0 is a Gaussian, this SDE can be specified via an

inhomogeneous Ornstein-Uhlenbeck process, which shrinks datapoints towards the origin

while simultaneously adding Gaussian noise.

The reverse process is obtained by solving this SDE backwards in time, thereby giving us a

path of measures interpolating from the reference measure µ0 to the data measure µ1. The

corresponding time-reversed SDE, though, is intractable, and the drift vector field of this

intractable SDE is modeled via a regression-style objective. Discrete-time diffusion models,

2We note that there is a caveat to this story – an interpolant is only achieved asymptotically, but the
convergence towards µ0 is exponentially fast [Pedrotti et al., 2024]
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like DDPM [Ho et al., 2020], can be seen as modeling a fixed time-discretization of this

scheme.

Flow Matching Similar to diffusion models, the recently introduced framework of flow

matching3 [Lipman et al., 2023, Albergo and Vanden-Eijnden, 2023, Liu et al., 2023] defines a

path of measures a priori. However, the vector field which generates this path, in the sense of

the continuity equation, is intractable. This vector field is again learned via a regression-style

loss.

Compared with diffusion models, deterministic transport is typically used. Moreover, flow

matching typically allows for greater flexibility in the design of the interpolating path than

diffusion models. For instance, in flow matching, one can use arbitrary source distributions

[Tong et al., 2024, Albergo et al., 2024], which can be difficult to achieve in diffusion models.

Moreover, in flow matching, the path of measures can be more carefully designed. For

instance, the performance of flow matching models can be improved by using geodesics, or

shortest paths in P(X), as the desired interpolant. These geodesics arise naturally from

optimal transport notions, which we study further in Chapter 5.

1.2 Structure and Contributions of the Dissertation

This dissertation presents several new techniques for constructing transport-based generative

models in infinite-dimensional spaces, as detailed in the subsequent chapters. Carrying out

this program requires overcoming both theoretical and methodological challenges.

Foremost, generative models in Euclidean spaces typically make an implicit assumption that all

3Several works contemporary with flow matching [Lipman et al., 2023], such as stochastic interpolants
[Albergo and Vanden-Eijnden, 2023] and rectified flows [Liu et al., 2023], develop equivalent ideas. We
generally use the terminology flow matching to refer to this class of models.
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measures admit a density with respect to the Lebesgue measure, and subsequent constructions

and analyses depend heavily on this assumption. However, in infinite dimensional spaces, there

is no analogue of the Lebesgue measure [Eldredge, 2016], and thus we need to work directly

with the underlying probability measures. A common theme throughout this dissertation is

that infinite-dimensional probability measures often requires careful analyses to elucidate the

conditions under which we may obtain a well-defined model.

More practically, generative models in function spaces frequently require us to learn mappings

between infinite-dimensional spaces. Standard model architectures are not applicable in

this setting, and we thus often require specialized models. A second common theme in this

dissertation is the use of neural operators [Kovachki et al., 2021, Li et al., 2021] as a backbone

for generative modeling tasks.

More specifically, the structure and contributions of this dissertation are as follows:

• Chapter 2 introduces technical background information which is essential in the devel-

opments of the later chapters, in addition to defining various pieces of notation used

throughout the dissertation.

• Chapter 3 develops a discrete-time diffusion model for data measures supported in

separable Hilbert spaces. This was the first work to develop function-space diffusion

models, and was previously published in Kerrigan et al. [2023]. Some specific contri-

butions of this chapter include the development of diffusion models using Gaussian

process-valued noise, a functional ELBO used for training the model, techniques for

approximating the ELBO using finite-dimensional quantities, and the identification of

the Cameron-Martin space as playing a key role in function-space models.

• In Chapter 4, we develop techniques allowing us generalize the flow matching framework

to infinite-dimensional spaces. The content of this chapter was previously published in

Kerrigan et al. [2024a]. In comparison with Chapter 3, these models are continuous-time
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and allow for deterministic sampling. Key contributions of this chapter include the

development of the first flow-based generative model in function spaces, a rigorous

theoretical framework which underpins these models, and a comprehensive evaluation

against existing function-space generative models.

• Chapter 5 focuses on conditional generative models. In particular, recent work [Tong

et al., 2024] shows that designing interpolants using optimal transport techniques

can lead to strong gains in performance. However, prior to our work, the theory of

conditional optimal transport was not sufficiently developed (even in the Euclidean

setting) to justify these techniques for conditional generative modeling. Thus, we

develop a theory of dynamic conditional optimal transport, and study the geometry

of the resulting conditional Wasserstein space. Equipped with these tools, we propose

a technique for conditional generation based on the flow matching framework. The

results in this chapter again are applicable to infinite-dimensional settings.

Some selected contributions include closed-form expressions for the conditional Wasser-

stein distance between Gaussian measures, identification of the conditional Wasserstein

space as a geodesic space and a conditional analogue of the McCann interpolant theo-

rem, a complete characterization of the absolutely continuous curves in the conditional

Wasserstein space, a conditional analogue of the Benamou-Brenier theorem, and a

comprehensive empirical evaluation of our proposed method.

• Chapter 6 represents somewhat of a departure from the previous chapters, which all

focus on the Hilbert space setting. Instead, we shift our attention to configuration

spaces. These infinite-dimensional spaces consist of counting measures, and are a

natural framework for formalizing continuous-time event sequence data. Continuing our

study of transport-based generative models, we develop a novel and highly performant

methodology for generating and forecasting temporal point processes.

• Lastly, Chapter 7 concludes the dissertation and discusses several remaining challenges.
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Chapter 2

Background

In this section, we provide a brief review of the mathematical background needed in this

dissertation. Our aim is not to be comprehensive, but rather only to highlight the notions

which will play a central role in the chapters which are to follow. We begin by defining some

common notation, followed by a more detailed discussion.

We use (X,A, ω) to represent a generic measure space. Frequently, X ⊆ Rd plays the role of a

domain on which functions are defined. When X is a topological space, B(X) will denote its

Borel σ-algebra. For a measurable space (X,A), the set P(X) denotes the space of probability

measures on (X,A). Hilbert spaces are denoted by H, Y, U and, unless otherwise stated,

are equipped with their Borel σ-algebras. Elements of these spaces are typically denoted

f, g, h ∈ H or u ∈ U and y ∈ Y . We use e.g. πY : Y × U → Y to denote the canonical

projection maps πY : (y, u) 7→ y.

The set of learnable parameters for a model is denoted by θ. We use δ to denote a unit-mass

measure δ[x] ∈ P(X) located at x ∈ X, or as an indicator, e.g., δij = 1 if and only if i = j.

Other lowercase Greek letters (e.g. µ, ν, η, γ) typically denote measures. If η ∈ P(Y ×U) is a

joint probability distribution, πY
#η represents its Y -marginal (and respectively for U).

11



2.1 Functional Analysis

The setting in which the majority of this work takes places is that of Hilbert spaces. While

other spaces are certainly of interest, e.g., Banach spaces, this dissertation focuses on the

Hilbert case, as the existence of an inner product is invaluable when performing calculations.

We assume the reader is familiar with basic analytic notions. For comprehensive treatments,

we refer to Folland [1999] and Rudin [1973]. See also Axler [2020] and Lax [2014] for more

elementary treatments of this material.

Definition 1 (Hilbert Space [Axler, 2020, 8.21]).

A Hilbert Space H is an inner product space which is complete under the induced norm.

At an intuitive level, a Hilbert space is a natural generalization of the familiar Euclidean

spaces Rd with the standard inner product. For our purposes, the key abstraction that Hilbert

spaces enable is that Hilbert spaces may be infinite-dimensional. Many, but not all, spaces of

functions are indeed Hilbert spaces.

It is worth singling out the separable class of Hilbert spaces, which are particularly friendly

to work with.

Definition 2 (Separability [Folland, 1999, Ch. 4]).

A Hilbert space H is said to be separable if it contains a countable dense subset.

Separability is a key assumption, which informally restricts our Hilbert space from being

too large. As the following theorem shows, separability is equivalent to the existence of a

countable orthonormal basis. While even non-separable Hilbert spaces always admit bases

[Folland, 1999, Prop. 5.28], countability will be an invaluable assumption when it comes to

performing calculations in these spaces.

Definition 3 (Orthonormal Basis [Axler, 2020, Ch. 8]).

A subset {ek}k∈K of H is said to be an orthonormal basis for H if
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1. ⟨ek, ej⟩ = δij for all i, j ∈ K

2. The closure of the linear span of {ek}k∈K is H, i.e. span{ek}k∈K = H.

Recall that span{ek}k∈K consists of all sums of the form
∑

k∈K αkek where αk ∈ R and∑
k∈K α

2
k <∞ [Axler, 2020, Prop. 8.58].

Theorem 4 ([Folland, 1999, Prop 5.29]).

A Hilbert space H is separable if and only if it admits a countable orthonormal basis.

If f ∈ H is an element of a separable Hilbert space, we may express this vector via a basis

expansion of the form f =
∑∞

k=1⟨f, ek⟩ek [Axler, 2020, Prop. 8.58]. While any two separable

Hilbert spaces are isometrically isomorphic [Rudin, 1973, Chapter 12, Ex. 24], the choice of

inner product may carry important consequences for computation and learning.

Examples We conclude this section with a few examples.

• The quintessential example of a Hilbert space is the Lebesgue space

L2(X,ω) =

{
f : X → R :

∫
f 2 dω <∞

}
(2.1)

consisting of the square-integrable measurable functions f : (X,A, ω) → R, where

(X,A, ω) is an arbitrary measure space. Here, functions are identified up to sets of

ω-measure zero. This space is equipped with the inner product and norm

⟨f, g⟩ =

∫
fg dω ∥f∥22 = ⟨f, f⟩ =

∫
f 2 dω. (2.2)

Under mild additional assumptions on the underlying measure space, the space L2(X,ω)

is separable. For instance, L2(Rd, λ) is separable, where λ is the Lebesgue measure

[Folland, 1999, Pg. 187].
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• The Lebesgue spaces

Lp(X,ω) =

{
f : X → R :

∫
|f |p dω <∞

}
(2.3)

for 1 ≤ p <∞ are not Hilbert spaces when p ̸= 2. This is because we equip Lp(X,ω)

with the norm ∥f∥pp =
∫
|f |p dω, which is not induced by any inner product [Folland,

1999, Pg. 187].

2.2 Measure and Probability

We again assume the reader is familiar with the basic notions of measure-theoretic probability,

but we recall a few key notions which appear throughout this dissertation. We refer to

Kallenberg [1997] and Durrett [2019] for a comprehensive introduction.

We first single out a condition which will play a recurring role throughout this dissertation.

Namely, the absolute continuity of two measures provides a structural constraint on their

supports. Under this assumption, the Radon-Nikodym theorem is an invaluable tool for

showing the existence of densities.

Definition 5 (Absolute Continuity [Folland, 1999, Ch. 3.2]).

We say that ν is absolutely continuous with respect to µ, denoted ν ≪ µ, if µ(A) = 0

implies that ν(A) = 0 for any measurable set A ∈ A.

We say that ν is equivalent to µ if µ ≪ ν and ν ≪ µ. Similarly, ν and µ are said to be

singular if neither measure is absolutely continuous with respect to the other.

Theorem 6 (Radon-Nikodym [Axler, 2020, 9.36]).

Suppose that µ, ν are probability measures on (X,A) and ν ≪ µ. Then, there exists a
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measurable f : X → [0,∞) such that

ν(A) =

∫
A

f dµ (2.4)

for all measurable A ∈ A. The function f is unique up to µ-null sets.

The function f furnished by Theorem (6) is often denoted dν/ dµ, and is called the Radon-

Nikodym derivative of ν with respect to µ. Intuitively, the Radon-Nikodym derivative can

be thought of as the density of ν with respect to the measure µ.

In fact, the common notion of a probability density function is indeed a Radon-Nikodym

derivative. That is, when µ is the Lebesgue measure on Rd and ν is any given probability

measure with ν ≪ µ, the Radon-Nikodym derivative dν/ dµ is precisely the standard

probability density function associated with the measure ν. In this case, the absolute

continuity restriction means that µ is in a sense diffuse. The Lebesgue (or uniform) measure

thus plays a central role in probability theory, serving as a general-purpose reference measure

through which one may calculate densities.

However, in an infinite dimensional space H, there does not exist an analogue of the Lebesgue

measure. In particular, any such analogue should be translation invariant, in the sense that

the measure of the set A ∈ A and A− f coincide for any f ∈ H. As the following proposition

shows, it is impossible to obtain such a measure which is compatible with the topology on H.

Proposition 7 ([Eldredge, 2016, Theorem 1.1]).

Suppose H is a separable Hilbert space of infinite dimensions. Then, any translation-invariant

Borel measure on H is either the zero measure, or assigns infinite measure to every open

subset of H.

As a consequence, any probabilistic approach on infinite-dimensional spaces necessarily

requires us to work directly with the underlying probability measures, as we do not have
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a canonical reference measure from which we may define densities. In Chapters 3 and 4,

the existence of particular Radon-Nikodym derivatives of probability measures supported in

separable Hilbert spaces will be of paramount importance for obtaining well-defined function

space generative models.

Lastly, we discuss the notion of disintegrating a product measure. This provides us with

a theoretical tool for conditioning joint probability measures, and we frequently make use

of disintegration in the subsequent chapters. These notions are particularly important in

Chapter 5, where we develop methods for conditional optimal transport.

We begin with the notion of a regular conditional measure, which places some technical

conditions on what we hope to obtain when we condition a joint distribution.

Definition 8 (Regular Conditional Measures [Bogachev and Ruas, 2007, Def. 10.4.1]).

Let Y, U be separable Hilbert spaces and suppose η ∈ P(Y × U) is a Borel probability measure

on the product space Y ×U . A function B(U)× Y ∋ (B, y) 7→ ηy(B) ∈ R is called a regular

conditional measure if

• For any fixed y ∈ Y , ηy(−) ∈ P(U) is a Borel probability measure over U .

• For any fixed B ∈ B(U), the mapping y 7→ ηy(B) is B(Y )-measurable and integrable

with respect to the Y -marginal πY
#η ∈ P(Y ).

• For any B ∈ B(Y × U), we have that η(B) =
∫
Y
ηy(By) dπY

#η(y), where By = {u ∈ U :

(y, u) ∈ B} is the y-slice of the set B.

The following proposition shows that, for a given joint measure η ∈ P(Y × U), we are

guaranteed to have a corresponding family of regular conditional measures (ηy). Moreover,

such a collection of regular conditional measures is essentially unique. This uniqueness

allows us to avoid having to choose a particular family of conditional distributions when

disintegrating a joint measure.
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Proposition 9 (Disintegration of a Joint Measure [Bogachev and Ruas, 2007, Ch. 10.4]).

Let Y, U be separable Hilbert spaces and suppose η ∈ P(Y × U). Then, the regular conditional

measures of η exist, and moreover, they are essentially unique, in the sense that there exists

B ∈ B(Y ) with πY
#η(B) = 0 and the measures ηy are unique for y ∈ Y \B.

2.2.1 Gaussian Measures

A particularly important class of probability measures are the Gaussian measures. Unlike the

Lebesgue measure, Gaussian measures are readily constructed in infinite-dimensional spaces.

In this dissertation, Gaussian measures play a central role both as reference distributions

(in the sense discussed in Chapter 1) and as a source of noise injected into our generative

models. Some material presented in this section originally appeared in Kerrigan et al. [2023],

and we refer to Da Prato and Zabczyk [2014] and Bogachev [1998] for further details.

Definition 10 (Gaussian Measures [Kukush, 2020, Ch. 2]).

Let (Ω,B,P) be a probability space. A measurable function f : Ω→ H is called a Gaussian

random element (GRE) if for any g ∈ H, the random variable ω 7→ ⟨g, f(ω)⟩ has a

(possibly degenerate) Gaussian distribution on R. The pushforward of P along f , denoted

µf = f#P, is a Gaussian (probability) measure on H.

In other words, Gaussian random elements f ∼ µf are random variables taking values in

H whose one-dimensional projections are Gaussians. Note that Gaussian measures exactly

coincide with the standard notion of Gaussian distributions in the special case of H = Rn

equipped with the usual inner product, as a finite-dimensional random vector is Gaussian if

and only if all of its one-dimensional projections are univariate Gaussians.

For every GRE f ∼ µf , there exists a unique mean element m ∈ H given by

m =

∫
H

f dµf . (2.5)
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Similarly, there exists a unique linear covariance operator C : H → H given by

Cg =

∫
H

⟨g, f⟩f dµf − ⟨g,m⟩m ∀g ∈ H. (2.6)

In the finite-dimensional setting, C is simply the covariance matrix associated with our

Gaussian distribution. The covariance operator C is symmetric, positive semidefinite, and

compact. Moreover, C has finite trace, i.e. tr(C) = E[||f ||2] < ∞. Conversely, given any

m′ ∈ H and any symmetric, positive semidefinite, trace-class linear operator C ′ : H → H,

there exists a Gaussian measure having mean m′ and covariance operator C ′. Thus, Gaussian

measures are in one-to-one correspondence with their mean functions and covariance operators

Da Prato and Zabczyk [2014, Chapter 2]. Hence, we may write µf = N (m,C) for such a

Gaussian measure. Interestingly, using the identity operator C = Id is inadmissible, as this is

not a trace-class operator. This fact has important implications for building function-space

models, as we will later see.

Note that for any g ∈ H, we have that ⟨g, f⟩ ∼ N (⟨g,m⟩, ⟨Cg, g⟩) follows a Gaussian

distribution on R with mean ⟨g,m⟩ ∈ R and variance σ2 = ⟨Cg, g⟩ ∈ R≥0 [Wild et al., 2022].

We now prove a few basic lemmas regarding transformations of GREs. These proofs appeared

in Kerrigan et al. [2023]. While these results are likely known to experts, we were unable to

find precise statements in the literature, and include these proofs for the sake of completeness.

Lemma 1 (Affine Transformations of GREs).

Let f ∼ N (m,C) be a GRE on H. Then, for α ∈ R and g ∈ H, we have that αf + g ∼

N (αm+ g, α2C).

Proof. Fix any h ∈ H, and note that ⟨h, αf + g⟩ = α⟨h, f⟩ + ⟨h, g⟩. Since ⟨h, f⟩ ∼

N (⟨h,m⟩, ⟨Ch, h⟩), it follows that ⟨h, αf + g⟩ must follow a Gaussian distribution on R
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with mean

α⟨h,m⟩+ ⟨h, g⟩ = ⟨h, αm+ g⟩ (2.7)

and variance

α2⟨Ch, h⟩ = ⟨α2Ch, h⟩. (2.8)

Thus, we have shown that αf + g is a GRE on H, as its inner product with arbitrary

h ∈ H is Gaussian on R. Moreover, we have computed its mean and covariance operator as

claimed.

Lemma 2 (Sum of Independent GREs).

If f ∼ N (m1, C1) and g ∼ N (m2, C2) are independent GREs on H, then f + g ∼ N (m1 +

m2, C1 + C2).

Proof. Let z = f + g. Write µf , µg, µz for the probability measures of f, g, z respectively.

The Fourier transform of µf is given by

µ̂f (h) =

∫
H

exp [i⟨h, f⟩] dµf ∀h ∈ H, (2.9)

and is given analogously for our other measures. By Bogachev [1998, A.3.17] and the

subsequent discussion, a probability measure is uniquely determined by its Fourier transform.

Moreover, we have that µ̂z(h) = µ̂f(h)µ̂g(h) for every h ∈ H. Using the expression for the

Fourier transform of a Gaussian measure given in Da Prato and Zabczyk [2014, Chapter 2],

we see that that

m̂uz(h) = exp

[
i⟨h,m1⟩ −

1

2
⟨C1h, h⟩

]
exp

[
i⟨h,m2⟩ −

1

2
⟨C2h, h⟩

]
(2.10)

= exp

[
i⟨λ,m1 +m2⟩ −

1

2
⟨(C1 + C2)h, h⟩

]
(2.11)
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which is precisely the Fourier transform of the measure N (m1 +m2, C1 + C2) as desired.

As previously discussed, the notion of absolute continuity and its implications for the existence

of probability density functions are delicate topics in infinite-dimensional spaces. To illustrate

this further, recall that by Proposition 7, infinite-dimensional spaces do not admit translation-

invariant probability measures. While this precludes the notion of a uniform measure, we

might hope for something weaker. For instance, suppose that h ∈ H is some fixed element,

and Th : H → H is the translation map Th : g 7→ g + h. If µ is a given probability measure,

is the translated measure µh = [Th]#µ equivalent to µ (in the sense of Definition 5)? In the

finite-dimensional case, this is clearly true (at least when µ has full support). However, in

infinite dimensions, the following proposition demonstrates that we again find ourselves in

trouble.

Proposition 11 ([Bogachev and Smolyanov, 1990]).

Let µ ∈ P(H) be any probability measure on a separable Hilbert space H. If µ is equivalent to

its translation µh for every h ∈ H, then H is finite dimensional.

However, in the special case of a Gaussian measure µ = N (m,C), we are able to identify a

particular subspace H0 ⊂ H such that pushforwards of µ are equivalent under translations

from elements in H0. This space H0 is the Cameron-Martin space associated with the

measure µ. In fact, we may explicitly identify this space through the covariance operator C

via H0 = C1/2(H) [Da Prato and Zabczyk, 2014, Chapter 2].

The Cameron-Martin space allows us to obtain a complete characterization of absolute

continuity through the Feldman-Hájek theorem. We present here the general case, and its

implications for function-space generative modeling are discussed at length in the subsequent

chapters. In particular, the consequences of this theorem are of central importance in Chapters

3 and 4.
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Theorem 12 (Feldman-Hájek [Da Prato and Zabczyk, 2014, Ch. 2]).

Let µ = N (m1, C1) and ν = N (m2, C2) be Gaussian measures on a separable Hilbert space H.

We say that µ and ν are equivalent if they are mutually absolutely continuous, and singular

if neither is absolutely continuous with respect to the other. The following statements hold.

• The Gaussian measures µ and ν are either equivalent or singular.

• They are equivalent if and only if

1. Their Cameron-Martin spaces coincide, i.e., C
1/2
1 (H) = C

1/2
2 (H) = H0.

2. The difference in means m1 − m2 ∈ H0 is an element of this Cameron-Martin

space.

3. The operator (C
−1/2
1 C

1/2
2 )(C

−1/2
1 C

1/2
2 )∗ − I is Hilbert-Schmidt on the closure H0.

• If µ and ν are equivalent and C1 = C2 = C, then ν-a.s. the Radon-Nikodym derivative

dµ/ dν is given by

dµ

dν
(f) = exp

[
⟨C−1/2(m1 −m2), C

−1/2(f −m2)⟩ −
1

2
||C−1/2(m1 −m2)||2

]
. (2.12)

We will see in the subsequent chapters that this theorem will enable us to calculate the density

of one Gaussian measure with respect to another. Moreover, the Cameron-Martin space

associated with a chosen Gaussian measure will play a central role in obtaining well-defined

function-space generative models.

We conclude this section by noting that the requirements for Gaussian measures to be

equivalent are quite strong. For instance, for a Gaussian measure µ = N (m,C), the Cameron-

Martin space C1/2(H) = H0 is actually of measure zero, i.e. µ(H0) = 0 [Eldredge, 2016,

Prop. 3.11]. Thus, the first condition in Theorem 12 requires that the difference of means

lives in a very particular subset of H.
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2.3 Optimal Transport

For our last background section, we provide a brief and informal overview of optimal transport

theory. The content of this section is particularly relevant to Chapter 5, where we develop

a novel dynamic approach to conditional optimal transport. For more details, we refer to

the standard references of Villani [2009], Santambrogio [2015], and Ambrosio et al. [2005] for

theoretical aspects, and Peyré and Cuturi [2019] for computational aspects. Some material

in this section originally appeared in Kerrigan et al. [2024b].

Suppose that µ, ν ∈ P(X) are two given probability measures. The goal of optimal transport is

to transform the distribution µ into the distribution ν while incurring the smallest possible cost

associated with this transformation. This cost is (at least in the standard setting) pointwise,

meaning that we have fixed a cost function c : X × X → R ∪ {+∞} such that c(x0, x1)

measures the cost of moving one unit of mass from x0 to x1. Given that many generative

models may be viewed as transforming a source distribution into the data distribution, it is

perhaps unsurprising that optimal transport notions are frequently of use.

In the classical approach to optimal transport, the Monge problem [Monge, 1781] seeks to

find a measurable transport map T : X → X minimizing the expected cost of transport, i.e.

corresponding to the solution of the constrained optimization problem

inf
T

{∫
X

c(x, T (x)) dµ(x) | T#µ = ν

}
. (2.13)

This optimization problem is challenging, though, as it is nonlinear in T . Moreover, the set

of admissible transformations may be empty. For instance, if µ is a Dirac delta and ν admits

a density, there will be no mapping T : X → X with T#µ = ν since T can only relocate the

Dirac delta.
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Much later, the Kantorovich problem [Kantorovich, 1942] was introduced as a relaxation of

the Monge problem which, conceptually, allows for our transportation plan to split mass

from some source location across several target locations. In this setting, we seek an optimal

coupling γ ∈ Π(η, ν), i.e. a probability distribution over X ×X with marginals η, ν, which

solves the constrained optimization problem

inf
γ

{∫
X×X

c(x0, x1) dγ(x0, x1) | γ ∈ Π(η, ν)

}
. (2.14)

Here, γ(x0, x1) can be thought of as the amount of mass present at x0 ∈ X which is to

be transported to x1 ∈ X. Thus, the Kantorovich problem allows for mass to be split,

and moreover, the optimization problem is now linear in γ. Unlike the Monge problem,

solutions to the Kantorovich problem exist under quite mild conditions (e.g., the cost is lower

semicontinuous and bounded from below [Ambrosio et al., 2013, Theorem 2.5]).

Here, we note that both of these approaches are static, in the sense that the transport problem

depends only on the initial and terminal locations of some given mass. The seminal work of

Benamou and Brenier [2000] instead interprets the optimal transport problem in a dynamic

setting, where the source measure µ is transformed into the target measure ν over time. This

point of view opens up deep connections with partial differential equations, geometry, and

probability theory.

To elaborate, suppose X is now a normed space and that the cost is a power of the induced

distance, i.e., c(x0, x1) = |x0 − x1|p for some fixed 1 ≤ p <∞. We further let Pp(X) ⊂ P(X)

denote the subspace of probability measures having finite pth moment, and we assume

µ, ν ∈ Pp(X). When the Kantorovich problem for µ, ν admits a finite solution, the cost of

such an optimal coupling is the p-Wasserstein distance

W p
p (η, ν) = min

γ

{∫
X×X

|x0 − x1|p dγ(x0, x1) | γ ∈ Π(η, ν)

}
(2.15)
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which, as the name suggests, is a metric on the space Pp(X) [Ambrosio et al., 2005, Section 7.1]

[Santambrogio, 2015, Section 5.1]. That is, optimal transport allows us to equip spaces of

probability measures with a geometry.

The Benamou-Brenier theorem [Benamou and Brenier, 2000] shows us that this geometry can

in fact be obtained in a dynamic sense, where the Wasserstein distance may be thought of

as the length of a geodesic in Pp(X) which interpolates between µ and ν. In particular, the

p-Wasserstein distance can be obtained by finding a time-dependent vector field transforming

µ to ν across time t ∈ [0, 1] with minimal energy:

W p
p (µ, ν) = min

(γt,vt)

{∫ 1

0

∫
X

|vt(x)|p dγt(x) dt | γ0 = η, γ1 = ν, ∂tγt + div(vtγt) = 0

}
. (2.16)

Here, we constrain our minimization problem over the set of measures and vector fields (γt, vt)

interpolating between µ and ν, satisfying a continuity equation. The optimal vector field can

be viewed as a tangent to the curve (γt), and the corresponding Riemannian-like structure is

the focus of study of the Otto calculus [Otto, 2001]. Seeing optimal transport through this

lens is highly compatible with our perspective on generative models as curves in the space of

distributions, and the interplay between these two fields is rich.

In Chapter 5 of this dissertation, we study a generalization of optimal transport to the

conditional setting [Hosseini et al., 2023, Carlier et al., 2016], where the goal is now to find

a mapping T : Y × U → U such that T (y,−) transforms a specified conditional measure

µ(− | y) into a target conditional measure ν(− | y). In other words, T must simultaneously

solve a collection of optimal transport problems.

In particular, we study a dynamic formulation of COT, and one of our main results is to

give a conditional analogue of the Benamou-Brenier theorem (see Theorem 33). As we will

later see, conditional optimal transport (COT) is a natural tool for conditional generative
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modeling. We note here that the study of COT is still in its early stages, with the general

infinite-dimensional static case only recently being sufficiently understood [Hosseini et al.,

2023].
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Chapter 3

Diffusion Generative Models in Infinite

Dimensions

The notions discussed in the previous chapter offer us a set of foundational tools for building

probabilistic models on separable Hilbert spaces. Equipped with these tools, the first main

contribution of this dissertation is to develop an infinite-dimensional discrete-time diffusion

generative model.

Diffusion models [Sohl-Dickstein et al., 2015, Ho et al., 2020] have recently emerged as a

powerful class of generative models on a wide array of domains, ranging from images [Ho

et al., 2020, Dhariwal and Nichol, 2021, Saharia et al., 2022, Ramesh et al., 2022a] and

video [Ho et al., 2022, Yang et al., 2023] to molecular conformation [Xu et al., 2022]. At an

intuitive level, these methods work by iteratively perturbing the data distribution towards a

tractable prior via additive Gaussian noise, and generation is performed by learning to undo

this transformation.

Existing methods largely assume that the data distribution of interest is supported on a

finite-dimensional Euclidean space. However, in many domains, the underlying signal is
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inherently infinite-dimensional, where the observed data can be seen as a collection of discrete

observations of some underlying function. Such datasets are often dubbed functional [Ramsay

and Silverman, 2008]. For instance, a time series dataset consisting of the temperature

collected at a particular location every 24 hours can be seen as a uniform discretization of an

underlying continuous-time temperature curve [Febrero-Bande and de la Fuente, 2012].

Although diffusion models have empirically demonstrated strong performance on some

functional domains, such as audio signals [Kong et al., 2021, Chen et al., 2021] and time series

[Rasul et al., 2021a, Tashiro et al., 2021, Alcaraz and Strodthoff, 2022], existing approaches

work directly on an explicit discretization of the input space. It is thus unclear how existing

methods relate to the underlying functions of interest. For instance, existing methods can

not account for function-level assumptions about the data, such as continuity or smoothness

constraints.

This chapter1 develops a theoretical framework for diffusion generative modeling in separable

Hilbert spaces. Our method operates by adding Gaussian process noise directly to our infinite-

dimensional functions. We learn to reverse this process by performing variational inference in

function space, in which we minimize the KL divergence between a known Gaussian measure

and a variational family of Gaussian measures. See the discussion in Chapter 2 for additional

background on Gaussian measures.

In addition to this framework, we propose practical methods for approximating functional

KL divergences by discretizing the underlying operators and empirically verify our framework

on several synthetic and real-world benchmarks. In our experiments, our diffusion models are

implemented via neural networks that parametrize mappings between function spaces, i.e.

neural operators [Li et al., 2021, 2020, Kovachki et al., 2021]. We propose methods that allow

for both unconditional and conditional generation of function-valued data. Importantly, our

1The content of this chapter was previously published as Diffusion Generative Models in Infinite Dimensions
(AISTATS 2023) [Kerrigan et al., 2023], with minor modifications.
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approach allows us to work with arbitrary non-uniform discretizations, thereby allowing us

to train on datasets where the observation set varies across functions. Moreover, we are able

to query our generated functions at arbitrary input locations.

3.1 Related Work

We begin by reviewing a selection of related work, appearing before the publication of the

developments presented in this chapter [Kerrigan et al., 2023].

Diffusion models are most typically applied to data living in a Euclidean space having a fixed,

finite dimension (e.g., see Sohl-Dickstein et al. [2015], Ho et al. [2020], Dhariwal and Nichol

[2021], Ho et al. [2020] amongst others). More recent work has extended these methods to

Riemannian manifolds, but still with a finite-dimensional assumption [De Bortoli et al., 2022,

Huang et al., 2022].

Most relevant to this chapter are diffusion models for signals, such as audio [Chen et al.,

2021, Kong et al., 2021], time series [Rasul et al., 2021a, Tashiro et al., 2021, Alcaraz and

Strodthoff, 2022], or neural processes [Dutordoir et al., 2023]. However, these approaches

for functional data all perform diffusion modeling by employing standard finite-dimensional

diffusion modeling on the discretized functions. Concurrent to the work appearing in this

chapter, Biloš et al. [2022] proposed a diffusion model for temporal data, but do not take

a function space perspective. As we will show in Section 3.4.3, existing approaches can be

viewed as special cases within the general theoretical framework we develop.

Subsequent to our work in this chapter, Lim et al. [2023a] and Pidstrigach et al. [2023] in

follow-up work proposed methodologies which are closely related and conceptually similar

to our approach. As in our work, Lim et al. [2023a] and Pidstrigach et al. [2023] both

perturbed the function space distribution corresponding to the data via a trace-class Gaussian
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measure. Our work can be seen as extending the discrete time DDPM model [Ho et al., 2020]

to function spaces, while the works of Lim et al. [2023a] and Pidstrigach et al. [2023] can

be seen as extending score-matching techniques [Vincent, 2011, Song and Ermon, 2019] to

function spaces. In particular, Lim et al. [2023a] developed techniques for function space

score matching in discrete time, and Pidstrigach et al. [2023] developed function space score

matching techniques from a continuous time perspective.

Beyond diffusion models, generative models of functions have been studied from the perspective

of neural processes [Garnelo et al., 2018, Kim et al., 2019] or implicit neural representations

[Dupont et al., 2022b,a]. In particular, generative models of functions based on neural

operators have been proposed from a GAN approach [Rahman et al., 2022]. However, ours is

the first work to combine diffusion models with neural operators.

Our approach is also broadly related to the general class of previous works that propose

function-space perspectives in machine learning. In particular, such a point of view has proved

useful for developing and understanding techniques used in Gaussian processes [Matthews

et al., 2016, Wynne and Wild, 2022] and Bayesian deep learning [Sun et al., 2019, Wild

et al., 2022, Rudner et al., 2021, Tran et al., 2022, Burt et al., 2021]. Our work extends this

function-space perspective to diffusion models.

3.2 Notation and Background

We begin by setting up the notation for our problem and introducing the necessary background

on Gaussian measures in Hilbert spaces, as well as their connection to the more familiar

notion of Gaussian processes. In addition, we derive a closed-form expression for the KL

divergence between Gaussian measures with equal covariance operators – this KL divergence

plays a key role in our approach.
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The notation in this chapter follows that outlined in Chapter 2, which we briefly recall here

before proceeding. Let (X,A, ω) be a measure space, with X ⊆ Rd being a subset of a

Euclidean space. We use H to denote a separable Hilbert space equipped with its Borel

σ-algebra. We typically take H to be a space of real-valued functions f : X → R on the

domain X, but our general framework is agnostic to the choice of H – see Section 3.4 for

more details on this choice. The prototypical example is X = [0, 1] with ω being the Lebesgue

measure and H = L2(X,ω) equipped with its usual inner product ⟨f, g⟩L2(X,ω) =
∫
X
fg dω.

We assume that we have a dataset of the form D = {f (1), f (2), . . . , f (n)}, where each f (j) ∈ H

is an i.i.d. draw from an unknown Borel probability measure µdata on H. In practice, we

typically only have noisy measurements of our functions on a finite subset of X. We let

x⃗(j) = {x(1j), . . . , x(mj)} ⊂ X be a discrete subset of X with corresponding observations

y⃗(j) = {y(1j), . . . , y(mj)}, where y(ij) = f (j)(x(ij)) + ϵ(ij) is the output of the unknown jth

function f (j) at the ith observation point and ϵ(ij) represents i.i.d. observation noise. Generally,

both the location x⃗(j) and number m = mj of observation points may vary across the functions

in our dataset. The focus of this chapter is to develop the theory and practice behind building

a diffusion generative model for sampling from the function-space probability measure µdata.

3.2.1 The KL Divergence between Gaussian Measures

Our aim in this section is to study the KL divergence for Gaussian measures on Hilbert spaces.

We first recall that a Gaussian measure ν over H is a distribution over random functions

f ∼ ν with f ∈ H such that all one-dimensional projections for any given fixed g ∈ H are

normal, i.e. the scalar random variable ⟨g, f⟩ is Gaussian. See Chapter 2 for further details.

In our framework, we will perform variational inference in function space. However, one

major challenge is that there is no analogue of the Lebesgue measure on infinite dimensional

spaces [Eldredge, 2016], and so we must resort to a measure-theoretic definition of the KL
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divergence. To that end, for arbitrary Borel probability measures µ, ν on H, we define

KL [µ∥ν] =


∫
H

log
(

dµ
dν

)
dµ µ≪ ν

+∞ otherwise.

(3.1)

Here, dµ/ dν : H → R is the Radon-Nikodym derivative of µ with respect to ν.

We now consider the special case that µ, ν are Gaussian measures on H with equal covariance

operators. In this case, a version of the Feldman-Hájek Theorem gives us explicit control

over the Radon-Nikodym derivative in terms of the parameters of µ and ν [Da Prato and

Zabczyk, 2014, Theorem 2.23].

Theorem 13 (The Feldman-Hájek Theorem).

Let µ = N (m1, C) and ν = N (m2, C) be Gaussian measures on H with equal covariance

operators, and define ∆m = m1 −m2 ∈ H. Then, µ and ν are equivalent (i.e. mutually

absolutely continuous) if and only if ∆m ∈ C1/2(H). In this case, for any f ∈ H, the

Radon-Nikodym derivative dν/ dµ is given by

dµ

dν
(f) = exp

[〈
∆m,C−1(f −m2)

〉
− 1

2

∥∥C−1/2∆m
∥∥2] ,

where C−1 is the pseudoinverse of C and C−1/2 is the pseudoinverse of C1/2.

As a straightforward consequence of the Feldman-Hájek theorem, we derive a closed-form

expression for the KL divergence between Gaussian measures with equal covariance operators.

Proposition 14.

Let µ, ν,∆m be defined as in Theorem 13. Then, if ∆m ∈ C1/2(H),

KL [µ∥ν] =
1

2

〈
∆m,C−1∆m

〉
=

1

2

∥∥C−1/2∆m
∥∥2 . (3.2)

Proof. As ∆m ∈ C1/2(H), it follows from the Feldman-Hájek theorem that µ and ν are
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equivalent. We now use the Radon-Nikodym expression from the Feldman-Hájek theorem to

compute the KL divergence.

We have that

KL [µ∥ν] =

∫
H

log
dµ

dν
(f) dµ(f) (3.3)

= −1

2

∥∥C−1/2∆m
∥∥2 +

∫
H

⟨C−1/2∆m,C−1/2(f −m2)⟩ dµ(f). (3.4)

We now analyze the integral term via a spectral decomposition. Let {(λj, ej)}∞j=1 be the

eigenvalues and eigenvectors of C. Note that the eigenvectors of C form an orthonormal

basis for H by the spectral theorem, as C is a self-adjoint compact operator. Then, we may

evaluate the second integral as

∫
H

⟨C−1/2∆m,C−1/2(f −m2)⟩ dµ(f) (3.5)

=

∫
H

∞∑
j=1

⟨∆m, ej⟩⟨f −m2, ej⟩λ−1
j dµ(f) (3.6)

=
∞∑
j=1

λ−1
j ⟨∆m, ej⟩

∫
H

⟨f −m2, ej⟩ dµ(f) (3.7)

=
∞∑
j=1

λ−1
j ⟨∆m, ej⟩2 (3.8)

= ⟨C−1/2∆m,C−1/2∆m⟩. (3.9)

Combining this computation with the KL expression above completes the proof.

In Section 3.3, we make use of this result in order to develop diffusion models in function

space. In Section 3.4, we explore various practical methods for computing this functional KL

divergence under various choices of the space H.
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3.2.2 Gaussian Processes

Gaussian processes (GPs) [Williams and Rasmussen, 2006] are a popular class of models

for specifying and learning distributions over functions. Formally, given a probability space

(Ω,B,P), a GP on X is a jointly measurable map g : Ω×X → R whose finite dimensional

marginal distributions are Gaussian.

In practice, a Gaussian process is typically specified by a mean function m : X → R specifying

m(x) = E[g(x)] and a kernel function k : X ×X → R specifying the covariance structure

of g via k(x, x′) = E[(g(x)−m(x))(g(x′)−m(x′))]. We will write g ∼ GP (m, k) for such a

Gaussian process.

Gaussian processes give us a practical way of specifying Gaussian measures, as we only need

to specify a mean function and a kernel. The kernel k plays an essential role in determining

the sample path properties of a GP, such as continuity, differentiability, and periodicity

[Williams and Rasmussen, 2006, Chapter 4]. In the case that the mean m ∈ H is an element

of H and k is chosen such that g ∈ H with probability one, we may identify g with a GRE

on H. For instance, suppose H = L2(X,ω) and we specify a mean m ∈ L2(X,ω) and kernel

k with
∫
X
k(x, x) dω(x) <∞, then we may identify GP (m, k) with a Gaussian measure on

L2(X,ω). See Wild et al. [2022] and Section 3.4 for further details.

3.3 Diffusion Models in Function Space

Equipped with the necessary background, we now construct our diffusion generative model

on H. Our construction mirrors that of DDPMs [Ho et al., 2020], with the key difference

being that our diffusion process takes place in a space of infinite dimensions. We note that

the constructions of Ho et al. [2020] rely heavily on properties of Gaussian densities in Rn,

and thus are not directly applicable to infinite-dimensional spaces as these spaces lack a
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reference measure from which to define such densities [Eldredge, 2016]. Note further that

H = Rn equipped with its usual inner product is a special case of our framework.

3.3.1 Forward Process

We begin by defining the forward process, a discrete-time Markov chain in H which iteratively

perturbs our data distribution µdata towards a fixed Gaussian measure N (m,C). In what

follows, we will choose m = 0 for simplicity. The choice of covariance operator C is a

hyperparameter which can be tuned.

We fix a finite number of timesteps T ∈ Z>0 and a variance schedule β : {1, 2, . . . , T} → R>0,

where we write βt for β(t). For any f0 ∈ H, we iteratively sample from the forward process

via

ft =
√

1− βtft−1 +
√
βtξt t = 1, 2, . . . , T (3.10)

where ξt ∼ N (0, C) are i.i.d. Gaussian random elements on H.

Given a fixed value of ft−1, our forward process gives us conditional probability measures

µt|t−1(− | ft−1). We will write µt for the marginal distribution on H obtained at time step t

from this process, i.e.

µt(−) =

∫
H

µt|t−1(− | ft−1) dµt−1(ft−1) (3.11)

where µ0 = µdata. The value of T and the variance schedule β are chosen such that the final

distribution is approximately equal to our specified Gaussian measure, i.e. µT ≈ N (0, C).

In the following proposition, we derive expressions for several distributions related to our

forward process.
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Proposition 15.

Let αt =
∏t

i=1(1− βi). For the forward process defined in Equation (3.10) with m = 0 and

fixed values of f0, ft−1:

µt|t−1(− | ft−1) = N (
√

1− βtft−1, βtC) (3.12)

µt|0(− | f0) = N (
√
αtf0, (1− αt)C). (3.13)

Proof. The first claim is a special case of Lemma (1). For the second claim, we proceed by

induction on t. The case t = 1 is clear from Lemma (1). Now, suppose

ut−1 | u0 ∼ N (
√
αt−1f0, (1− αt−1)C). (3.14)

By the definition of the forward process and our inductive assumption, we have that ft =
√

1− βtft−1 +
√
βtξt is the sum of two independent GREs: the first is

√
1− βtft−1 ∼ N (

√
αtf0, (1− βt)(1− αt−1)C) (3.15)

and the second is
√
βtξt ∼ N (0, βtC). By Lemma (2), we obtain the result, as

(1− βt)(1− αt−1) + βt = 1− (1− βt)αt−1 = 1− αt. (3.16)
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3.3.2 Reverse Process and Loss

Our generative model is then obtained by reversing the forward process, where we iteratively

perturb the Gaussian measure N (0, C) towards the data distribution µ0.

More specifically, to generate samples from our data distribution, we would like sample

fT ∼ N (0, C) and iteratively sample ft−1 ∼ µt−1|t(− | ft) from the time-reversal of our

forward process for t = T − 1, . . . , 1. However, while the posterior probability measure

µt−1|t(− | ft) is well-defined2, it is intractable.

Most notably, using Bayes’ rule here would require that the family of measures µt|t−1(− | ft−1)

be simultaneously dominated by some fixed reference measure on H for every choice of ft−1.

As these measures are Gaussian, the Feldman-Hájek theorem tells us that this is not possible.

Even if such technical difficulties were overcome (e.g. as in the Euclidean setting), computing

Bayes’ rule here would require computing an intractable normalization constant.

We instead take a variational approach, and approximate the posterior measures with

a variational family of measures on H parametrized by θ ∈ Rp. In particular, we set

νθT = N (0, C) and we approximate µt−1|t(− | ft) by the Gaussian measure

νθt−1|t(− | ft) = N
(
mθ

t (ft), C
θ
t (ft)

)
. (3.17)

Here, mθ
t (ft) = mθ

t (− | ft) ∈ H is shorthand for a mean function in H and Cθ
t (ft) =

Cθ
t (− | ft) : H → H is shorthand for a covariance operator. That is, the mean function and

covariance operators depend on parameters θ as well as the timestep t and function ft ∈ H.

Although the reverse-time measures are intractable, the following proposition states that the

reverse-time measures are tractable when conditioned on a starting function f0 ∈ H.

2This is because we assume H is separable, which implies that H is a Polish space. See Ghosal and
Van der Vaart [2017, Chapter 1].
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Proposition 16.

Let αt be defined as in Proposition (15), and consider fixed values of f0, ft ∈ H. For

t = 2, 3, . . . , T , let β̃t = 1−αt−1

1−αt
βt and let m̃t(ft, f0) = m̃t(− | ft, f0) ∈ H be defined by

m̃t(ft, f0) =

√
αt−1βt

1− αt

f0 +

√
1− βt(1− αt−1)

1− αt

ft. (3.18)

Then, µt−1|t,0(− | ft, f0) = N (m̃t(ft, f0), β̃tC).

Proof. By Proposition (15) and Lemma (1), we may write

ft−1 =
√
αt−1f0 +

√
1− αt−1ξ ξ ∼ N (0, C) (3.19)

and by construction we have

ft =
√

1− βtft−1 +
√
βtξ

′ ξ′ ∼ N (0, C) (3.20)

where ξ, ξ′ ∼ N (0, C) are independent GREs. Our strategy is to manipulate these expressions

to obtain a reparametrized expression for ft−1. By Equation (3.19),

βt
√
αt−1f0 = βt

[
ft−1 −

√
1− γt−1ξ

]
, (3.21)

and similarly by Equation (3.20),

(1− αt−1)
√

1− βtft = (1− αt−1)
[
(1− βt)ft−1 +

√
βt
√

1− βtξ′
]
. (3.22)

Upon summing Equations (3.21)-(3.22) and isolating the ft−1 terms,

(βt + (1− αt−1)(1− βt)) ft−1 = βt
√
αt−1f0 + (1− αt−1)

√
1− βtft (3.23)

+ βt
√

1− αt−1ξ − (1− αt−1)
√
βt
√

1− βtξ′.
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On the LHS, we have

(βt + (1− αt−1)(1− βt))ft−1 = (βt + (1− βt)− (1− βt)(αt−1))ft−1 = (1− αt)ft−1

(3.24)

thereby allowing us to obtain

ft−1 =
βt
√
αt−1

1− αt

f0 +

√
1− βt(1− αt−1)

1− αt

ft +
βt
√

1− αt−1

1− αt

ξ − (1− αt−1)
√
βt
√

1− βt
1− αt

ξ′.

(3.25)

We now analyze the noise terms (i.e. only those terms depending on ξ, ξ′). By Lemmas

(1)-(2) and the independence of ξ, ξ′, the sum of the noise terms follows a mean zero Gaussian

measure with covariance

(
βt
√

1− αt−1

1− αt

)2

+

(
(1− αt−1)

√
βt
√

1− βt)
1− αt

)2

=

(
βt(1− αt−1)

1− αt

)(
βt + (1− βt)(1− αt−1)

1− αt

)
=
βt(1− αt−1)

1− αt

where the last line follows from the calculation in Equation (3.24). Thus, we see that

ft−1 | ft, f0 follows a Gaussian measure with the claimed mean and covariance.

We now tie our function-space Markov chain back to our observed data in order to obtain

a loss function. Recall that our observations y⃗ ⊂ R are assumed to be a vector of noisy

observations of a function f0 ∈ H at some finite collection of points x⃗ ⊂ X. We thus set the

likelihood of our observed data to be qθ(y⃗ | x⃗, f0) = N (y⃗; f0(x⃗), σ2I) where σ2 ∈ R≥0 is some

fixed constant. Note that qθ is a Gaussian density on a finite dimensional space.

In the following proposition, we obtain a variational lower bound on the log-likelihood of

our observations. This will serve as our loss function, which we seek to maximize over θ.

Although this lower bound is analogous to the standard DDPM lower bound [Ho et al., 2020],

38



the proof is non-trivial as we must work directly with the underlying probability measures

rather than their densities.

Proposition 17.

The marginal likelihood of y⃗ given x⃗ is lower bounded by

log qθ(y⃗ | x⃗) ≥ (3.26)

Eµ

[
log q(y⃗ | x⃗, f0)− KL

[
µT (− | x⃗, y⃗)∥νθT (−)

]
−

T∑
t=1

KL
[
µt−1|t(− | ft, x⃗, y⃗)∥νθt−1|t(− | ft))

]]
.

Proof. First, we apply the usual functional ELBO [Wild et al., 2022, Matthews et al.,

2016, Sun et al., 2019], treating f0:T as latent variables and using the assumption that the

reverse-time chain is Markov to obtain

log qθ(y⃗ | x⃗) ≥ Eµ

[
log qθ(y⃗ | x⃗, f0)

]
− KL

[
µ( df0:T | x⃗, y⃗)∥νθ( df0:T )

]
. (3.27)

By the chain rule for KL divergences [Dupuis and Ellis, 2011], we may condition on fT to

obtain

log qθ(y⃗ | x⃗) ≥Eµ

[
log qθ(y⃗ | x⃗, f0)

]
− KL

[
µT ( dfT | x⃗, y⃗)∥νθ( dfT )

]
(3.28)

− Eµ

[
KL
[
µ( df0:T−1 | x⃗, y⃗, fT )∥νθ( df0:T | fT )

]]
.

Repeatedly applying the KL divergence chain rule to condition on fT−1, fT−2, . . . , f1 and

using the Markov assumption yields

log qθ(y⃗ | x⃗) ≥Eµ

[
log qθ(y⃗ | x⃗, f0)

]
− KL

[
µT ( dfT | x⃗, y⃗)∥νθ( dfT )

]
(3.29)

−
T∑
t=1

Eµ

[
KL
[
µ( dft−1 | ft, x⃗, y⃗)∥νθ( dft−1 | ft)

]]
. (3.30)
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Since we assume νθT has no trainable parameters, we may ignore the term KL
[
µT (− | x⃗, y⃗)∥νθT (−)

]
during training.

Mean and Covariance Parametrization We now make several further choices for our

variational family. First, we analyze the terms

Lt−1 = KL
[
µt−1|t(− | ft, f0)∥νθt−1|t(− | ft))

]
. (3.31)

Note that the first measure µt−1|t(− | ft, f0) is Gaussian by Proposition (16), and the second

measure νθt−1|t(− | ft) is Gaussian by assumption. A more general form of the Feldman-Hájek

theorem (see Chapter 2) places strict requirements on the corresponding covariance operators

in order to obtain a finite KL divergence. In particular, the term Lt−1 will be infinite if

β̃−1
t

(
C−1/2Cθ

t (ft)
1/2
) (
C−1/2Cθ

t (ft)
1/2
)∗ − I (3.32)

is not a Hilbert-Schmidt operator on the closure of C1/2(H). For instance, even the seemingly

innocuous choice of Cθ
t (ft) = αβ̃tC for any non-negative α ̸= 1 will result in an infinite KL

divergence. Thus, motivated by necessity, we will choose Cθ
t (ft) = β̃tC.

Under this choice of Cθ
t (ft), a consequence of Propositions (14) and (16) is that

Lt−1 =
1

2β̃t

∥∥C−1/2(m̃t(ft, f0)−mθ
t (ut))

∥∥2 . (3.33)

Similar to DDPM [Ho et al., 2020], we further choose to parametrize the mean function via

mθ
t (ft) =

1√
1− βt

(
ft −

βt√
1− αt

ξθt (ft)

)
(3.34)
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where ξθt (ft) ∈ H is the output of a model parametrized by θ which takes in (t, ft) as inputs

and has function-valued outputs. In other words, our model is a parametrized mapping

ξθ : {1, 2, . . . , T} ×H → H specified via (t, ft) 7→ ξθt (− | ft). Under this choice, we have that

Lt−1 = λt
∥∥C−1/2(ξt − ξθt (ft))

∥∥2 (3.35)

where λt = β2
t /(2β̃t(1−βt)(1−αt)) ∈ R is a time-dependent constant. In light of Proposition

(14), we see that Lt−1 is (up to a multiplicative constant) the KL divergence between two

Gaussian measures on H having covariance operators C and respective means ξt, ξ
θ
t (ft). As

is standard in diffusion generative modeling, we drop the constant λt when training in order

to obtain a re-weighted variational lower bound [Ho et al., 2020] for improved quality.

In Section 3.5, we provide a practical instantiation of the mapping ξθt via neural operators

[Li et al., 2021, 2020, Kovachki et al., 2021].

Following our work, Lim et al. [2023a] noted that the parametrization of the loss given in

Equations 3.34 and 3.35 can result in an infinite quantity when the dimension of H is infinite.

However, it is straightforward to remedy this by considering an alternative parametrization,

where the model directly predicts a rescaled version of f0 rather than predicting ξt, e.g., see

Appendix E and Appendix I of Lim et al. [2023a] for additional details. In our experiments

in this paper we used the parametrization given in Equations 3.34 and 3.35, and note that

the corresponding quantities are only infinite in the limit corresponding to a discretization

size of zero.
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3.4 Function Spaces and KL Approximations

We have thus far described our framework in terms of abstract Gaussian measures on Hilbert

spaces. We can obtain a concrete instantiation of our framework by choosing an appropriate

space of functions to work on, as well as a choice of Gaussian measure which specifies our

forward process.

In this section, we explore two choices for H: the space of square-integrable functions

L2(X,ω) and the Sobolev spaces Hk(X,ω) = W k,2(X,ω). We derive practical methods for

estimating the KL divergence between Gaussian measures in these spaces, which is necessary

for evaluating the terms in our loss function given in Equation (3.35).

To compute the functional KL divergence in Proposition (14), we derive discrete approxima-

tions of both the inverse covariance operator C−1 and the associated inner product. Suppose

that m1 and m2 are known on a common discretization x⃗ = {x(1), . . . , x(n)} ⊂ X which is

drawn from the measure ω on X. For any function f : X → R, we write f(x⃗) ∈ Rn to

represent the vector corresponding to evaluating f at the points contained in x⃗. We assume

further that our Gaussian measure ξ ∼ GP (0, k) is specified by a mean-zero Gaussian process

with kernel k, with appropriate restrictions on k such that ξ ∈ H (see Section 3.2.2). In

Section 3.5.4, we explore estimating these KL divergences with spectral methods, but find

that it is sensitive to the discretization size, even when the eigenfunctions are analytically

known.

3.4.1 Square-Integrable Functions

We first consider the space H = L2(X,ω) of measurable, square-integrable functions

f : X → R equipped with the inner product ⟨f, g⟩L2(X,ω) =
∫
X
fg dω. For many appli-

cations, this is a natural choice of function space as square integrability is a relatively weak
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assumption. Moreover, p = 2 is the unique choice such that the Banach space Lp(X,ω) is

also a Hilbert space, and the associated inner product structure is a useful tool for performing

calculations.

In L2(X,ω), the covariance operator associated with our kernel function k can be explicitly

described via

[Cg](x) =

∫
X

k(x, x′)g(x′) dω(x′) ∀g ∈ H. (3.36)

Indeed, recall that that for a Gaussian measure f ∼ µf = N (m,C) on a separable Hilbert

space H, the covariance operator C : H → H is defined via

Cg =

∫
H

⟨g, f⟩f dµf − ⟨g,m⟩m ∀g ∈ H. (3.37)

Thus, Equation (3.36) can be derived from Equation (3.37) via

[Cg](x) =

∫
H

⟨g, f⟩L2(X,ω)f(x) dµf − ⟨g,m⟩L2(X,ω)m(x) (3.38)

=

∫
H

[∫
X

g(x′)f(x′) dω(x′)

]
f(x) dµf − ⟨g,m⟩L2(X,ω)m(x) (3.39)

=

∫
X

g(x′)

[∫
H

f(x)f(x′) dµf

]
dω(x′)− ⟨g,m⟩L2(X,ω)m(x) (3.40)

=

∫
X

g(x′) [k(x, x′) +m(x)m(x′)] dω(x′)−
∫
X

g(x′)m(x′)m(x) dω(x′) (3.41)

=

∫
X

g(x′)k(x, x′) dω(x′) (3.42)

where we apply Fubini’s theorem in the third equality.

To discretize this, let Kx⃗x⃗ ∈ Rn×n be the covariance matrix specified by k and evaluated

on x⃗, i.e. the (i, j)th entry of Kx⃗x⃗ is given by k(xi, xj). Then, upon replacing ω with the
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empirical measure specified by x⃗, we have [Cg] (x⃗) ≈ n−1Kx⃗x⃗g(x⃗) ∈ Rn, so that the (scaled)

covariance matrix K is a discrete approximation of the covariance operator C which may

inverted. Replacing ω once more with the empirical measure specified by x⃗, we then have

KL [N (m1, C)∥N (m2, C)] ≈ 1

2
∆m(x⃗)TK−1

x⃗x⃗ ∆m(x⃗). (3.43)

Interestingly, this is precisely the KL divergence between two finite-dimensional Gaussians

with equal covariance matrices Kx⃗x⃗ and means m1(x⃗),m2(x⃗).

Furthermore, we note that Sun et al. [2019] prove that the KL divergence between two

stochastic processes is the supremum of the KL divergences between their finite-dimensional

marginals. Our approximation in Equation (3.43) is increasing under refinements of the

observation set x⃗, and thus is a lower bound on the true KL divergence.

Proposition 18.

Equation (3.43) is strictly increasing under refinements of the observation set x⃗. In particular,

if z⃗ ⊂ x⃗, then

∆m(z⃗)TK−1
z⃗z⃗ ∆m(z⃗) ≤ ∆m(x⃗)TK−1

x⃗x⃗ ∆m(x⃗). (3.44)

Proof. Set z⃗ = {z(1), . . . , z(n)} ⊂ X. If suffices to check the case that x⃗ = x ∪ z⃗ is increased

by a single point x ∈ X.

Let Kz⃗z⃗ ∈ Rn×n be the covariance matrix corresponding to z⃗, and let Kx⃗x⃗ ∈ R(n+1)×(n+1) be

the covariance matrix corresponding to x⃗, i.e. in both cases the covariance matrix is given

by evaluating the kernel k at all combinations of points in z⃗ or x⃗. Let kz⃗(x) ∈ Rn be the

covariance between the points of z⃗ and our new point x. Lastly, let ∆m(z⃗) ∈ Rn be any

vector and be ∆m(x) ∈ R any scalar. We will write ∆m(x⃗) = [∆m(z⃗),∆m(x)]T ∈ Rn+1 for

the vector extending ∆m(z⃗) by the single entry ∆m(x).
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Then, we have that

Kx⃗x⃗ =

 Kz⃗z⃗ kz⃗(x)

kz⃗(x)T k(x, x)

 , (3.45)

i.e. the extended covariance matrix corresponding to x⃗ can be written as a block matrix

containing the covariance matrix for z⃗. Our goal is to show that

∆m(z⃗)TK−1
z⃗z⃗ ∆m(z⃗) ≤ ∆m(x⃗)TK−1

x⃗x⃗ ∆(x⃗). (3.46)

Using the block matrix inversion formula (see e.g. Williams and Rasmussen [2006, Appendix

A.3]), we may express K−1
x⃗x⃗ as

K−1
x⃗x⃗ =

K−1
z⃗z⃗ +K−1

z⃗z⃗ kz⃗(x)Mkz⃗(x)TK−1
z⃗z⃗ −K−1

z⃗z⃗ kz⃗(x)M

−Mkz⃗(x)TK−1
z⃗z⃗ M

 (3.47)

where

M =
(
k(x, x)− kz⃗(x)TK−1

z⃗z⃗ kz⃗(x)
)−1 ∈ R. (3.48)

Note that M is exactly the posterior variance at x ∈ X of a GP with covariance function k

[Williams and Rasmussen, 2006, Eqn. 2.26]. In particular, we must have M ≥ 0.

We now proceed to directly compute the quadratic form on the right-hand side of Equation
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(3.46). We have:

[∆m(z⃗),∆m(x)]K−1
x⃗x⃗

∆m(z⃗)

∆m(x)

 (3.49)

=

〈∆m(z⃗)T
(
K−1

z⃗z⃗ +K−1
z⃗z⃗ kz⃗(x)Mkz⃗(x)TK−1

z⃗z⃗

)
−∆m(x)Mkz⃗(x)TK−1

z⃗z⃗

−∆m(z⃗)TK−1
z⃗z⃗ kz⃗(x)M + ∆m(x)M

 ,
∆m(z⃗)

∆m(x)

〉

(3.50)

= ∆m(z⃗)TK−1
z⃗z⃗ ∆m(z⃗) + ∆m(z⃗)TK−1

z⃗z⃗ kz⃗(x)Mkz⃗(x)TK−1
z⃗z⃗ ∆m(z⃗) (3.51)

−∆m(x)Mkz⃗(x)TK−1
z⃗z⃗ ∆m(z⃗)−∆m(z⃗)TK−1

z⃗z⃗ kz⃗(x)M∆m(x) + ∆m(x)2M

(3.52)

= ∆m(z⃗)TK−1
z⃗z⃗ ∆m(z⃗) +M

(
∆m(z⃗)TK−1

z⃗z⃗ kz⃗(x)−∆m(x)
)2
. (3.53)

We now plug Equation (3.53) back into Equation (3.46). Noting the first term in (3.53) is

precisely the LHS of (3.46), we only need to check

0 ≤M
(
∆m(z⃗)TK−1

z⃗z⃗ kz⃗(x)−∆m(x)
)2
. (3.54)

However, note that we already observed that M ≥ 0, and the other term is the square of a

scalar, whence it is positive.

3.4.2 Sobolev Spaces

A second choice of function spaces that have many practical applications are the Sobolev

spaces Hk(X,ω) consisting of functions in L2(X,ω) whose mixed partial derivatives of order

at most k exist (in a weak sense) and are also in L2(X,ω) [Evans, 2010, Chapter 5]. Of

particular interest is the setting where X ⊆ R and k = 1, where the inner product is given
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by ⟨f, g⟩H1(X,ω) = ⟨f, g⟩L2(X,ω) + ⟨∂xf, ∂xg⟩L2(X,ω).

When the Gaussian process associated with the kernel function k lies in H1 with probability

one, the corresponding covariance operator can be expressed as

[Cg](x) =

∫
X

k(x, x′) dω(x′) +

∫
X

[∂x′k(x, x′)] [∂x′g(x′)] dω(x′). (3.55)

To derive this, note that the mean element is not dependent on the inner product – it is

merely an arbitrary element m ∈ H. Now, from Equation (3.37),

[Cg](x) =

∫
H

⟨g, f⟩H1(X,ω)f(x) dµf − ⟨g,m⟩H1(X,ω) (3.56)

=

∫
H

[
⟨g, f⟩L2(X,ω) + ⟨∂x′g(x′), ∂x′f(x′)⟩L2(X,ω)

]
f(x) dµf − ⟨g,m⟩H1(X,ω)m(x) (3.57)

=

∫
X

k(x, x′)g(x′) dω(x′) +

∫
H

⟨∂x′g(x′), ∂x′f(x′)⟩L2(X,ω)f(x) dµf (3.58)

− ⟨∂x′g(x′), ∂x′m(x′)⟩L2(X,ω)m(x)

=

∫
X

k(x, x′)g(x′) dω(x′) +

∫
X

∂x′g(x′)E[f(x)∂x′f(x′)] dω(x′) (3.59)

− ⟨∂x′g(x′), ∂x′m(x′)⟩L2(X,ω)m(x)

=

∫
X

k(x, x′)g(x′) dω(x′) +

∫
X

∂x′g(x′) (∂x′k(x, x′) +m(x)∂x′m(x′)) dω(x′) (3.60)

− ⟨∂x′g(x′), ∂x′m(x′)⟩L2(X,ω)m(x)

=

∫
X

k(x, x′)g(x′) dµ(x′) +

∫
X

∂x′k(x, x′)∂x′g(x, x′) dω(x′). (3.61)

The third equality follows from the corresponding L2(X,ω) calculation. The fifth equality

follows from the fact that if f ∼ GP (m, k) is differentiable with probability one, then ∂x′f is

also a Gaussian process with mean ∂x′m [Williams and Rasmussen, 2006, Papoulis and Pillai,

2002], and moreover the covariance between f and its derivative is given by differentiating
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the kernel:

Cov(f(x), ∂x′f(x′)) = E [(f(x)−m(x)) (∂x′F (x′)− ∂x′m(x′))] = ∂x′k(x, x′). (3.62)

See e.g. Williams and Rasmussen [2006, Chapter 9.4].

Our discretization in this setting follows closely that of our techniques for the space L2(X,ω),

with the additional necessity of employing a discrete differential operator. To that end,

let D ∈ Rn×n be any discrete approximation to the first-order differentiation operator. In

practice we use a discretization based on finite-difference equations. Let K ′
x⃗x⃗ ∈ Rn×n be the

covariance matrix corresponding to the differeniated kernel ∂x′k(x, x′). That is, the (i, j)th

entry of K ′
x⃗x⃗ is given by ∂

∂x′k(xi, xj). Then, the covariance operator C can be discretized via

[Cg](x⃗) ≈ n−1 [Kx⃗x⃗ +K ′
x⃗x⃗D] g(x⃗) ∈ Rn, and moreover,

KL [N (m1, C)∥N (m2, C)] ≈ 1

2
∆m(x⃗)T

[
I +DTD

]
[Kx⃗x⃗ +K ′

x⃗x⃗D]
−1

∆m(x⃗).

Although the covariance operator C is guaranteed to be positive semidefinite in theory,

discretizing this operator often results in a non-PSD matrix approximation which may cause

training to diverge. In practice, we project the matrix [I + DTD][Kx⃗x⃗ + K ′
x⃗x⃗D]−1 to the

nearest symmetric PSD matrix (in terms of the Frobenius norm) [Higham, 1988, Cheng and

Higham, 1998]. In particular, we apply the methods of Cheng and Higham [1998], Higham

[1988] to find

Ã = arg min
B
{||B − A||F : B is symmetric, PSD} (3.63)

i.e. the closest symmetric PSD matrix to A in terms of the Frobenius norm. This has a

unique solution, which can be computed in a straightforward manner. We briefly review this

method here for the sake of completeness. First, set C = 1
2
(A+AT ) to be the symmetric part
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of A. Then, compute the usual spectral decomposition C = Qdiag(λi)Q
T where Q is a matrix

containing the eigenvectors of C with corresponding eigenvalues {λi}. Set τi = max(0, λi).

Then, Ã = Qdiag(τi)Q
T is our desired projection.

3.4.3 Existing Methods in Terms of Our Theory

In terms of our methodology, existing methods [Kong et al., 2021, Chen et al., 2021, Tashiro

et al., 2021, Dutordoir et al., 2023] can be viewed as operating in the space H = L2(X,ω),

with the discretization employed in Equation (3.43). In all of these methods, the forward

process is defined via a white noise prior. However, such a prior can not be seen as a Gaussian

measure. In particular, the white noise process is not jointly measurable [Kallianpur, 2013,

Example 1.2.5], and thus one is unable to consider the corresponding sample paths as elements

of some function space. A GRE corresponding to this prior would have infinite variance, as the

corresponding covariance operator would be the identity operator. Nonetheless, despite these

foundational concerns, existing methods show strong empirical performance. Explaining this

performance from a functional point of view, for example through the theory of generalized

functions [Grubb, 2008], is an interesting challenge for future work.

3.5 Experiments

In this section, we perform several experiments in order to illustrate how our theoretical

framework can be implemented as a practical estimation methodology. In all experiments,

we parametrize ξθt (ft) via a graph neural operator (GNO) [Li et al., 2020, Kovachki et al.,

2021]. See Appendix A.1 for our model configurations and hyperparameter settings. Our

models are trained by minimizing the reweighted negative ELBO as described in Section 3.3.

In all plots, our functional diffusion model is denoted FuncDiff. Pseudocode and additional
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details for all of our algorithms is available in Appendix A.3.3

A key property of the GNO is the ability to condition on arbitrary discretizations of X.

This allows us to train our models on functions that are observed at different points, as well

as to condition on arbitrary function observations when performing conditional generation.

Moreover, as neural operators parametrize mappings between function spaces, we are able to

query our model at arbitrary input locations. Thus, our model is not tied to any particular

discretization.

Datasets We use both a synthetic and a real-world dataset to illustrate our approach, with

results on additional real-world datasets in Appendix A.4. Our synthetic dataset is a mixture

of Gaussian processes (MoGP) with a squared-exponential kernel with variance σ2 = 0.4 and

length scale ℓ = 0.1, where the first mixture component has mean m1 = 10x − 5 and the

second has mean m2 = −10x+ 5. These functions are observed on a uniform discretization

of [0, 1] ⊂ R. We use 64 observation points unless otherwise specified. Our real-world dataset

(AEMET ) is a well-known dataset in the functional data analysis literature. This dataset

consists of 73 curves, where each curve is the mean daily temperature at a particular Spanish

weather station, so that each curve has a total of 365 discrete observations [Febrero-Bande

and de la Fuente, 2012]. See Figure 3.1 for an illustration of these datasets.

3.5.1 Unconditional Generation

In this experiment, we sample curves unconditionally from our trained model. In Figure 3.1,

the generated curves closely match the training data in terms of perceptual qualities. We

additionally compute the pointwise mean, pointwise variance, and mean autocorrelation of

both the real and generated curves. The summary statistics of the generated data closely

3Code for all of our experiments is available at https://github.com/GavinKerrigan/functional_

diffusion
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Figure 3.1: Unconditional function generation on a synthetic (MoGP) and real-world
(AEMET) dataset. For each dataset, a GNO model was trained on the plotted functions (first
column), and a total of 500 functions were sampled from the model (second column). The
generated curves closely match the training curves in both perceptual quality and pointwise
statistics.

match those of the real data, indicating that the model has successfully learned to sample

from the functional distribution. See Appendix A.4 for a comparison to a simple baseline

based on functional PCA [Ramsay and Silverman, 2008, Chapter 6] and additional datasets.

3.5.2 Conditional Generation

Our proposed approach for conditional generation is an extension of the ILVR method [Choi

et al., 2021] to functional data. This method works by perturbing conditioning information

via the forward process, and during generation we set the values of the generated function

at the conditioning locations to these perturbed values. In particular note that we are able

to condition a pre-trained unconditional model on arbitrary function observations. Thus,

this method may potentially be applied to a wide array of tasks, such as extrapolation,

upsampling, or data imputation.

In Figure 3.2, we demonstrate this by conditioning our generation on a known segment of

the function. We see that our method is able to leverage the learned functional distribution
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Figure 3.2: Conditional samples of our model (FuncDiff) are compared against Gaussian
process regression (GPR). In each plot, both models are conditioned on the black curves.

in order to accurately extrapolate the given conditioning information. We compare to

a Gaussian process regression (GPR) baseline, where we fit a Gaussian process only to

the conditioning information. Unsurprisngly, the GPR method is not able to accurately

extrapolate the conditioning information, as it has no additional information regarding the

underlying functional distribution.

Moreover, our conditioning method allows us to do soft conditioning, where the diffusion

process is not conditioned on the observed values for some number of the final diffusions steps.
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Figure 3.3: An illustration of our soft conditioning method. We condition the generative
process on the black curves for all but the final 150 diffusion steps. This allows us to generate
functions that are qualitatively similar to the given conditioning information (in black), such
that the generated function values do not necessarily exactly match those of the conditioning
information.

This allows us to generate curves that are similar to a given observation, but not exactly

matching. For example, this can be used to select a particular mode to sample from in a

multimodal dataset. We demonstrate this in Figure 3.3. As a potential future application,

soft conditioning could be applied as a data augmentation method for functional data.

3.5.3 Function Spaces

Lastly, we experiment with the choice of function space. In particular, we compare the use

of the L2(X,ω) inner product against the use of the H1(X,ω) inner product. Intuitively,

the derivative term in Sobolev inner product will penalize generated functions that are not
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Table 3.1: Mean smoothness of generated functions as measured by the standard deviation of
the function derivatives, averaged across 500 samples. Using the Sobolev norm over the L2

norm can significantly increase the smoothness of generated functions, while not harming
performance if the generated functions are already sufficiently smooth.

Dataset L2(X,ω) H1(X,ω)

Linear 0.753 0.203
MoGP 24.73 24.74

smooth. In Table 2, we measure the smoothness of generated curves by computing the mean

standard deviation of the derivatives of said curves. We find empirically that using the

Sobolev loss can result in significantly smoother generations when the underlying functional

dataset is highly regular. As smoothness is not a desirable property for the AEMET dataset,

we include here a dataset consisting of linear functions (Linear) instead. See Appendix A.4

for more on this dataset. We use the Matérn kernel with ν = 3/2 when working with the the

Sobolev norm as this kernel has differentiable sample paths.

3.5.4 Spectral Loss

In our previous experiments, we approximate the functional KL divergence by discretizing

the underlying operators. In this section, we experiment with an alternative approach based

on the spectrum of the covariance operator. We focus here on the setting H = L2(X,µ) with

X = [0, 1] equipped with the Lebesgue measure ω = dx. Consider a Gaussian measure on H

with covariance operator C. Since C is self-adjoint and compact, the spectral theorem tells

us that the eigenfunctions of C form an orthonormal basis of H. We denote the eigenvalues

and eigenfunctions of C by {(λj, ej)}∞j=1. We then have that [Da Prato and Zabczyk, 2014,
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Remark 2.24]

KL

[
N (m1, C)

∥∥∥∥ N (m2, C)

]
=

1

2
⟨m1 −m2, C

−1(m1 −m2)⟩L2(X,ω) (3.64)

=
1

2

∞∑
j=1

λ−1
j ⟨m1 −m2, ej⟩2L2(X,ω) (3.65)

≈ 1

2

J∑
j=1

λ−1
j ⟨m1 −m2, ej⟩2L2(X,ω). (3.66)

Thus, an alternative method for approximating the KL divergence between Gaussian measures

with equal covariance operators is to truncate the above sum at some specified number of

terms J . For some choices of C, the eigenvalues and eigenfunctions are analytically known

– for example, see Williams and Rasmussen [2006, Chapter 4] for the squared-exponential

kernel, and see Le Mâıtre and Knio [2010, Chapter 2] or Burt [2018, Section 2.5] for the

exponential kernel.

In Figure 3.4, we compare this spectral approach to the discrete approach proposed in

Section (3.4). In particular, we specify C via a Gaussian process with a Matérn kernel with

ν = 1/2, unit variance, and lengthscale ℓ = 0.1. This is done to match the settings in our

other experiments. Moreover, the eigenvalues and eigenfunctions are analytically available

in this case [Le Mâıtre and Knio, 2010, Burt, 2018]. In each row of Figure 3.4, we specify

particular functions for m1 and m2. We vary the discretization size (i.e. the number of

function observations) on the horizontal axis for discretization sizes of 10, 50, 100, 300, and

plot the estimated KL divergence between N (m1, C) and N (m2, C) on the vertical axis.

We observe that the discrete approximation to the KL divergence (in blue) is monotonically

increasing, as was proved in Proposition (18). However, we see that the spectral approximation

is sensitive to both the number of terms in the series expansion and the discretization size.

In particular, when using J = 10 terms, the spectral approximation underestimates the

true KL divergence. In contrast, when J ≥ 50, we see that the spectral approximation
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Figure 3.4: Various synthetic functions (first column) and estimates of the KL divergence
between Gaussian measures with these means, having covariance operator given by an expo-
nential kernel. For columns 2-5, the horizontal axis corresponds to discretization size (i.e.
number of function observations), and the vertical axis corresponds to the corresponding
estimated KL divergence. The discrete method (in blue) has KL estimates that are monoton-
ically increasing (see also Proposition (18)), but the spectral method (in orange) is sensitive
to the choice of terms in the series expansion as well as the discretization size.

overestimates the true KL divergence by several orders of magnitude if the discretization

of X is not sufficiently fine. This effect worsens as we increase the number of terms J . We

conjecture that this is because the eigenfunctions ej are sinusoidal in this case, and thus

without a sufficiently fine discretization of X, the inner product in the spectral approximation

is a poor numerical estimate of the true inner product.
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3.6 Conclusion

We propose a framework for diffusion generative modeling in infinite-dimensional spaces and

develop practical techniques for realizing this framework on real-world data. Enabled by our

framework, future functional diffusion models may be able move beyond the typical L2-space

assumption in order to incorporate informative prior information.
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Chapter 4

Functional Flow Matching

In Chapter 3, we developed the foundations for discrete-time function space diffusion models.

However, the discrete-time nature of this model can be limiting in practice, as one is unable

to leverage flexible differential equation solvers at sampling time [Song et al., 2021, Jolicoeur-

Martineau et al., 2021]. While work following Kerrigan et al. [2023] studies function-space

SDEs [Lim et al., 2023c, Franzese et al., 2024, Pidstrigach et al., 2023], there has been growing

interest in developing deterministic ODE-based alternatives to diffusion models [Lipman

et al., 2023].

In this chapter,1 we continue to add to the growing literature on function space generative

models. In particular, we propose Functional Flow Matching (FFM), a continuous-time

normalizing flow model for functional data. Given that Euclidean normalizing flow methods

[Papamakarios et al., 2021, Kobyzev et al., 2020] are posed in terms of densities, which

generally do not exist in infinite-dimensional spaces, a key challenge of performing this

generalization is to pose a purely measure-theoretic model. In particular, our model is a

generalization of the recently proposed Flow Matching model of Lipman et al. [2023].

1The content of this chapter was previously published as Functional Flow Matching (AISTATS 2024)
[Kerrigan et al., 2024a], with minor changes.
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t=0.0 t=0.25 t=0.75 t=1.0

Figure 4.1: An illustration of our FFM method. The vector field vt(f) ∈ H (in black)
transforms a noise sample g ∼ µ0 = N (0, C0) drawn from a Gaussian process with a Matérn
kernel (at t = 0) to the function f(x) = sin(x) (at t = 1) via solving a function space ODE.
By sampling many such g ∼ µ0, we define a conditional path of measures µf

t approximately
interpolating between N (0, C0) and the function f , which we marginalize over samples f ∼ ν
from the data distribution in order to obtain a path of measures approximately interpolating
between µ0 and ν.

Our proposed FFM model first constructs a path of conditional Gaussian measures, approxi-

mately interpolating between a fixed reference Gaussian measure and a given function. A

path of measures interpolating between said reference measure and the data distribution is

then obtained by marginalizing these conditional paths over the data distribution. We learn

a vector field on our space of functions which approximately generates this path of measures,

allowing us to generate samples from our data distribution by solving a differential equation.

Figure 4.1 illustrates our approach.

Our approach allows for simulation-free training, in the sense that no samples are drawn

from the model. Moreover, our training objective is regression based, allowing us to avoid

pathologies with regards to maximum likelihood training in a functional setting. We em-

pirically verify our framework on several time series datasets and a fluid dynamics dataset,

demonstrating that the FFM model outperforms several competitive function space models

across a variety of domains.
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4.1 Related Work

Here, we review work which is closely related to our proposed method.

Flow Matching and Normalizing Flows We generalize the Flow Matching model of

Lipman et al. [2023], which is a novel approach to simulation-free continuous-time normalizing

flows [Chen et al., 2018, Papamakarios et al., 2021, Kobyzev et al., 2020]. This approach

has demonstrated impressive capabilities on several image generation tasks. However, Flow

Matching and other recently proposed simulation-free continuous normalizing flows have

only been explored for data distributions supported on finite-dimensional spaces, such as

Euclidean spaces [Lipman et al., 2023, Albergo and Vanden-Eijnden, 2023, Liu et al., 2023,

Neklyudov et al., 2023] and Riemannian manifolds [Chen and Lipman, 2024, Ben-Hamu et al.,

2022]. In contrast, we propose Functional Flow Matching, a continuous-time normalizing flow

for infinite-dimensional data. To the best of our knowledge, this is the first normalizing flow

model posed in infinite-dimensional spaces.

Function Space Generative Models Recently, a number of authors have proposed

function space generalizations of various deep generative models. Close in spirit to our work

are those generalizing diffusion models [Ho et al., 2020, Song et al., 2021, Song and Ermon,

2019] to the infinite-dimensional setting. In particular, Kerrigan et al. [2023] and Lim et al.

[2023a] propose function space generalizations of discrete-time diffusion models, whereas

Pidstrigach et al. [2023], Franzese et al. [2024] and Hagemann et al. [2023] propose function

space generalizations of continuous-time diffusion models. Beyond diffusion models, function

space GANs [Rahman et al., 2022] and energy-based models [Lim et al., 2023b] have also

been proposed. Our work adds to this growing literature on function space generative models

by proposing the first function space normalizing flow model.
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Discrete Functional Generative Models While there has been growing interest in

developing generative models directly in infinite-dimensional spaces, there has also been work

proposing generative models for functional data that operate directly on a discretization of

the underlying space, for example, diffusion models for time series [Tashiro et al., 2021, Rasul

et al., 2021a, Yan et al., 2021] (see Lin et al. [2023] for a recent survey on these methods).

Other models, such as normalizing flows [Rasul et al., 2021b], latent variable models [Zhou

et al., 2022, Rubanova et al., 2019, Yildiz et al., 2019], and GANs [Yoon et al., 2019, Kidger

et al., 2021] have also been explored. However, these methods all operate directly on the

discrete observations of a given time series. This has several drawbacks: for instance, it is

difficult to transfer a model trained on one discretization to another, and often these models

are ill-posed in the functional limit (i.e. as the discretization size goes to zero). In contrast,

our work begins from a function space point of view, where we only discretize in order to

perform computations.

4.2 Notation and Background

We begin by introducing some notation and background which we will later use to construct

our model. Section 4.2.1 introduces notions related to flows on function spaces, and Section

4.2.2 introduces the weak continuity PDE [Stepanov and Trevisan, 2017] which plays a key

role in our constructions.

4.2.1 Preliminaries

This chapter follows the notation outlined in Chapter 2, which we briefly recall here. Let

X ⊂ Rd and consider a real separable Hilbert space H of functions f : X → R equipped with

the Borel σ-algebra B(H). We consider the setting where there is a probability measure ν on
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H from which we have samples, i.e. random functions drawn from the data distribution ν.

Our goal is to build a generative model which allows us to sample from ν. Importantly, any

such generative model should be discretization-invariant, in the sense that the model should

be able to generate functions which may be observed on any finite but arbitrary discretization

of X.

In this work, we consider paths of probability measures (µt)t∈[0,1], where µt ∈ P(H) is a

probability measure on H at every time t ∈ [0, 1]. In particular, we will construct a path of

measures which approximately interpolates between a fixed reference measure µ0 at time t = 0

and the data distribution at time t = 1, so that µ1 ≈ ν.2 This interpolation is approximate

in the sense that µ1 will be a smoothed version of the data distribution, obtained from ν via

convolution with a Gaussian measure having small variance [Bogachev, 1998, Appendix A].

We consider paths of probability measures which are generated locally, in the sense that

there is some underlying time-dependent vector field on H such that the path of measures

(µt)t∈[0,1] is obtained by flowing samples g ∼ µ0 along said vector field. More formally, a

(time-dependent) vector field on H is a mapping v : [0, 1]×H → H.

The flow associated to a vector field (vt)t∈[0,1] is the mapping ϕ : [0, 1]×H → H specified by

the initial value problem

∂tϕt(g) = vt(ϕt(g)) ϕ0(g) = g. (4.1)

As written, Equation (4.1) represents an ordinary differential equation (ODE) on the abstract

and potentially infinite-dimensional space H. Such ODEs are often dubbed abstract differential

equations [O’Regan, 1997, Zaidman, 1999]. We assume that all vector fields in this work

are sufficiently regular such that a solution to Equation (4.1) is guaranteed to exist for all

2In Chapter 3, we used µ0 to represent the data distribution. In this chapter, we will use the convention
that µ1 should represent (an approximation of) the data distribution. This notation is chosen to align with
the existing conventions in the flow and diffusion literature.
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t ∈ [0, 1] and ν-a.e. initial condition g.

Given any initial probability measure µ0 ∈ P(H), we may consider the path of probability

measures generated by the flow ϕ. That is, for any t ∈ [0, 1] we define the measure µt via the

pushforward of µ0 along ϕt, i.e. µt = [ϕt]#µ0, so that µt(A) = µ0

(
ϕ−1
t (A)

)
for any measurable

A ⊂ H. Here, ϕt is assumed to be measurable for all t ∈ [0, 1].

4.2.2 Weak Continuity PDE

Previously, we noted how one may obtain a path of probability measures from an initial

probability measure µ0 ∈ P(H) by considering the pushforward of µ0 along the flow of a

given vector field (vt)t∈[0,1].

Conversely, we say that the vector field (vt)t∈[0,1] generates the path of measures (µt)t∈[0,1]

if the path (µt)t∈[0,1] is obtained via the pushforward of µ0 along the flow associated with

(vt)t∈[0,1]. Directly verifying whether a vector field generates a given path of measures (by

verifying the pushforward relationship) is typically infeasible. Instead, we can check if the

two satisfy the continuity equation

∂tµt + div(vtµt) = 0 on H × [0, 1]. (4.2)

We interpret this partial differential equation (PDE) in the weak sense [Ambrosio et al., 2005,

Ch. 8], by which we mean that the pair (vt)t∈[0,1] and (µt)t∈[0,1] satisfy Equation (4.2) if

∫ 1

0

∫
H

(∂tφ(g, t) + ⟨vt(g),∇gφ(g, t)⟩) dµt(g) dt = 0 (4.3)

for all φ : H × [0, 1]→ R in an appropriate space of test functions. Typically, φ is assumed

to be cylindrical, i.e. of the form φ(f, t) = ψ(π(f), t) where π : g 7→ (⟨g, e1⟩, . . . , ⟨g, ed⟩) is a
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d-dimensional projection of g via an orthonormal system (ei)
d
i=1, and ψ ∈ C∞

c (Rd × [0, 1]) is

smooth and compactly supported.

We refer to Stepanov and Trevisan [2017, Theorem 3.4] for a rigorous discussion of this result

in general metric spaces. Such results are often referred to as superposition principles. In the

Euclidean setting, if one assumes that all measures admit a density with respect to some

common dominating measure, it suffices to check the continuity equation directly, in which

µt is replaced by a density pt [Ambrosio et al., 2005, Villani, 2009].

Throughout this work, we assume all paths of measures and vector fields are sufficiently

regular such that the superposition principle applies, i.e. it suffices to check the continuity

equation to conclude whether a given path of measures is generated by a given vector field.

In Theorem 19, we use the weak form of the continuity equation in order to construct a

marginal vector field from conditional vector fields, such that this marginal vector field is

guaranteed to generate our desired interpolating path of measures.

4.3 Function Space Flow Matching

Building on the notions in Section 4.2, we now introduce our Functional Flow Matching

model (FFM). The Flow Matching model is a recently proposed continuous-time normalizing

flow method developed for finite-dimensional spaces [Lipman et al., 2023, Chen and Lipman,

2024]. Our FFM approach builds on this earlier line of work to develop an extension of these

methods to infinite-dimensional spaces.

The main technical challenge of generalizing the existing techniques to infinite-dimensional

spaces is that existing methods rely heavily on the notion of a probability density function,

either with respect to the Lebesgue measure in the case of a Euclidean space or with respect

to the canonical volume measure on a Riemannian manifold. In infinite-dimensional (Banach)
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spaces, there does not exist an analogue of the Lebesgue measure – that is, any nonzero

translation invariant Borel measure must assign infinite measure to any open set [Eldredge,

2016].

As such, our FFM model is necessarily posed in measure-theoretic terms. Our derivations

shed light on strict requirements needed to obtain a well-posed model. For instance, we

require an absolute continuity assumption between the conditional and marginal measures

defined in Section 4.3.1. In Euclidean spaces, such assumptions are easy to satisfy, but are

non-trivial in infinite-dimensional spaces, even for the simple setting of Gaussian measures

(see Section 4.3.3). Moreover, our derivations demonstrate that naively applying a white-noise

Gaussian measure (as is done in the Euclidean setting) leads to an ill-posed model in function

space.

4.3.1 Constructing a Path of Measures

Suppose we associate to every f ∈ H a path of measures (µf
t )t∈[0,1] such that µf

0 = µ0 is

some fixed reference measure and µf
1 is concentrated around f . For instance, µf

1 could be

a Gaussian measure with mean f and a covariance having small operator norm. We then

marginalize over all such measures, where we mix over the data distribution ν. That is, we

define a new probability measure µt ∈ P(H) for t ∈ [0, 1] via

µt(A) =

∫
µf
t (A) dν(f) ∀A ∈ B(H). (4.4)

Due to our conditions on µf
t , we then have that µ0 = µ0 and µ1 ≈ ν is approximately the

data distribution. Suppose further that each conditional path of measures µf
t is generated

by some known vector field vft . In the following theorem, we claim that we may construct a

vector field vt which generates the marginal path of measures µt from the conditional vector
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fields vft .

Theorem 19.

Assume that
∫ 1

0

∫
H×H

||vft (g)|| dµf
t (g) dν(f) dt < ∞. If µf

t ≪ µt for ν-almost every f and

almost every t ∈ [0, 1], then the vector field

vt(g) =

∫
H

vft (g)
dµf

t

dµt

(g) dν(f) (4.5)

generates the marginal path of measures (µt)t∈[0,1] specified by Equation (4.4). That is,

(vt)t∈[0,1] and (µt)t∈[0,1] solve the continuity equation (4.2). Here, dµf
t / dµt is the Radon-

Nikodym derivative of the conditional measure with respect to the marginal.

Proof. In this proof, we denote the variable of integration for integrals over H via a subscript

on the integral. We show that for an arbitrary but fixed test function φ,

∫ 1

0

∫
g

∂tφ(g, t) dµt(g) dt = −
∫ 1

0

∫
g

⟨vt(g),∇gφ(g, t) dµt(g) dt. (4.6)

To that end, we begin by analyzing the left-hand side, replacing the integration of the marginal

measure µt with a double integral over its components:

∫ 1

0

∫
g

∂tφ(g, t) dµt(g) dt =

∫ 1

0

∫
f

∫
g

∂tφ(g, t) dµf
t (g) dν(f) dt (4.7)

By Fubini-Tonelli and using the assumption that vft generates µf
t , we obtain via the continuity

equation for (vft , µ
f
t ):

= −
∫
f

∫ 1

0

∫
g

⟨vft (g),∇gφ(g, t)⟩ dµf
t (g) dt dν(f) (4.8)

Using our absolute continuity assumption and Fubini-Tonelli once again, we perform a change
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of measure to obtain

= −
∫ 1

0

∫
f

∫
g

⟨vft (g),∇gφ(g, t)⟩

(
dµf

t

dµt

(g)

)
dµt(g) dν(f) dt (4.9)

= −
∫ 1

0

∫
f

∫
g

⟨vft (g)
dµf

t

dµt

(g),∇gφ(g, t)⟩ dµt(g) dν(f) dt (4.10)

Using the fact that Bochner integrals commute with inner products, an application of

Fubini-Tonelli yields

= −
∫ 1

0

∫
g

〈∫
f

vft (g)
dµf

t

dµt

(g) dν(f),∇gφ(g, t)

〉
dµt(g) dt (4.11)

= −
∫ 1

0

∫
g

⟨vt(g),∇gφ(g, t)⟩ dµt(g) dt (4.12)

Hence, we have shown that the vector field generating µt is given by

vt(g) =

∫
f

vft (g)
dµf

t

dµt

(g) dν(f). (4.13)

If this vector field vt were known, we could generate samples by solving the corresponding

flow ODE (Equation (4.1)) with initial condition f ∼ µ0 drawn from our fixed reference

measure. However, the vector field specified by Equation (4.5) is intractable. Thus, we will

learn a model to approximate this unknown vector field. Note that our model will necessarily

be a mapping between infinite dimensional spaces. We discuss how to parametrize such a

model in Section 4.4.

The main technical assumption in Theorem 19 is that the conditional distributions µf
t are

ν-almost surely absolutely continuous with respect to the marginal distribution µt. Although

this assumption is not generally true even in the Euclidean setting, we prove in Theorem
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(20) that this assumption holds under an additional equivalency condition on the conditional

measures. In Section 4.3.3, we discuss how this equivalency assumption may be satisfied

under a Gaussian parametrization.

Theorem 20.

Consider a probability measure ν on H and a collection of measures µf
t parametrized by

f ∈ H. Suppose that the collection of parametrized measures are ν-a.e. mutually absolutely

continuous. Define the marginal measure µt via Equation (4.4). Then, µf
t ≪ µt for ν-a.e. f .

Proof. By assumption, there exists G ⊆ H with ν(G) = 1 and for any f, g ∈ G, we have

µf
t ≪ µg

t and µg
t ≪ µf

t . Fix A ∈ B(H) with µt(A) = 0. We claim that µf(A) = 0 for every

f ∈ G. Note that as G ⊆ H has full measure, the integral defining µT may be taken over G

rather than H. Suppose for the sake of contradiction that µf
t (A) > 0 for some f ∈ G. From

the mutual equivalencies of the measures parametrized by G, it follows that µg
t (A) > 0 for

every g ∈ G. Given the form of the mixture measure µt, it would then follow that µt(A) > 0,

which is a contradiction. Thus, µf
t ≪ µt for ν-a.e. f as claimed.

4.3.2 Special Case: Gaussian Measures

In this section, we specialize to the setting where the reference measure µ0 and conditional

measures µf
t are chosen to be Gaussian measures [Bogachev, 1998]. We make this ansatz for

several reasons. Foremost, our marginal vector field (Equation (4.5)) requires an absolute

continuity assumption. In infinite-dimensional (separable) Banach spaces, the absolute

continuity of Gaussian measures is well-understood, e.g. via the Cameron-Martin theorem

and the Feldman-Hájek theorem [Da Prato and Zabczyk, 2014, Bogachev, 1998]. Moreover,

we are able to parametrize our Gaussian measures via Gaussian processes [Rasmussen and

Williams, 2006, Wild et al., 2022] for which a number of flexible choices of kernels have been

explored in the machine learning literature.
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More formally, for any f ∈ H we define a conditional path of probability measures (µt)t∈[0,1]

to be a Gaussian measure µf
t = N (mf

t , C
f
t ) with mean mf

t ∈ H and covariance operator

Cf
t : H → H. Note that the Cf

t are necessarily symmetric, non-negative and trace-class

[Da Prato and Zabczyk, 2014, Ch. 2]. In particular, this rules out multiples of the identity

operator (corresponding to white noise) as a valid choice for Cf
t , as these operators are not

compact and hence not trace-class.

In practice, we parametrize t 7→ mf
t by a Fréchet differentiable mapping and specify Cf

t by

a covariance operator C0 and variance schedule t 7→ σf
t ∈ R>0 such that Cf

t = (σf
t )2C0. At

time t = 0, we choose to parametrize µf
0 = µ0 = N (0, C0) as a centered Gaussian measure

independent of the function f ∈ H. The measure µ0 will serve as the reference measure in

our generative model. In order to satisfy the desiderata of Section 4.3.1, at time t = 1 we

will choose mf
1 = f and Cf

t to have small operator norm so that µf
1 is a Gaussian measure

concentrated around f .

In this case, we note that the conditional flow ϕf : [0, 1]×H → H defined via ϕf
t (g) = σf

t g +

mf
t will push g ∼ N (0, C0) to the desired conditional measure µf

t , i.e. µf
t = [ϕf

t ]#N (0, C0).

Using the flow ODE (Equation (4.1)), we see that a vector field generating this conditional

path of measures is

vft (g) =
(σf

t )′

σf
t

(g −mf
t ) +

d

dt
mf

t (4.14)

where (σf
t )′ is the ordinary time derivative of the variance schedule and d/ dt(mf

t ) is the Fréchet

derivative of the mapping t 7→ mf
t . The proof of this fact is a straightforward generalization

of Lipman et al. [2023, Theorem 3], which demonstrates the analogous relationship in

finite-dimensional Euclidean spaces.

In this work, we consider two concrete parameterizations. In the first parametrization (“OT”),
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the mean and variance are given as affine functions of t and f :

mf
t = tf σf

t = 1− (1− σmin)t. (4.15)

The “OT” path is named as such as it corresponds to an optimal transport map between

Gaussians in the Euclidean setting [Lipman et al., 2023, McCann, 1997].

In the second parametrization (“VP”), we set

mf
t = α1−tf σf

t =
√

1− α2
1−t. (4.16)

This path is inspired inspired by probability paths defined via variance preserving diffusion

models [Lipman et al., 2023, Song et al., 2021]. We additionally experimented with the

“variance exploding” parametrization [Lipman et al., 2023, Song et al., 2021], but found

empirically that this was not suitable for our setting. See Appendix B.1 for details. Here,

σmin ∈ R>0 and αt ∈ R>0 are hyperparameters of the model controlling the variance of the

conditional measures.

4.3.3 Absolute Continuity for Gaussians

In general, the absolute continuity assumption of Theorem 19 is difficult to satisfy in function

spaces. In the Gaussian setting, we may reduce this assumption to assumptions regarding

the parametrization of our Gaussian measures. By the Feldman-Hájek theorem [Da Prato

and Zabczyk, 2014, Theorem 2.25], our conditional Gaussian measures µf
t will be mutually

absolutely continuous if the difference in means lies in the Cameron-Martin space of Ct, i.e.

mf
t −m

g
t ∈ C

1/2
t (H).

Thus, under suitable assumptions on the data distribution ν and an appropriate parametriza-
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tion of the conditional means, our marginal vector fields (Equation (4.5)) will be well-defined

as a consequence of Theorem 20. Suppose Ct = σ2
tC0 is a scaled version of some fixed

covariance operator C0 with the assumption that 0 < σ2
t ≤M is positive and bounded above.

By Lemma 6.15 of Stuart [2010], this choice guarantees us that the Cameron-Martin space is

constant in time, i.e. C
1/2
0 (H) = C

1/2
t (H) for all t ∈ [0, 1].

Assume further that the data distribution is supported on the Cameron-Martin space of

C0, i.e. ν(C
1/2
0 (H)) = 1. In this case, given our covariance parametrization, our Gaussian

measures will be mutually absolutely continuous if e.g. mf
t is an affine function of f . We

note that the parametrizations suggested in Section 4.3.2 are all affine, and so under the

assumption that the data is supported on the Cameron-Martin space C
1/2
0 (H) our setup is

well-defined.

In practice, verifying whether the data distribution is supported on C
1/2
0 (H) is difficult. One

option to guarantee this assumption is satisfied is to pre-process the data via some mapping

T : H → C
1/2
0 (H) ⊆ H whose image is contained in C

1/2
0 (H). We refer to Appendix C of Lim

et al. [2023a] for a further discussion of such mappings and related results. We note that in

practice, we do not find it necessary to perform this pre-processing.

4.3.4 Training the FFM Model

Ideally, we would like to perform functional regression on the marginal vector field defined

via Equation (4.5), where we approximate vt(g) by a model ut(g | θ) with parameters θ ∈ Rp.

This could be achieved, for instance, by minimizing the loss

L(θ) = Et∼U [0,1],g∼µt

[
∥vt(g)− ut(g | θ)∥2

]
(4.17)

where U [0, 1] denotes a uniform distribution over the interval [0, 1]. Note here that our model
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is a mapping u : Rp × [0, 1] × H → H, i.e. our model is a parametrized, time-dependent

operator on the function space H. However, such a loss is intractable to compute – in fact, if

we had access to (vt)t∈[0,1], there would be no need to learn a model. Consider instead the

conditional loss, defined via

J (θ) = Et∼U [0,1],f∼ν,g∼µf
t

[∥∥∥vft (g)− ut(f | θ)
∥∥∥2] (4.18)

where, rather than regressing on the intractable vt, we regress on the known conditional

vector fields vft . In the following theorem, we claim that minimizing J (θ) is equivalent to

minimizing L(θ).

Theorem 21.

Assume that the true and model vector fields are square-integrable, i.e.
∫ 1

0

∫
H
∥vt(g)∥2 dµt(g) dt <

∞ and
∫ 1

0

∫
H
∥ut(g | θ)∥2 dµt(g) dt <∞. Then, L(θ) = J (θ) +C where C ∈ R is a constant

independent of θ.

Proof. First, note that since we are working in a real Hilbert space, for fixed f, g ∈ H we

have

∥vt(g)− ut(g | θ)∥2 = ⟨vt(g)− ut(g | θ), vt(g)− ut(g | θ)⟩ (4.19)

= ∥vt(g)∥2 + ∥ut(g | θ)∥2 − 2⟨vt(g), ut(g | θ)⟩ (4.20)

and similarly,

∥∥∥vft (g)− ut(g | θ)
∥∥∥2 =

∥∥∥vft (g)
∥∥∥2 + ∥ut(g | θ)∥2 − 2⟨vt(g), ut(g | θ)⟩. (4.21)

The first term in both is independent of the model parameters θ. We analyze the remaining

two terms. Below, we use subscripts on integrals over F to denote the variable of integration.
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First, using the fact that µt is a mixture measure,

Et,µt

[
∥ut(g | θ)∥2

]
= (4.22)

=

∫ 1

0

∫
g

∥ut(g | θ)∥2 dµt(g) dt (4.23)

=

∫ 1

0

∫
f

∫
g

∥ut(g | θ)∥2 dµf
t (g) dν(f) dt (4.24)

= Et,g∼µf
t ,f∼ν

[
∥ut(g | θ)∥2

]
. (4.25)

Next, using the exchangeability between Bochner integrals and inner products and Fubini-

Tonelli,

Et,g∼µt [⟨vt(g), ut(g | θ)] = (4.26)

=

∫ 1

0

∫
g

⟨vt(g), ut(g | θ)⟩ dµt(g) dt (4.27)

=

∫ 1

0

∫
g

〈∫
f

vft (g)
dµf

t

dµt

(g) dν(f), ut(g | θ)

〉
dµt(g) dt (4.28)

=

∫ 1

0

∫
f

∫
g

⟨vft (g), ut(g | θ)⟩

(
dµf

t

dµt

(g)

)
dµt(g) dν(f) dt (4.29)

=

∫ 1

0

∫
f

∫
g

⟨vft (g), ut(g | θ) dµf
t (g) dν(f) dt (4.30)

= Et,f∼ν,g∼µf
t

[
⟨vft (g), ut(g | θ)⟩

]
. (4.31)

This shows the equivalency of the two losses.

4.4 Experiments

We now investigate the empirical performance of FFM on several real-world datasets. In all

settings, we assume we are working in the space H = L2([0, 1]) and we parametrize ut(− | θ)
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via a Fourier Neural Operator (FNO) [Li et al., 2021]. Sampling is achieved by drawing a

sample from the reference measure g ∼ µ0 and numerically solving the flow ODE (Equation

(4.1)) with initial condition g. In our implementation, we use the DOPRI solver [Dormand

and Prince, 1980]. Details can be found in Appendix B.1.3

Datasets Our experiments in 1D include five datasets selected for their diverse correlation

structures, exhibiting distinctive patterns that enable visual evaluation of generated samples.

Plots of original and generated samples, as well as a detailed description of each dataset,

can be found in Appendix B.1.2. The first dataset (AEMET) consists of a set of 73 curves

describing the mean daily temperature at various locations [Febrero-Bande and de la Fuente,

2012]. The second is a gene expression time series dataset [Orlando et al., 2008], and the

remaining three consist of global economic time series on population, GDP per capita, and

labor force size [Bolt and Van Zanden, 2020, Inklaar et al., 2018, International Financial

Statistics, 2022], We also experiment with a dataset of solutions to the Navier-Stokes equation

on a 2D torus [Li et al., 2022].

Baselines We compare against several functional generative models: the Denoising Diffusion

Operator (DDO) [Lim et al., 2023a] with NCSN noise scale, GANO [Rahman et al., 2022],

and functional DDPM [Kerrigan et al., 2023]. We do not compare to non-functional methods,

as we are primarily interested in developing discretization-invariant generative models.

All noise was specified via a Gaussian process with a Matrn kernel where the lenthscale and

variance is tuned for each dataset and method. Generally, tuning the parameters of the kernel

is key to obtaining high-quality results across all models considered.

For the sake of a fair comparison, we used the same neural architecture for all models, with

the exception of GANO which requires a generator and discriminator pair. We used the

3Code for all of our experiments is available at github.com/GavinKerrigan/functional flow matching
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(a) MSEs between the density
and spectra of the real and gen-
erated samples.

Density Spectrum

FFM-OT (Ours) 3.7e-5 9.3e1
DDPM 9.9e-5 5.0e2
DDO 2.9e-2 1.6e5
GANO 2.5e-3 3.2e4

Figure 4.2: Samples from the Navier-Stokes dataset (“ground truth”) and samples from the various
models considered in this work. Our FFM-OT model and DDPM qualitatively match the ground
truth samples, whereas DDO and GANO suffer from mode collapse. Table 4.2a compares the
density and spectra between 1000 real and generated samples, showing that our proposed method
outperforms the others by a large margin on pointwise metrics. Note that we do not study the
FFM-VP parametrization on this dataset due to computational costs.

code provided by the authors of DDPM and GANO but re-implemented the DDO model.

For all models, we performed extensive hyperparameter tuning and report the best results.

Generally, we find the FFM methods are less sensitive to hyperparameter choices than the

baseline methods.

Results Figure 4.2 shows samples from the Navier-Stokes dataset and samples generated

from the various models we consider. Qualitatively, our FFM model and the DDPM model

match the ground-truth samples, whereas DDO and GANO suffer from mode collapse.

Figure 4.3 shows samples from the AEMET dataset and generated samples from the models

we consider. Our FFM model is able to qualitatively match the samples from the ground

truth distribution. The DDPM samples are similar in quality, but do not respect the range

of values seen in the data. For DDO, we observe smoothness issues, and for GANO, we again

see mode collapse issues.
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Figure 4.3: Unconditional generation of 500 samples on the AEMET dataset. Samples from
our FFM model and DDPM appear visually to better match the characteristics of the real
data relative to DDO and GANO.
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Table 4.1: Average MSEs between true and generated samples for pointwise statistics on
five one-dimensional datasets, along with the standard deviation across ten random seeds.
The average number of function evaluations (NFEs) for each sampling procedure in our
implementation is also reported. Our FFM models obtain the best average performance across
nearly all metrics, while simultaneously requiring fewer NFEs than the diffusion baselines.

Mean Variance Skewness Kurtosis Autocorrelation NFEs

A
E
M

E
T

FFM-OT (ours) 8.4e-2 (9.9e-2) 1.7e+0 (1.1e+0) 7.7e-2 (6.6e-2) 3.3e-2 (3.7e-2) 3.0e-6 (4.0e-6) 668
FFM-VP (ours) 1.3e-1 (1.4e-1) 1.5e+0 (1.2e+0) 5.e-2 (4.3e-2) 1.7e-2 (1.6e-2) 6.0e-6 (7.0e-6) 488
DDPM 3.0e-1 (3.0e-1) 3.5e+0 (4.6e+0) 2.2e-1 (2.2e-1) 4.8e-2 (3.7e-2) 1.2e-5 (9.e-6) 1000
DDO 2.4e-1 (1.4e-1) 6.6e+0 (5.1e+0) 2.1e-1 (4.1e-2) 3.8e-2 (1.3e-2) 6.7e-4 (1.3e-4) 2000
GANO 6.5e+1 (1.9e+2) 3.7e+1 (4.0e+1) 2.9e+0 (4.8e+0) 3.3e-1 (4.0e-1) 1.2e-3 (3.1e-3) 1

G
e
n
e
s

FFM-OT (ours) 6.7e-4 (4.5e-4) 3.9e-3 (2.6e-4) 2.4e-1 (4.7e-2) 7.7e-2 (9.0e-3) 2.5e-4 (1.7e-4) 386
FFM-VP (ours) 4.2e-4 (3.8e-4) 7.3e-4 (3.5e-4) 1.9e-1 (6.1e-2) 4.3e-2 (1.1e-2) 1.3e-4 (1.0e-4) 290
DDPM 8.8e-4 (4.5e-4) 1.9e-3 (4.2e-4) 3.6e-1 (1.9e-1) 6.3e-2 (1.1e-2) 4.3e-4 (9.3e-5) 1000
DDO 4.2e-3 (1.5e-3) 1.2e-3 (3.6e-4) 3.0e-1 (5.7e-2) 1.1e-1 (1.1e-2) 1.0e-3 (1.7e-4) 2000
GANO 4.6e-3 (2.0e-3) 7.4e-3 (1.5e-3) 1.7e+0 (1.3e+0) 3.3e-1 (8.4e-2) 2.e-3 (1.0e-3) 1

P
o
p
.

FFM-OT (ours) 3.9e-5 (3.8e-5) 7.0e-6 (9.e-6) 4.1e+0 (5.3e+0) 9.0e-2 (1.0e-1) 2.7e-5 (4.6e-5) 662
FFM-VP (ours) 6.3e-5 (4.5e-5) 7.0e-6 (7.e-6) 1.3e+0 (6.1e-1) 7.8e-2 (4.5e-2) 2.5e-3 (5.2e-4) 494
DDPM 5.7e-5 (5.2e-5) 6.0e-6 (7.0e-6) 1.9e+0 (1.2e+0) 5.9e-2 (4.4e-2) 5.6e-5 (3.5e-5) 1000
DDO 1.9e-4 (8.7e-5) 2.7e-4 (1.9e-5) 4.2e+0 (4.1e-1) 2.7e-1 (3.7e-2) 3.2e-2 (1.9e-3) 2000
GANO 1.1e-3 (9.8e-4) 4.3e-5 (7.1e-5) 8.e+0 (2.4e+0) 8.6e-1 (5.3e-1) 1.6e-3 (3.6e-3) 1

G
D

P

FFM-OT (ours) 2.0e-5 (1.2e-5) 9.e-6 (6.e-6) 6.3e-1 (3.5e-1) 3.9e-2 (1.9e-2) 2.8e-5 (1.4e-5) 536
FFM-VP (ours) 4.1e-5 (2.1e-5) 8.0e-6 (7.0e-6) 6.2e-1 (4.1e-1) 5.0e-2 (2.5e-2) 1.9e-4 (2.3e-5) 494
DDPM 1.6e-4 (1.5e-4) 2.5e-5 (2.9e-5) 8.6e-1 (5.9e-1) 5.1e-2 (2.1e-2) 1.4e-4 (1.0e-4) 1000
DDO 2.1e-4 (1.1e-4) 2.9e-4 (9.4e-5) 1.7e+0 (1.1e-1) 2.7e-1 (2.4e-2) 9.6e-3 (1.5e-3) 2000
GANO 8.4e-4 (7.8e-4) 5.0e-5 (3.7e-5) 2.6e+0 (1.3e+0) 2.1e-1 (1.4e-1) 1.6e-4 (1.6e-4) 1

L
a
b
o
r

FFM-OT (ours) 6.9e-5 (6.1e-5) 2.6e-5 (1.1e-5) 5.4e+0 (3.3e+0) 1.5e-1 (1.8e-1) 1.3e-4 (7.5e-5) 308
FFM-VP (ours) 7.1e-5 (5.5e-5) 2.1e-5 (9.0e-6) 2.0e+0 (1.5e+0) 8.6e-2 (7.3e-2) 5.8e-4 (1.4e-4) 302
DDPM 4.2e-4 (3.3e-4) 3.5e-4 (5.6e-4) 1.8e+3 (3.5e+3) 1.0e+1 (1.5e+1) 2.9e-4 (1.6e-4) 1000
DDO 3.1e-4 (1.9e-4) 4.0e-4 (1.2e-4) 4.8e+0 (5.3e-1) 4.3e-1 (3.9e-2) 7.8e-3 (1.2e-3) 2000
GANO 3.2e-3 (6.3e-3) 6.5e-4 (4.6e-4) 7.8e+0 (7.6e+0) 1.2e+0 (3.7e-1) 1.8e-3 (9.4e-4) 1

Quantitatively, Table 4.1 evaluates model performance on the one-dimensional datasets by

computing pointwise statistics of the generated functions and computing the MSE between

these pointwise statistics and those of the real data. Table 4.2a reports the MSE between the

density and spectra [Lim et al., 2023b] of the real and generated samples on the Navier-Stokes

dataset. See Appendix B.2 for visualizations.

Variants of FFM perform the best, on average, in almost all metrics considered across the

wide range of domains on which we performed evaluation. While pointwise statistics have

limitations, for functional models there are no clear alternatives for evaluation, and pointwise

metrics are broadly used in the literature [Rahman et al., 2022, Lim et al., 2023a]. Together

with the qualitative results, these metrics further validate the performance of our method.
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Figure 4.4: Samples from the Labor dataset and samples from the various models at 5x
super-resolution.

A key benefit of our model is the ability to perform generation at arbitrary resolutions, a

necessary component in any functional task. We demonstrate this in Figure 4.4. All models

are trained on the original data resolution, but samples are drawn at a 5x resolution. Samples

from FFM and DDPM qualitatively match the characteristics of the ground truth distribution,

whereas samples from DDO and GANO do not match the smoothness of the original data.
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Figure 4.5: Conditional samples from the FFM-OT model. Darker curves indicate samples and
lighter curves depict real data. Conditioning information is shown in black. The first column
corresponds to a conditionally trained model and the second column corresponds to a conditionally
trained model in addition to conditional sampling. We see that, while the conditionally trained
model takes into account the conditioning information, the conditional sampling method allows
us to enforce equality of the generated samples to the conditioning information at the observation
locations.

Conditional Generation We also demonstrate an extension of our method for conditional

tasks, such as interpolating (or extrapolating) a finite set of given observations. We explore

two approaches: conditional training and a modified sampling process inspired by ILVR

[Choi et al., 2021]. We note alternative conditional methods [Mathieu et al., 2023] are readily

applicable as well. In Figure 4.5, we demonstrate these two approaches. See Appendix B.3

for details.
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4.5 Conclusion

We introduce Functional Flow Matching (FFM), a continuous-time normalizing flow model

which allows us to model infinite-dimensional distributions. We demonstrate that FFM is

able to outperform several recently proposed function space generative models in terms of

qualitative samples and pointwise metrics on a diverse set of benchmarks. Our work builds

the foundations for function space normalizing flows, and our hope is that future work may

build on these foundations. In terms of limitations, FFM is implemented via the FNO [Li

et al., 2021], which can only handle data observed on uniform grids. Exploring architectures

which alleviate this assumption may increase the applicability of our methods. Additionally,

there are no established benchmarks for functional generation, unlike FID [Heusel et al.,

2017] for images. Developing benchmarks for these tasks is critical for future work.
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Chapter 5

Dynamic Conditional Optimal

Transport through Simulation-Free

Flows

In this chapter1, we focus our study of transport-based generative models to the conditional

setting. Many fundamental tasks in machine learning and statistics may be posed as modeling

a conditional distribution ν(u | y), but where obtaining an analytical representation of ν(u | y)

is often impractical.

While sampling-based approaches such as Markov Chain Monte Carlo (MCMC) methods

are useful, they suffer from several limitations. First, MCMC requires numerous likelihood

evaluations, rendering it prohibitively expensive in scientific and engineering applications

where the likelihood is determined by an expensive numerical simulator. Second, MCMC

must be run anew for every observation y, which is impractical in applications such as

Bayesian inverse problems [Dashti and Stuart, 2013] and generative modeling [Mirza and

1The content of this chapter was previously published as Dynamic Conditional Optimal Transport through
Simulation-Free Flows (NeurIPS 2024) [Kerrigan et al., 2024b], with minor modifications.
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Osindero, 2014]. These limitations motivate the need for a likelihood-free [Cranmer et al.,

2020] and amortized [Amos, 2023] approach. While methods like ABC [Beaumont, 2010] and

variational inference [Blei et al., 2017] address these challenges, they are difficult to scale to

high dimensions or have limited flexibility.

Recently, generative models such as normalizing flows [Papamakarios et al., 2019, 2021],

GANs [Ramesh et al., 2022b], and diffusion models [Sharrock et al., 2024] have shown promise

in amortized and likelihood-free inference. These models may be viewed in the framework

of measure transport [Baptista et al., 2020], where samples u ∼ η(u) from a tractable

source distribution are transformed by a mapping T (y, u) such that the transformed samples

are approximately distributed as ν(u | y). One way to achieve this is through triangular

mappings [Baptista et al., 2020, Spantini et al., 2022], where a joint source distribution η(y, u)

is transformed by a mapping of the form T : (y, u) 7→ (TY (y), TU(y, u)). Under suitable

assumptions, if T transforms the source η(y, u) into the target ν(y, u), then TU (y,−) couples

the conditionals η(u | y) and ν(u | y).

Typically, such a map T is not unique [Wang et al., 2023], and a natural idea is thus to

regularize the transport and search for an admissible mapping that is in some sense optimal.

In other words, learning a conditional sampler may be phrased as finding a conditional

optimal transport (COT) map. While there exists some work on learning COT maps, these

approaches often rely on a difficult adversarial optimization problem [Baptista et al., 2020,

Hosseini et al., 2023, Bunne et al., 2022, Ray et al., 2024] or simulating from the model

during training [Baptista et al., 2023, Wang et al., 2023].

In this chapter, we propose a conditional generative model for likelihood-free inference based

on a dynamic formulation of conditional optimal transport. In particular, we develop a

general theoretical framework for dynamic conditional optimal transport in separable Hilbert

spaces. Our framework is applicable in infinite-dimensional spaces, enabling applications

in function space Bayesian inference. In Section 5.3, we study the conditional Wasserstein
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space Pµ
p(Y × U) and show that this space admits constant speed geodesics between any

two measures. In Section 5.4, we characterize the absolutely continuous curves of measures

in Pµ
p(Y × U) via the continuity equation and triangular vector fields. As a consequence,

we obtain conditional generalizations of the McCann interpolants [McCann, 1997] and the

Benamou-Brenier Theorem [Benamou and Brenier, 2000].

In Section 5.5, we propose COT flow matching (COT-FM), a simulation-free flow-based model

for conditional generation. This model directly leverages our theoretical framework, where

we learn to model a path of measures interpolating between an arbitrary source and target

distribution via a geodesic in the conditional Wasserstein space. Lastly, we demonstrate

our method on several challenging conditional generation tasks. We apply our method to

two Bayesian inverse problems – one arising from the Lotka-Volterra dynamical system,

and an infinite-dimensional problem arising from the Darcy Flow PDE. Our method shows

competitive performance against recent COT methods.

5.1 Related Work

Conditional Optimal Transport. Conditional Optimal Transport (COT) remains rela-

tively under-explored in both machine learning and related fields. Recent approaches learn

static COT maps via input convex networks [Bunne et al., 2022, Wang et al., 2023] or normal-

izing flows [Wang et al., 2023]. In addition, there have been a number of heuristic approaches

to conditional simulation through W-GANs [Sajjadi et al., 2017, Adler and Öktem, 2018,

Kim et al., 2022, 2023], for which Chemseddine et al. [2023] provide a rigorous basis. Closely

related to our method are those which employ triangular plans [Carlier et al., 2016, Trigila

and Tabak, 2016], which have been modeled through GANs in Euclidean spaces [Baptista

et al., 2020] and function spaces [Hosseini et al., 2023]. In contrast, our work uses a novel

dynamic formulation of COT, which we model through a generalization of flow matching
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[Lipman et al., 2023, Albergo et al., 2024]. This allows us to use flexible architectures while

avoiding the difficulties of training GANs [Arora et al., 2018].

Simulation-Free Continuous Normalizing Flows. Flow matching [Lipman et al., 2023]

and stochastic interpolants [Albergo et al., 2023] are a class of methods for building continuous-

time normalizing flows in a simulation-free manner. Notably, these works do not approximate

an optimal transport between the source and target measures. Pooladian et al. [2023] and

Tong et al. [2024] propose instead to couple the source and target distributions via optimal

transport, leading to marginally optimal paths. In this work, we study an extension of these

techniques for conditional generation.

While some works [Davtyan et al., 2023, Gebhard et al., 2023, Isobe et al., 2024, Wildberger

et al., 2024] have applied flow matching for conditional generation, these approaches do not

employ COT. Notably, the aforementioned approaches are limited to the finite-dimensional

setting, whereas our method adds to the growing literature on function-space generative

models [Hosseini et al., 2023, Kerrigan et al., 2023, 2024a, Lim et al., 2023a, Franzese et al.,

2024]. Barboni et al. [2024] and Chemseddine et al. [2024] appeared concurrently to our work

with similar results, but only study COT in the finite-dimensional setting.

5.2 Background and Notation

The notation in this chapter largely follows that outlined in Chapter 2, which we recall

here with some additional material which is specific to this chapter. Let H,H ′ represent

arbitrary separable Hilbert spaces, equipped with the Borel σ-algebra. We use P(H) to

represent the space of Borel probability measures on H, and Pp(H) ⊆ P(H) to represent the

subspace of measures having finite pth moment. If η ∈ P(H) is a probability measure on H

and T : H → H ′ is measurable, then the pushforward measure T#η(−) = η(T−1(−)) is a
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probability measure on H ′. Maps of the form e.g. πH : H ×H ′ → H represent the canonical

projection.

In this chapter, we will focus on two separable Hilbert spaces of interest. The first, Y , is a

space of observations, and the second, U , is a space of unknowns. These spaces may be of

infinite dimensions, but a case of practical interest is when Y and U are finite dimensional

Euclidean spaces. We will consider the product space Y × U , equipped with the canonical

inner product obtained via the sum of the inner products on Y and U , under which the space

Y × U is also a separable Hilbert space. Let η ∈ P(Y × U) be a joint probability measure.

The measures πY
#η ∈ P(Y ) and πU

#η ∈ P(U) obtained via projection are the marginals of η.

We use ηy ∈ P(U) to represent the measure obtained by conditioning η on the value y ∈ Y .

By the disintegration theorem [Bogachev and Ruas, 2007, Chapter 10], such conditional

measures exist and are essentially unique, in the sense that there exists a Borel set E ⊆ Y

with πY
#η(E) = 0, and the ηy are unique for y /∈ E.

5.2.1 Static Conditional Optimal Transport

In conditional optimal transport, we are given a target measure ν ∈ P(Y ×U) and some source

measure η ∈ P(U), and we seek a transport map T : Y × U → U such that T#(y,−)#η = νy

for all y ∈ Y . If such a map were available, by drawing samples u0 ∼ η and transforming

them, one would obtain samples T (y, u) ∼ νy. Solving this transport problem for each fixed

y is expensive at best, or impossible when only has a single (or no) samples (y, u) ∼ ν for

any given y. Thus, one must leverage information across different observations y. To that

end, recent work has focused on the notion of triangular mappings T : Y × U → Y × U

[Hosseini et al., 2023, Baptista et al., 2020] of the form T (y, u) = (TY (y), TU(TY (y), u)) for

some TY : Y → Y and TU : Y × U → U . Triangular mappings are of interest as they allow

us to obtain conditional couplings from joint couplings.
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Proposition 22 (Theorem 2.4 [Baptista et al., 2020], Prop. 2.3 [Hosseini et al., 2023]).

Suppose η, ν ∈ P(Y × U) and T : Y × U → Y × U is triangular. If T#η = ν, then

TU(TY (y),−)#η
y = νTY (y) for πY

#η-almost every y.

In many scenarios of practical interest, the source measure η and the target measure ν have

the same Y -marginals. We will henceforth make this assumption, and use µ = πY
#η = πY

#ν to

represent this marginal. In this case, we may take TY to be the identity mapping, so that the

conclusion of Proposition 22 simplifies to TU(y,−)#η
y = νy for µ-almost every y. We note

that in situations where such an assumption does not hold, one may simply preprocess the

source measure η via an invertible mapping TY satisfying [TY ]#[πY
#η] = πY

#ν [Hosseini et al.,

2023, Prop 3.2].

Given a source and target measures η, ν ∈ Pµ(Y × U) and a cost function c : (Y × U)2 → R,

the conditional Monge problem seeks to find a triangular mapping solving

inf
T

{∫
Y×U

c(y, u, T (y, u)) dη(y, u) | T#η = ν, T : (y, u) 7→ (y, TU(y, u))

}
. (5.1)

The conditional Monge problem also admits a relaxation under which one only considers

couplings whose Y -components are almost surely equal. To that end, for η, ν ∈ Pµ
p(Y × U)

we define the set of triangular couplings ΠY (η, ν) to be the couplings of η and ν that almost

surely fix the Y -components,

ΠY (η, ν) =
{
γ ∈ P

(
(Y × U)2

)
| π1,2

# γ = η, π3,4
# γ = ν, π1,3

# = (I, I)#µ
}
. (5.2)

In other words, a triangular coupling γ ∈ ΠY (η, ν) has samples (y0, u0, y1, u1) ∼ γ such that

y0 = y1 almost surely. The conditional Kantorovich problem seeks a triangular coupling
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solving

inf
γ

{∫
(Y×U)2

c(y0, u0, y1, u1) dγ(y0, u0, y1, u1) | γ ∈ ΠY (η, ν)

}
. (5.3)

Hosseini et al. [2023] prove the existence of minimizers to the conditional Kantorovich

and Monge problems under very general assumptions. Moreover, optimal couplings to the

conditional Kantorovich problem induce optimal couplings for µ-almost every conditional

measure. Assuming sufficient regularity assumptions on the conditional measures, unique

solutions to the conditional Monge problem exist. We restate these results here for the sake

of completeness.

Proposition 23 (Prop 3.3 [Hosseini et al., 2023]).

Fix η, ν ∈ Pµ(Y × U). Suppose the cost function c is continuous, inf c > −∞, and there

exists a finite cost coupling γ ∈ ΠY (η, ν). Then, the conditional Kantorovich problem admits

a minimizer γ⋆. Moreover, γ⋆,y0(y1, u0, u1) = γ̂⋆,y0(u0, u1)δ(y1 − y0) where for µ-almost every

y the measure γ⋆,y is an optimal coupling for ηy, νy under the cost cy(u0, u1) = c(y, u0, y, u1)

Proposition 24 (Prop 3.8 [Hosseini et al., 2023]).

Fix 1 < p <∞ and η, ν ∈ Pµ
p(Y ×U). Suppose c(y0, u0, y1, u1) = |u0 − u1|p. If ηy assign zero

measure to Gaussian null sets for µ-almost every y, then there is a unique solution T ⋆ to

the conditional Monge problem, and γ⋆ = (I, T ⋆)#η is the unique solution to the conditional

Kantorovich problem. If νy also assign zero measure to Gaussian null sets for µ-almost every

y, then T ⋆ is injective η-almost everywhere.

5.3 Conditional Wasserstein Space

Motivated by our discussion on triangular transport maps, we introduce the conditional

Wasserstein spaces, consisting of joint measures with finite pth moments and having fixed
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Y -marginals µ. Interestingly, Gigli [2008, Chapter 4] studies the same space for the purposes

of constructing geometric tangent spaces in the usual Wasserstein space.

Definition 25 (Conditional Wasserstein Space).

Suppose µ ∈ P(Y ) is given and 1 ≤ p <∞. The conditional p-Wasserstein space is

Pµ
p(Y × U) =

{
γ ∈ Pp(Y × U) | πY

#γ = µ
}
. (5.4)

We now equip Pµ
p(Y ×U) with a metric W µ

p , the conditional Wasserstein distance. Intuitively,

the conditional Wasserstein distance measures the usual Wasserstein distance between all of

the conditional distributions in expectation under the fixed Y -marginal µ.

Definition 26 (Conditional p-Wasserstein Distance).

Suppose η, ν ∈ Pµ
p(Y ×U) and 1 ≤ p <∞. The function W µ

p : Pµ
p(Y ×U)×Pµ

p(Y ×U)→ R,

W µ
p (η, ν) =

(
Ey∼µ

[
W p

p (ηy, νy)
])1/p

=

(∫
Y

W p
p (ηy, νy) dµ(y)

)1/p

(5.5)

is the conditional p-Wasserstein distance. Wp is the usual Wasserstein distance for measures

on U .

By Jensen’s inequality we have W µ
p (η, ν) ≥ Ey∼µ [Wp(η

y, νy)]. For p > 1, this inequality is

strict unless Wp(η
y, νy) is µ-almost surely constant.

We note that W µ
p (η, ν) may be viewed as the minimal value of the constrained Kantorovich

problem in Equation (5.3) when one takes the cost to be the metric on the space Y × U .

Similar results, relating the conditional Wasserstein distance to triangular couplings, have

appeared previously, but our proof is independent of these prior works [Chemseddine et al.,

2023, Gigli, 2008].

Proposition 27 (Equivalent Formulation of the Conditional Wasserstein Distance).
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Fix η, ν ∈ Pµ
p(Y × U) and 1 ≤ p <∞. Then, W µ

p (η, ν) is well-defined, finite, and

W µ,p
p (η, ν) = min

γ

{∫
(Y×U)2

dp(y0, u0, y1, u1) dγ | γ ∈ ΠY (η, ν)

}
(5.6)

where W µ,p
p (η, ν) represents the p-th power of the conditional p-Wasserstein distance.

Proof. The cost function dp is clearly continuous and non-negative, and hence by Proposition

23 it suffices to exhibit a finite-cost coupling γ ∈ ΠY (η, ν) between η and ν. Indeed, take the

conditionally independent coupling

γ(y0, u0, y1, u1) = η(u0 | y1)ν(u1 | y1)δ(y1 − y0)µ(y1) (5.7)

which is clearly in ΠY (η, ν). We then have that

∫
(Y×U)2

dp(y0, u0, y1, u1) dγ(y0, u0, y1, u1) =

∫
(Y×U)2

∥(y0, u0)− (y1, u1)∥pY×U dγ(y0, u0, y1, u1)

≤ 2p

∫
(Y×U)2

(
∥(y0, u0)∥pY×U + ∥(y1, u1)∥pY×U

)
dγ(y0, u0, y1, u1)

= 2p

(∫
Y×U

∥(y0, u0)∥pY×U dη(y0, u0) +

∫
Y×U

∥(y1, u1)∥pY×U dν(y1, u1)

)
< +∞.

Hence, Equation (5.6) admits a minimizer γ⋆ ∈ ΠY (η, ν). By Proposition 23, this minimizer

may be taken to have the form γ⋆ = γ⋆,y1(u0, u1)δ(y1 − y0)µ(y1) where γ⋆,y1(u0, u1) is µ(y1)-

almost surely an optimal coupling between ηy1 , νy1 for the cost |u1 − u0|p. Thus,

∫
(Y×U)2

dp dγ⋆ =

∫
Y

∫
U2

|u1 − u0|p dγ⋆,y(u0, u1) dµ(y) (5.8)

=

∫
Y

W p
p (ηy, νy) dµ(y) = W p,µ

p (η, ν). (5.9)

Here, we emphasize that the µ-almost sure uniqueness of the disintegrations of η, ν along Y
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Figure 5.1: The counterexample in Proposition 28. The measure ηk is shown in black and
the measure νk is shown in white.

result in a well-defined expression.

Moreover, if η ∈ Pµ
p(Y × U) it follows that ηy ∈ Pp(U) for µ-a.e. y, because

∫
Y

∫
U

|u|p dηy(u) dµ(y) ≤
∫
Y

∫
U

|(y, u)|p dηy(u) dµ(y) (5.10)

=

∫
Y×U

|(y, u)|p dη(y, u) < +∞. (5.11)

Thus all considered p-Wasserstein distances on U are finite.

In the following, we show that the conditional Wasserstein distance is a well-defined metric

as well as a few other metric properties.

Proposition 28 (Some Properties of W µ
p ).

Let 1 ≤ p <∞.

1. W µ
p is well-defined, finite, and equals the minimal conditional Kantorovich cost.

2. W µ
p is a metric on the space Pµ

p(Y × U).

3. There does not exist C > 0 such that W µ
p (η, ν) ≤ CWp(η, ν) for all η, ν ∈ Pµ

p(Y × U).

4. For all η, ν ∈ Pµ
p(Y × U), Wp

(
πU
#η, π

U
#ν
)
≤ W µ

p (η, ν) and Wp(η, ν) ≤ W µ
p (η, ν).
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Proof. Part (a). This is simply a restatement of Proposition 27.

Part (b). Fix η, ν, ρ ∈ Pµ
p(Y ×U). Since Wp is a metric on Pp(U), we immediately obtain the

symmetry of W µ
p . Moreover, we have that W µ

p (η, ν) = 0 if and only if ηy = νy for µ-almost

every y. Thus, if W µ
p (η, ν) = 0 and E ⊆ Y × U is Borel measurable,

η(E) =

∫
Y

ηy(Ey) dµ(y) =

∫
Y

νy(Ey) dµ(y) = ν(E). (5.12)

which shows that η = ν. Here, Ey = {u | (y, u) ∈ E} is the y-slice of E. Conversely, if

η = ν, then ηy = νy up to a µ-null set by the essential uniqueness of disintegrations. Thus,

W µ
p (η, ν) = 0 if and only if η = ν.

By Minkowski’s inequality and the triangle inequality for Wp on Pp(U), we see

W µ
p (η, ν) ≤ (Ey∼µ [(Wp(η

y, ρy) +Wp(ρ
y, νy))p])1/p (5.13)

≤ Ey∼µ[W p
p (ηy, ρy)]1/p + Ey∼µ[W p

p (ρy, νy)]1/p (5.14)

= W µ
p (η, ρ) +W µ

p (ρ, ν). (5.15)

Part (c). We provide a counterexample. Fix any u0 ̸= 0 ∈ U and y0, y1 ∈ Y such that

y0 ̸= y1. Define µ = 1
2

(δy0 + δy1). Set uk = (k + 1)u0 for k = 1, 2, . . . and for each k, define

two measures on Y × U by

ηk =
1

2
(δy0u0 + δy1uk

) νk =
1

2
(δy1u0 + δuky0) . (5.16)

It is clear that

W µ,p
p (ηk, νk) = kp|u0|p W p

p (ηk, νk) = min{kp|u0|p, |y1 − y0|p}. (5.17)
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Moreover, as k →∞ we have W µ
p (µk, νk)→∞ but W p

p (νk, ηk) remains bounded. See Figure

5.1.

Part (d). First, the unconditional distance Wp(η, ν) may be obtained via an unrestricted

coupling in Π(η, ν), i.e. the set of all joint measures on Y × U having marginals η, ν. Since

Π(η, ν) ⊇ ΠY (η, ν), by part (a) we see that Wp(η, ν) ≤ W µ
p (η, ν).

Let γ⋆(y0, u0, y1, u1) = γ⋆,y1(u0, u1)δ(y1 − y0)µ(y1) be an optimal γ⋆ ∈ ΠY (η, ν). We claim

that γ(u0, u1) :=
∫
Y
γ⋆,y(u0, u1) dµ(y) couples πU

#η and πU
#ν. Let π0 : (u0, u1) 7→ u0 be the

projection onto the first coordinate of U × U . Observe that for µ-almost every y, we have

that γ⋆,y ∈ Π(ηy, νy) is optimal, and, in particular, π0
#γ

⋆,y = ηy. Fix an arbitrary φ ∈ Cb(U).

We then have

∫
U

φ(u0) dπ0
#γ(u0) =

∫
U2

(φ ◦ π0) dγ(u0, u1) (5.18)

=

∫
Y

∫
U2

(φ ◦ π0) dγ⋆,y(u0, u1) dµ(y) =

∫
Y

∫
U

φ(u0) dπ0
#γ

⋆,y(u0) dµ(y) (5.19)

=

∫
Y

∫
U

φ(u0) dηy(u0) dµ(y)=

∫
Y×U

φ(u0) dη(u0, y) (5.20)

=

∫
Y×U

(φ ◦ πU) dη(u0, y) =

∫
U

φ dπU
#η(u0). (5.21)

Thus πU
#γ = πU

#η. A similar argument shows that for the map π1 : (u0, u1) 7→ u1 we have

π1
#γ = πU

#ν, so that γ ∈ Π(πU
#η, π

U
#ν).

Now, as γ⋆,y1(u0, u1) ∈ Π(ηy1 , νy1) is µ-almost surely optimal in the usual Wasserstein sense,

W p,µ
p (η, ν) =

∫
Y

∫
U2

|u0 − u1|p dγ⋆,y(u0, u1) dµ(y) (5.22)

=

∫
U2

|u0 − u1|p dγ(u0, u1) (5.23)

≥ W p
p (πU

#η, π
U
#ν) (5.24)
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since γ ∈ Π(πU
#η, π

U
#ν) is a coupling but potentially sub-optimal.

Proposition 28(c, d) together shows that one should expect the topology generated by W µ
p

to be stronger than the unconditional distance Wp. Here, we note that Gigli [2008] and

Chemseddine et al. [2023] previously showed that W µ
p is a metric through an equivalence

with restricted couplings. Our approach builds on the results of Hosseini et al. [2023] and is

somewhat more direct, and hence our proofs may be of independent interest. We include

here an example where the conditional 2-Wasserstein distance may be explicitly computed.

Example: Gaussian Measures. Suppose Y and U are Euclidean spaces (of possibly

different dimensions), and that η, ν ∈ Pµ
p(Y × U) are Gaussians of the form

η = N


m
mη

u

 ,
 Σ Ση

12

Ση
21 Ση

22


 ν = N


m
mν

u

 ,
 Σ Σν

12

Σν
21 Σν

22


 . (5.25)

This form is chosen to ensure that η and ν have equal Y -marginals. It follows that µ =

πY
#η = πY

#ν = N (m,Σ). Let

Qη = Ση
22 − Ση

21Σ
−1Ση

12 Qν = Σν
22 − Σν

21Σ
−1Σν

12 R = (Ση
21 − Σν

21)Σ
−1. (5.26)

We have that the conditionals ηy, νy are available in closed-form:

ηy = N
(
mη

u + Ση
21Σ

−1(y −m), Qη
)

νy = N
(
mν

u + Σν
21Σ

−1(y −m), Qν
)
. (5.27)
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Thus, for any fixed y, we use the known closed-form unconditional Wasserstein distance to

obtain

W 2
2 (ηy, νy) =

∣∣mη
u −mν

u +R(y −m)
∣∣2 + Tr

(
Qη +Qν − 2

(
(Qη)1/2Qν(Qη)1/2

)1/2)
. (5.28)

We now take an expectation over y ∼ µ = N (m,Σ) to compute W µ,2
2 . Observe that

R(y −m) ∼ N (0, RΣRT) and that Ey∼µ[|R(y −m)|2] = Tr(RΣRT). Thus,

W µ,2
2 (η, ν) = Ey∼µ

[
W 2

2 (ηy, νy)
]

(5.29)

= Ey∼µ

[
|mη

u −mν
u|2 + 2⟨mη

u −mν
u, R(y −m)⟩+ |R(y −m)|2

]
(5.30)

+ Tr
(
Qη +Qν − 2

(
(Qη)1/2Qν(Qη)1/2

)1/2)
= |mη

u −mν
u|2 + Tr

(
Qη +Qν − 2

(
(Qη)1/2Qν(Qη)1/2

)1/2
+RΣRT

)
. (5.31)

This form, perhaps unsurprisingly, closely resembles the unconditional Wasserstein distance

between two Gaussians, except for the presence of an additional Tr(RΣRT) term. Note that

when η, ν have uncorrelated Y, U components, we precisely recover W 2
2 (πU

#η, π
U
#ν) as one may

expect.

As a special case of interest, if Y = U = R and

η = N (0, I) ν = N

0,

1 ρ

ρ 1


 |ρ| < 1 (5.32)

then we obtain as a special case of Equation (5.29) that W µ,2
2 (η, ν) = 2(1−

√
1− ρ2). This is

zero if and only if ρ = 0, i.e. η = ν. However, πU
#η = πU

#ν = N (0, 1) and W2(π
U
#η, π

U
#ν) = 0

regardless of ρ. Moreover, the unconditional distance is W 2
2 (η, ν) = 2

(
2−
√

1− ρ−
√

1 + ρ
)
,

from which it is easy to verify that W2(η, ν) ≤ W µ
2 (η, ν).
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Conditional Wasserstein Space as a Geodesic Space. We now turn our attention

to the geodesics in Pµ
p(Y × U). In particular, we show that there exists a constant speed

geodesic between any two measures in Pµ
p(Y × U), generalizing a similar result in the

unconditional setting [Santambrogio, 2015, Theorem 5.27]. Moreover, we show that under

suitable regularity assumptions, solutions to the conditional Monge problem (5.1) induce

constant speed geodesics. Our motivation for studying geodesics in Pµ
p(Y × U) is practical

– in Section 5.5, we show how one can model geodesics in Pµ
p(Y × U) in order to obtain a

conditional flow-based model whose paths are easy to integrate.

A curve is a continuous function γ• : I → Pµ
p(Y ×U) where I = (a, b) ⊆ R is any open interval

of finite length. If (γt) is an absolutely continuous curve, then its metric derivative |γ′|(t)

[Ambrosio et al., 2005, Chapter 1] exists for almost every t ∈ (a, b). A curve (γt) is called a

constant speed geodesic if for all a < s ≤ t < b, we have W µ
p (γs, γt) = |t− s|W µ

p (γa, γb). It is

straightforward to show that every constant speed geodesic is absolutely continuous.

Theorem 29 (Pµ
p(Y × U) is a Geodesic Space).

For any η, ν ∈ Pµ
p(Y × U), there exists a constant speed geodesic between η and ν.

Proof. Write λt : (Y × U)2 → Y × U for the linear interpolant

λt(y0, u0, y1, u1) = (ty0 + (1− t)y1, tu0 + (1− t)u1) 0 ≤ t ≤ 1. (5.33)

Let γ⋆ ∈ ΠY (η, ν) be an optimal restricted coupling, and consider the path of measures in

Pp(Y × U) given by

γt = [λt]#γ
⋆ 0 ≤ t ≤ 1. (5.34)

Step one: We check that for each 0 ≤ t ≤ 1, we have γt ∈ Pµ
p(Y × U). That is, we need

to check that for all Borel A ⊆ Y , we have γt(A× U) = µ(A). Indeed, recall that restricted
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measures are concentrated on the set

C :=
{

(y0, u0, y1, u1) ∈ (Y × U)2 | y0 = y1
}
. (5.35)

Thus, we may evaluate the measure γt on A× U to see

γt(A× U) = γ⋆
{
λ−1
t (A× U)

}
= γ⋆ {(y, u0, y, u1) | y ∈ A}

= π1
#γ

⋆(A) = (π1 ◦ π1,2)#γ
⋆(A)

= π1
#η(A) = µ(A)

i.e. γt(A× Y ) = µ(A) as claimed.

Step two: We show that W µ
p (γt, γs) = |t−s|W µ

p (η, ν). Set γst := (λt, λs)#γ
⋆ for 0 ≤ s < t ≤ 1.

We claim γst ∈ ΠY (γt, γs). Indeed, we have π1,2
# γst = γt because for all Borel A ⊆ Y × U ,

(λt, λs)#γ
⋆ (A× Y × U) = γ⋆

(
λ−1
t (A)

)
= (λt)#γ

∗(A). (5.36)

An analogous calculation shows that π3,4
# γst = γs, so that γst ∈ Π(γt, γs). We now check that

γst ∈ RY (Y × U). Indeed, suppose E ⊆ Y × U is a Borel set such that E ∩ C = ∅. In

other words, for every (y0, u0, y1, u1) ∈ E we have y0 ̸= y1. Set D := (λt, λs)
−1(E). We claim

D ∩ C = ∅, so that

γst (E) = (λt, λs)#γ
⋆(E) = γ⋆((λt, λs)

−1(E)) (5.37)

= γ⋆(D ∩ C ) = 0. (5.38)

Indeed, if c = (y, u0, y, u1) ∈ C , then

(λt, λs)(c) = (y, tu0 + (1− t)u1, y, su0 + (1− s)u1) /∈ E (5.39)
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=⇒ c /∈ (πt, πs)
−1(E). (5.40)

Thus γst ∈ ΠY (η, ν) as claimed. Now, we have

W µ,p
p (γt, γs) ≤

∫
(Y×U)2

dp (y0, u0, y1, u1) dλst(y0, u0, y1, u1)

=

∫
(Y×U)2

dp (λt(y0, u0, y1, u1), λs(y0, u0, y1, u1)) dγ⋆(y0, u0, y1, u1)

=

∫
(Y×U)2

(
|(t− s)(y0 − y1)|2 + |(t− s)(u0 − u1)|2

)p/2
dγ⋆(y0, u0, y1, u1)

= |t− s|p
∫
(Y×U)2

dp(y0, u0, y1, u1) dγ⋆(y0, u0, y1, u1)

= |t− s|pW µ,p
p (η, ν).

Conversely, an application of the previous inequality and the triangle inequality show that

for 0 ≤ s ≤ t ≤ 1,

W µ
p (η, ν) ≤ W µ

p (η, γs) +W µ
p (γs, γt) +W µ

p (γt, ν) (5.41)

≤ sW µ
p (η, ν) +W µ

p (γs, γt) + (1− t)W µ
p (η, ν). (5.42)

Rearranging the previous inequality implies |t− s|W µ
p (η, ν) ≤ W µ

p (γs, γt) for all s, t ∈ [0, 1],

and hence W µ
p (γt, γs) = |t− s|pW µ

p (η, ν).

When an optimal triangular coupling γ⋆ ∈ ΠY (η, ν) is induced by an injective triangular

map T ⋆, we may recover a constant speed geodesic in Pµ
p(Y × U), generalizing the McCann

interpolant [McCann, 1997] to the conditional setting. We refer to Proposition 24 for sufficient

conditions on η, ν under which such a T ⋆ exists. Informally, samples from (y0, u0) ∼ η flow
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in a straight path at a constant speed to their destination T ⋆(y0, u0).

Theorem 30 (Conditional McCann Interpolants).

Fix η, ν ∈ Pµ
p(Y × U). Suppose T ⋆(y, u) = (y, T ⋆

U(y, u)) is an injective triangular map solving

the conditional Monge problem (5.1). Define the maps Tt : Y ×U → Y ×U for 0 ≤ t ≤ 1 via

Tt = (1− t)I + tT ⋆, and define the curve of measures γt = [Tt]#η ∈ Pγ
p(Y × U). Then,

1. (γt) is absolutely continuous and a constant speed geodesic between η, ν

2. The vector field vt(T
⋆
t (y, u)) = (0, T ⋆

U(y, u)− u) generates the path γt, in the sense that

(γt, vt) solve the continuity equation (5.53).

Proof. Consider the function wt : Y × U → U given by

wt(y, u) = (0, T ⋆
U(y, u)− u) = (0, wt,U(y, u)) (5.43)

and note this is precisely wt(y, u) = ∂tT
⋆
t (y, u). Define the vector field

vt(y, u) =
(
wt ◦ T ⋆,−1

t

)
(y, u) =

(
0, (wt,U ◦ T ⋆,−1

t,U )(y, u)
)
. (5.44)

For any φ ∈ Cyl(Y × U), we have

d

dt

∫
Y×U

φ(y, u) dγt(y, u) =
d

dt

∫
Y×U

φ(y, u) d[Tt]#η(y, u) (5.45)

=
d

dt

∫
Y×U

φ(y, T ⋆
t,U(y, u)) dη(y, u) (5.46)

=

∫
Y×U

⟨∇φ(y, T ⋆
t,U(y, u), wt(y, u))⟩ dη(y, u) (5.47)

=

∫
Y×U

⟨∇φ(y, u), vt(y, u)⟩ dγt(y, u) (5.48)

which shows that (γt, vt) solve the continuity equation.
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Now, note that for 0 ≤ a ≤ b ≤ 1, we have

∫ b

a

∥vt∥Lp(γt,Y×U) dt =

∫ b

a

(∫
Y×U

∣∣wt ◦ T ⋆,−1
t

∣∣p (y, u) dγt(y, u)

)1/p

dt (5.49)

=

∫ b

a

(∫
Y×U

|wt|p(y, u) dη(y, u)

)1/p

dt (5.50)

=

∫ b

a

(∫
Y×U

|u− T ⋆
U(y, u)|p(y, u) dη(y, u)

)1/p

dt (5.51)

= (b− a)W µ
p (η, ν). (5.52)

In particular,
∫ 1

0
∥vt∥Lp(γt,Y×U) dt <∞ and so by Theorem 32 (γt) is absolutely continuous.

A similar calculation shows that (b − a)W µ
p (η, ν) = W µ

p (γb, γa) =
∫ b

a
|γ′(t)|, where the last

line follows from the absolute continuity of γt. Thus, ∥vt∥Lp(γt,Y×U) = |γ′|(t) for almost every

t ∈ [0, 1] by Lebesgue differentiation.

5.4 Conditional Benamou-Brenier Theorem

In this section, we prove a characterization of the absolutely continuous curves in Pµ
p(Y × U).

As a corollary, we obtain a conditional generalization of the Benamou-Brenier Theorem

[Benamou and Brenier, 2000], giving us a dynamical characterization of the conditional

Wasserstein distance. Roughly speaking, all such curves are generated by a vector field on

Y × U which has zero velocity in the Y component. This is natural, as all measures in

Pµ
p(Y × U) have a fixed Y -marginal µ. Such a vector field can be informally seen as tangent

to a curve of measures, and is the dynamic analogue of the triangular maps discussed in

Section 5.2. More formally, given an open interval I ⊆ R, a time-dependent Borel vector

field v : I × Y × U → Y × U is said to be triangular if there exists a Borel vector field
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vU : I × Y × U → U such that vt(y, u) =
(
0, vUt (y, u)

)
.

Continuity Equation. We introduce some necessary background which allows us to link

vector fields to curves of measures. The continuity equation ∂tγt + div(vtγt) = 0 describes

the evolution of a measure γt which flows along a given vector field vt [Ambrosio et al.,

2005, Chapter 8]. This equation must be understood distributionally, i.e. for every φ in an

appropriate space of test functions,

∫
I

∫
Y×U

(∂tφ(y, u, t) + ⟨vt(y, u),∇y,uφ(y, u, t)⟩) dγt(y, u) dt = 0. (5.53)

We consider cylindrical test functions φ ∈ Cyl(Y × U × I), i.e. of the form φ(y, u, t) =

ψ(πd(y, u), t) where πd : Y × U → Rd maps (y, u) → (⟨(y, u), e1⟩, . . . , ⟨(y, u), ed⟩) where

{e1, e2, . . . , ed} is any orthonormal family in Y × U . In the finite dimensional setting, one

may take φ ∈ C∞
c (Y × U) to be smooth and compactly supported [Ambrosio et al., 2005,

Remark 8.1.1].

We now prove Lemma 3, which is key in proving Theorem 32 below. Informally, Lemma 3

states that if (5.53) is satisfied for a joint distribution and triangular vector field, then the

continuity equation is also satisfied for the corresponding conditional distributions and U

components of the vector field.

Lemma 3 (Triangular Vector Fields Preserve Conditionals).

Suppose vt(y, u) = (0, vUt (y, u)) is triangular and that (γt) ⊂ Pµ
p(Y ×U) is a path of measures

such that (vt, γt) satisfy the continuity equation in the distributional sense. Then, it follows

that for µ-almost every y ∈ Y , we have ∂tγ
y
t +∇ · (vUt (y,−)γyt ) = 0.

Proof. Fix any φ ∈ Cyl(U × I). Suppose ψ ∈ Cyl(Y ) is given, and note that ψ(y)φ(u, t) ∈

Cyl(Y × U × I). As (vt, γt) solve the continuity equation, it follows from the triangular
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structure of vt that upon testing against ψφ we have

∫
I

∫
Y

ψ(y)

∫
U

(
∂tφ(u, t) + ⟨vUt (y, u),∇uφ(u, t)

)
dγyt (u) dµ(y) dt = 0. (5.54)

Because ψ(y) ∈ Cyl(Y ), it is of the form ρ(π(y)) where π : Y → Rk for some k ≥ 1 and

ρ ∈ C∞
c (Rk). Taking ρ to be a sequence of smooth approximations to the indicator function

of an arbitrary rectangle E = E1 × E2 × · · · × Ek ⊆ Rk, we see

∫
π−1(E)

∫
I

∫
U

(
∂tφ(u, t) + ⟨vUt (y, u),∇uφ(u, t)

)
dγyt (u) dt dµ(y) = 0. (5.55)

As Y is separable, the Borel σ-algebra on Y is generated by the cylinder sets, i.e. those

which are precisely of the form π−1(E) for some finite-dimensional rectangle E. We have

thus shown that for an arbitrary Borel measurable set E ⊆ Y ,

∫
E

∫
I

∫
U

(
∂tφ(u, t) + ⟨vUt (y, u),∇uφ(u, t)

)
dγyt (u) dt dµ(y) = 0. (5.56)

From this, it follows that

∫
I

∫
U

(
∂tφ(u, t) + ⟨vUt (y, u),∇uφ(u, t)

)
dγyt (u) dµ(y) dt = 0 µ-almost every y. (5.57)

Absolutely Continuous Curves. In this section, we state our characterization of abso-

lutely continuous curves in Pµ
p(Y × U). Informally, given such a curve, Theorem 31 provides

us with a triangular vector field which generates the curve, in the sense that the pair solve

the continuity equation.

We now proceed to prove the main results of this section. First, we introduce some preliminary
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notions. We define the map jq : Lq(γ, Y × U)→ Lp(γ, Y × U) for 1/p+ 1/q = 1 via

jq(w) =


|w|q−2w w ̸= 0

0 w = 0

(5.58)

which is the Fréchet differential of the convex functional 1
q
∥w∥qLq(γ,Y×U). A straightforward

calculation shows that this map satisfies

∥jq(w)∥pLp(γ,Y×U) = ∥w∥qLq(γ,Y×U) =

∫
Y×U

⟨jq(w), w⟩ dγ(y, u). (5.59)

See also Ambrosio et al. [2005, Chapter 8].

Theorem 31 (Absolutely Continuous Curves in Pµ
p(Y × U)).

Let I ⊂ R be an open interval, and suppose γt : I → Pµ
p(Y ×U) is an absolutely continuous in

the W µ
p metric with |γ′|(t) ∈ L1(I). Then, there exists a Borel vector field vt(y, u) such that

1. vt is triangular

2. vt ∈ Lp(γt, Y × U) and ∥vt∥Lp(γt,Y×U) ≤ |γ′|(t) for a.e. t

3. (vt, γt) solve the continuity equation distributionally.

Proof. Assume without loss of generality that |γ′|(t) ∈ L∞(I) and that I = (0, 1) [Ambrosio

et al., 2005, Lemma 1.1.4, Lemma 8.1.3]. Fix any φ ∈ Cyl(Y × U). For s, t ∈ I there exists

an optimal triangular coupling γst ∈ ΠY (γs, γt). By Hölder’s inequality,

|γt(φ)− γs(φ)| ≤ Lip(φ)W µ
p (γs, γt). (5.60)

It follows that t 7→ γt(φ) is absolutely continuous. We can introduce the upper semicontinuous
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and bounded map

H(y0, u0, y1, u1) =


|∇φ(y0, u0)| (y0, u0) = (y1, u1)

|φ(y0,u0)−φ(y1,u1)|
|(y0,u0)−(y1,u1)| (y0, u0) ̸= (y1, u1)

. (5.61)

For |h| sufficiently small, choose any optimal coupling γ(s+h)h ∈ ΠY (γs+h, γs) and note that

|γs+h(φ)− γs(φ)|
|h|

≤ 1

|h|

∫
(Y×U)2

|(y0, u0)− (y1, u1)|H(y0, u0, y1, u1) dγ(s+h)s (5.62)

≤
W µ

p (γs+h, γs)

|h|

(∫
(Y×U)2

Hq(y0, u0, y1, u1) dγ(s+h)h,s

)1/q

. (5.63)

If t is a point of metric differentiability for t 7→ γt, note that γ(t+h)t → (I, I)#γt narrowly,

where I is the identity map on Y × U . Moreover, since γt ∈ Pµ
p(Y × U), it follows that on

the diagonal we have that almost surely H(y0, u0, y0, u1) = ι(|∇uφ(y0, u0)|. Thus,

lim sup
h→0

|γt+h(φ)− γt(φ)|
|h|

≤ |γ′|(t)
(∫

Y×U

|H|q(y0, u0, y0, u0) dγt(y0, u0)

)1/q

(5.64)

= |γ′|(t) ∥ι(∇uφ)∥Lq(γt,Y×U) = |γ′|(t) ∥∇uφ∥Lq(γt,U) . (5.65)

Taking Q = Y × U × I and γ =
∫
γt dt, fix any φ ∈ Cyl(Q). We have that

∫
Q

∂sφ(y, u, s) dγ(y, u, s)

= lim
h↓0

∫
I

1

h

(∫
Y×U

φ(y, u, s) dγs(y, u)−
∫
(Y×U)

φ(y, u, s) dγs+h(y, u)

)
ds.

(5.66)

An application of Fatou’s Lemma, Equation (5.64), and Hölder’s inequality gives us

∣∣∣∣∫
Q

∂sφ(y, u, s) dγ(y, u, s)

∣∣∣∣ ≤ (∫
J

|γ′|(s) ds

)1/p(∫
Q

|∇uφ(y, u, s)|q dµ(y, u, s)

)1/q

(5.67)
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for any interval J ⊂ I with supp φ ⊂ J × Y × U .

Fix the subspace

V = {ι(∇uφ(y, u, s)) : φ ∈ Cyl(Q)} ⊆ Y × U (5.68)

and denote by V its Lq(γ, Y × U × I) closure. Define the linear functional L : V → R via

L(∇uφ) = −
∫
Q

∂sφ(y, u, s) dγ(y, u, s) (5.69)

and note that Equation (5.67) implies that L is a bounded linear functional on V . Thus (by

Hahn-Banach and the fact that V ⊆ V is dense) we may uniquely extend L to V . We thus

have a convex minimization problem

min
w∈V

1

q

∫
Q

|w(y, u, s)|q dγ(y, u, s)− L(w) (5.70)

which admits the unique solution w such that jq(w) − L = 0. In particular, the estimate

(5.67) shows that the above functional is coercive and hence admits a minimizer which we

may obtain via its differential as a consequence of convexity. Thus, we obtain a triangular

vector field v = jq(w) such that for all φ ∈ Cyl(Q),

⟨v,∇φ⟩ =

∫
Q

⟨v(y, u, s),∇φ(y, u, s)⟩ dγ(y, u, s) = ⟨L,∇φ⟩ = −
∫
Q

∂sφ(y, u, s) dγ(y, u, s).

(5.71)

This precisely shows that (vt, γt) is a triangular distributional solution to the continuity

equation.

Now, choose any interval J ⊂ I and choose a sequence ηk ∈ C∞
c (J), with 0 ≤ ηk ≤ 1 and
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ηk → 1J as k → ∞. Moreover choose a sequence (∇uφn) ⊂ V converging to w = jp(v) in

Lq(γ,Q). Our previous calculations give

∫
Q

ηk(s)|v(y, u, s)|p dγ(y, u, s) =

∫
Q

ηk(s)⟨v, w⟩ dγ = lim
n→∞

∫
Q

ηk⟨v,∇uφn⟩ dγ (5.72)

= lim
n→∞
⟨L,∇u(ηkφn)⟩ ≤

(∫
J

|γ′|p(s) ds

)1/p(∫
J×Y×U

|v|p dγ

)1/p

. (5.73)

Taking k →∞ we see that

∫
J

∫
Y×U

|vt(y, u)|p dγt(y, u) dt ≤
∫
J

|γ′|p(s) ds (5.74)

and since J ⊂ I was arbitrary, we conclude

∥vt∥Lp(γt,Y×U) ≤ |γ
′|(t) a.e.-t. (5.75)

Conversely, we show in Theorem 32 that if the pair (γt, vt) solve the continuity equation and

vt is triangular, then the curve (γt) is absolutely continuous and |γ′(t)| ≤ ∥vt∥Lp(γt,Y×U). The

main technique of this result is to study the collection of conditional continuity equations

(which is feasible by Lemma 3) and to apply the converse of Ambrosio et al. [2005, Theo-

rem 8.3.1]. In this setting, the infinite-dimensional result is obtained via a finite-dimensional

approximation argument.

Theorem 32 (Continuous Curves Generated by Triangular Vector Fields).

Suppose that γt : I → Pµ
p(Y × U) is narrowly continuous and (vt) is a triangular vector

field such that (γt, vt) solve the continuity equation with ∥vt∥Lp(γt,Y×U) ∈ L1(I). Then,

γt : I → Pµ
p(Y ×U) is absolutely continuous in the W µ

p metric and |γ′|(t) ≤ ∥vt∥Lp(µ,Y×U) for

almost every t.
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Proof. We first assume that U is finite dimensional. Our strategy is to check the hypotheses

necessary for Ambrosio et al. [2005, Theorem 8.3.1] to hold for µ-almost every y, followed by

an application of this theorem. By Lemma 3, for µ-almost every y we have that (γyt , v
U
t (y,−))

solve the continuity equation distributionally on I × U .

By Jensen’s inequality (and the assumption p ≥ 1) we see

∫
I

∥vt∥Lp(γt,Y×U) dt =

∫
I

Ey∼µ

[∥∥vUt (y,−)
∥∥p
Lp(γy

t ,U)

]1/p
dt (5.76)

≥
∫
I

Ey∼µ

[∥∥vUt (y,−)
∥∥
Lp(γy

t ,U)

]
dt (5.77)

= Ey∼µ

[∫
I

∥∥vUt (y,−)
∥∥
Lp(γy

t ,U)
dt

]
. (5.78)

Since the first term is finite, it follows that

∥∥vUt (y,−)
∥∥
Lp(γy

t ,U)
∈ L1(I) µ-almost every y. (5.79)

Now Ambrosio et al. [2005, Lemma 8.1.2] shows that for µ-almost every y we have that (γyt )

admits a narrowly continuous representative (γ̃yt ) with γ̃yt = γyt for almost every t. It follows

from Ambrosio et al. [2005, Theorem 8.3.1] that for any t1 ≤ t2 in I, we have

W p
p (γ̃yt1 , γ̃

y
t2) ≤ (t2 − t1)p−1

∫ t2

t1

|vUt (y, u)|p dγ̃yt (u) dt (5.80)

= (t2 − t1)p−1

∫ t2

t1

|vUt (y, u)|p dγyt (u) dt (5.81)

where the second line follows as γ̃yt = γyt for almost every t.

Let γ̃t =
∫
Y
γ̃yt dµ(y) be the measure obtained via marginalizing over the Y -variables. Taking

106



an expectation over y ∼ µ, the previous inequality shows us that

W µ,p
p (γ̃t1 , γ̃t2)

(t2 − t1)p
≤ 1

t2 − t1

∫ t2

t1

∥vt∥pLp(γt,Y×U) dt. (5.82)

Now, note that t1 is almost surely a Lebesgue point of the right-hand side and γ̃t1 = γt1 .

Taking t2 → t1 along a sequence where γ̃t2 = γt2 shows us that

|γ′|(t) ≤ ∥vt∥Lp(γt),Y×U (5.83)

for almost every t ∈ I.

In the case that U is infinite dimensional, fix any y ∈ Y such that Lemma 3 holds (which is

of full measure) and fix a countable orthonormal basis (ek) for U . Set πd : U → Rd to be the

projection operator for this basis, i.e. u 7→ (⟨u, e1⟩, . . . , ⟨u, ed⟩). We consider the collection of

finite dimensional conditional measures γd,yt = πd
#γ

y
t . By the same argument in Ambrosio

et al. [2005, Theorem 8.3.1], there exists a vector field vd,yt on Rd such that (γd,yt , vd,yt ) solve

the continuity equation and

∥∥∥vd,yt

∥∥∥
Lp(γd,y

t ,Rd)
≤
∥∥vUt (y,−)

∥∥
Lp(γy

t ,U)
. (5.84)

It follows from the finite-dimensional case above that for almost every t1 ≤ t2, we have

W p
p (γd,yt1 , γ

d,y
t2 ) ≤ (t2 − t1)p−1

∫ t2

t1

∥∥vUt (y,−)
∥∥p
Lp(γy

t ,U)
dt. (5.85)

Let γ̂y,dt = (πd)⋆#γ
y,d
t where (πd)⋆ : Rd → U maps z 7→

∑d
k=1 zkek. As d → ∞ we have

γ̂d,yt → γyt narrowly for all t ∈ I. Since (πd)⋆ is an isometry, Ambrosio et al. [2005, Lemma 7.1.4]
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shows that

W p
p (γyt1 , γ

y
t2) ≤ lim inf

d→∞
W p

p (γd,yt1 , γ
d,y
t2 ) ≤ (t2 − t1)p−1

∫ t2

t1

∥∥vUt (y,−)
∥∥p
Lp(γy

t ,U)
dt. (5.86)

Now, integration with respect to dµ(y) yields

W p,µ
p (γt1 , γt2) ≤ (t2 − t1)p−1

∫ t2

t1

∥vt∥pLp(γt,Y×U) dt. (5.87)

Taking t2 → t1 shows that for almost every t we have

|γ′|(t) ≤ ∥vt∥Lp(γt,Y×U) . (5.88)

As a corollary of Theorem 31 and Theorem 32, we obtain a conditional version of the

Benamou-Brenier theorem [Benamou and Brenier, 2000]. The proof of Theorem 33 largely

follows the unconditional case (see e.g. Ambrosio et al. [2005, Chapter 8]), but we include it

for the sake of completeness.

Theorem 33 (Conditional Benamou-Brenier).

Let 1 < p <∞. For any η, ν ∈ Pµ
p(Y × U), we have

W p,µ
p (η, ν) = min

(γt,vt)

{∫ 1

0

∥vt∥pLp(µt)
| (vt, γt) solve (5.53), γ0 = η, γ1 = ν, and vt is triangular

}
.

Proof. Write M for the infimum on the right-hand side.

First, suppose that (vt, µt) are admissible and
∫ 1

0
∥vt∥Lp(µt)

<∞. It follows from Theorem 32
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that (γt) is an absolutely continuous curve in Pµ
p(Y × U) and ∥vt∥Lp(µt,Y×U) ≥ |γ′|(t). Thus,

W µ,p
p (η, ν) ≤

(∫ 1

0

|γ′|(t) dt

)p

≤
∫ 1

0

∥vt∥pLp(µt,Y×U) dt ≤M. (5.89)

Conversely, by Theorem 29 there exists a constant speed geodesic (γt) ⊂ Pµ
p(Y ×U) connecting

η and ν. Recall that constant speed geodesics are absolutely continuous. By Theorem 31,

there exists a Borel triangular vector field vt such that (vt, γt) solve the continuity equation,

and moreover ∥vt∥Lp(µt,Y×U) ≤ |γ′|(t). In fact, because (vt, γt) solve the continuity equation,

Theorem 32 yields that ∥vt∥Lp(µt,Y×U) = |γ′|(t).

Since γt is a constant speed geodesic in Pµ
p(Y × U), it follows that |µ′|(t) = W µ

p (η, ν) for

almost every t ∈ (0, 1). Hence,

W µ,p
p (η, ν) =

∫ 1

0

|γ′|(t)p dt =

∫ 1

0

∥vt∥pLp(γt,Y×U) ≥M. (5.90)

Thus, W µ,p
p (η, ν) = M as desired.

5.5 COT Flow Matching

We have thus far seen that the COT problem (5.3) admits a dynamical formulation by

Theorem 33, where one may take the underlying vector fields to be triangular. We use these

results to design a principled model for conditional generation based on flow matching [Lipman

et al., 2023, Albergo et al., 2024, Tong et al., 2024]. We hereafter use the squared-distance

cost (i.e. p = 2).
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Flow Matching. We assume that we have access to samples z0 = (y0, u0) ∼ η(y0, u0) ∈

Pµ
p(Y × U) from a source measure, and samples z1 = (y1, u1) ∼ ν(y1, u1) ∈ Pµ

p(Y × U) from

a target measure. Let z = (z0, z1) ∼ ρ(z0, z1) ∈ Π(η, ν) be any coupling of the source and

target measure. We specify a collection of measures and vector fields on Y × U via

γt(y, u | z) = N (y, u | tz1 + (1− t) z0, C) vt(y, u | z) = z1 − z0 (5.91)

where C is any trace-class covariance operator [Da Prato and Zabczyk, 2014]. As is standard

in flow matching [Lipman et al., 2023, Kerrigan et al., 2024a], we obtain from Equations

(5.91) a marginal measure γt(y, u) and vector field vt(y, u) satisfying the continuity equation

via

γt(y, u) =

∫
(Y×U)2

γt(y, u | z) dρ(z) vt(y, u) =

∫
(Y×U)2

vt(y, u | z)
dγt(y, u | z)

dγt(y, u)
dρ(z).

(5.92)

This marginal path (γt)
1
t=0 interpolates between the source measure (t = 0) and a smoothed

version of the target measure (t = 1). To transform source samples from η into target

samples from ν, we seek to learn the intractable vector field vt(y, u) with a model vθ(t, y, u)

by minimizing the loss2

L(θ) = Et,ρ(z),γt(y,u|z)
∥∥vθ(t, y, u)− vt(y, u | z)

∥∥2 (5.93)

which has the same θ-gradient as the MSE loss to the true vector field ut(y, u) [Tong et al.,

2024].

2Previous work has referred to this as the conditional flow matching loss [Tong et al., 2024], which is not
to be confused with the notion of conditioning that we focus on in this work.
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COT Flow Matching. In the preceding section, ρ(z) may be an arbitrary coupling

between η and ν. Motivated by Proposition 22, we will choose ρ to be a COT coupling.

Under sufficient regularity conditions (see Section 5.2.1), this COT plan will be induced by

a triangular map. In turn, Theorem 30 gives us that this triangular map is generated by

a triangular vector field of the form (5.91). Thus, we parametrize our model uθ to also be

triangular. Moreover, we recover the optimal dynamic transport given in Theorem 33 as

Tr(C)→ 0 by a pointwise application of [Tong et al., 2024, Proposition 3.4].

Given a collection of samples {zi0, zi1}ni=1 drawn from η and ν, we approximate a condi-

tional optimal coupling ρ using standard numerical techniques with the cost function

cϵ(y0, u0, y1, u1) = |y1 − y0|2 + ϵ|u1 − u0|2 for some 0 < ϵ ≪ 1. Intuitively, such a cost

penalizes mass transfer along the Y dimension, which is precisely the constraint sought in the

COT problem (5.3). Hosseini et al. [2023, Prop. 3.11] show that as ϵ ↓ 0, we recover the true

optimal triangular map. The COT coupling can either be precomputed for small datasets

or computed on each minibatch drawn during training. After training, we obtain a learned

triangular vector field vθ(t, y, u). Given an arbitrary fixed y ∈ Y , we may approximately

sample from the target ν(u | y) by sampling u0 ∼ η(u0 | y) and numerically solving the

corresponding flow equation ∂t(y, ut) = vθ(t, y, ut) with initial condition (y, u0).

Source Measure. Our framework is agnostic to the choice of source measure η, allowing

for flexibility in the modeling process. The main requirement is that the Y -marginals of

the source η and target η must match. In some scenarios, this is trivially satisfied. If one

is interested in using a source distribution which is simply random noise, one may take

η(y0, u0) = πY
#ν(y0)⊗ ηU (u0) to be the product of two independent distributions where ηU is

arbitrary, e.g. Gaussian noise.
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Figure 5.2: Samples from the ground-truth joint target distribution and the various models.
Samples from COT-FM more closely match the ground-truth distribution than the baselines.
In the final column, we plot conditional KDEs for samples drawn conditioned on the y value
indicated by the dashed horizontal line. See Appendix C.1 for a larger figure and additional
results.

5.6 Experiments

We now illustrate our methodology (COT-FM) on a variety of conditional simulation tasks.

We compare our method against several competitive baselines, namely PCP-Map [Wang

et al., 2023], COT-Flow [Wang et al., 2023], and WaMGAN [Hosseini et al., 2023]. These

baselines are chosen as they reflect current state-of-the-art approaches to learning COT

maps. We additionally compare against flow matching [Lipman et al., 2023, Wildberger

et al., 2024] without COT, i.e. where the coupling between the source and target measures

is the independent coupling ρ(z0, z1) = η ⊗ ν. Overall, our method (COT-FM) typically

outperforms these baselines across the diverse and challenging set of tasks we consider. We

find that PCP-Map [Wang et al., 2023] is a strong baseline, but we emphasize that this model

relies on the use of an input-convex neural network [Amos et al., 2017] and it is hence unclear

how to adapt this method to e.g. images. Appendix C.1 contains further details and results

for all of our experiments.
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Table 5.1: Distances between the ground-truth and generated joint distributions for the 2D
datasets. Our method (COT-FM) obtains lower distances than the considered baselines.
Average results ± one standard deviation are reported across five test sets, with the lowest
average distance in bold.

Checkerboard Moons Circles Swissroll
W2 (1e-2) MMD (1e-3) W2 (1e-2) MMD (1e-3) W2 (1e-2) MMD (1e-3) W2 (1e-2) MMD (1e-3)

PCP-Map 6.27±0.81 0.21±0.13 8.44±1.09 0.22±0.10 6.19±0.43 0.20±0.17 5.35±0.93 0.16±0.13

COT-Flow 8.20±0.49 0.26±0.16 18.49±2.22 1.32±0.79 10.04±1.69 0.24±0.22 6.47±0.69 0.19±0.19

FM 8.81±0.58 0.24±0.20 15.55±0.77 1.85±0.22 7.03±0.17 0.45±0.11 8.18±0.34 0.58±0.09

COT-FM (Ours) 4.69±1.00 0.17±0.13 6.50±1.41 0.13±0.10 5.56±0.43 0.20±0.04 4.64±1.26 0.15±0.19

2D Synthetic Data. We first consider synthetic distributions where Y = U = R. Our

source measure is taken to be the independent product η(y, u) = πY
#ν ⊗N (0, 1). We plot

ground-truth joint distributions and samples for two datasets in Figure 5.2. See Appendix

C.1 for additional results. Samples from our method (COT-FM) closely match those from

the ground-truth distribution, whereas samples from PCP-Map and COT-Flow [Wang et al.,

2023] can produce samples in regions of zero support under the ground-truth distribution. In

Table 5.1, we provide a quantitative analysis, where we measure the W2 and MMD distances

between the generated and ground-truth joint distributions. This is motivated by Proposition

22, as triangular maps which couple the joint distributions necessarily couple the conditional

distributions. Our method outperforms the baselines across all metrics.

Lotka-Volterra (LV) Dynamical System. Here we estimate parameters of the LV model

given only noisy observations of its solution. The LV model has parameters u = (α, β, γ, δ) ∈

R4
≥0 and a pair of coupled nonlinear ODEs of the form

dp1(t)

dt
= αp1 − βp1p2

dp2(t)

dt
= −γp2 + δp1p2 (5.94)

whose solution p(t) = (p1(t), p2(t)) ∈ R2
≥0 represents the number of prey and predator species

at time t ∈ [0, T ]. Following Alfonso et al. [2023], we assume p(0) = (30, 1) and that

log(u) ∼ N (m, 0.5I) with m = (−0.125,−3,−0.125,−3). Given parameters u ∈ R4
≥0, we
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Table 5.2: Statistical distances between MCMC and posterior samples u ∼ ν(u | y) for each
method on the LV dataset. Average results ± one standard deviation reported across five
test sets.

W2 (1e-2) MMD (1e-3)

PCP-Map 5.04±0.05 2.67±2.1

COT-Flow 4.86±1.1 0.83±0.50

FM 11.41±0.26 2.65±0.14

COT-FM (Ours) 4.02±0.06 0.95±0.03

simulate Equation (5.94) for t ∈ {0, 2, . . . , 20} to obtain a solution z(u) ∈ R22
≥0. An observation

y ∈ R22
≥0 is obtained by the addition of log-normal noise, i.e. log(y) ∼ N (log(z(u), 0.1I). We

thus may simulate many (y, u) pairs from the target measure for training.

0.50 0.83 1.25

α

0 0.041 0.1

β

0.8 1.08 1.2

γ

0.02 0.04 0.06

δ

MCMC COT-FM

Figure 5.3: Sample KDEs
on the Lotka-Volterra inverse
problem. The red lines denote
the true parameter values.

As a benchmark, we follow the settings of Alfonso et al.

[2023] and choose parameters u = (0.83, 0.041, 1.08, 0.04)

to generate a single observation y as described above. In

Figure 5.3, we plot a histogram of 10, 000 samples from the

posterior ν(u | y) of COT-FM. Since the ground-truth poste-

rior is intractable, we compare against differential evolution

Metropolis MCMC [Braak, 2006]. Samples from our method

qualitatively resemble those from MCMC, and the posterior

mode is typically close to the true unknown u (shown in red).

Our method is quantitatively closest to the MCMC samples

in the W2 metric, and competitive in the MMD metric (Table

5.2). Importantly, we note that the flow matching ablation

(FM), which does not include the use of COT couplings, per-

forms markedly worse than our proposed COT-FM method.

Appendix C.1 contains additional results.
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True (u) Pressure (ρ) Observed (y) pCN

MSE: 21.27

COT-FM (Ours)

MSE: 22.83

FFM

MSE: 25.52

WaMGAN

MSE: 2.21 MSE: 3.49 MSE: 3.63

MSE: 4.40 MSE: 4.66 MSE: 6.63

Figure 5.4: Darcy flow illustration. A true permeability u is shown, as well as the pressure
field ρ and its observed, noisy version y. We compare an ensemble average of posterior
samples from the various methods against MCMC (pCN) [Cotter et al., 2013]. COT-FM
achieves the lowest MSE to pCN.

Darcy Flow Inverse Problem. Here we consider an infinite-dimensional Bayesian inverse

problem from the 2D Darcy flow PDE. The setting is adapted from Hosseini et al. [2023].

We opt to compare against WaMGAN [Hosseini et al., 2023], as this is currently the only

other extant amortized function-space COT method, and FFM [Kerrigan et al., 2023] as a

function-space flow matching ablation.

Table 5.3: Predictive performance of the
generated samples on the Darcy flow in-
verse problem. Average result ± one stan-
dard deviation obtained on 5 test sets of
5,000 samples each.

MSE (1e-2) CRPS (1e-2)

WaMGAN 6.55±0.07 18.75±0.10

FFM 7.30±0.07 15.47±0.06

COT-FFM (Ours) 5.40±0.08 15.56±0.08

The Darcy flow PDE is an elliptic equation on

a smooth domain Ω ⊆ Rd which relates a per-

meability field exp(u), a pressure field ρ, and a

source term f via −div exp(u)∇ρ = f on Ω sub-

ject to ρ = 0 on ∂Ω. Our goal is to recover the

permeability u from noisy measurements y of the

pressure ρ. Both the unknown u and observations

y are functions and thus infinite-dimensional. To
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define our target measure, we specify a prior ν(u) = N (0, C) with a Matérn kernel C of

lengthscale ℓ = 1/2 and ν = 3/2. Given u ∼ η(u), the Darcy flow PDE is solved numerically

[Alnæs et al., 2015] to obtain a solution ρ(u) observed at some finite but arbitrary number of

points {x1, . . . , xn} ⊂ R2. An observation y(u) is obtained by adding Gaussian noise to each

observation, i.e. y(u) ∼ N (ρ(u), σ2I) where σ = 2.5× 10−2. We implement all models via a

Fourier Neural Operator [Li et al., 2021], allowing us to work with arbitrary discretizations,

as required by the functional nature of this problem.

We provide an illustration in Figure 5.4. As the true posterior is intractable, we compare

against preconditioned Crank-Nicolson (pCN) [Cotter et al., 2013], a function-space MCMC

method. In Figure 5.4, we plot the mean posteriors obtained from the various methods.

Qualitatively, both COT-FM and FFM are good approximations to pCN, while WaMGAN

has visual artifacts. However, the MSE between our method and the pCN mean is lower than

that of FFM. Table 5.3 provides a quantitative comparison between the methods on a test

set of 5,000 samples, where we measure MSE and CRPS [Hersbach, 2000]. We compare the

ensemble mean of 10 samples against the true u value as running pCN for each observation is

prohibitively expensive. COT-FM outperforms FFM and WaMGAN in terms of MSE and is

on-par with FFM in terms of CRPS. See Appendix C.1 for further results.

5.7 Conclusion

We analyze conditional optimal transport from a dynamic point of view. Our analysis

culminates in the characterization of absolutely continuous curves of measures in a conditional

Wasserstein space, resulting in a conditional analog of the Benamou-Brenier Theorem. We

use these result to build a framework of triangular flow matching to develop simulation-free

methods for conditional generative models. Our methods are applicable across a wide class

of problems, and we demonstrate our methodology on several challenging inverse problems.
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Chapter 6

Forecasting Continuous-Time Event

Data with Flow Matching

This chapter is somewhat of a departure from the previous chapters, where we made the

fundamental assumption that our data measure is supported on a Hilbert space. While

Hilbert spaces are quite general, there are several data modalities which are not captured

in this setting. In this chapter, we focus on continuous-time event sequences, in which

events occur at irregular intervals. Such data can be viewed as a draw from a probability

measure supported on a configuration space, whose elements are counting measures. While

configuration spaces are generally non-Hilbertian, these spaces are infinite-dimensional and

carry a rich structure which we leverage to develop transport-based generative models.

Many stochastic processes, ranging from consumer behavior [Hernandez et al., 2017] to the

occurrence of earthquakes [Ogata, 1998], are best understood as a sequence of discrete events

which occur at random times. Any observed event sequence, consisting of one or more event

times, may be viewed as a draw from a temporal point process (TPP) [Daley and Vere-Jones,

2003] which characterizes the distribution over such sequences. Given a collection of observed
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Figure 6.1: All illustration of forecasting with our EventFlow method. The horizontal axis
indicates the flow time s, and the vertical axis indicates the support of the TPP T = [0, T ].
We first encode the observed history H into an embedding eH = fθ(H). At s = 0, we
independently draw n events in the forecasting window [T0, T0 + ∆T ] from a fixed reference
distribution, constituting a sample γ0 from a mixed-binomial TPP. Each event can be thought
of as a particle, which is assigned a velocity by a neural network vθ(γs, s, eH). Each particle
flows along its corresponding velocity field until reaching its terminal point at s = 1, whereby
we obtain a forecasted sequence γ1.

event sequences, faithfully modeling the underlying TPP is critical in both understanding

and forecasting the phenomenon of interest.

While multiple different parametric TPP models have been proposed [Hawkes, 1971, Isham

and Westcott, 1979], their limited flexibility limits their application when modeling complex

real-world sequences. This has motivated the use of neural networks [Du et al., 2016, Mei

and Eisner, 2017] in modeling TPPs. To date, most neural network based TPP models

are autoregressive in nature [Shchur et al., 2020a, Zhang et al., 2020], where a model is

trained to predict the next event time given an observed history of events. However, in

many tasks, we are interested not only in the next event, but in the entire sequence of events

which is to follow. While these models can achieve high likelihoods, their performance in

many-step forecasting tasks can be unsatisfactory due to compounding errors arising from

the autoregressive sampling procedure [Xue et al., 2022, Lüdke et al., 2023].

Moreover, existing models are typically trained via a maximum likelihood procedure (see

Section 6.2) which involves computing the CDF implied by the learned model. When using a

neural model, computing this CDF necessitates techniques such as Monte Carlo estimation to
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properly compute the loss [Mei and Eisner, 2017]. In addition, sampling from intensity-based

models [Du et al., 2016, Mei and Eisner, 2017, Yang et al., 2022] is nontrivial, requiring an

expensive and difficult to implement approach based on the thinning algorithm [Lewis and

Shedler, 1979, Ogata, 1981, Xue et al., 2024].

Motivated by these limitations, we propose EventFlow, a generative model which directly

learns the joint event time distributions, thus allowing us to avoid autoregressive sampling

altogether. Our proposed model extends the flow matching framework [Lipman et al., 2023,

Albergo and Vanden-Eijnden, 2023, Liu et al., 2023] to the setting of TPPs, where we learn a

continuous flow from a reference TPP to our data TPP. At an intuitive level, samples from our

model are generated by drawing a collection of event times from a reference distribution and

flowing these events along a learned vector field. The number of events is fixed throughout

this process, decoupling the event counts and their times, so that the distribution over event

counts can be learned or otherwise specified. See Figure 6.1 for an illustration. As our primary

contribution regards the modeling of the event times themselves, we focus on unmarked point

processes in this chapter.

More specifically, in this chapter we develop EventFlow, a novel generative model for temporal

point processes. Our model is suitable for both unconditional generation tasks (i.e., generating

draws from the underlying data TPP) and conditional generation tasks (e.g., forecasting

future events given a history), and is able to forecast multiple events simultaneously. Our

model provides a new perspective on modeling TPPs and sidesteps common pitfalls in existing

approaches. In particular, EventFlow is likelihood-free, non-autoregressive, easy to sample

from, and straightforward to implement. On standard benchmark datasets, EventFlow

obtains uniformly strong performance on a multi-step forecasting task, and matches or

exceeds the performance of state-of-the-art models for unconditional generation.
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6.1 Related Work

Temporal Point Processes The statistical modeling of temporal point processes (TPPs)

is a classical subject with a long history [Daley and Vere-Jones, 2003, Hawkes, 1971, Isham

and Westcott, 1979]. The contemporary modeling paradigm, based on neural networks [Du

et al., 2016], typically operates by learning a history encoder and an event decoder. The

history encoder seeks to learn a fixed-dimensional vector representation of the history of

a sequence up to some given time, and the decoder seeks to model a distribution over the

subsequent event(s).

Numerous models have been proposed for both components. Popular choices for the history

encoder include RNN-based models [Du et al., 2016, Shchur et al., 2020a, Mei et al., 2019]

or attention-based models [Zhang et al., 2020, Zuo et al., 2020, Yang et al., 2022]. While

attention-based encoders can provide longer-range contexts, this benefit typically comes at

the cost of additional memory overhead. Similarly, a wide range of forms for the event decoder

have also been proposed. The most common approach is to parametrize a conditional intensity

function via a neural network. For instance, several authors [Mei and Eisner, 2017, Zuo et al.,

2020, Zhang et al., 2020] model the conditional intensity using a parametric form inspired by

the Hawkes process [Hawkes, 1971], and Du et al. [2016] model the (log-)conditional intensity

through an affine function of the history embedding. Similarly, Okawa et al. [2019] model the

conditional intensity using a mixture of Gaussian kernels.

Most closely related to our work are approaches which use generative models as decoders.

These models often do not assume a parametric form for the decoder, enhancing their

flexibility. For instance, Xiao et al. [2017b] propose the use of W-GANs to generate new

events. Similarly, Shchur et al. [2020a] learn the distribution over the next inter-arrival

time via a normalizing flow. Lin et al. [2022] benchmark several choices of generative

models, including diffusion, GANs, and VAEs. Despite the flexibility of these models, these
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approaches are all autoregressive in nature, making them ill-suited for multi-step forecasting

tasks. In contrast, Lüdke et al. [2023] propose a diffusion-style model which is able to avoid

autoregressive sampling via an iterative refinement procedure.

Our approach can be viewed as a novel approach for building flexible decoders for TPPs,

extending flow matching to the setting of continuous-time event sequences. In contrast to

prior work using generative models, our model is likelihood-free and non-autoregressive,

achieving strong performance on long-term forecasting tasks. The work of Lüdke et al. [2023]

is perhaps most closely related to ours, but we emphasize that the method of Lüdke et al.

[2023] requires an involved training and sampling procedure. In contrast, our method is

straightforward to both implement and sample from, while simultaneously outperforming

existing approaches.

Flow Matching The recently introduced flow matching framework (or stochastic inter-

polants) [Lipman et al., 2023, Albergo and Vanden-Eijnden, 2023, Liu et al., 2023] describes a

class of generative models which are closely related to both normalizing flows [Papamakarios

et al., 2021] and diffusion models [Ho et al., 2020, Song et al., 2021]. Intuitively, these

models learn a path of probability distributions which interpolates between a fixed reference

distribution and the data distribution. These models are a popular alternative to diffusion,

providing greater flexibility in model design, with recent applications in image generation

[Ma et al., 2024, Dao et al., 2023], DNA and protein design [Stark et al., 2024, Campbell

et al., 2024], and point cloud generation [Buhmann et al., 2023, Wu et al., 2023]. To the best

of our knowledge, our approach is the first to explore flow matching for TPPs.

121



6.2 Autoregressive TPP Models

We first provide a brief review of autoregressive point process models and discuss their

shortcomings. Informally, one may think of an event sequence as a set {tk}nk=1 of increasing

event times. We will use Ht to represent the history of a sample up to (and including) time

t, i.e., Ht = {tk : tk ≤ t}. Similarly, we use Ht− = {tk : tk < t} to represent the history of

a sample prior to time t. In the autoregressive setting, the time of a single future event t

is modeled conditioned on the observed history of a sequence. This is typically achieved

by either directly modeling a distribution over t [Shchur et al., 2020a], or equivalently by

modeling a conditional intensity function [Du et al., 2016].

In the first approach, a conditional probability density of the form p(t | Htn) is learned,

allowing us to specify a joint distribution over event times p(t1, . . . , tn) autoregressively via

p(t1, . . . , tn) = p(t1)
∏n

k=2 p(tk | Htk−1
). Alternatively, we may define the conditional intensity

λ∗(t) := λ(t | Ht−) = p(t | Htn)/(1− F (t | Htn)), where F (t | Htn) =
∫ t

tn
p(s | Htn) ds is the

CDF associated with p(t | Htn). Informally, the conditional intensity λ∗(t) can be thought

of [Rasmussen, 2011] as the instantaneous rate of occurrence of events at time t given the

previous n events and given that no events have occurred since tn. By integrating λ∗(t), one

can show that

F (t | Htn) = 1− exp

(
−
∫ t

tn

λ∗(s) ds

)
p(t | Htn) = λ∗(t) exp

(
−
∫ t

tn

λ∗(s) ds

)
(6.1)

and thus one may recover the conditional distribution from the conditional intensity under

mild additional assumptions [Rasmussen, 2011, Prop 2.2].

The Likelihood Function Suppose we observe an event sequence {tk}nk=1 on the interval

[0, T ]. The likelihood of this sequence can be seen loosely as the probability of seeing precisely
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n events at these times. The likelihood may be expressed in terms of either the density or

intensity via

L ({tk}) = p(t1, . . . , tn) (1− F (T | Htn)) =

(
n∏

k=1

λ∗(tk)

)
exp (−Λ∗(T )) (6.2)

where the CDF term is included to indicate that no events beyond tn have occurred and

Λ∗(T ) =
∫ T

0
λ∗(s) ds is the total intensity. Autoregressive models are typically trained by

maximizing this likelihood [Du et al., 2016, Mei and Eisner, 2017, Shchur et al., 2020a]. We

emphasize that this likelihood is not simply the joint event-time density pn(t1, . . . , tn), as the

likelihood measures the fact that no events occur after tn.

It is worth noting that evaluating L({tk}) can be non-trivial in practice. For models which

parametrize λ∗(t) via a neural network [Du et al., 2016, Mei and Eisner, 2017], computing the

total intensity Λ∗(T ) is often done via a Monte Carlo integral, requiring several forward passes

of the model to evaluate λ∗(t) at different values of t. Models which directly parametrize the

density p(t | Ht) suffer from the same drawback when computing the corresponding CDF

in Equation (6.2). Moreover, some approaches, such as the diffusion-based approach of Lin

et al. [2022], are only trained to maximize an ELBO of p(t | t1, . . . , tn), and are thus unable

to compute the proper likelihood in Equation (6.2).

Sampling Autoregressive Models In many tasks, we are interested not only in an

accurate model of the intensity (or distribution), but also sampling new event sequences from

the corresponding distribution. For instance, when forecasting an event sequence, we may

want to generate several forecasts in order to provide uncertainty quantification over these

predictions. However, sampling from existing autoregressive models can be difficult.

For instance, the flow-based model of Shchur et al. [2020a] requires a numerical approximation

to the inverse of the model to perform sampling. Similarly, the diffusion-based approach of
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Lin et al. [2022] can require several hundred forward passes of the model to generate a single

event time, rendering it costly when generating long sequences. Moreover, the predictive

performance of autoregressive models is often unsatisfactory on multi-step generation tasks

due to the accumulation of errors over many steps [Lin et al., 2021, Lüdke et al., 2023].

This difficulty is particularly pronounced for intensity-based models [Du et al., 2016, Mei

and Eisner, 2017, Zhang et al., 2020], where naively computing the implied distribution in

Equation (6.1) is prohibitively expensive. Instead, sampling from intensity-based models

is typically achieved via the thinning algorithm [Ogata, 1981, Lewis and Shedler, 1979].

However, this algorithm has several hyperparameters to tune, is challenging to parallelize,

and can be difficult for practitioners to implement [Xue et al., 2024].

6.3 EventFlow

Motivated by the limitations of autoregressive models, we propose EventFlow, which has a

number of distinct advantages over existing approaches. First, EventFlow directly models

the joint distribution over event times, thereby avoiding autoregression entirely. Second,

our model is likelihood-free, avoiding the Monte Carlo estimates needed to estimate the

likelihood in Equation (6.2) during training. Third, sampling from our model amounts to

solving an ordinary differential equation. This is straightforward to implement and parallelize,

allowing us to avoid the difficulties of thinning-based approaches used in existing models. We

build upon the flow matching (or stochastic interpolant) framework [Lipman et al., 2023,

Albergo and Vanden-Eijnden, 2023, Liu et al., 2023] to develop our model. We begin below

by focusing on the unconditional setting, and later discuss how to extend our method for

conditional generation as necessary.
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6.3.1 Preliminaries

We first introduce some necessary background and notation. Let T = [0, T ] be a finite-length

interval. The set Γ denotes the configuration space of T [Albeverio et al., 1998], i.e., the set

of all finite counting measures on the set [0, T ]. A point γ ∈ Γ corresponds to a measure of

the form γ =
∑n

k=1 δ[t
k], i.e., a finite collection of Dirac deltas located at event times tk ∈ T .

A temporal point process (TPP) on T is a probability distribution µ over the configuration

space Γ. Informally, µ represents a distribution over sequences γ living in the configuration

space Γ which constitutes the set of valid sequences. We use N : Γ → Z≥0 to denote the

counting functional, i.e., N(γ) is the number of events in the TPP realization γ.1 While it is

common to represent TPPs as distributions over random sets of event times, in our approach

it will be more convenient to represent TPPs as random measures [Kallenberg, 2017].

We assume all TPP distributions are atomless [Kallenberg, 2017, Ch. 1], i.e., the probability

of observing an event at any singleton is zero. In addition, we assume all TPPs are simple

[Kallenberg, 2017, Ch. 2], i.e., no more than one event can occur simultaneously. Under these

assumptions, a TPP µ can be fully characterized [Daley and Vere-Jones, 2003, Prop. 5.3.II]

by a probability distribution which specifies the number of events and a collection of joint

densities corresponding to the event times themselves. In a slight abuse of notation, we will

write µ(n) for the corresponding distribution over event counts, and {µn(t1, . . . , tn)}∞n=1 for

the collection of joint distributions. In other words, for any given n ∈ Z≥0, the probability of

observing n events in the interval T is µ(n), and µn(t1, . . . , tn) describes the corresponding

joint distribution of event times. We further restrict each µn to be supported only on the

ordered sets, so that we may assume t1 < t2 < · · · < tn.

Let µ1 represent the data distribution and µ0 represent a reference distribution. That is,

1This can be thoughts of in terms of the counting process, i.e. N(γ) corresponds to the value of the
associated counting process at the ending time T , or the total number of events in γ that have occurred in
the interval [0, T ].
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both µ0, µ1 ∈ P(Γ) are TPP distributions. To construct our model, we will define a path of

TPPs ηs ∈ P(Γ) which approximately interpolates from our reference distribution to our data

distribution. Throughout, we use s ∈ [0, 1] to denote a flow time and t ∈ [0, T ] to denote an

event time. These two time axes are in a sense orthogonal to one another (see Figure 6.1).

6.3.2 Balanced Couplings

Our first step is to define a useful notion of couplings [Villani, 2009], allowing us to pair

event sequences drawn from µ0 with those drawn from µ1. A coupling between two TPPs

µ, ν ∈ P(Γ) is a joint probability measure ρ ∈ P(Γ× Γ) over pairs of event sequences (γ0, γ1)

such that the marginal distributions of ρ are µ and ν. We say that the coupling ρ is balanced

if draws (γ0, γ1) ∼ ρ are such that N(γ0) = N(γ1) almost surely. In other words, balanced

couplings only pair event sequences with equal numbers of events.

While we will later see how to interpolate between any two given event sequences, this

coupling will allow us to decide which sequences to interpolate. In particular, a balanced

coupling will allow us to pair sequences such that they always have the same number of events,

allowing us to avoid the addition or deletion of events during both training and sampling and

thus simplifying our model. We will use Πb(µ, ν) to denote the set of balanced couplings of

µ, ν, and the following proposition shows Πb(µ, ν) is nonempty if and only if the event count

distributions of µ and ν are equal, placing a structural constraint on the suitable choices of a

reference measure.

Proposition 34 (Existence of Balanced Couplings).

Let µ, ν ∈ P(Γ) be two TPPs. The set of balanced couplings Πb(µ, ν) is nonempty if and only

if µ(n) = ν(n) have the same distribution over event counts.

Proof. Let A1, A2 ⊆ Γ be Borel measurable [Daley and Vere-Jones, 2003, Prop. 5.3] subsets
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of the configuration space Γ, i.e. each of A1, A2 is a measurable collection of event sequences.

Observe that for i = 1, 2, each Ai can be written as a disjoint union

An
i =

∞⋃
n=0

T n ∩ Ai (6.3)

i.e. An
i ⊆ Ai is the subset of Ai containing only sequences with n events. Note each An

i is a

Borel measurable subset of T n.

Now, suppose that µ(n) = ν(n) have equal event count distributions. We define the coupling

ρ ∈ P(Γ× Γ) by

ρ(A1 × A2) =
∞∑
n=0

µ(n)µn(An
1 )νn(An

2 ). (6.4)

Here, in a slight abuse of notation, we use µn, νn to denote the corresponding joint probability

measures over n events, i.e., both are Borel probability measures on T n. Since the n-

dimensional projection of Γ in Equation (6.3) is simply T n, it is immediate that ρ(A1 × Γ) =

µ(A1) and ρ(Γ× A2) = ν(A2), so that ρ is indeed a coupling. Moreover, it is clear that the

coupling is balanced.

Conversely, suppose ρ ∈ Πb(µ0, µ1) is a balanced coupling. Let N : Γ → Z≥0 be the event

counting functional and let π1, π2 : Γ × Γ → Γ denote the canonical projections of Γ × Γ

onto its components. That is, π1 : (γ0, γ1) 7→ γ0 and π2 : (γ0, γ1) 7→ γ1. Furthermore, let

(N,N) : Γ×Γ→ Z≥0×Z≥0 denote the product of the counting functional, i.e. (N,N)(γ0, γ1) =

(N(γ0), N(γ1)). Note that the pushforward N#µ yields the event count distribution µ(n) of

µ (and analogously for ν).
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Now, observe that composing the projections and counting functionals yields

π1 ◦ (N,N) = N ◦ π1 π2 ◦ (N,N) = N ◦ π2. (6.5)

As ρ is a coupling, we have that µ = π1
#ρ and ν = π2

#ρ. From these observations, it follows

that

N#µ = N#

(
π1
#ρ
)

= (N ◦ π1)#ρ (6.6)

= (π1 ◦ (N,N))#ρ = π1
# ((N,N)#ρ) (6.7)

= π2
# ((N,N)#ρ) = N#ν (6.8)

where the equality in the penultimate line follows from the fact that ρ is balanced. Thus,

we have shown that the existence of a balanced coupling implies that N#µ = N#ν, i.e. the

event count distributions are equal.

In practice, we follow a simple strategy for choosing both the reference TPP µ0 and the coupling

ρ. Suppose q is any given density on our state space T , e.g., a uniform distribution. We take

µ0 to be a mixed binomial process [Kallenberg, 2017, Ch. 3] whose event count distribution is

given by that of the data µ1(n) and joint event distributions given by independent products

of q (up to sorting). That is, to sample from µ0, one can simply sample n ∼ µ1(n) from the

empirical event count distribution followed by sampling and sorting n i.i.d. points tk ∼ q.

To draw a sample from our coupling ρ, we first sample a data sequence γ1 ∼ µ1, followed by

sampling N(γ1) events independently from q and sorting to produce a draw γ0 ∼ µ0. We call

this coupling the independent balanced coupling of µ and ν.
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6.3.3 Interpolant Construction

We now proceed to construct our interpolant ηs ∈ P(Γ). We will construct this path of TPPs

via a local procedure which we then marginalize over a given balanced coupling. To that end,

let ρ be any balanced coupling of the reference measure µ0 and the data measure µ1, and

suppose z := (γ0, γ1) ∼ ρ is a draw from this coupling. As ρ is balanced, we have that

γ0 =
n∑

k=1

δ[tk0] γ1 =
n∑

k=1

δ[tk1] (6.9)

are both a collection of n events. As TPPs are fully characterized by their joint distributions

over event times, we will henceforth describe our procedure for a fixed (but arbitrary) number

of events n. First, we the define measure γzs ∈ Γ via

γzs =
n∑

k=1

δ[tks ] tks = (1− s)tk0 + stk1 0 ≤ s ≤ 1 (6.10)

where we use the superscript z to denote the dependence on the pair z = (γ0, γ1). In other

words, γzs linearly interpolates each corresponding event in γ0 and γ1. This defines a path

(γzs )1s=0 in the configuration space Γ which evolves the reference sample γ0 into the data

sample γ1.

In order to perform the marginalization step, we now lift this deterministic path (γzs )1s=0 ⊂ Γ

to a path of TPP distributions (ηzs)1s=0 ⊂ P(Γ). We define the point process distribution

ηzs ∈ P(Γ) implicitly by adding independent Gaussian noise to each of the events in γzs . That

is, a draw γ̂zs ∼ ηzs may be simulated via

γ̂zs =
n∑

k=1

δ
[
tks + ϵk

]
ϵk ∼ N (0, σ2). (6.11)

In principle this means that the support of ηzs is larger than T , but in practice we choose σ2
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sufficiently small such that this is not a concern. The addition of noise ϵk is instrumental

in obtaining a well-specified model, but in practice the noise variance σ2 is not a critical

hyperparameter. We note that this noising step is typical in flow matching models [Lipman

et al., 2023, Tong et al., 2024].

Finally, for any s ∈ [0, 1], we define the marginal TPP measure ηs via ηs =
∫
ηzs dρ(z).

Observe that, by construction, the event count distribution ηs(n) is given by µ1(n) for all

s ∈ [0, 1]. This path of TPP distributions ηs approximately interpolates from the reference

TPP µ0 at s = 0 to the data TPP µ1 at s = 1, in the sense that at the endpoints, the

joint event time distributions ηn0 (t1, . . . , tn) and ηn1 (t1, . . . , tn) are given by a convolution of

µn
0 (t1, . . . , tn) and µn

1 (t1, . . . , tn) with the Gaussian N (0, σ2In). As σ2 ↓ 0, it is clear that we

recover a genuine interpolant [Tong et al., 2024].

We now shift our attention to the transport of a single event tks for a fixed k. Through the

addition of Gaussian noise, we have constructed a path of Gaussian distributions N (tks , σ
2)

whose mean is determined by the location of the kth event at the flow time s. This transport

of a Gaussian can be achieved infinitesimally through the constant vector field vks : [0, T ]→ R

given by vks (t) = tk1 − tk0 [Tong et al., 2024]. Thus, the evolution in (6.11) is generated by the

vector field vzs : T n → Rn given by

vzs(γ) =

[
v1s , . . . , v

n
s

]T
=

[
t11 − t10, . . . , tn1 − tn0

]T
0 ≤ s ≤ 1. (6.12)

Informally, we view vzs : T n → Rn as prescribing a constant (but different) velocity to each of

the n events. For a fixed pair z = (γ0, γ1) and a given sample γ′0 ∼ ηz0, solving the system

of ordinary differential equations dγ′s = vzs(γ′s) ds with initial condition γ′0 will result in a

collection of events which is concentrated around the true event times γ1. Note that here, we
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view this differential equation as an ODE in T n. If we draw many samples γ0 ∼ ηz0 and solve

the corresponding ODE, the distribution over events at any intermediate time s will be given

by ηzs .

In other words, the vector field vzs generates the path of distributions ηzs . However, this

path is conditioned on z, and we would like to find the vector field vs which generates the

unconditional path ηs. As is standard in flow matching [Lipman et al., 2023, Tong et al.,

2024, Albergo and Vanden-Eijnden, 2023], the unconditional vector field vs : T n → Rn may

be obtained through a weighted marginalization procedure via

vs(γ) =

∫
vzs(γ)

dηzs
dηs

(γ) dρ(z). (6.13)

We have thus far described a procedure for interpolating between a given reference distribution

µn
0 and the data distribution µn

1 for a given, fixed number of events n. As n was arbitrary, we

have successfully constructed a family of interpolants which will enable us to sample from the

joint event distribution for any n. However, to fully characterize the TPP distribution, we

need to also specify the event count distribution. For unconditional generation tasks, this is

straightforward – we simply follow the empirical event count distribution see in the training

data. We describe our approach for modeling the event count distribution in conditional

tasks in the following section.

6.3.4 Training, Parametrization, and Sampling

To train the model, we would like to perform regression on the vector fields vs in Equation

(6.13). If we knew this vector field vs, we could draw samples from the data TPP by drawing

a sample event sequence γ0 ∼ µ0 from the reference TPP, and flowing each event along the

vector field vs.
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Algorithm 1: Training Step for EventFlow

1 Sample γ1 ∼ µ1, s ∼ U [0, 1], and ϵ ∼ N (0, 1)
2 eH = ∅ /* Null history */

3 if forecast then
4 Sample split time T0 ∈ [∆T, T −∆T ]
5 Construct history H ← {t ∈ γ1 : t ≤ T0}
6 Embed history eH ← fθ(H)
7 Construct future γ1 ← {t ∈ γ1 : T0 < t ≤ T0 + ∆T}
8 Set n← N(γ1)
9 Sample t10, . . . , t

n
0 ∼ q and sort to construct γ0

10 Compute γzs via tks = (1− s)tk0 + stks
11 Take a gradient step on ∥γ1 − γ0 − vθ (γzs + ϵ, s, eH)∥2

Training Foremost, although the marginal vector field in Equation (6.13) admits an

analytical form, it is intractable to compute in practice as the marginal measure ηs is not

available. To overcome this, we may instead perform regression on the conditional vector

fields vzs . Here, vθ(γs, s) will represent a neural network with parameters θ which takes in

a sequence γs of N(γs) = n event times, along with the flow time s. That is, we seek to

minimize the loss

J(θ) = Es,(γ0,γ1),γ̂z
s

[
∥γ1 − γ0 − vθ(γ̂zs , s)∥

2] (6.14)

which can be shown to be equal to MSE regression on the unconditional vs up to an additive

constant not depending on θ [Lipman et al., 2023, Tong et al., 2024]. We note here that,

although the regression target vzs is linear, the unconditional vector field vs will in general be

nonlinear. In practice, this loss is estimated by uniformly sampling a flow time s ∈ [0, 1], a

pair z = (γ0, γ1) ∼ ρ from our balanced independent coupling, and drawing a noisy interpolant

γ̂zs ∼ ηzs according to Equation (6.11).

To train the model on a forecasting task, where the goal is to predict a future sequence of

events conditioned on a history H, we embed H into a fixed-dimensional vector representation

eH = fθ(H) via a learned encoder fθ before providing this to the model vθ(γs, s, eH) and
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minimizing Equation (6.14). Note that we jointly train the encoder fθ and vector field vθ.

See Algorithm 1.

Parametrization The second challenge is that we must learn a vector field vθ(γ, s) in n

dimensions for arbitrary values of n. In other words, vθ is a neural network which takes in

a flow time s ∈ [0, 1] and a sequence of events γ, and must produce N(γ) scalar outputs.

We achieve this through an attention-based architecture, which we detail in Appendix D.2.

At a high level, the flow time s is transformed via a learnable embedding into a fixed-

dimensional vector. Similarly, each event in γ is transformed into fixed-dimensional vector

via a learned embedding (which is shared across the events, but not the flow time). The

flow-time embedding is then added to each event embedding, and the resulting sequence is

passed through a standard transformer architecture [Yang et al., 2022, Vaswani et al., 2017],

resulting in a sequence of N(γ) vectors. Finally, each of these vectors is projected into one

dimension via a linear layer to produce the sequence of N(γ) velocities.

For conditional tasks, we must also compute an encoding eH = fθ(H) of the history H. This

is done by a separate transformer encoder, which operates in the same fashion as described

in the previous paragraph, but without the use of the flow-time s as an input and without

the final linear projection layer. This embedding is fed into the intermediate layers of our

velocity network via cross-attention.

Lastly, for forecasting tasks we must also learn a model of the event count distribution

pϕ(n | H). We treat this as a classification problem, where the goal is to predict the number

of events n occurring in the forecast window given the history H. While this does imply there

is some maximal number of events, we in practice set this to the maximal sequence length

seen in the training set, which is typically much larger than the typical sequence length. We

again use an attention-based model, analogous to our velocity model, but where we aggregate

the final sequence embedding by averaging and passing this through a small MLP. The model
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Algorithm 2: Sampling Step for EventFlow

1 Choose a flow time discretization 0 = s0 < s1 < · · · < sK = 1
2 eH = ∅ /* Null history */

3 if forecast then
4 Embed history eH ← fθ(H)
5 Sample n ∼ pϕ(n | H)

6 else
7 Sample n ∼ µ1(n)
8 Sample t10, . . . , t

n
0 ∼ q and sort to construct γ0

9 for k = 1, 2, . . . , K do
10 hk ← sk − sk−1

11 γsk ← γsk−1
+ hkvθ(γsk−1

, sk−1, eH)

pϕ(n | H) is trained by minimizing the cross-entropy loss.

Sampling Once the network vθ is learned, we may draw samples from the model by

first drawing a reference sequence γ0 ∼ µ0 and solving the corresponding system of ODEs

parametrized by vθ. More concretely, we first fix a number of events n to generate. When

seeking to unconditionally generate new sequences from the underlying data TPP µ1, we

simply sample n from the empirical event count distribution µ1(n). For conditional tasks, we

draw n ∼ q(n | H) from the learned conditional distribution over event counts.

Next, we draw n initial events, corresponding to s = 0, by sampling and sorting t10, . . . , t
n
0 ∼ q.

In practice, we use q = N (0, In) as we normalize our sequences into the range [−1, 1] during

training and sampling (followed by renormalization to the data scale). Since we have fixed

n, we may view this initial draw as a vector γ0 = [t10, . . . , t
n
0 ] ∈ T n. This event sequence γ0

then serves as the initial condition for the system of ODEs dγs = vθ(γs, s) ds which can be

solved numerically. In our experiments, we use the forward Euler scheme, i.e., we specify

a discretization {0 = s0 < s1 < · · · < sK = 1} of the flow time (in practice, uniform) and

recursively compute

γsk = γsk−1
+ hkvθ(γsk−1

, sk−1) k = 1, 2, . . . , K (6.15)

134



where hk = sk − sk−1 represents a scalar step size. While other choices of numerical solvers

are certainly possible, we found that this simple scheme was sufficient as the model sample

paths are typically close to linear. See Algorithm 2 for the full procedure.

6.4 Experiments

We study our proposed EventFlow model under two settings. The first is a conditional

generative modeling task, where we seek to forecast both the number and times of future

events given a history. The second is an unconditional task, where we aim to learn a

representation of the underlying TPP distribution from empirical observations and generate

new sequences from this distribution. In a sense, this second task can be viewed as a special

case of the first with no observed history. Our overall experimental procedure is inspired by

that of Lüdke et al. [2023].

Datasets We evaluate our model across a diverse set of datasets encompassing a wide

range of possible point process behaviors. First, we use a collection of six synthetic datasets

produced by Omi et al. [2019]. We additionally evaluate our model on seven real-world

datasets, which are a standard benchmark for modeling unmarked TPPs [Shchur et al., 2020b,

Bosser and Taieb, 2023, Lüdke et al., 2023]. See Appendix D.1 for additional information

regarding our datasets.

Baseline Models As a point of comparison, we train and evaluate several baseline models.

These models were selected as they constitute a set of diverse and highly performant models.

For an intensity-based method, we compare against the Neural Hawkes Process (NHP) [Mei

and Eisner, 2017]. We additionally compare against two intensity-free methods, namely the

flow-based IFTPP model [Shchur et al., 2020a] and the diffusion-based model of Lin et al.
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[2022]. Lastly, our strongest baseline is the recently proposed Add-and-Thin model of Lüdke

et al. [2023], which can be loosely viewed as a non-autoregressive diffusion model. These

models use an RNN-based history encoder, with the exception of Add-and-Thin which uses a

CNN-based encoder. See Appendix D.3 for additional details.

Metrics Evaluating generative TPP models is challenging, as one must take into account

both the variable locations and numbers of events. This is particularly challenging for the

unconditional setting, where unlike forecasting, we do not have a ground-truth sequence

to compare against. Our starting point is a metric [Xiao et al., 2017a] on the space of

sequences Γ, allowing us to measure the distance between two sequences γ =
∑n

k=1 δ[t
γ
k] and

η =
∑m

k=1 δ[t
η
k] with possibly different numbers of events. Without loss of generality, we

assume n ≤ m, so the distance is given by

d(γ, η) =
n∑

k=1

|tγk − t
η
k|+

m∑
k=n+1

(T − tηk) (6.16)

where we recall that we assume the sequences are supported on T = [0, T ]. This distance

can be understood either as an L1 distance between the corresponding counting processes of

γ, η or as a generalization of the 1-Wasserstein distance to measures of unequal mass. This

metric allows us to compare two sequences of possibly unequal lengths, and will be used in

our forecasting experiment.

For our unconditional experiment, we require a metric which will capture the distance between

the TPP distributions themselves. To do so, we follow the approach suggested by Shchur

et al. [2020b] and Lüdke et al. [2023], and use the distance in Equation (6.16) to calculate

an MMD [Gretton et al., 2012]. Namely, the MMD between two point process distributions

136



µ, ν ∈ P(Γ) is given by

MMD(µ, ν) = Eγ,γ′∼µ[k(γ, γ′)]− 2Eγ∼µ,η∼ν [k(γ, η)] + Eη,η′∼ν [k(η, η′)] (6.17)

where k : Γ→ Γ→ R≥0 is a specified kernel. In accordance with prior work [Shchur et al.,

2020b, Lüdke et al., 2023], we use an exponential kernel k(γ, η) = exp (−d(γ, η)/(2σ2)) with

σ chosen to be the median distance between all sequences.

6.4.1 Forecasting Event Sequences

We first evaluate our model on a multi-step conditional forecasting task, focusing on the

real-world datasets. To do so, we set a forecast horizon ∆T for each of our real-world datasets,

and generate event sequences in the range [T0, T0 + ∆T ] for some given T0, conditioned on the

history of events HT0 . Up to a shift, this means we are taking T = [0,∆T ] as the support for

our model TPP. The forecast horizon ∆T is chosen such that the window typically contains

multiple events.

At training time, we uniformly sample T0 ∈ [∆T, T −∆T ] and split a given data sequence γ1

into a history on [0, T0] and a future [T0, T0 + ∆T ]. We encode the history HT0 before training

the model to fit the events occurring in the future. At testing time, we perform the same

splitting procedure, sampling 50 values of T0 for each test set sequence. We then forecast

the sequence in [T0, T0 + ∆T ] via the model and compute the distance (6.16) between the

ground-truth and generated sequences. Importantly, we note that the distance in Equation

(6.16) is computed using T0 + ∆T rather than T as the maximum event time, as using T

would result in a distance which is sensitive to the location of the forecasting window within

the support [0, T ]. We further normalize Equation (6.16) by ∆T to allow for comparison

across different window lengths.
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Table 6.1: Sequence distance (6.16) between the forecasted and ground-truth event sequences
on a held-out test set. Lower is better. We report the mean ± one standard deviation over
five random seeds. The best mean distance on each dataset is indicated in bold, and the
second best by an underline.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp-A Yelp-M

IFTPP 4.2±0.7 25.6±2.3 61.2±3.2 5.1±0.4 2.9±0.2 2.1±0.2 3.4±0.2

NHP 2.8±0.1 31.0±1.4 95.7±0.7 4.5±0.3 3.4±0.5 1.8±0.1 3.0±0.2

Diffusion 5.4±1.2 25.7±0.9 80.3±11.4 4.6±0.7 2.4±0.2 1.8±0.1 3.3±0.7

Add-and-Thin 2.5±0.04 22.2±4.6 34.3±0.4 3.7±0.1 3.1±0.2 1.8±0.1 3.0±0.2

EventFlow (25 NFEs) 2.8±0.7 22.6±2.7 21.5±0.4 3.7±0.1 1.7±0.1 1.4±0.04 2.1±0.1

EventFlow (10 NFEs) 2.8±0.7 22.6±2.7 21.3±0.4 3.5±0.2 1.7±0.1 1.4±0.04 2.1±0.1

EventFlow (1 NFE) 2.7±0.7 22.6±2.7 21.1±0.3 3.7±0.4 1.8±0.1 1.6±0.2 2.1±0.1

EventFlow (25 NFEs, true n) 1.2±0.01 5.5±0.3 8.8±0.2 1.8±0.02 0.7±0.01 0.7±0.02 1.1±0.02

We report the results of this experiment in Table 6.1. Our proposed EventFlow method obtains

the lowest average forecasting error on 5/7 of the datasets, and closely matches the performance

of Add-and-Thin on the remaining 2/7 datasets. Given that the non-autoregressive models

(EventFlow, Add-and-Thin) consistently outperform the autoregressive baselines, this is clear

evidence that autoregressive models can struggle on multi-step predictions. This is especially

true on the Reddit-C and Reddit-S datasets, which exhibit long sequence lengths.

In Table 6.2, we provide additional evaluations of the event count distributions alone. To do

so, we measure the mean absolute relative error (MARE) given by

MARE = En,n̂

∣∣∣∣ n̂− nn
∣∣∣∣ (6.18)

where n represents the true number of points in a sequence, n̂ represents the predicted

number of points, and the expectation is estimated empirically on the testing set. As our

method directly predicts the number of events n by sampling from the learned distribution

pϕ(n | H), this serves as a direct evaluation of this component of our model. Here, we find

that Add-and-Thin has strong performance (mean rank: 1.3), whereas our method (mean

rank: 3), diffusion (mean rank: 3.1) perform comparably, while IFTPP (mean rank: 3.6)

and NHP lag slightly behind (mean rank: 4). While our method has room for improvement,
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Table 6.2: MARE values evaluating the predicted number of events when forecasting. Mean
values ± one standard deviation are reported over five random seeds. The lowest MARE on
each dataset is indicated and bold, and the second lowest is indicated by an underline.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp-A Yelp-M

IFTPP 1.05±0.14 1.69±0.39 0.79±0.20 0.60±0.11 0.88±0.08 0.76±0.07 0.76±0.05

NHP 1.02±0.08 0.95±0.01 1.00±0.0004 0.67±0.11 2.48±0.40 0.80±0.22 1.07±0.34

Diffusion 1.95±0.48 1.28±0.09 1.12±0.56 0.49±0.07 0.66±0.04 0.65± 0.07 0.72±0.07

Add-and-Thin 0.43±0.01 0.99±0.10 0.38±0.01 0.33±0.02 0.60±0.02 0.42±0.01 0.46±0.03

Ours 0.69±0.17 2.01±0.40 0.26±0.01 0.47±0.03 1.23±0.07 0.66±0.03 0.80±0.05

we note that even though our approach to learning p(n | H) is quite simple it still achieves

competitive results. Designing better techniques for predicting the event counts is an exciting

direction for future work. However, we emphasize that our model shows clear gains on the

forecasting metric which measures both the event counts and their times, and this is the

primary relevant metric for the problem we address in this paper.

Ablations We additionally perform two ablations. First, we vary the number of function

evaluations (NFEs) used at sampling time, i.e., steps in Equation (6.15). We find that

10 NFEs is sufficient, and increasing the NFEs further does not result in significant gains.

Interestingly, with only one step, we observe only a small drop in forecasting performance.

This is enabled by our carefully designed interpolant construction (Equation (6.10)). We

emphasize that Add-and-Thin uses 100 NFEs at generation time and the diffusion model

uses 1000 NFEs per generated event. The autoregressive baselines (NHP, IFTPP) require

one NFE per generated event. Thus, our method is able to simultaneously obtain strong

forecasting performance while only requiring a small number of model evaluations. In our

second ablation, we do not sample n ∼ pϕ(n | H), but rather set n to be the true number of

events in the forecast window. While this is not practical, this serves to ablate the effect of

errors in the event counts. We see that the forecasting error improves significantly, indicating

that designing stronger techniques for modeling pϕ(n | H) can lead to improved forecasts.
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Table 6.3: MMDs (1e-2) between the test set and 1, 000 generated sequences on our synthetic
datasets. Lower is better. We report the mean ± one standard deviation over five random
seeds. The lowest MMD distance on each dataset is indicated in bold, and the second lowest
is indicated by an underline.

Hawkes1 Hawkes2 NSP NSR SC SR

Data 1.3 1.3 1.8 3.0 5.7 1.1

IFTPP 1.5±0.4 1.4±0.5 2.3±0.7 6.2±2.1 5.8±0.5 1.3±0.3

NHP 1.9±0.3 5.2±1.6 3.6±1.3 12.6±1.8 25.4±11.5 5.0±0.7

Diffusion 4.8±2.7 5.5±3.3 10.8±7.5 15.0±3.6 9.1±1.8 5.1±2.8

Add-and-Thin 1.9±0.5 2.5±0.3 2.6±0.5 7.4±1.2 22.5±0.5 2.2±0.8

EventFlow (ours) 1.9±0.2 2.2±0.1 3.8±1.2 4.2±0.5 8.3±0.4 1.7±0.3

Table 6.4: MMDs (1e-2) between the test set and 1, 000 generated sequences on our real-world
datasets. Lower is better. We report the mean ± one standard deviation over five random
seeds. The lowest MMD distance on each dataset is indicated in bold, and the second lowest
is indicated by an underline.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp-A Yelp-M

Data 1.3 0.6 0.4 3.1 2.6 3.6 3.1

IFTPP 5.7±1.8 1.3±1.2 1.9±0.6 5.8±0.9 2.9±0.6 8.2±4.7 5.1±0.7

NHP 7.2±0.2 2.2±1.6 22.5±0.3 5.0±0.1 7.3±0.7 6.7±1.5 6.1±2.3

Diffusion 14.3±6.5 3.9±1.2 6.2±3.3 11.7±1.8 12.5±1.9 10.9±3.8 10.5±5.2

Add-and-Thin 2.8±0.5 1.2±0.27 2.7±0.3 5.2±0.6 4.8±0.4 4.5±0.2 3.0±0.5

EventFlow (ours) 1.5±0.2 0.7±0.1 0.7±0.1 3.5±0.1 4.9±0.7 6.6±1.2 3.0±0.5

6.4.2 Unconditional Generation of Event Sequences

Next, we evaluate our model on an unconditional generation task, where we aim to generate

new sequences from the underlying data distribution. This task serves as a benchmark

to evaluate the methods in terms of how well they are able to fit the underlying TPP.

Moreover, learning a general-purpose TPP prior could enable downstream tasks, such as data

augmentation [Graikos et al., 2022].

In Tables 6.3 and 6.4, we report MMD values (6.17) for each of the synthetic and real-world

datasets. We tune the hyperparameters for all models and perform model selection based

on the validation set MMD. MMDs are calculated by sampling 1,000 sequences from each
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trained model, and estimating Equation (6.17) using the generated and test set samples. The

first row (“data”) is the MMD calculated between samples in the training and validation

sets, giving us a sense of the best-case performance.

Overall, we find that our EventFlow method (mean rank: 1.8) exhibits uniformly strong

performance, obtaining either the best or second best MMD on 11 of the 13 datasets. This is

particularly pronounced on the real-world datasets, where we obtain the lowest MMD on 5 of

the 7 datasets. We see that IFTPP (mean rank: 2.1) is a strong baseline, obtaining results

which are competitive with our method. The Add-and-Thin method (mean rank: 2.4) is

often similarly strong, but struggles on the SC dataset. While the NHP (mean rank: 3.7)

can obtain good fits, this appears to be dataset dependent, with weak results on the NSR,

SC, and Reddit-S datasets. The diffusion baseline (mean rank: 4.8) is our weakest baseline,

which is perhaps unsurprising as this model can only be trained to maximize the likelihood

of a subsequent event and not the overall sequence likelihood.

6.5 Conclusion

In this chapter, we propose EventFlow, a non-autoregressive and likelihood-free generative

model for temporal point processes. We demonstrate that EventFlow is able to achieve state-

of-the-art results on a multi-step forecasting task and strong performance on unconditional

generation.

There are several directions in which our work could be extended. First, we do not explicitly

enforce that the support of our model TPP is [0, T ]. This would necessitate moving beyond

the Gaussian setup, which is non-trivial to carry out. Second, more sophisticated approaches

to learning the event count distribution pϕ(n | H) could lead to improved performance.
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Chapter 7

Conclusions and Outlook

This dissertation has explored several techniques for generative modeling in infinite-dimensional

spaces. We began by developing a discrete-time diffusion model for function-valued data

in Chapter 3, followed by a continuous-time flow-based model in Chapter 4. In Chapter 5,

we developed a theory of dynamic conditional optimal transport, and leveraged this theory

to build flow-based models for amortized likelihood-free inference. Finally, we studied an

application of flow-based models for temporal point processes in Chapter 6.

As our ability to collect data from the world around us grows, so too will our need for building

faithful models of this data. One principle that has guided this dissertation is that in order

to do so, we must build models upon foundations that best support the task at hand, rather

than on pervasive assumptions taken for granted. While this unavoidably introduces new

challenges, solving these leads to new insights, techniques, and connections.
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7.1 Open Problems

While we have explored several techniques for function-space generative modeling, this area

of machine learning is still nascent and many important questions remain open. Here, we

conclude with a brief discussion of a few key directions.

Beyond the Hilbert Setting Throughout this dissertation, we have made the fundamental

assumption that our data distribution is supported on a Hilbert space. The defining feature

of these spaces is that they are equipped with an inner product, and this inner product

is invaluable for performing calculations. However, Hilbert spaces represent only a small

subset of the zoo of function spaces, and many spaces of interest are not Hilbertian. For

instance, even the conceptually appealing space of continuous functions (equipped with the

usual L∞ norm) does not fit into this framework. A natural open challenge is to generalize

the techniques we have insofar developed to a more general class of spaces, such as Banach

spaces.

The Role of the Cameron-Martin Space In Chapters 3 and 4, we noted the Cameron-

Martin space of the Gaussian noise used to define our path of measures plays a key role in

our methods. For instance, recall that we showed that a sufficient condition for our functional

flow matching setup in Chapter 4 to be well-defined is that the data measure is supported in

this subspace. However, this is a fairly restrictive condition, and several key questions remain

regarding the role of this space. For instance, is this sufficient condition necessary? If so, can

we develop methods for selecting the corresponding Cameron-Martin space in a principled

fashion? Or, to sidestep this issue entirely, how can we design methods that do not require

this assumption?
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Constraints In many problems of practical interest, practitioners may want to impose

various constraints or otherwise include prior knowledge into the generated functions. For

instance, we may want to only generate functions having some special property, such as

monotonicity or having some pre-specified integral. While this can be encouraged by choosing

an appropriate space of functions, strictly enforcing such constraints largely relies on designing

an appropriate neural architecture. To date, this design space is under explored.

Convergence Analyses Recent theoretical works calculate, under suitable assumptions,

upper bounds between the true data distribution and the distribution learned by diffusion

[Bortoli, 2022, Oko et al., 2023] or flow-based [Fukumizu et al., 2024] models. However, these

analyses are all in the finite-dimensional setting, and moreover, the error bounds depend

explicitly on the dimension of the state space. Analyzing the correctness of diffusion and

flow-based models in infinite-dimensional spaces is an open and interesting challenge for

future work.

Overall, this list of open problems represents only a small sample of the exciting and under-

explored field of machine learning in function spaces. Many challenges, both methodological

and theoretical, remain open, and addressing these may enhance both our understanding and

the real-world applicability of these models.
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Yujian Hong, Pedro Mart́ın Rodrguez-Ponga Eyriés, lvaro Sánchez Romero, Elena Petrunina,
lvaro Castillo, Diego Serna, and Rafael Hidalgo. GAA-UAM/scikit-fda: Functional data
analysis in Python, 2019.

James O. Ramsay and Bernhard W. Silverman. Functional Data Analysis. Springer New
York, 2008.

Carl Edward Rasmussen and Christopher Williams. Gaussian Processes for Machine Learning.
Springer, 2006.

Jakob Gulddahl Rasmussen. Temporal point processes: The conditional intensity function.
Lecture Notes, Jan, 2011.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
diffusion models for multivariate probabilistic time series forecasting. In Proceedings of the
38th International Conference on Machine Learning, pages 8857–8868, 2021a.

Kashif Rasul, Abdul-Saboor Sheikh, Ingmar Schuster, Urs M Bergmann, and Roland Vollgraf.
Multivariate probabilistic time series forecasting via conditioned normalizing flows. In
International Conference on Learning Representations, 2021b.

Deep Ray, Harisankar Ramaswamy, Dhruv V Patel, and Assad A Oberai. The efficacy and
generalizability of conditional gans for posterior inference in physics-based inverse problems.
Numerical Algebra, Control and Optimization, 14(1):160–189, 2024. ISSN 2155-3289. URL
https://www.aimsciences.org/article/id/639862c5b2114e413cb35cd4.

156

https://www.aimsciences.org/article/id/639862c5b2114e413cb35cd4


Yulia Rubanova, Ricky TQ Chen, and David K. Duvenaud. Latent ordinary differential
equations for irregularly-sampled time series. In Advances in Neural Information Processing
Systems, volume 32, 2019.

W. Rudin. Functional Analysis. Higher Mathematics Series. McGraw-Hill, 1973.

Tim G. J. Rudner, Zonghao Chen, and Yarin Gal. Rethinking function-space variational
inference in Bayesian neural networks. In Third Symposium on Advances in Approximate
Bayesian Inference, 2021.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding. In Advances in Neural Information
Processing Systems, volume 35, pages 36479–36494, 2022.

Mehdi SM Sajjadi, Bernhard Scholkopf, and Michael Hirsch. Enhancenet: Single image super-
resolution through automated texture synthesis. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4491–4500, 2017.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55
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Appendix A

Supplementary Material: Chapter 3

This section contains additional details regarding Chapter 3, largely to facilitate reproducibility.

In particular, Section A.1 discusses various hyperparameter choices and details needed to

reproduce our models. Section A.2 studies the effect of various kernel hyperparameters on

the resulting quality of the generated functions. Section A.3 contains pseudocode for our

methods, and Section A.4 contains experiments on a few additional datasets and with one

additional baseline.

A.1 Model Details

In all of our experiments, our model architecture is the Graph Neural Operator (GNO) of Li

et al. [2020]. We use a width of 64, a kernel width of 256, and a depth of 6. Inputs to the

GNO are graphs, constructed from discrete functional observations. In particular, for every

function we construct a graph where each node corresponds to a single observation of the

function. Each node has features corresponding to the observation location (i.e. point in X),

function value (i.e. scalar in R), and additionally time step t ∈ [1, T ]. Nodes are connected if
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the Euclidean distance between their observation locations is smaller than a fixed radius r.

We use r = 0.5 in all of our experiments, and we additionally scale X to [0, 1] ⊂ R. Each

edge in our graph has features corresponding to the observation locations and function values

of the respective nodes. While using r = 1 would be ideal in this setting, we find this to

be prohibitively expensive in terms of computation and memory usage. The Fourier Neural

Operator (FNO) [Li et al., 2021] has a significantly reduced computation and memory cost

compared to the GNO, but this model is limited to functional observations which are on a

uniform gridding of X.

Our models are all trained for 50 epochs and a learning rate of 0.001. We use T = 1000

time steps in all of our experiments. We set β1 = 10−4 and βT = 0.02, and we linearly

interpolate between these two values for other settings of βt. We parametrize the Gaussian

measure in our forward process via a mean-zero Gaussian process with a Matérn kernel of

unit variance and lengthscale ℓ = 0.1. In particular, we use a Matérn kernel with ν = 1/2

(i.e. the exponential kernel) when H = L2(X,ω) and ν = 3/2 when H = H1(X,ω). This

choice was made to ensure that the Gaussian measure was sufficiently rough to remove any

information contained in the functional data, yet regular enough to be square-integrable (and

differentiable in the ν = 3/2 case) such that we obtain a valid Gaussian measure on H.

A.2 Kernel Ablation

In Tables A.1-A.2, we study the effect of the kernel choice in the forward process on the

MoGP and AEMET datasets. In particular, we train models as above (using the discrete

L2(X,ω) loss function), but choose between values of ν = 1/2 and ν = 3/2 and sweep across

various length scales between 0.005 and 0.5. We then sample 500 generated functions from

our model, and compute the average pointwise mean and variance curves, as well as the

average autocorrelation curve – see Figures (3.1) and (A.1) for a visualization. We report the
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MSE between these generated functional statistics and the true functional statistics given by

the training data.

We see that choosing a length scale that is either significantly larger or smaller than the

length scale of the underlying functional data can have negative effects on the statistics, but

for reasonable choices of the length scale, the statistics are comparable. Although ℓ = 0.1

does not produce the best MSE values on the AEMET datsaet, we still use ℓ = 0.1 in our

main experiments as this produced the most qualitatively realistic generated curves.

Table A.1: Effect of kernel choice on the MoGP dataset. We report the MSE between various
functional statistics on the training data and data generated via our model with the listed
kernel hyperparameters.

ν ℓ Mean Var. Autocorr.

1/2 0.005 3.0333 6.1184 1.211e-4
0.01 0.4474 1.2174 5.552e-06
0.1 0.0032 0.2328 9.169e-06
0.2 0.4496 1.2752 9.183e-06
0.5 0.0318 0.2772 1.080e-05

3/2 0.005 0.5225 0.5783 3.638e-05
0.01 1.6557 4.7887 5.699e-05
0.1 0.4645 0.1239 1.928e-05
0.2 0.1046 0.2300 3.947e-06
0.5 0.2651 0.2586 6.677e-05

A.3 Pseudocode

In this section we detail pseudocode for model training, unconditional sampling, and condi-

tional sampling. Note that during training, we assume u0(x⃗) = y⃗, i.e. we treat the observations

as if they were noiseless. Thus the likelihood term q(y⃗ | x⃗, u0) does not contribute to the loss,

and we need only optimize the terms Lt−1 (see Equation (3.35). Moreover, as mentioned in

the main paper, we set λt = 1 as is standard in diffusion modeling [Ho et al., 2020].
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Table A.2: Effect of kernel choice on the AEMET dataset. We report the MSE between
various functional statistics on the training data and data generated via our model with the
listed kernel hyperparameters. For ν = 3/2 with a length scale of ℓ = 0.5 our training failed
to produce a reasonable model.

ν ℓ Mean Var Autocorr

1/2 0.005 0.1118 74.8143 1.813-06
0.01 0.0646 2.2001 4.563e-06
0.1 0.7284 2.2519 5.805e-05
0.2 0.0152 1.0748 2.551e-06
0.5 0.0832 3.0590 1.516e-05

3/2 0.005 0.1393 8.5001 1.700e-05
0.01 0.0899 1.28130 5.638-06
0.1 0.9317 148.4542 0.0021
0.2 7.3748 15634.6889 0.0398
0.5 - - -

Note that the given pseudocode for conditional generation covers both hard and soft con-

ditioning. Hard conditioning is obtained when nfree = 0, and soft conditioning is obtained

by setting nfree ≥ 1, i.e. the parameter nfree indicates how many generation steps are not

conditioned on the given information.

Algorithm 3: Training Step

1 Sample (x⃗, y⃗) from training data;
2 Sample t uniformly from {2, . . . , T};
3 Sample ξ ∼ GP (0, k), evaluated at x⃗ to obtain ξ(x⃗);
4 Construct ut | u0, evaluated at x⃗, via Lemma (15): ut(x⃗) =

√
γtu0(x⃗) +

√
1− γtξ(x⃗) ;

5 Compute model output ξθ(x⃗ | ut, t);
6 Take a θ-gradient step on Lt−1 =

(
ξ(x⃗)− ξθ(x⃗ | ut, t)

)T
A
(
ξ(x⃗)− ξθ(x⃗ | ut, t)

)
, where

A =

{
K−1

x⃗x⃗ H = L2(X,ω)

πPSD
(
[I +DTD][Kx⃗x⃗ +K ′

x⃗x⃗D]−1
)

H = H1(X,ω)
(A.1)
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Algorithm 4: Unconditional Sampling

1 Specify query points x⃗ ⊂ X;
2 Sample uT ∼ GP (0, k), evaluated at x⃗ to obtain uT (x⃗);
3 for t = T, T − 1, . . . , 1 do
4 Sample ξt ∼ GP (0, k), evaluated at x⃗ to obtain ξt(x⃗);

5 ut−1(x⃗)← 1√
1−βt

(
ut(x⃗)− βt√

1−γt
ξθ(x⃗ | ut, t)

)
+

√
β̃tξt(x⃗) ;

6 Return u0(x⃗)

Algorithm 5: Conditional Sampling

1 Given: conditioning information D = {(x(i)c , y
(i)
c )}nc

i=1 = {x⃗c, y⃗c} ;

2 Specify query points x⃗ = {x(1), x(2), . . . , x(n)} ⊂ X ;

3 Create augmented support z⃗ = {x(1), x(2), . . . , x(n), x(1)c , . . . , x
(nc)
c };

4 Sample uT ∼ GP (0, k), evaluated at z⃗ to obtain uT (z⃗);
5 for t = T, T − 1, . . . , 1 do
6 Sample ξt ∼ GP (0, k), evaluated at z⃗ and x⃗c to obtain ξt(z⃗);
7 Sample reverse process unconditionally on z⃗:

ũt−1(z⃗)← 1√
1− βt

(
ut(z⃗)− βt√

1− γt
ξθ(z⃗ | ut, t)

)
+

√
β̃tξt(z⃗) (A.2)

8 if t > nfree then
9 Sample ξ′t ∼ GP (0, k), and evaluate at x⃗c to obtain ξ′t(x⃗c);

10 Perturb conditioning information via the forward process:

y⃗c,t =
√
γty⃗c +

√
1− γtξ′t(x⃗c) (A.3)

11 For each x ∈ z⃗, conditioned on perturbed conditioning information by setting

ut−1(x) =

{
ũt−1(x) x /∈ D
yc,t(x) x ∈ D

(A.4)

12 else
13 Do no conditioning: ut−1(z⃗)← ũt−1(z⃗);

14 Return u0
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A.4 Additional Experiments

A.4.1 Unconditional Samples

In Figure (A.1), we provide additional examples of our model on various datasets not discussed

in the main paper. The first dataset (Linear) is a synthetic dataset consisting of random linear

functions u0(x) = ax+ b where a ∼ N (2, 0.252) and b ∼ N (−1, 0.072). Note that, although

the pointwise variance of the generated samples in this dataset appear to be significantly

smaller than the that of the true samples, this is largely due to the small scale of the variance.

The other datasets (Growth, Canadian, Octane) are well-known functional data analysis

datasets, which are available in the Python package scikit-fda [Ramos-Carreño et al., 2019].

A.4.2 FPCA Baseline

We additionally include a simple unconditional baseline based on functional principal compo-

nent analysis (FPCA). In particular, we approximate the first M = 5 functional principal

components by discretizing the training data (see Ramsay and Silverman [2008, Chapter 6]

for details and Ramos-Carreño et al. [2019] for an implementation), followed by fitting a

multivariate Gaussian to the resulting scores. To sample from this model, we sample from

the Gaussian distribution over scores and project back to function space by taking linear

combinations of the principal components with these sampled scores.

See Figure A.2 for an illustration of this approach on all of the datasets we have thus far

considered. We see that while the FPCA baseline is able to accurately match the functional

statistics of the training data, the generated samples often fail to match the qualitative

performance of our FuncDiff model (Figures 3.1 and A.1). Note that, unlike our FuncDiff

model, we are unable to perform conditional generation with this FPCA baseline.
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Figure A.1: Unconditional function generation on a synthetic (Linear) and several real-world
(Growth, Canadian, Octane) datasets. For each dataset, a GNO model was trained on the
plotted functions (first column), and a total of 500 functions were sampled from the model
(second column).
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Figure A.2: Unconditional samples from an FPCA-based model on various datasets. For
each dataset, we estimate the first M = 5 functional principal components and fit a Gaussian
distribution to the resulting scores. Generation is performed by sampling from said Gaussian
and taking the resulting linear combination of functional principal components. Although
the functional statistics closely match those of the training data, the perceptual quality of
the generated curves is worse than our FuncDiff model.
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Appendix B

Supplementary Material: Chapter 4

This section contains additional supplementary material for Chapter 4. In particular, Section

B.1 contains details necessary to reproduce our experiments, e.g., hyperparameters and

information regarding datasets. Section B.2 contains additional experimental results, including

a zero-shot super-resolution task. Lastly, Section B.3 describes some additional details

regarding conditional simulation.

B.1 Experiment Details

B.1.1 Parametrizations

The FM-OT and FM-VP model require specifying a variance schedule via the hyperparameter

σf
t . In this work, we parametrize FFM-OT by setting σmin = 1e−4. For FFM-VP, we

set αt = cos
(
t+s
1+s

π
2

)
where s = 0.08, following a formulation similar to the cosine schedule

introduced by Nichol and Dhariwal [2021].

Model-specific hyperparameters have been extensively fine-tuned via grid search, and we
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found the following parametrizations to consistently perform optimally across several domains:

• DDPM: the noise schedule, following the notation of Kerrigan et al. [2023], is set to

linearly interpolate between β0 = 1e − 4 and βT = 0.02 in T = 1000 timesteps. The

code for this implementation was taken directly from the official repository1.

• DDO: following the notation of Lim et al. [2023a], we set the time interval to T = 10,

and the noise schedule geometrically interpolates between σ10 = 1e − 3 and σ1 = 1

on the 1D datasets and σ10 = 1e − 2 and σ1 = 100 on the 2D datasets. Sampling is

performed by running their annealed Langevin dynamics algorithm with ϵ = 2× 10−5

and M = 200.

• GANO: the generator is trained every 5 epochs, and gradient penalty set to λ = 0.1 in

1D and λ = 10 in 2D. [Rahman et al., 2022]. The code for this implementation was

taken directly from the official repository2.

Model Architectures For FFM, DDPM, and DDO, the architecture used is the FNO

implemented in the neuraloperator package [Li et al., 2021, Kovachki et al., 2021]. For

GANO, we directly use the FNO-based model architectures for both the discriminator and

generator implemented by Rahman et al. [2022] for the 2D dataset, while for the 1D datasets

we use the same FNO architecture as the other methods.

Gaussian Measures Each model experimented with relies on noise sampled from a

Gaussian measure. In our work, we consider a mean-zero Gaussian process (GP) parametrized

by a Matrn kernel with ν = 1/2. In 1D, the kernel hyperparameters are set to have a variance

σ2 = 0.1 and length scale ℓ = 1e− 2. In 2D, the variance is σ2 = 1 and the length scale was

set to ℓ = 1e− 3 for DDO and GANO, and ℓ = 1e− 2 for FFM and DDPM.

1https://github.com/GavinKerrigan/functional diffusion
2https://github.com/neuraloperator/GANO
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Training All models are trained using the Adam optimizer. In 1D, we use an initial learning

rate of 1e−3, scheduled to decrease by one order of magnitude after 50 epochs for all datasets

but AEMET, where it is decreased every 25 epochs. In 2D, we use an initial learning rate of

5e− 4 for FFM, DDPM, and DDO, and an initial learning rate of 1e− 4 for GANO, and this

initial learning rate was decayed by one order of magnitude every 25 epochs.

B.1.2 Dataset Details

Navier-Stokes. This dataset consists of solutions to the Navier-Stokes equations on a

2D torus at a resolution of 64x64. For the sake of efficient training, we randomly selected

20,000 datapoints for training from the original dataset [Li et al., 2022] as there is a high

degree of redundancy in the data. For FFM, DDPM, and DNO, we use 4 Fourier layers of 32

modes and 64 hidden channels, 256 lifting channels, 256 projection channels, and the GeLU

activation function [Hendrycks and Gimpel, 2016]. For GANO, we use 32 modes and set the

number of hidden channels to 16 due to memory constraints. All models were trained for 300

epochs at a batch size of 128.

AEMET dataset. This dataset consists of a set of functions describing the mean curve of

the average daily temperature (in Celsius) for the period 1980-2009 recorded by 73 weather

stations in Spain [Febrero-Bande and de la Fuente, 2012]. Each function is observed on a

uniform grid at a resolution of 365. The neural architecture we use for this dataset is an FNO

with a width of 256 and 64 modes, kept constant for all models considered in this experiment.

The model is trained for 50 epochs, with batch size set to 73.

Gene expression. The original dataset consists of 10,928 time series at 20 uniformly

spaced time points, recording the amplitude of gene expression for 4 different genes. The

genes are concatenated to create the visual effect of spikes occurring periodically in time,

171



while maintaining the structure of the original dataset. The data was log-transformed and

centered before being fed to the model. We restrict our focus to a subset of 156 functions

exhibiting large gene expression, determined by the standard deviation averaged across time

for each centered function being greater than 0.3. For this dataset, we use an FNO with

a width of 256 and 16 modes across all models. The model is trained for 200 epochs, with

batch size set to 16.

Economic datasets. The first two datasets are taken from the Maddison Project database

[Bolt and Van Zanden, 2020, Inklaar et al., 2018], and the third from the IMF [International

Financial Statistics, 2022]. The datasets were picked specifically for their distinct visual

characteristics, explored in greater detail in Appendix B.2.

• Population: time series of the evolution of the population for 169 countries across the

globe from the year 1950 to 2018 (that is, discretized at 69 points in time). For a

clearer visual representation, each time series was divided by its mean, so each curve

represents the population for each country, relative to the mean population for that

country over the 69 years under consideration. The functions in this dataset exhibit

linear growth over time, with a change point shared across observations.

• GDP : time series representing the evolution of GDP per capita from 1950 to 2018. The

original dataset consists of 169 countries, but time series presenting missing values were

removed yielding 145 observations. The same preprocessing as that described above

was applied to the data. While the functions seem to exhibit the same change point as

that observed for the population datasets, the growth over time is noisier and exhibits

irregular patterns.

• Labor : size of labor force per quarter between Q1 2017 and Q4 2022 (for a total of 24

points in time), for a subset of 35 countries (obtained removing those with missing
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values from the original 105 observations). The same preprocessing as that described

for the population dataset was applied to the data. This dataset tests the ability of the

generative models to learn from small and multimodal data.

The models for the population and GDP datasets have width set to 256 and 32 modes, while

the one for the labor dataset has width set to 128 and 8 modes. All models were trained for

100 epochs, with a batch size of 16.

B.1.3 Sampling Details

We use the torchdiffeq [Chen, 2018] package for all ODE solvers. The specific solver we use

is dopri5, an implementation of the Dormand-Prince method [Dormand and Prince, 1980] of

order 5. We set the absolute and relative tolerance parameters to 1e−10 for the 1D datasets

and 1e−5 for the 2D datasets. Note that setting such a tolerance gives us an explicit way of

trading off sample quality for sampling efficiency.

B.2 Additional Experimental Results

This section contains several additional experimental results and figures. First, in Section

B.2.1 we explore an additional synthetic dataset consisting of a mixture of Gaussian processes

(MoGP). Next, we provide additional results on super-resolution in Section B.2.2. Sections

B.2.3 and B.2.4 provide further visualizations of our results on the 1D and 2D datasets

considered in the main paper respectively.
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B.2.1 Additional Results: MoGP

Mixture of Gaussian Processes (MoGP) Dataset. The experiment considers the task

of generating samples from a mixture of two GPs. The two components, with equal weights,

have mean functions m1 = 10x− 5 and m2 = −10x+ 5, and a squared-exponential kernel

with variance σ2 = 0.04 and length scale ℓ = 0.1. The synthetic samples used for training are

observed on a uniform grid at a resolution of 64 on the interval [0, 1]. All models were trained

on the same sample of N = 5000 realizations of the mixture of GPs. Figure B.1 illustrates a

visual comparison of 500 samples from each model, while Table B.1 presents a quantitative

comparison of the mean squared error (MSE) on various pointwise statistics. Additionally,

Figure B.1 provides a comprehensive depiction of the variations in these pointwise statistics

across different models.

Table B.1: Average MSEs between true and generated samples for various pointwise statistics
on the MoGP dataset, along with the standard deviation (across ten random seeds). The
average number of function evaluations (NFEs) for each model is also reported. Variants
of our proposed FFM model obtain the best or second best average performance across all
metrics. DDPM outperforms FFM in terms of variance, but only by a small margin.

Mean Variance Skewness Kurtosis Autocorrelation NFEs

FFM-OT (ours) 2.2e-2 (3.e-2) 2.9e-1 (3.2e-1) 1.6e-2 (1.1e-2) 1.1e-2 (1.2e-2) 7.e-6 (6.e-6) 740
FFM-VP (ours) 3.9e-2 (3.6e-2) 3.6e-1 (5.6e-1) 1.4e-2 (5.2e-3) 1.5e-2 (1.2e-2) 8.e-6 (8.e-6) 716
DDPM 3.0e-2 (2.4e-2) 1.4e-1 (1.9e-1) 1.5e-2 (9.6e-3) 1.2e-2 (8.1e-3) 1.9e-5 (2.2e-5) 1000
DDO 7.3e-1 (9.6e-1) 2.7e+0 (5.3e+0) 4.2e-1 (8.7e-1) 2.8e-1 (3.9e-1) 1.3e-5 (8.e-6) 2000
GANO 1.9e-1 (1.6e-1) 8.1e+0 (6.0e+0) 3.4e-1 (2.5e-1) 4.6e-2 (3.9e-2) 6.2e-4 (6.7e-4) 1

B.2.2 Additional Results: Super-Resolution

Here, we provide additional visualizations regarding the ability of all models considered to

perform super-resolution, i.e. to sample at a resolution greater than the training dataset.

All models considered are trained at the original dataset resolution, but due to the neural

operator architectures being used, we may sample at arbitrary resolutions. We note that

quantitatively evaluating these super-resolved samples is difficult as we do not have access to

a notion of higher-resolution ground truth here.
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Figure B.1: Various pointwise statistics on the MoGP dataset. Curves in black indicate the
corresponding pointwise statistic for the original dataset (top row). The green error bands
represent the minimal and maximal value of the pointwise statistic from 500 samples across
ten random seeds of the corresponding model. The dashed green lines indicate the mean
pointwise statistic across these ten runs for each model. See Table B.1 for a quantitative
comparison.

Figure B.2 shows samples from the original Gene expression time series dataset [Orlando

et al., 2008] at a resolution of 20, as well as samples from each model at a 5x resolution,
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i.e. a resolution of 100. We see that, qualitatively, samples from FFM, DDPM, and GANO

resemble those of the original dataset. The samples from DDO appear overly rough, and the

samples from GANO are smoother than those from FFM and DDPM.

Figure B.3 shows qualitatively similar results on the econometrics datasets [Bolt and Van Zan-

den, 2020, Inklaar et al., 2018, International Financial Statistics, 2022], with the exception of

FFM-VP generating samples that are rougher than the original data. To further explore the

quality of these super-resolved samples, we additionally provide the correlation matrices of

the original data and super-resolved samples in Figure B.4. We generally see that FFM-OT,

FFM-VP, DDPM, and GANO are able to qualitatively capture the original correlation struc-

tures, whereas DDO fails to do so. We additionally note that on the Population and GPD

datasets, FFM-VP, DDO, and GANO display a consistent strong diagonal band, indicating

that these models generate samples at a variance which is too large when super-resolved. All

models display this failure mode on the Labor dataset.

Figure B.2: Samples from the gene expression dataset and samples from the various models
at a 5x super-resolution.
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Figure B.3: Samples from the three economics datasets and samples from the various models
at a 5x super-resolution.
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Figure B.4: Correlation matrices for the three economics datasets (top row), as well as
correlation matrices for each dataset for the generated samples from each model at a 5x
super-resolution.
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B.2.3 Additional Results: 1D Datasets

This section provides a further analysis and visualization of the generated samples for the

1D datasets considered in the main paper. In Figures B.5 through B.9, we plot the original

data, generated samples from each model, and various pointwise statistics for the real and

generated samples. Curves in black indicate the corresponding pointwise statistic for the

original dataset (top row). The green error bands represent the minimal and maximal value

of the pointwise statistic from 500 samples across ten random seeds of the corresponding

model. The dashed green lines indicate the mean pointwise statistic across these ten runs for

each model. See Table 4.1 for a quantitative comparison derived from these figures.
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Figure B.5: Various pointwise statistics on the AEMET dataset.
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Figure B.6: Various pointwise statistics on the Population dataset.
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Figure B.7: Various pointwise statistics on the GDP dataset.
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Figure B.8: Various pointwise statistics on the Labor dataset.
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Figure B.9: Various pointwise statistics on the Genes dataset.
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B.2.4 Additional Results: Navier-Stokes Dataset

In this section, we provide additional visualizations and evaluation on the Navier-Stokes

dataset, corresponding to the samples in Figure 4.2 and Table 4.2a in the main paper. The

first row of Figure B.10 plots a Gaussian KDE with a fixed bandwidth of 0.5 for the pixel-wise

values of both the real and generated samples across all methods. We observe that FFM

and DDPM closely match the ground-truth distribution, whereas DDO places too much

mass around zero, and GANO learns a multimodal distribution. In the second row, we plot

the spectrum of both the real and generated samples, i.e. the log-energy as a function of

the wavenumber. We see that FFM and DDPM closely match the true spectrum for low

wavenumbers, whereas the fits of DDO and GANO are less close. For all models, the generated

samples fail to match the true spectrum at high wavenumbers. We obtain quantitative metrics

from these visualizations by considering the pointwise MSE between the ground truth and

generated curves to obtain the metrics in Table 4.2a.
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Figure B.10: Additional visualizations corresponding to the samples in Figure 4.2 and Table
4.2a. We use 1000 samples from each of the models.
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B.3 Conditional Models

In addition to unconditional generation of functions, we demonstrate that our method can

be extended to perform conditional generation. That is, we have access to side information

z ∈ Rd (assumed to be finite dimensional) and we are interested in sampling from the

conditional data measure ν( df | z). For instance, z could be a collection of observed values

of some function, and we may be interesting in generating functions which interpolate (or

extrapolate) these given observations. We describe two approaches to performing conditional

generation: one based on a modified training process, and a second based on a modified

sampling process. In Figure 3.2, we demonstrate these two approaches on the AEMET

dataset.

Conditional Training. Using the unconditional paths of measures µf
t as described in

the unconditional setting, we may define a conditional marginal µt( df | z) by mixing over

dν(f | z), i.e. µt(A | z) :=
∫
H
µf
t (A) dν(f | z).

As long as µf
t is concentrated around f , then µt( df | z) ≈ ν( df | z). Note that this condition

is satisfied for the paths of measures constructed for unconditional generation, and hence no

modification is necessary. However, modifying the conditional measures to account for the

information z could potentially be beneficial, and we leave exploration of such design choices

to future work. In all, we obtain a modified loss function

JC(θ) = Et∼U [0,1],z∼q(z),f∼ν( df |z),g∼µf
t

[∥∥∥vft (g)− ut(f | z, θ)
∥∥∥2] . (B.1)

In other words, we simply adapt our model architecture to also take in conditioning information

z at training time. In practice, because z is assumed to be finite dimensional, we concatenate
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z to the input of our FNO model [Li et al., 2021]. We note that a similar loss appears in the

context of Flow Matching generative models for video, as proposed by [Davtyan et al., 2023].

Conditional Sampling. As an alternative, we may instead modify the sampling process

to account for z. This allows one to train an unconditional model and sample conditionally

at generation time (in contrast to the conditional training setup, which only allows you to

condition on the particular form of z you have trained on). Here, we assume that z = (x⃗, y⃗)

consists of a collection of function observations, and that we would like to generate functions

whose values match those observed in z.

In order to achieve this, at time t ∈ [0, 1], we take a step as dictated by our ODE solver

and model vector field to obtain a function f̃t. Next, we flow the information contained

in z forwards for t seconds along the conditional vector field designated by our model to

obtain zt = (x⃗, y⃗t). Then, we set ft(x⃗) = y⃗t. This approach can be seen as an extension of

the ILVR method, which has been successfully applied to diffusion models for conditional

image generation [Choi et al., 2021] and diffusion models for conditional function generation

[Kerrigan et al., 2023].
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Appendix C

Supplementary Material: Chapter 5

This section contains additional material relating to Chapter 5. Section C.1 contains details

necessary to reproduce our experiments (e.g., hyperparameter settings). Section C.2 contains

additional details regarding the experiments on the 2D datasets used in this chapter, with

additional figures illustrating the results appearing in the main body of Chapter 5. Sections

C.3 and C.4 describe similar content for the Lotka-Volterra system and inverse Darcy flow,

respectively.

C.1 Experiment Details

In this section, we provide additional details regarding all of our experiments, as well as

additional results not contained within Chapter 5. All models can be trained on a single GPU

with less than 24 GB of memory, and our experiments were parallelized over 8 such GPUs on

a local server. We first describe our setting for the 2D and Lotka-Volterra experiments, as

these share a similar setup. Details for the Darcy flow inverse problem are described in the

corresponding section.
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Table C.1: Hyperparameter grid used for random search of the FM and COT-FM models on
the 2D and Lotka-Volterra datasets.

Hyperparameter Description Values

ϵ COT coupling strength [1e-6, 1e-4, 1e-2, 1e-1]
σ Variance for C = σ2I in (5.91) [1e-3, 1e-2, 1e-1, 5e-1]
Batch Size Training batch size [256, 512, 1024]
Width Layer width in MLP [256, 512, 1024, 2048]
LR Learning rate [1e-4, 3e-4, 7e-4, 1e-3]
Layers Number of MLP layers [4, 6, 8]

Models. For FM and COT-FM, our model architecture is an MLP with SeLU activations

[Klambauer et al., 2017]. Time conditioning is achieved by concatenating the time variable

as an input to the network. The covariance operator C chosen in the path of measures in

Equation (5.91) is taken to be C = σ2I where σ is a hyperparameter.

Our implementation of FM is adapted from the torchcfm package Tong et al. [2024], avail-

able under the MIT License. For PCP-Map and COT-Flow, we adapt the open-source

implementations from Wang et al. [2023], available under the MIT License.

Training and Model Selection. Hyperparameter tuning of the PCP-Map and COT-Flow

models was performed directly using the code of Wang et al. [2023], essentially implementing

grid-search with an early stopping procedure. We refer to the paper and codebase of Wang

et al. [2023] for further details. For COT-FM and FM, we perform a random grid search over

100 hyperparameter settings using the grid described in Table C.1. For all model types, we

select the best model used to generate the results in the paper as the training checkpoint

that resulted in the lowest W2 error to the joint target distribution on a held-out validation

set. For training, we use the Adam optimizer where we only tune the learning rate, leaving

all other settings as their defaults in pytorch.
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C.2 2D Synthetic Data

Data Generation. This experiment consists of four 2D synthetic datasets, where Y = U =

R. The datasets moons, circles, swissroll are available through scikit-learn [Pedregosa

et al., 2011]. The moons dataset is generated with noise=0.05 followed by standard scaling

with a mean of m = (0.5, 0.25) and standard deviation of σ = (0.75, 0.25). The circles

dataset is generated with factor=0.5 and noise=0.05. The swissroll dataset is generated

with noise=0.75, followed by projection to the first two coordinates and re-scaling by a

factor of 12. All other unstated parameters are left as their default values. We use the code

available from Hosseini et al. [2023] to generate the checkerboard dataset. For all datasets,

we generate a training set (i.e., samples from the target distribution) of 20, 000 samples

and 1, 000 held-out validation samples for model selection. Means and standard deviations

in Table 5.1 are reported across five independent testing sets of 5,000 samples for the best

representative of each model type.

In COT-FM, to generate samples from the source distribution, we sample an additional

20, 000 points from the target distribution and keep only the Y coordinates. This ensures

that the source and target have equal Y marginals. During training, standard Gaussian noise

N (0, 1) is sampled for the U coordinate of these source points at each minibatch.

We use minibatch COT couplings [Tong et al., 2024] in this experiment as computing the full

COT plan was prohibitively expensive in terms of memory usage. However, we note that we

use large batch sizes, meaning that the COT plan we find in this way should not be too far

from optimal. All couplings are computed using the POT Python package [Flamary et al.,

2021].
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Figure C.1: Samples from the ground-truth joint target distribution and the various models
for the 2D datasets. Samples from COT-FM more closely match the ground-truth distribution
than the baselines. A common failure mode for the baselines is to generate samples from
regions with zero support under the true data distributions. Table 5.1 contains a quantitative
evaluation.
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Figure C.2: Conditional KDEs shown for each of the methods on the 2D datasets. The
conditioning variable y is fixed at the horizontal dashed line shown in Figure C.1. In all plots,
the orange solid line indicates the CKDE of the ground-truth joint samples. In each column,
the dashed blue line indicates the CKDE of samples generated from the respective method.
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C.3 Lotka-Volterra Dynamical System

Data Generation. We adopt the settings of Alfonso et al. [2023] for this experiment. As

described in the main paper, we assume p(0) = (30, 1) and that log(u) ∼ N (m, 0.5I) with

m = (−0.125,−3,−0.125,−3). Given parameters u ∈ R4
≥0, we simulate Equation (5.94) for

t ∈ {0, 2, . . . , 20} to obtain a solution z(u) ∈ R22
≥0. An observation y ∈ R22

≥0 is obtained by the

addition of log-normal noise, i.e. log(y) ∼ N (log(z(u), 0.1I). We thus may simulate many

(y, u) pairs from the target measure for training.

We generate a training set of 10, 000 (y, u) pairs using the procedure described above and

a held-out validation set of 10, 000 (y, u) pairs for model selection. Means and standard

deviations in Table 5.2 are reported across five independent testing sets of 5,000 samples

for the best representative of each model type. Figure 5.3 and Figures C.5, C.4, C.3, C.6

show 10, 000 samples from each model, as well as 10, 000 samples from the differential

evolution Metropolis MCMC sampler [Braak, 2006] after a burn-in of 50, 000 samples. This

is implemented through the PyMC Python package [Abril-Pla et al., 2023].

For COT-FM we use the full COT couplings, i.e. without minibatches. This is available to

use due to the smaller size of the training set used in this experiment. The COT couplings

are computed in the same way as the previous section, and as described in Section 5.6.

194



0.50 0.75 1.00 1.25

α

α

0.0 0.1

0.50

1.25

β

0.00 0.05 0.10

β

0.7 1.3

0.50

1.25

γ

0.7 1.3

0.0

0.1

0.75 1.00 1.25

γ

0.02 0.06

0.50

1.25

δ

0.02 0.06

0.0

0.1

0.02 0.06

0.7

1.3

0.02 0.04 0.06

δ

Lotka-Volterra Samples: COT-FM (Ours)

Figure C.3: KDE plots of the samples on the Lotka-Volterra system, using the settings
described in Section 5.6. Plots include one-dimensional KDEs on the diagonal, as well as
all two-dimensional pairs. In all plots, samples from MCMC are drawn in orange, and
samples from our method (COT-FM) are indicated in blue. The true unknown parameters
are indicated by the red vertical line in the diagonal plots, or the black x in the off-diagonal
plots.
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Figure C.4: KDE plots of the samples on the Lotka-Volterra system, using the settings
described in Section 5.6. Plots include one-dimensional KDEs on the diagonal, as well as all
two-dimensional pairs. In all plots, samples from MCMC are drawn in orange, and samples
from PCP-Map are indicated in blue. The true unknown parameters are indicated by the red
vertical line in the diagonal plots, or the black x in the off-diagonal plots.
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Figure C.5: KDE plots of the samples on the Lotka-Volterra system, using the settings
described in Section 5.6. Plots include one-dimensional KDEs on the diagonal, as well as all
two-dimensional pairs. In all plots, samples from MCMC are drawn in orange, and samples
from COT-Flow are indicated in blue. The true unknown parameters are indicated by the
red vertical line in the diagonal plots, or the black x in the off-diagonal plots.
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Figure C.6: KDE plots of the samples on the Lotka-Volterra system, using the settings
described in Section 5.6. Plots include one-dimensional KDEs on the diagonal, as well as all
two-dimensional pairs. In all plots, samples from MCMC are drawn in orange, and samples
from flow matching (FM) are indicated in blue. The true unknown parameters are indicated
by the red vertical line in the diagonal plots, or the black x in the off-diagonal plots.
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C.4 Inverse Darcy Flow

Dataset. The training and test datasets are generated following the same procedure as

Hosseini et al. [2023]: pressure fields u are sampled from a Gaussian process with Matérn

kernel having ν = 3/2 and lengthscale ℓ = 1/2, on a regular 40× 40 grid. The parameters are

then exponentiated and used to simulate the permeability fields p from the forward model F

solving the Darcy flow PDE, using FEniCS [Alnæs et al., 2015]. Stochasticity arises from

adding Gaussian noise to the permeability fields, obtaining y = F(u) + ϵ, ϵ ∼ N (0, σ2I). For

our experiments we observe y on a 100× 100 grid, and we use σ = 2.5× 10−2. We note that

this level of noise is quite considerable, as it accounts for roughly 60% of the variability in

the y. Figure C.7 showcases a data point for reference. Our source and target training sets

contain 1× 104 samples each, and our test set comprises 5× 103 samples. We remark that

although y and u are observed on a grid their resolution does not need to be fixed, allowing

for training at different resolutions.

Figure C.7: Example of one random data point from the Darcy flow dataset.

Models. In order to make learning feasible in infinite-dimensional Hilbert spaces, we adapt

the architecture of a Fourier Neural Operator (FNO) [Li et al., 2021] from the neuraloperator

package [Kovachki et al., 2021] to accommodate for conditioning information observed at an

arbitrary resolution. We do so by introducing a projection layer mapping the conditioning

information to match the hidden channels of the input lifting block, and a pooling operation

to project to the input dimensions. The two are then concatenated and passed through
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an FNOBlock mapping from (2 × hidden channels) × input dim to hidden channels ×

input dim, before following the original architecture. For all of the models in consideration,

we fix the architecture to be have hidden channels = 64, projection channels = 256,

and 32 Fourier modes. We train each model for 1500 epochs, and hyperparameters for each

architecture are selected as follows:

• WaMGAN [Hosseini et al., 2023]: using an adaptation to the FNO architecture of

the original code1, we perform a grid search as detailed in Table C.2. We found the

training procedure to be rather unstable, and for this reason we checkpoint the model

every 100 epochs and report the results for the best performing model at its best

checkpoint. We found this to be a model with learning rate 1 × 10−4, 2 full critic

iterations, and monotone penalty of 1× 10−3. The gradient penalty parameter did not

seem to significantly affect performance on the test set, and was set to 5.

• FFM [Kerrigan et al., 2024a]: the learning rate is fixed to 5× 10−4, and the covariance

operator C is set to match that of the prior, but rescaled by a factor of σ = 1× 10−3.

We use the code from the original repository2.

• COT-FFM: we set ϵ = 1× 10−5 in the cost function used to build the COT plan. The

learning rate and C are chosen to be the same as FFM. In order to build COT couplings,

we take the source measure to be the product measure πY
#η ×N (0, C). Approximate

couplings are obtained on minibatches of size 256.

It should be noted that in any scenario where the source and the target U−marginals are

identical, using the OT coupling would yield the identity mapping as the optimal vector field

minimizing (5.93). Hence, the OT-CFM model [Tong et al., 2024] is inapplicable here.

1https://github.com/TADSGroup/ConditionalOT2023
2https://github.com/GavinKerrigan/functional flow matching
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Table C.2: Hyperparameter search space for WaMGAN

Parameter Search Space

Learning rate {1× 10−3, 5× 10−4, 1× 10−4}
Full critic iter. {2, 5, 10}

Monotone penalty {1× 10−3, 5× 10−2, 1× 10−1}
Gradient penalty {1, 5, 10}

Sampling. The resulting amortized sampler, denoted for simplification by the mapping

(y, u0) 7→ u1 = T̃U(y, u0), will parameterize an approximate posterior measure. Notice that,

in contrast to classical variational inference techniques, no distributional assumptions are

made about the approximate posterior. In turn, integrals are obtained numerically by Monte

Carlo sampling K samples from the prior, resulting in the approximation

νy(f) ≈
∫
f dδT̃U (y,u0)

dN (0, C) ≈ 1

K

K∑
k=1

f(T̃U(yk, u0,k)), {u0,k}Kk=1
i.i.d.∼ N (0, C). (C.1)
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Appendix D

Supplementary Material: Chapter 6

This section contains additional material related to Chapter 6. More specifically, Section

D.1 describes the datasets used in this chapter with some additional exploratory analyses.

Section D.2 contains details required to reproduce our results, including model training and

architecture details. Finally, Section D.3 provides a detailed discussion of the baseline models

used in this chapter.

D.1 Datasets

In this section, we provide some additional details regarding the datasets used in this work. In

Table D.1, we report the number of sequences in each dataset, some basic statistics regarding

the number of events in each sequence, and their support [0, T ] and chosen forecast window

∆T . In all datasets, we use 60% of the data for training, 20% for validation, and the remaining

20% for testing.

202



Synthetic Datasets Our synthetic datasets are adopted from those proposed by Omi et al.

[2019]. Each of these datasets consists of 1, 000 sequences supported on T = [0, 100]. These

synthetic datasets are chosen as they exhibit a wide range of behavior, ranging from i.i.d.

inter-arrival times to self-correcting processes which discourage rapid bursts of events. We

refer to Section 4 of Omi et al. [2019] for details.

Real-World Datasets We use the set of real-world datasets proposed in Shchur et al.

[2020b], which constitute a set of standard benchmark datasets for unmarked TPPs. We refer

to Appendix D of Shchur et al. [2020b] for additional details. With the exception of PUBG,

these datasets are supported on T = [0, 24], i.e. each sequence corresponds to a single day.

For the PUBG dataset, T = [0, 38] corresponds to the maximum length (in minutes) of an

online game of PUBG. We note that PUBG has the largest number of sequences (which can

lead to slow training), and the Reddit-C and Reddit-S datasets have long sequences (which

can lead to slow training and high memory costs).

Table D.1: Some basic summary statistics of the datasets we consider in this work.

Sequences Mean length Std length Range length Support ∆T

Hawkes1 1000 95.4 45.8 [14, 300] [0, 100] −
Hawkes2 1000 97.2 49.1 [18, 355] [0, 100] −
Nonstationary Poisson 1000 100.3 9.8 [71, 134] [0, 100] −
Nonstationary Renewal 1000 98 2.9 [86, 100] [0, 100] −
Stationary Renewal 1000 109.2 38.1 [1, 219] [0, 100] −
Self-Correcting 1000 100.3 0.74 [98, 102] [0, 100] −

PUBG 3001 76.5 8.8 [26, 97] [0, 38] 5
Reddit-C 1356 295.7 317.9 [1, 2137] [0, 24] 4
Reddit-S 1094 1129 359.5 [363, 2658] [0, 24] 4
Taxi 182 98.4 20 [12, 140] [0, 24] 4
Twitter 2019 14.9 14 [1, 169] [0, 24] 4
Yelp-Airport 319 30.5 7.5 [9, 55] [0, 24] 4
Yelp-Miss. 319 55.2 15.9 [3, 107] [0, 24] 4
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D.2 EventFlow Architecture and Training Details

Here, we provide additional details regarding the parametrization and training of our

EventFlow model. In general, our model is based on the transformer architecture [Vaswani

et al., 2017, Yang et al., 2022], due to its general ability to handle variable length inputs and

outputs, high flexibility, and ability to incorporate long-range interactions. In all settings,

our reference measure µ0 is specified with q = N (0, I).

Model Parametrization For our unconditional model, we first embed the sequence times

γs, the flow-time s, and the sequence position indices using sinusoidal embeddings followed

by an additional linear layer. There are three linear layers in total – one for the flow time,

one shared across the sequence times, and one for the position indices. These embeddings

are added together to create a representation of the sequence, and we apply a standard

transformer to this sequence to produce a sequence of vectors of length N(γs). Finally, each

of these vectors is projected to one dimension via a final linear layer with shared weights to

produce the vector field vθ(γs, s). See Figure D.1.

For the conditional model, we use a standard transformer encoder-decoder architecture. We

first embed the history sequence times H and the sequence position indices in a manner

analogous to the above. In addition, the model was provided the start of the prediction

window T0 by concatenating it as the final event in H. This yielded better results than

encoding the start of the prediction window separately. We feed these embeddings through

the transformer encoder produce an intermediate representation eH.

For the decoder, we provide the model with the current state γs (corresponding to the generated

event times at flow-time s), the flow-time s, and the corresponding positional indices. These

are embedded as previously described, before being passed into the transformer decoder. The

history encoding eH is provided to the decoder via cross-attention in the intermediate layer.
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This produces a sequence of N(γs) vectors, which we again pass through a final linear layer

to produce the final conditional vector field vθ(γs, s, eH). See Figure D.2.

Our architecture for predicting the number of future events given a history, i.e. p(n | H),

is again based on the transformer decoder, sharing the same overall architecture as our

unconditional model. However, the key difference is that we instead take a mean of the final

sequence embeddings before passing this through a small MLP to produce the final logit. See

Figure D.3.

Training and Tuning We normalize all sequences to the range [−1, 1], using the overall

min/max event time seen in the training data. All sequences are generated on this normalized

scale, prior to re-scaling the sequence back to the original data range before evaluation.

Our model is trained with the Adam [Kingma and Ba, 2014] optimizer with β1 = 0.9 and

β2 = 0.999 for 30, 000 steps with a cosine scheduler, which cycled every 10, 000 steps. Final

hyperparameters were selected by best performance on the validation dataset achieved at any

point during the training, where models were evaluated 10 times throughout their training.

To tune our model, we performed a grid search over learning rates in {5×10−3, 10−3, 5×10−4}

and dropout probabilities in {0, 0.1, 0.2}. Overall, we found that learning rates of 10−2 or

larger often caused the model to diverge, and a dropout of 0.1 yielded the best results across

all settings. We use 6 transformer layers, 8 attention heads, and an embedding dimension of

512 across all settings, except for the Reddit-C and Reddit-S datasets where we use 4 heads

and an embedding dimension of 128 due to the increased memory cost of these datasets.
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Figure D.1: Overview of our model architecture for unconditional generation. The model
takes as input the flow time s and current sequence state γs =

∑n
k=1 δ[t

k
s ]. Each input is

projected to a fixed-length vector via a learnable embedding. The resulting embeddings are
added and passed to the transformer model, which produces a sequence of output velocities
vθ(γs, s) with N(γs) components.
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Figure D.2: Overview of our model architecture for conditional generation. The encoder
(left) takes as input the observed history H, which is embedded in a fashion analogous to our
unconditional model. The decoder (right) takes as input the flow time s and current state
γs =

∑
k=1 δ[t

k
s ]. These are embedded and passed through the decoder, which applies cross

attention to produce the conditional velocities vθ(γs, s, eH).
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Figure D.3: Overview of our architecture modeling the event count distribution pϕ(n | H).
The model takes as input an observed history H. As in our other architectures, the events
are embedded and passed through a transformer. Here, the final sequence embedding output
by the transformer is averaged and passed through an additional residual MLP with three
layers to produce the logit corresponding to p(n | H).
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Table D.2: The best hyperparameter settings found for the vector field vθ in our EventFlow
method on the unconditional generation task.

Learning Rate Emb. Dim. MLP Dim Heads Transformer Layers

Hawkes1 10−3 512 2048 8 6
Hawkes2 10−3 512 2048 8 6
Nonstationary Poisson 10−3 512 2048 8 6
Nonstationary Renewal 10−3 512 2048 8 6
Stationary Renewal 10−3 512 2048 8 6
Self-Correcting 10−3 512 2048 8 6

PUBG 5× 10−4 512 2048 8 6
Reddit-C 10−3 128 256 4 6
Reddit-S 5× 10−3 128 256 4 6
Taxi 5× 10−4 512 2048 8 6
Twitter 10−3 512 2048 8 6
Yelp-Airport 5× 10−4 512 2048 8 6
Yelp-Miss. 10−3 512 2048 8 6

Table D.3: The best hyperparameter settings found for the vector field vθ in our EventFlow
method on the forecasting task.

Learning Rate Emb. Dim. MLP Dim. Heads Transformer Layers

PUBG 10−3 512 2048 8 6
Reddit-C 10−3 128 256 4 6
Reddit-S 10−3 128 256 4 6
Taxi 10−3 512 2048 8 6
Twitter 5× 10−4 512 2048 8 6
Yelp-Airport 10−3 512 2048 8 6
Yelp-Miss. 10−3 512 2048 8 6

Table D.4: The best hyperparameter settings found for the event count predictor p(n | H) in
our EventFlow method on the forecasting task.

Learning Rate Emb. Dim. MLP Dim. Heads Transformer Layers

PUBG 5× 10−4 512 2048 8 6
Reddit-C 10−3 128 256 4 6
Reddit-S 10−3 128 256 4 6
Taxi 5× 10−4 512 2048 8 6
Twitter 5× 10−4 512 2048 8 6
Yelp-Airport 5× 10−4 512 2048 8 6
Yelp-Miss. 5× 10−4 512 2048 8 6
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D.3 Additional details on baselines

In this section, we provide additional details regarding our baseline methods. All methods

are trained at a batch size of 64 for 1, 000 epochs, using early stopping on the validation set

loss. In early experiments, we also evaluated AttNHP [Zuo et al., 2020], a variant of the NHP

which uses an attention-based encoder, but found it to be prohibitively expensive in terms of

memory cost (requiring more than 24 GB of VRAM) and, as a result, do not include it in

our results.

IFTPP Our first baseline is the intensity-free TPP model of Shchur et al. [2020a]. This

model uses an RNN encoder and a mixture of log-normal distributions to parametrize the

decoder. We directly use the implementation provided by the authors.1. We train for 1, 000

epochs with early stopping based on the validation set loss. To tune this baseline, we performed

a grid search over learning rates in {10−4, 10−3, 10−2}, weight decays in {0, 10−6, 10−5, 10−4},

history embedding dimensions {32, 64, 128}, and mixture component counts {8, 16, 32, 64}.

Our best hyperparameters can be found in Table D.5 and Table D.6.

NHP We additionally compare against the Neural Hawkes Process of Mei and Eisner

[2017]. This model uses an LSTM encoder and a parametric form, whose weights are

modeled by a neural network, to model the conditional intensity function. In practice,

we use the implementation proved by the EasyTPP benchmark [Xue et al., 2024], as this

version implements the necessary thinning algorithm for sampling.2 We perform a grid search

over learning rates in {10−4, 10−3, 10−2} and embedding dimensions in {32, 64, 128}. These

hyperparameters are chosen as the EasyTPP implementation allows these to be configured

easily. Our best hyperparameters are reported in Table D.7 and Table D.8.

1URL: https://github.com/shchur/ifl-tpp
2URL: https://github.com/ant-research/EasyTemporalPointProcess
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Table D.5: The best hyperparameter settings found for IFTPP on the unconditional generation
task.

Learning Rate Weight Decay Embedding Dimension Mixture Components

Hawkes1 10−3 10−4 32 8
Hawkes2 10−2 0 32 8
Nonstationary Poisson 10−3 10−6 128 8
Nonstationary Renewal 10−2 10−6 64 16
Stationary Renewal 10−3 10−4 32 8
Self-Correcting 10−3 10−6 32 64

PUBG 10−2 0 128 32
Reddit-C 10−3 10−4 64 16
Reddit-S 10−2 10−4 64 16
Taxi 10−2 10−5 128 64
Twitter 10−3 10−4 64 6
Yelp-Airport 10−2 10−6 64 64
Yelp-Miss. 10−3 10−4 32 8

Table D.6: The best hyperparameter settings found for IFTPP on the forecasting task.

Learning Rate Weight Decay Embedding Dimension Mixture Components

PUBG 10−4 10−6 32 32
Reddit-C 10−2 0 64 8
Reddit-S 10−2 0 64 16
Taxi 10−3 10−6 128 8
Twitter 10−2 10−5 32 8
Yelp-Airport 10−2 10−6 128 32
Yelp-Miss. 10−2 10−6 32 8

Diffusion Our diffusion baseline is based on the implementation of Lin et al. [2022], and

our decoder model architecture is taken directly from the code of Lin et al. [2022].3 At a high

level, this model is a discrete-time diffusion model [Ho et al., 2020] trained to generate a single

inter-arrival time given a history embedding. Note that as the likelihood is not available in

diffusion models, the CDF in the likelihood in Equation (6.2) is not tractable. Instead, the

model is trained by maximizing an ELBO of only the subsequent inter-arrival time.

In preliminary experiments, we found that the codebase provided by Lin et al. [2022] often

produced NaN values during sampling, prompting us to make several changes. First, we use

3URL: https://github.com/EDAPINENUT/GNTPP
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the RNN encoder from Shchur et al. [2020a], i.e. the same encoder as the IFTPP baseline, to

reduce the memory requirements of the model. Second, we do not log-scale the inter-arrival

times as suggested by Lin et al. [2022], as we found that this often led to overflow and

underflow issues at sampling time. Third, we do not normalize the data via standardization

(i.e., subtracting off the mean inter-arrival time and dividing by the standard deviation),

but rather, we scale the inter-arrival times so that they are in the bounded range [−1, 1].

This is aligned with standard diffusion implementations [Ho et al., 2020], and allows us to

perform clipping at sampling time to avoid the accumulation of errors. With these changes,

our diffusion baseline is competitive, and able to obtain stronger results than previous work

has reported [Lüdke et al., 2023].

We use 1000 diffusion steps and the cosine beta schedule [Nichol and Dhariwal, 2021], and we

train the model on the simplified ϵ-prediction loss of Ho et al. [2020]. We train for 1, 000 epochs

with early stopping based on the validation set loss. To tune this baseline, we performed a grid

search over learning rates in {10−4, 10−3, 10−2}, weight decays in {0, 10−6, 10−5, 10−4}, history

embedding dimensions {32, 64, 128}, and layer numbers {2, 4, 6}. Our best hyperparameters

can be found in Table D.9 and Table D.10.

Add-and-Thin We compare to the Add-and-Thin model of Lüdke et al. [2023] as a recently

proposed non-autoregressive baseline. We directly run the code provided by the authors

without additional modifications.4 We do, however, perform a slightly larger hyperparameter

sweep than Lüdke et al. [2023], in order to ensure a fair comparison between the methods

considered. We train for 1, 000 epochs with early stopping on the validation loss. Tuning is

performed via a grid search over learning rates in {10−4, 10−3, 10−2} and number of mixture

components in {8, 16, 32, 64}. We choose to tune only these hyperparameters in order to

follow the implementation provided by the authors. Our best hyperparameters can be found

in Table D.11 and Table D.12.

4URL: https://github.com/davecasp/add-thin
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Table D.7: The best hyperparameter settings found for NHP on the unconditional generation
task.

Learning Rate Embedding Dimension

Hawkes1 10−3 64
Hawkes2 10−3 64
Nonstationary Poisson 10−3 64
Nonstationary Renewal 10−4 64
Stationary Renewal 10−3 64
Self-Correcting 10−3 64

PUBG 10−4 64
Reddit-C 10−2 64
Reddit-S 10−2 64
Taxi 10−2 64
Twitter 10−4 64
Yelp-Airport 10−3 128
Yelp-Miss. 10−2 64

Table D.8: The best hyperparameter settings found for NHP on the forecasting task.

Learning Rate Embedding Dimension

PUBG 10−3 128
Reddit-C 10−2 64
Reddit-S 10−2 64
Taxi 10−2 128
Twitter 10−2 128
Yelp-Airport 10−3 64
Yelp-Miss. 10−2 64
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Table D.9: The best hyperparameter settings found for diffusion on the unconditional
generation task.

Learning Rate Weight Decay Embedding Dimension Layers

Hawkes1 10−3 10−6 64 2
Hawkes2 10−2 10−5 64 4
Nonstationary Poisson 10−3 10−5 128 2
Nonstationary Renewal 10−3 10−4 64 2
Stationary Renewal 10−2 0 32 6
Self-Correcting 10−3 0 32 6

PUBG 10−3 0 64 2
Reddit-C 10−3 10−6 128 4
Reddit-S 10−3 0 64 4
Taxi 10−2 0 128 4
Twitter 10−3 10−4 64 6
Yelp-Airport 10−2 0 32 2
Yelp-Miss. 10−2 10−5 128 2

Table D.10: The best hyperparameter settings found for diffusion on the forecasting task.

Learning Rate Weight Decay Embedding Dimension Layers

PUBG 10−4 10−5 32 6
Reddit-C 10−2 10−6 64 6
Reddit-S 10−3 0 64 4
Taxi 10−3 10−6 32 2
Twitter 10−4 10−5 64 6
Yelp-Airport 10−4 10−5 64 6
Yelp-Miss. 10−3 10−5 32 4
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Table D.11: The best hyperparameter settings found for Add-and-Thin on the unconditional
generation task.

Learning Rate Mixture Components

Hawkes1 10−3 32
Hawkes2 10−2 32
Nonstationary Poisson 10−2 16
Nonstationary Renewal 10−2 8
Stationary Renewal 10−2 8
Self-Correcting 10−4 8

PUBG 10−3 8
Reddit-C 10−2 32
Reddit-S 10−2 16
Taxi 10−2 8
Twitter 10−4 32
Yelp-Airport 10−4 8
Yelp-Miss. 10−2 64

Table D.12: The best hyperparameter settings found for Add-and-Thin on the forecasting
task.

Learning Rate Mixture Components

PUBG 10−2 64
Reddit-C 10−2 16
Reddit-S 10−2 64
Taxi 10−2 8
Twitter 10−3 8
Yelp-Airport 10−2 32
Yelp-Miss. 10−3 16
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