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ABSTRACT OF THE DISSERTATION 

 

Compact Modeling of Quantum Effects in Double-gate 

MOSFETs 

by 

Wei Wang 

Doctor of Philosophy in Electrical Engineering 

(Applied Physics) 

University of California, San Diego, 2007 

Professor Yuan Taur, Chair 

 

As CMOS scales down to the limits imposed by oxide tunneling and voltage 

non-scaling, double-gate (DG) MOSFET has become a subject of intense VLSI 

research. In this dissertation, quantum effects were investigated in both long 

channel and short channel Double-Gate MOSFETs.  

A 1-D numerical Poisson-Schrodinger solver was developed for the quantum 

solutions in DG MOS structure. The solver can be expanded for the current 

characteristics of DG MOSFETs because of equivalent influence of the quasi-Fermi 

potential and the gate voltage on the inversion charge density. Through extension 

xxi 



solutions in symmetric DG MOSFETs, quantum effects induced threshold voltage 

shift was expressed as a close form function of the silicon thickness based on a 

physical approximation. The gate capacitance degradation due to quantum effects 

was modeled by the inversion layer thickness change, which can be extracted from 

the inversion charge density. Quantum I – V and C – V characteristics were 

generated by the analytical classical potential model with the threshold voltage and 

gate capacitance degradation implemented as quantum corrections.  

Complicated quantum mechanical behavior of electrons in asymmetric DG 

MOSFETs was investigated. The threshold voltage shift can be calculated with the 

electron ground state energy calculated through different methods. An equivalent 

small-signal capacitance circuit was developed to model the charge coupling 

between the two gates and inversion channels. The capacitance model was valid for 

different types of DG MOSFETs and different operation region.  

A 2-D analytical potential solution to the Poisson’s equation was incorporated 

into the Schrodinger equation for the quantum solutions in short channel DG 

MOSFETs. With the eigen energies calculated through the perturbation method, 

quantum subthreshold current was calculated. The results agreed well with the 

simulated data by an iteration procedure. The quantum threshold voltage shift and 

sunthreshold slope in short channel DG MOSFETs were expressed as close 

functions of device parameters and bias, which can easily be implemented into the 

classical model. 

xxii 



Chapter 1    Introduction 

1.1 Introduction to CMOS Scaling 

Since the invention of the metal-oxide-semiconductor field-effect transistor 

(MOSFET), CMOS has been the driving engine of the semiconductor industry because of 

its successful incorporation into the integrated circuits (ICs).  CMOS technology 

evolution in the past few decades has followed the path of device scaling to achieve 

density, speed and power improvement. As indicated by the Moore’s law [1], the number 

of transistors inside chips doubles every two years because of the shrinking size of 

MOSFETs. It is well known that reducing the source-to-drain spacing, i.e., the channel 

length of a MOSFET, increases the driving current in the channel. Other than that, it also 

leads to the short-channel-effects (SCE) [2]. The most undesirable short-channel-effect 

for digital application is a reduction in the gate threshold voltage (Vt) at which the device 

turns on, especially at high drain voltage. The reduced gate threshold voltage causes the 

subthreshold leakage current to increase dramatically, which makes the device difficult to 

turn off. Full realization of the benefits of the new high-resolution lithographic 

techniques therefore requires the development of new device designs, technologies, and 

the structures that can keep the short-channel-effects under control at very small 

dimensions. 

The scaling concept is schematically illustrated in Figure 1.1, in which the device 

dimension (both horizontal and vertical) and the device voltages are scaled by the same 

factor to keep the electrical field inside the device constant.  

1 



 2

 

 

Figure1.1 Schematic illustration of the scaling principle of silicon technology. (Adapted 
from [3]). 

 

The reduction of the vertical dimension of MOSFETS, i.e., the gate oxide thickness, 

enhances the gate control over the channel, which improves the short-channel behavior. 

Thin oxide also improves the driving capability of MOSFETs. However, ultrathin gate 

oxide will lead to high gate leakage current due to direct tunneling. Alternative gate 

dielectric materials with higher permittivity (high-K) than SiO2 [4] have been exploited 

to increase the physical thickness while maintaining the same effective-oxide-thickness 

(EOT). It is also illustrated that the well doping concentration is also scaled up by the 

same factor. In deep submicron, non-uniform well doping profiles in both vertical and 

lateral direction are developed for the suppression [5-6]. Super steep retrograde channel 

doping [7], which is made possible by the ion implantation, gives the device designer an 

additional degree of freedom to tailor the profile for meeting both the threshold voltage 

and off-current requirement. In lateral direction, more highly doped regions near the two 
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ends of the channel are beneficial to the suppression of short-channel-effects, since they 

help to compensate charge-sharing effects from the source-drain fields [8]. Such a self-

aligned channel doping is often referred to as halo or pocket doping [9]. With optimally 

designed 2-D non-uniform doping profile (superhalo), nearly identical Ion and Ioff for 

devices of different channel lengths within the process tolerances can be achieved [10].  

To improve the MOSFET performance, many other technologies have also been 

developed such as shallow source/drain extension to reduce the amount of channel 

depletion charges controlled by the drain [6], a lightly doped drain (LDD) structure [7] to 

relieve hot-electron reliability problems at high voltages, self-aligned silicide [11] to 

reduce the channel sheet resistance and the contact resistance, stained Si, Ge or SiGe 

channels to increase the channel carrier mobility [12], etc. 

  

1.2 Quantum Mechanical Effects in Bulk MOSFETs 

Even though constant-field scaling introduced in section 1.1 provides a basic guide 

line to the design of scaled MOSFETs, reducing the voltage by the same factor as the 

device physical dimension is too restrictive. The CMOS delay degrades rapidly once the 

threshold voltage Vt exceeds 25% of the power supply voltage Vdd. When Vdd is reduced 

toward shorter channel length, it becomes increasing difficult to satisfy both the 

performance and off-current requirements. Another reason is the reluctance to depart 

from the standardized voltage levels of the previous generation.  The general trend is that 

Vdd has not been scaled down in proportion to the oxide thickness tox, and Vt has not been 

scaled down in proportion to Vdd, as is evident in Figure 1.2. 
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Figure 1.2 Trends of power-supply voltage, threshold voltage, and gate oxide thickness 
versus channel length for CMOS technologies from 1 μm to 0.1 μm (Adapted from [13]). 
 

As a result, the operating electric field in MOSFETs becomes higher accompanying 

the device scaling. In the presence of such a high electric field, significant carrier 

quantization is observable in the MOFETs. Also well known is that in the inversion layer 

of a MOSFET, carriers are confined in a potential well close to the surface. The well is 

formed by the silicon conduction band which bends down severely toward the surface 

due to the gate field and the oxide barrier which is essentially infinity for the inversion 

carriers. Because of the confinement of motion in the direction perpendicular to the 

surface, one should treat the inversion electrons quantum mechanically as a 2-D electron 

gas [14]. The quantum mechanical behavior of inversion electrons differs from their 

classical behavior significantly. Due to the quantization, the electron energy levels are 
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grouped in discrete subbands in the normal direction instead of classical 3-D continuous 

energy states.  

 

Figure 1.3 Surface potential well and surface charge distribution for a representative Si 
surface. The ground state is about 40 mev above the bottom of the conduction band. The 
dashed line indicates the Fermi level in the inversion layer (Adapted from [14]). 

 

As shown in Figure 1.3, even the lowest subband is some energy (40mev in this case) 

above the bottom of the silicon conduction band. On the other hand, the wave function 

must be zero at the surface where the potential barrier is infinity. As a consequence, the 

electron concentration is also zero in the surface and therefore peaks below the surface, 

which is contrast to the classical model as shown in Figure 1.4. 
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Figure 1.4 Schematic diagram of the classical and quantum inversion charge distribution 
in the direction perpendicular to the silicon-oxide surface. 

 

Quantum effects of the inversion electrons affect MOSFET operation in two aspects. 

First of all, since the electrons occupy at subbands above the bottom of the silicon 

conduction band, more band bending is required to populate even the lowest subband and 

therefore the threshold voltage becomes higher. Second of all, the inversion layer forming 

below the surface suggests the finite inversion layer thickness and thus reduces the total 

gate capacitance. This reduces the transconductance and the current drive of a MOSFET 

since it needs higher gate voltage to produce a given level of inversion charge density. 

Quantum effects in MOSFETs have been studied extensively since 1970’s. A full 

solution of the silicon inversion electron can be obtained by solving coupled Poisson’s 

and Schrodinger equations self-consistently [14-17] during which a numerical method 

must be used. However, a simplified method is possible under subthreshold conditions. 

First, it is reasonable to decouple the two equations because of low inversion charge 
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density. Since band bending is solely determined b the depletion charge, the electric field 

can then be treated nearly constant (εs). Therefore, it is a good approximation to consider 

the quantum well as composed of an infinite oxide barrier for x < 0, and a triangular 

potential V(x) = qεsx for x > 0. The solutions of Schrodinger equation are Airy functions 

with eigen values Ej given by [14] 

2 3
3 3 ,

44 2
s

j
x

hqE j
m
ε⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
0,1, 2,...j =                                                  (1.1) 

where h is Planck’s constant and mx is the effective mass of electrons perpendicular to the 

surface. For silicon in the <100> direction, there are two groups of energy subbands, or 

valleys.  The lower valley has a two-fold degeneracy (g = 2) with mx = 0.92m0, where m0 

is the free-electron mass. The energy level is designated as Ej. The higher valley has a 

four-fold degeneracy (g´ = 4) with m´
x = 0.19m0. The energy levels are designated as 

2 3

'
3 3' ,

44 2 '
s

j
x

hqE j
m
ε⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
' 0,1, 2,...j =                                              (1.2) 

With the energy levels in two valleys, the total inversion charge per unit area is expressed 

as [18]  

'2
'

2
'

4 'j j s
E kTE kT q kTQM i

i d d
j jc a

qkTnQ gm e g m e
h N N

ψπ −−⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑ e             (1.3) 

where k is the Boltzmann’s constant, T is the temperature in Kelvin, ni and Na are the 

intrinsic carrier and doping concentration in silicon,  md = 0.19m0 and md
’ = 0.42m0 are 

the density-of-states effective masses of the two valleys and ψs is the surface potential.  



 8

Note the classical inversion chare density per unit area for the subthreshold region is 

given by [18]  

2
sq kTCL i

i
s a

kTnQ e
N

ψ

ε=                                                                                            (1.4) 

When the field is small, both the lowest energy level E0 and the spacings between the 

subbands are less than kT at room temperature. A large number of subbands are occupied 

and Qi
QM is the same as Qi

CL. However, the subbands spacings are larger than kT and 

only a few lowest energy subbands are occupied. Therefore, Qi
QM is significantly less 

than Qi
CL.  This means that additional band bending Δψs

QM is required to obtain the same 

inversion charge density as the classical value. When the field beyond 106 V/cm, only the 

lowest subband is occupied by electrons, and 

0
2

8lnQM d s
s

c

E qmkT
q q h N

πψ ε⎛ ⎞
Δ ≈ − ⎜

⎝ ⎠
⎟

s

                                                                    (1.5) 

Knowing Δψs
QM, one can easily calculate the threshold voltage shift due to quantum 

effects 

QM QM
tV m ψΔ = Δ                                                                                               (1.6) 

where m is the body-effect coefficient of MOEFETs. 

Triangular well approximation is one of the most widely used methods for carrier 

quantization in MOSFETs [19-21]. However, in strong inversion region, the inversion 

charge density is very high and the triangular potential-well approximation is no longer 

valid. In the case of high field and only the lowest energy subband is populated, an 
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approximate expression for the average distance of electrons from the surface was 

derived through a variational approach [15] 

1
2 3

2 *

9
16

QM si
av

x

hx
m qQ
ε

π
⎛ ⎞

= ⎜
⎝ ⎠

⎟                                                                                     (1.7) 

where * 11
32dQ Q Q= + i  is a combination of the depletion and inversion charge in the 

channel. Such an inversion layer thickness adds the effective gate oxide thickness about 

3-4 Ǻ and effectively reduces the current drive and transconductance of MOSFETs. 

 
 
1.3 Double-Gate MOSFETs – Advantages and 

Additional QM Confinement  

Through years of technology developments, conventional bulk MOSFET technology 

is currently progressing to the 45nm regime [22, 23]. It is also believed that CMOS will 

still be the dominant technology in the near future.  However, fundamental and practical 

scaling limits impose tremendous challenges beyond the 45nm technology node [23-25]. 

Severe short channel effects come from the nonscaling of the silicon energy. Quantum 

mechanical tunneling current through the thin gate oxide becomes significant. The 

random dopant fluctuation effects increase with shrinking device size and leads to 

threshold voltage variation from device to device. These effects constitute the limiting 

factors of CMOS scaling at present [26].  

Multi-gate MOSFETs, such as Surrounding-gate [27], Pi-gate [28], Omega-gate [29], 

Tri-gate [30] and Double-gate (DG), have been proposed to be the alternatives for bulk 
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MOSFETs beyond the 45nm node. Numerical simulation and analytical analysis have 

shown better scalability of multi-gate MOSFETs over bulk MOSFETs. Among multi-

gate MOSFETs, the DG MOSFET is the most promising device structure because it is 

best compatibile with conventional planar technology although other candidates might 

have better performance than the DG MOSFETs. 

 

 

Figure 1.5 Schematic diagram of a double-gate MOSFET 

 

With two gates on the both sides of the channel, DG MOSFET has a better 

performance than the conventional bulk MOSFET. Figure 1.5 shows the schematic 

diagram of a double-gate MOSFET. The key benefit of DG MOSFETs is better short 

channel effects immunity over the bulk MOSFETs. In principle, DG MOSFETs can be 

scaled to the shortest channel length for a given oxide thickness [31], because the bottom 

gate can effectively screen the field penetration from the drain, hence suppress the short 

channel effects. Based on the general scale length theory [32], the threshold voltage roll-

off due to short channel effects is proportional to exp(-πL/2λ1), where L is the channel 



 11

length and λ1 is the scale length. Therefore the minimum channel length imposed by short 

channel effects is ~2λ1. The scale length of bulk MOSFETs and DG MOSFETs can be 

expressed approximately 

1
si

d
ox

W oxtελ
ε

= +                                                                                                      (1.8) 

1 2si
si

ox

t oxtελ
ε

= +                                                                                                      (1.9) 

where Wd is the depletion width in bulk MOSFETs, tsi is the silicon film thickness and tox 

is the gate oxide thickness. Reducing Wd in bulk MOSFETs requires higher doping 

concentration which results in increased junction capacitance, reduced carrier mobility, 

degraded subthreshold slope and increased band-to-band tunneling from the drain to the 

body. By using a tsi much smaller than Wd, DG MOSFETs can avoid these dilemmas and 

achieve tight control of short channel effects. 

Since the two gates are connected and switched together, DG MOSFET also has an 

ideal subthreshold slope. In the subthreshold region, the conduction band of the silicon 

film moves along with the applied gate voltage (volume inversion). As shown in Figure 

1.6, the body effect coefficient m equals  

g

s

V
m

ψ
Δ

=
Δ                                                                                                                    (1.10) 

and hence, the subthreshold slope is ideal 60mv/dacade. 
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Figure 1.6 Schematic diagram of conduction band shifting with applied gate voltage. 

 

In DG MOSFETs, the silicon body is usually undoped or lightly doped, which leads 

to oseveral benefits. First of all, the threshold voltage variation due to random dopant 

fluctuation effects is greatly reduced because the threshold voltage of DG MOSFETs is 

controlled by the gate work function instead of the dopants. Second of all, the undoped 

body greatly reduces the source and drain junction capacitances and hence, improves the 

switching speed of DG MOSFETs. Third of all, the elimination of depletion charges also 

provides an enhancement of carrier mobility because of reduced coulomb scattering and 

surface roughness scattering. 



 13

 

 

Figure 1.7 Schematic diagram of a symmetric (left) and an asymmetric Double-Gate 
MOSFET. 

 

Figure 1.7 illustrates two different types of DG MOSFETs: symmetric DG MOSFETs 

in which the two gates have identical work functions and asymmetric DG MOSFETs in 

which the two gates have different work functions. There are two operation modes for 

DG MOSFETs. One is the three-terminal mode in which two gates are tied and switched 

simultaneously. The other is the four-terminal mode in which only one gate is switching 

with the other back gate constantly biased. The back gate voltage enables the possibility 

of dynamic threshold voltage with the cost of losing the ideal 60mv/decade subthreshold 

slope.  
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Figure 1.8 Different topologies of DG MOSFETs (Adapted from [33]). 

 

 In principle, DG MOSFETs can be manufactured by one of the three topologies 

shown in Figure 1.8. Type I (planar type) DG MOFET [33] has the channel layer in the 

silicon wafer plane so that it controls the channel thickness by thin film deposition rather 

than by lithography. The drawback is the difficulty to align the top and bottom gate. Type 

II (vertical type) DG MOSFET has the channel in the vertical direction and is most 

compact for DRAM application [34]. However, it is topologically difficult for a CMOS 

application. Type III (Fin type) DG MOSFET [33], in which current flows horizontally 

through the fin channel, has the highest packing density for high speed logic applications. 

Quantum mechanical behavior of inversion electrons in DG MOSFETs is much more 

complicated than in bulk MOSFETs. In DG MOSFETs, the potential well is formed by 
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the front gate oxide barrier, the conduction band and the back gate oxide barrier. 

Therefore the confinement of motion not only comes from the conduction band of the 

silicon body, but also comes from the silicon film thickness. This additional confinement 

modulates the potential well and hence the energy levels and wave functions significantly. 

It becomes dominant when the silicon film is extremely thin or the field is very small 

(subthreshold region of symmetric DG MOSFETs). Quantum effects in DG MOSETs are 

hence more complicated than bulk MOSFETs because of the combined confinement 

mechanism. Since quantum behavior of electrons generally depend on both the silicon 

thickness and the shape of the silicon conduction band, modeling of quantum effects is in 

great interest of researching rather than applying the results from bulk MOSFETs.  

 

 
1.4 Compact Modeling of MOSFETs 

As mentioned in section 1.1, MOSFET has been the main building block of integrated 

circuits ever since its invention. Accordingly, compact modeling of MOSFETs has also 

been continuously evolving for complex circuit design. To achieve fast and accurate 

circuit simulation results, explicit algebraic equations of device terminal parameters such 

as I-V and C-V characteristics are required. Compact model of MOSFETs usually starts 

from a precise core model – long channel classical model. All specific physical 

phenomena including quantum effects, short channel effects, channel length modulation, 

etc., are then implemented into this core model as modifications. Figure 1.9 illustrates the 

schematic structure of a compact model for a MOSFET. The evolution of MOSFET  
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Figure 1.9 Schematic diagram of a compact model for the bulk MOSFETs. 

 

compact model follows the trend from simple, piecewise models to complicated, 

continuous models to provide more accurate circuit simulations. The piecewise models 

such as early versions of BSIM model provide separate equations based on the charge 

sheet approximation for different operation regions. This leads to the discontinuous first 

order derivates of current and charge and hence severe convergence. Non-physical 

mathematical smoothing functions are adopted in recent BSIM3/BSIM4 models to 

overcome the convergence problem. Another prominent issue with the BSIM models is 

the violation of source and drain symmetry, which means source and drain are not 

interchangeable with each other in BSIM. Both the current model [35] and the 

capacitance model [36] are shown to be asymmetric with respect to the source and drain 

in BSIM models. To avoid the disadvantages of BSIM models, the surface potential 

models such as PSP [37] and HiSIM [38] models have been developed as the next 

Long channel 
core model Quantum effects 

Short-channel 
effects 

Mobility 
degradation 

Channel length 
modulation 

Velocity 
saturation 
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generation of compact model for bulk MOSFETs. Without introducing the threshold 

voltage, one single surface potential equation valid for all the operation regions is solved 

for the solution in these models. The symmetry property can be preserved by using the 

symmetric linearization techniques [39]. 

However, there still lacks a comprehensive compact model for DG MOSFETs, 

especially when quantum effects dominate. Various approaches have been applied to 

study quantum effects in DG MOSFETs, including the nonequilibrium Greens function 

[40], density gradient model [41], [42], and Monte Carlo simulation [43]-[45]. The 

mathematical complexities of these models make them impractical for compact modeling. 

In another work, quantum subband energy levels [46] and the quantum threshold shift [47] 

have been investigated through a variational approach. However, only the potential and 

charge distribution have been worked out. No drain current equation has been developed 

for a compact model. A quantum compact model [48] was previously developed based on 

the approximation of a single sine wave function for different energy subbands. This is 

only valid for an infinite, flat potential well under subthreshold condition. Once the DG 

MOSFET is strongly inverted, the field due to electrons themselves causes a bimodal 

wave function with peaks near the surfaces not well represented by the sine function. In 

this work, we bridge the gap by implementing quantum effects into an analytic potential 

model [49, 50] as quantum corrections for DG MOSFETs. We also investigate quantum 

effects in the short channel DG MOSFETs based on a 2-D analytical potential solution. 

The dissertation of this work is listed in the next section. 

 

1.5 Outline of The Dissertation 
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In chapter 1, the concept of CMOS scaling is first introduced. Quantum mechanical 

effects in bulk MOSFETs and methods of investigating quantum effects are reviewed. 

The structure and advantages of DG MOSFETs are then summarized. After introducing 

compact models for bulk MOSFETs, objective and status of compact modeling of 

quantum effects in DG MOSFETs are presented. The rest of the dissertation is organized 

as follows. 

Chapter 2 introduces the 1-D numerical Poisson’s and Schrodinger solver for DG 

MOS structure, including the numerical methods of solving equations and the iteration 

procedure of finding self-consistent solutions. Classical and quantum results from the 

solver are presented. The 1-D solver is then extended to also calculate the DG MOSFET 

drain current. 

From the extensive solution from the solver, threshold voltage shift and inversion 

layer capacitance for symmetric DG MOSFETs are extracted as closed form functions of 

silicon thickness and inversion charge density in Chapter 3. With these modifications, the 

analytic compact potential model is shown to reproduce quantum I-V and C-V curves of 

symmetric DG MOSFETs consistent with those obtained from the full quantum solutions. 

CMOS circuit simulations using the full model are also presented. 

Chapter 4 focuses on compact modeling of asymmetric DG MOSFETs. Threshold 

voltage shift is extracted as closed form function of silicon thickness and device built-in 

field by using the eigen energy levels calculated through the variational approach. 

Another expression for the energy levels is also obtained based on physical observations. 

An equivalent small signal capacitance model is developed to model the gate capacitance 

degradation due to quantum effects in asymmetric DG MOSFETs. 
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In chapter 5, quantum solutions are obtained by incorporating the 2-D analytical 

potential solution for DG MOSFETs in the subthreshold region. Quantum subthreshold 

current is obtained through a iteration procedure as well as a double integral in which the 

eigenvalues of Schrodinger equation is calculated through the perturbation approach. 

Approximate expressions of quantum threshold voltage roll-off due to short channel 

effects and quantum subthreshold slope are derived. 

Conclusions of the dissertation and discussion of future directions beyond the scope 

of this work are drawn in the last chapter. 



Chapter 2   

A 1-D Poisson-Schrodinger Numerical 

Solver 

2.1 The Coupled Poisson And Schrodinger Equations  

The salient feature of a DG MOSFET is the thin silicon layer which is beneficial to 

device scaling. Quantum effects arise due to the confinement of electron motion in the 

thin silicon film in contrast to the confinement by the surface potential (or field) in bulk 

devices. To obtain the quantum electrical characteristics of a DG MOS structure, one 

needs to solve the coupled Poisson and Schrodinger equations self-consistently [51]: 

2

2
( ) ( )

si

d x q n x
dx
ψ

ε
=                                                                                                   (2.1)                   

and 

( )
22

,
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( )
( ) ( ) ( )
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i j

i j i j i j
i

d x
q x x E x

m dx
ϕ

ψ ϕ ϕ− + − =                                               (2.2) 

where x is the coordinate along the normal direction, ψ(x) is the electrostatic potential, q 

is the electronic charge, εsi is the silicon permittivity, ћ is the Planck’s constant, mi is the 

electron effective mass in the ith valley, ϕi,j(x) is the normalized wave function associated 

with the eigenenergy Ei,j of the jth subband in the ith valley and –qψ(x) is the potential 

energy. 
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Figure 2.1 The schematic band diagram of a double gate MOSFET. The electrostatic 
potential is reference to the quasi-Fermi level of the n+ source/drain. 

 

The two equations couples with each other through the potential energy term in the 

Schrodinger equation and the electron density n(x) which is given by the eigen energy Ei,j 

and the wave function ϕi,j(x) as: 

2( )*
2( ) ln[1 ] ( )F ijE E kT

i i ij
i j

kTn x g m e xϕ
π

−= +∑ ∑         (2.3) 

where k is the Boltzmann’s constant, T is the temperature in Kelvin, EF is the Fermi level, 

gi and mi
* are the degeneracy and density-of-state effective mass in the ith valley, 

respectively. 

ψ(x) is related to the gate voltage Vg and oxide thickness tox through the boundary 

condition at the silicon-oxide interfaces, as shown in the schematic band diagram of a 

double gate MOSFET (Figure 2.1). 
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where εox is the oxide permittivity, 1φΔ  and 2φΔ  are the work function difference 

between the gate electrode and the intrinsic silicon, and tsi is the thickness of the silicon 

film.  

A 1-D Poisson-Schrodinger solver is then developed to solve these two equations 

iteratively for a 1-D MOS device. 

  

2.2 Numerical Method Of  Solving The Equations  

2.2.1   Solving Poisson Equation 

The subroutine “Poisson1” and “Poisson” in the solver are used to solve the Poisson 

equation numerical. The difference of these two subroutines will be discussed in section 

2.4. Assuming we know the solution in the mth computation loop, which is the 

electrostatic potential ( )m xψ , the electron density  and the hole density . 

And now we need to solve the solution in the next loop. The solutions in the two 

consecutive loops relate to each other after defining the increment of the potential 

mn (x) mp (x)

1( ) ( ) ( )m mx xψ ψ ψ+Δ = − x , the electron density  and the hole 

density 

1( ) ( ) ( )m mn x n x n x+Δ = −

1( ) ( ) ( )m mp x p x p x+Δ = − . 
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From the Boltzmann’s relations (2.7), one can easily express ( ) ( )n x p xΔ − Δ  in terms of 

the incremental potential ( )xψΔ . 
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Then we need to divide the device to a certain mount of mesh. In the discrete 

computation mesh, the differential becomes finite difference. Substitute (2.8) into  (2.6) 

and we obtain: 
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(2.9) 

where xΔ  is the length of the mesh. 

Rearrange (2.9) in terms of the incremental potential in three consecutive meshes and we 

have: 



 24

2 ( ) ( )
2

( ) ( )
( ) ( ) ( ) 2

( ( ) ( ))( ) 2 ( ) ( ) ( ) ( )

( ) ( )( ) 2 ( ) ( ) ( )

m m

si
m m

m m m a d

Si

q n x p xx x x x x x x
kT

n x p x N Nx x x x x x q

ψ ψ ψ ψ
ε

ψ ψ ψ
ε

−

+
Δ + Δ − Δ + Δ − Δ − Δ Δ

− + −
= − + Δ + − − Δ + Δ

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

(2.10) 

The above equation can be expressed in a tridiagonal matrix form: 

( 1) ( 1)
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(2.11) 

where  is the diagonal element of the matrix which stores the coefficients of the ( )c i

( )iψΔ  term in (2.10), and the lower-subdiagonal and upper-subdiagonal elements which 

represents the coefficients of the ( 1)iψΔ +  and ( 1)iψΔ −  term in (2.10) respectively are 

both the constant 1. 

2
2 ( ( ) ( ))( ) 2

si

q n i p ic i x
kTε
+

= − − Δ
                                                                    

(2.12) 

and  is the element of a vector which stores the right hand of ( )b i (2.10). 

2 ( ( ) ( ) )( ) ( 1) 2 ( ) ( 1) ( ) a d

si

q n i p i N Nb i i i i xψ ψ ψ
ε

− +− + −
= + − + − − Δ

       
(2.13) 

With  and  fully known, an algorithm named “Lu3” can be used to calculate the 

solution of 

( )c i ( )b i

(2.11), which is the vector that stores the incremental potential ( )iψΔ  at every 

mesh. If the maximum value of ( )iψΔ  is small enough (smaller than an criteria we set up which 

is 10-8 V in the solver), the loop will be terminated and the ( )xψ ,  and ( )n x ( )p x  at that loop 

are the final solution of the Poisson equation. If the maximum value of ( )iψΔ  is greater 
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than the criteria, the potential is revised to ( )( ) ( ) /10x Max iψ ψ+ Δ  and another loop starts. 

The same procedure is repeated till the maximum incremental potential is smaller than 

the criteria.  

 
2.2.2 Solving Schrodinger Equation 

The subroutine “schrodinger” in the solver is used to solve the Schrodinger equation 

numerically. Just as solving the Poisson equation, the differential becomes the finite 

difference and the Schrodinger equation has the following formula: 
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Rearrange (2.14) in terms of the electron wave function in three consecutive meshes and 

we have: 
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(2.15) 

Now, it is straight-forward to see that the solution of Schrodinger equation has been 

turned into finding the eigenvalues and eigenvectors of a symmetric tridiagonal matrix A 

whose diagonal elements and sub-diagonal elements are shown in (2.16) and (2.17), 

respectively. 
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With the matrix “A” fully known, we can use the “bisection” algorithm to calculate the 

eigen value which is the eigen energy and use the  “inverse iteration” algorithm to 

calculate the eigen vector  which is wave function in both valleys. 

After obtaining the eigen energy and the wave function of all the subbands in both 

valleys, the electron density can be calculated by summing the contribution of all the 

subbands through (2.3).  

 
2.2.3    Solving Poisson and Schrodinger Equation Self- 

Consistently  

As mentioned in the section 2.1, the Poisson equation and the Schrodinger equation 

couple with each other through the potential energy term. To obtain the correct solution, 

an iteration procedure is needed to solve the two equations self-consistently. Figure 2.2 

shows the process flow of the iteration procedure.  First we solve the Poisson and obtain 

the initial potential in the subroutine “poisson1”. The electron density is also calculated in 

this subroutine using (2.7). This means that we obtain the classical solution which 

includes both the classical potential profile and the classical electron distribution after 

completing this subroutine. Then, we substitute the initial potential into the potential 

energy term and solve the Schrodinger equation in the subroutine “schrodinger”. The 

quantum electron density is also calculated in this subroutine. Using this quantum 

electron distribution, we then solve the Poisson equation again in the subroutine 

“poisson2”. Note that in the subroutine “poisson2”, only the potential is solved while the 

electron density is fixed at the quantum one obtained from the subroutine “schrodinger”. 

This ensures that the final quantum results are the self-consistent solutions of both 
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Poisson and Schrodinger equations. After completing the subroutine “poisson2”, we have 

two potentials. One is the potential in the current loop, and the other is the one in the 

previous loop or the initial potential. Then, the two potentials are compared with each 

other. If the difference between the two potentials is smaller than the criteria (10-6 V) 

that we set up in the solver, the final self-consistent quantum solutions are found. If the 

two potentials do not converge with each other, another iteration loop starts. The same 

procedure repeats until the correct solutions are obtained. The computation loop number 

for the quantum solution depends on the device size, the gate bias and the criteria. 

Usually the bigger the device, the higher the gate voltage, and the smaller the criteria, the 

more the computation loops are needed. 
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Figure 2.2 The flow chart of the numerical iteration procedure used to solve Poisson and 
Schrodinger equations self-consistently. 
 

 

2.3 Classical and Quantum Results from the 1D Solver  

From the 1-D numerical solver, we can obtain the classical electrostatic results by 

solving the Poisson equation only and quantum results by solving the Poisson and 

Schrodnger equations self-consistently. Figure 2.3 (a) shows the classical electrostatic 

potential profile in the silicon film at several values of gate voltage Vg and Figure 2.3 (b) 

shows the corresponding classical inversion electron density. At small gate voltage, the 
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inversion electron density is very small and its influence on the potential is negligible. 

The conduction and of the silicon film therefore remains essentially flat and follows up 

the change of the gate voltage. As a result, the electron density is also essentially flat, 

which is called “volume inversion”. As Vg increases, the potential profile starts bending 

the silicon conduction band and does not follow up the gate voltage change due to the 

voltage drop in the gate oxide. At high Vg, the inversion is very strong and so is the band 

bending. As a consequence, the electron density has two sharp peaks at the silicon-oxide 

interface as shown in Figure 2.3 (b). 
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Figure 2.3 The classical (a) electron potential and (b) density obtained from the Poisson-
Schrodinger solver as a function of position in the silicon film for a symmetric DG 
MOSFET with midgap gates. Three gate voltages Vg=0.3, 0.6 and 1.5 V are considered. 
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However, the pictures are different due to the quantization induced by the confinement of 

the oxide barrier and silicon conduction band. The quantum potential and electron density 

at different gate voltages are shown at Figure 2.4 (a) and (b), respectively. At low gate 

voltage, although the potential profile still remains flat because of the weak inversion, the 

high enough oxide barrier confinement leads to zero wave function at the two silicon-

oxide interface. Therefore, the electron concentration peaks at the center of the silicon 

film. As Vg increases, this electron concentration peak remains at the middle of the 

silicon film until the gate voltage Vg is so high that the peak in the center will become 

two peaks close to the two interfaces.  
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Figure 2.4 The classical electron (a)potential, (b) density and (c) wave function of the 
lowest subband obtained from the Poisson-Schrodinger solver as a function of position in 
the silicon film for a symmetric DG MOSFET with midgap gates. Three gate voltages 
Vg=0.3, 0.6 and 1.5 V are considered (Figure 2.4 (b) and (c) continued). 
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The electron wave function of the lowest subband shown in Figure 2.4 (c) partially 

explains the reason. At a small Vg, the potential is flat but the probability of electrons 

appearing at the center is the greatest due to the oxide barriers at the interfaces. With 

increasing Vg, the potential profile bends up, which means that the potential energy bends 

down. In other words, the silicon conduction band in the center is the highest in the whole 

silicon film. Therefore, the probability of electron appearing at the center will decrease 

because electrons tend to stay at low energy states. Accordingly, the wave function 

between the center and the interface will increase due to the normalization requirement. 

However, this effect is weak because the band bending is not strong when the Vg is not 

too high. At a high Vg, the band bending is very strong and the high potential energy at 

the center prevents the electrons from populating there, Therefore, the maximum 

probability of electrons appearing will move to the place between the center and the 

interface. 

 

2.4 Expanding The Solver To MSOFET – Influence Of 

Quasi-Fermi Level  

The 1-D numerical solver can be used to calculate the current of a DG MOSFET 

through the integration of the 1-D electrostatic solution of corresponding MOS structure. 

Figure 2.5 shows the schematic diagram of a long channel DG MOSFET. The same 

voltage Vg is applied to the two gates, and different voltages Vs and Vd are applied to the 

source and 
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Figure 2.5 Schematic diagram of a long channel DG MOSFET. The quasi-Fermi potential 
V is constant in the vertical direction. 
 

drain respectively. The quasi-Fermi potential V, which stays constant in the vertical(x) 

direction according to the gradual channel approximation, equals to Vs at the source and 

Vd at the drain. The inversion charge sheet density Qi at y, which is the electron 

concentration n(x,y) integrated over the silicon film varies with y, or equivalently with V 

from the source to the drain. 

0
( , )sit

iQ q n x y dx≡ ∫                                                                                               (2.18) 

 The Pao-Sah’s integral indicates that the drain current Ids is proportional to the integral of 

the inversion charge sheet density Qi as a function of V from the source to the drain. 

( ),d

s

V

ds i gV

WI Q V V
L

μ= ∫ dV                                                                                 (2.19) 

where μis the electron mobility, W is the device width and L is the channel length. 
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 It is clear that one needs the inversion charge sheet density as a function of the quasi-

Fermi potential along the channel to do the integral and then calculate the current. The 1-

D solver we developed can calculate the classical and quantum inversion charge density 

for the DG MOS in which Vs = Vd. To simplify the problem, the default value of Vs/Vd 

used in the solver is zero. The classical and quantum Qi-Vg curves for Vs = Vd = 0 shown 

in Figure 2.6 are both obtained from the solver.  
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Figure 2.6 Classical (solid line) and quantum (dash line) Qi–Vg curves obtained from the 
solver on both linear and logarithmic scale for an n+p+ DG MOS. The area under the 
curve from Vg - Vs to Vg - Vd is proportional to the drain current of corresponding DG 
MOSFET. 
 

Along the channel, the Poisson’s equation at y becomes 

( )2

2

( )
( )

si

d x V q n x
dx

ψ
ε

−
=                                                                                     (2.20) 

with the boundary condition. 
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Comparing (2.20), (2.21) and (2.22) with (2.1), (2.4) and (2.5), one can easily find out 

that there is no difference between the potential solution of the DG MOSFET channel 

with a gate bias Vg and quasi-Fermi level V and the solution of a DG MOS with a 

different gate bias Vg – V. Consequently, one has 

( ) (,
i i

CL CL
g gQ V V Q V V= − .                                                                         (2.23) 

In the quantum case, the quasi-Fermi potential does not show up in the Schrodinger 

equation and hence the eigenenergy levels and wave functions are the same with those of 

corresponding DG MOS. The influence of the quasi-Fermi potential is pulling down the 

Fermi level EF in (2.3) by the amount of V. However, decreasing the gate voltage Vg by 

the amount of V has the same affect, which leads to  

( ) ( ),
i i

QM QM
g gQ V V Q V V= − , 0)                                                                    (2.24) 

(2.23) and (2.24) mean Q (V ,V) as a function of quasi-Fermi potential V in the DG 

MOSFET can be obtained from the Q (V ,0) data of the 1-D DG MOS. Through the 

transformation in 

i g

i g

(2.24), the area under the 1-D DG MOS Q (V ,0) curve from V  - V  to 

V  - V , which is shown graphically in Figure 2.5, can be substituted for the Q (V ,V) 

integral in 

i g g s

g d i g

(2.19). Therefore the Pao-Sah’s integral becomes the integration of Q  as the 

function of the gate voltage 

i
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( ) ( )', ,d g d

s g s

V V V

ds i g i g gV V V

W W '0I Q V V dV Q V dV
L L

μ μ
−

−
= = −∫ ∫                     (2.25) 

Conventionally the source voltage is defined as the ground potential, and the drain 

voltage is Vds = Vd - Vs, then we have 

( )' ', 0g ds

g

V V

ds i g gV

WI Q V
L

μ
−

= − ∫ dV                                                                   (2.26) 
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Figure 2.7 Classical (solid line) and quantum (dash line) Ids-Vds characteristics at different 
gate voltage Vg. All the curves are obtained from the integration of Qi(Vg,0) data. 
 
 
The Ids-Vds characteristics at different Vg obtained from the integration of Qi(Vg,0) curve 

are shown in Figure 2.7. By this method, one can avoid solving the coupled Poisson, 

Schrodinger and current continuity equations self consistently to obtain Qi(Vg,V) in the 

Pao-Sah’s integral. The electrostatic results of a DG MOS obtained from the 

Poisson/Schrodinger solver are extended directly to the I-V characteristics of a DG 

MOSFET. As shown in Figure 2.6, the higher threshold voltage and the smaller gate 



 39

capacitance due to quantization cause the area under the quantum Qi(Vg,0) curve to be 

smaller than the area under the classical curve for the same gate and source-drain 

voltages. For the same reason, the quantum drain current is smaller than the classical 

current at the same gate and drain bias in Figure 2.7. In saturation, the quantum current is 

about 20% lower than the classical current for the DG device studied, due mainly to the 

gate capacitance degradation. 

 
 

 



Chapter 3   

Compact Modeling of Quantum Effects 

in Symmetric DG MOSFETs 

 

3.1 Thickness And Field Dependent Quantum Effects 

3.1.1   Infinite Square Well Behavior At Low Vg 

As discussed in 1.4, the quantum well in a DG MOSFET consists of the front and 

back oxide barriers and the conduction band of the silicon film, therefore, both the silicon 

thickness and the electrical field (slope of the conduction band) play important roles in 

the quantum effects. However, when Vg is below the threshold voltage, the silicon 

conduction band remainss essentially flat and follows up the change of the gate voltage 

due to negligible influence of the small inversion electron density on the potential profile. 

In other words, the quantum well mostly acts like an infinite square well whose eigen 

energy levels and wave functions only depend on the silicon thickness as: 

2 2 2

2 ,                 1,2,3,
2j

si

jE
mt
π

=
= iiij =                                                                    (3.1) 
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0,     0,
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Figure 3.1 The first two lowest eiegn energy levels in the g = 2 valley and the lowest 
energy level in the g = 4 valley of a symmetric DG MOSFET compared with the 
corresponding eigen energy levels of an infinite square well. 
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Figure 3.2 Wave functions of the two lowest subbands of a symmetric DG MOSFET 
(line) compared with corresponding wave functions of an infinite square well (symbol). 
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Figure 3.1 shows the first three lowest eigen energies of a DG MOSFET with different 

silicon thickness compared with the eigen energies of an corresponding infinite square 

well. The wave function comparison is illustrated in Figure 3.2. The excellent agreement 

of both eigen energy and wave function verifies the validity of treating the DG 

MOSFETs at low Vg as an infinite square well. 

 

3.1.2   Effect Of Band Bending On Quantum Solutions 

When Vg is above the threshold voltage, the conduction band starts to bend and hence, 

the electrical field becomes significant, which has a strong influence on the eigen energy 

levels. As illustrated in Figure 3.2, the eigen energies increase rapidly with the surface 

field after the device is turned on. 
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Figure 3.3 The lowest two eigen energy levels in both valleys versus the surface field of a 
symmetric DG MOSFET. 
 
 
This means that quantum effects in a symmetric DG MOSFET at high Vg depend on both 

the silicon thickness and the shape of the conduction band. It is shown in Figure 3.4 that 

instead of changing monotonously with tsi at low Vg case, the eigen energy has an 

minimum around a certain value of tsi when Vg is high.  
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Figure 3.4 The lowest two eiegn energy levels in the g = 2 valley and the lowest energy 
level in the g = 4 valley of a symmetric DG MOSFET at Vg = 1.5 V. 
 

This phenomenon was observed before but no physical explanation are given. The 

physics behind this energy minimum is the combined silicon thickness and field influence 

on the eigen energies. As tsi decreases, the eigen energies tend to increase according to 

the uncertainty principle. On the other hand, the surface field also decreases due to 

decreasing inversion charge sheet density (Vt increase with decreasing tsi) and hence the 

eigen energies tend to increase.  The opposite energy tendencies with varying tsi therefore 

lead to the energy minimum in Figure 3.4.  

 

3.2 Threshold Voltage Shift Due To Quantum Effects 

3.2.1   Definition Of Vt Shift 
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The quantum threshold voltage is higher than the classical one due to the discrete 

energy levels which is higher than the bottom of the conduction band. Figure 3.5 

illustrates the definition of the threshold voltage shift due to quantum effects and the gate 

capacitance as well. The Vt shift is extracted from the parallel shift of Qi- Vg curve at 

subthreshold region with respect to the classical curve at the same inversion charge sheet 

density Qi. 
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Figure 3.5 Classical (solid line) and quantum (dashed line) mobile charge sheet density 
Qi of symmetric DG MOSFETs in both linear (right) and logarithmic (left) scales versus 
gate voltage. 
 

As discussed in 3.1.1, the potential remains essentially flat in the subthreshold region of a 

symmetric DG MOSFET, which means the voltage drop across the gate oxide is 

negligible. Therefore, the oxide thickness does not affect both classical and quantum 

inversion charge densities and hence, the threshold voltage shift as shown in Figure 3.6. 
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Figure 3.6 Threshold voltage shift of a symmetric DG MOSFET with different silicon 
and oxide thickness. 
 

3.2.2   Expression Of Vt Shift 

Due to volume inversion, the classical inversion charge sheet density is 

( )

0

g
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ii qn e dx qn t eQ ψ= =∫ i si                                                                   (3.3) 

And the quantum inversion charge density is 
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where Ej is the eigen energy ((3.1)) of the infinite square well based on the discussion in 

3.1.1. In (3.4), we assume that the Fermi level is at least several kT below the lowest 

eigen energy level.  

From the definition of Vt, one has. 

tCL QM q V kT
i i eQ Q Δ=                                                                                                  (3.5) 

Substituting (3.3) and (3.4) into (3.5) yields an expression of the Vt shift. 
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3.2.3      First Energy Level Approximation 

From the compact modeling point of view, (3.6) is too tedious. Rewrite (3.6) by 

subtracting E1 in every Ej, one has 
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The first term in the right side of (3.7) is a weak function of tsi and its value largely cancel 

with Eg/2q, which is the second term in the right side of (3.7). Therefore, the Vt shift can 

be expressed as a closed form function of tsi. 
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where m*=0.91m0 is the larger effective mass in the two valleys.  
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Figure 3.7 Threshold voltage shift due to quantum effects as a function of silicon film 
thickness. Symbols (tox=1nm (circle) and tox=2nm (star)) are obtained from the Poisson-
Schrodinger solver. The line is calculated from (3.8). 
 

The first subband approximation in (3.8) is justified in thin Si films where the energy 

spacing between the subbands is larger than kT so that electrons predominantly occupy 

the lowest subband. For thick Si films, the subband spacing decreases and several 

subbands may be populated. But in that case, the quantum Vt shift is small and the error 

associated with equation (3.8) is much less than kT/q. Figure 3 7 shows that the threshold 

voltage shift calculated by (3.8) is in good agreement with that obtained directly from the 

Poisson-Schrodinger solver. As expected, the result is independent of tox. 
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3.3 Gate Capacitance Degradation And Effective 

Inversion Layer Thickness 

3.3.1   Definition of Effective Inversion Layer Thickness 

The distribution of inversion charges from the surface due to quantum effects 

suggests the finite thickness of the inversion layer. This means an inversion capacitance 

in series with the oxide capacitance. In the presence of this inversion capacitance, the 

total gate capacitance, or the slope dQi/dVg in Figure 3.5, is reduced. 

2i
g

ox invg

ox si

dQ C t tdV
ε ε

= =
+

                                                                                            (3.9) 

where tinv is defined as the equivalent inversion layer thickness. The factor of two arises 

from the two symmetric channels of the device. The fact that electrons are distributed 

farther away from the surface due to quantum effects increases the inversion layer 

thickness and causes gate capacitance degradation. It can be modeled in terms of a 

parameter, 

QM CL
inv inv invt t tδ = −                                                                                           (3.10) 

where tinv
CL and tinv

QM are extracted from the classical and quantum Qi-Vg curves via (3.9).  

 

3.3.2   Extracting Effective Inversion Layer Thickness 

There are two different methods to extract δtinv in (3.10) through the classical and 

quantum tinv. Figure 3.8 shows the classical and quantum Qi–Vg curves. The quantum 

curve is shifted to the left by the value of ΔVt to ensure the influence caused by Vt shift is 
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eliminated. The first method is using the slopes at point A and B which have the same 

gate voltage to calculate δtinv through (3.9) and (3.10). The other one is using the slopes at 

point B and C which have the same inversion charge sheet density.  
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Figure 3.8 Classical and quantum Qi–Vg curves for a symmetric DG MOSFET. The 
quantum curve is shifted to the left by the amount of ΔVt to ensure the same off-state 
condition. 
 

In general, δtinv is a weak function of Qi. In bulk MOSFETs, an approximate 

expression for the quantum inversion layer thickness in the electric quantum limit was 

derived by Stern [18]. A similar approximate expression for δtinv is found to apply to DG 

MOSFETs, 

1/32

*
si

inv
i

t
m qQ
αεδ

⎛ ⎞
= ⎜

⎝ ⎠

=
⎟                                                                                           (3.11) 
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where α is a fitting constant to represent the influence of the classical inversion layer thickness. 

Its value is also different when using different methods to extract δtinv: α = 10.5 at same Vg and α 

= 7 at same Qi. Figure 3.9 compares δtinv vs. Qi calculated from (3.11) and those obtained from 

the Poisson-Schrodinger solver for symmetric DG MOSFETs with different silicon and oxide 

thickness. Quantum degradation of gate capacitance can then be modeled as an effective increase 

of the oxide thickness tox by (εox/εsi)δtinv based on (3.11).  
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Figure 3.9 Increase of inversion layer thickness due to QM effects, δtinv, as a function of 
Qi calculated from (3.11) (line) and obtained from the Poisson-Schrodinger solver 
(symbol) for three sets of silicon and oxide thickness. δtinv  is extracted at the same Vg in 
(a) and at the same Qi in (b).  
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3.4 Analytical Classical Potential Model 

In the undoped DG MOSFETs, due to absence of the depletion charge, Poisson’s 

equation )()(
2

2

xnq
dx

xd

siε
ψ

= with ( ) q kT
in x n e ψ=  can be rigorously solved to obtain an 

analytical expression for the potential in the silicon film [49] 

22 2( ) ln cos
2 2

si i

si si

t q nkT xx V
q kT

β
t

ψ
β ε

⎡ ⎤⎛ ⎞
= − ⎢ ⎜

⎢ ⎥⎝ ⎠⎣ ⎦
⎥⎟                                                   (3.12)

  

where V is the electron quasi-Fermi potential at a point along the channel, and the 

dimensionless parameter β  is a function of V to be determined from the boundary 

condition 

2

( / 2)
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ox si tx

ox

V x t d
t d
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− Δ − = ±
= ±

x
ε                                                     (3.13) 

Substituting (3.12) into (3.13) leads to 
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From Gauss’s law, the classical charge density is 

2

2 8
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Differentiating (3.14) yields 
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( 222 1 tan sec tansi ox
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By substituting (3.15) and (3.14) into the current continuity equation and integrating [16], 

a continuous, analytical drain current expression is obtained for all regions of MOSFET 

operation, 

0
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2 2
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Here, βs, βd are solutions to (3.14) corresponding to V being the source voltage Vs and the 

drain voltage Vd, respectively. Figure 3.10 compares the Ids-Vds characteristics calculated 

by the analytical model with the 2-D numerical simulation (ISE) results. They are in 

excellent agreement in different operation regions. 

Using the Qi(β) expression, the gate capacitance can be expressed in terms of β. 
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Figure 3.10 Ids-Vds curves of a symmetric DG MOSFET at different gate voltages. The 
solid line is calculated from (3.17) and the dashed line is from the ISE results. 
 

3.5 Implementation Of Quantum Effects In The Compact 

Model 

3.5.1   Implementation of Vt Shift 

Although no specific definition of threshold voltage is invoked in the analytic 

potential model, the threshold voltage shift due to quantum effect can be implemented by 

changing the gate work function in (3.14) from Δφ to Δφ +ΔVt, with ΔVt given by (3.8). 

Quantum threshold voltage shift can be also implemented as an effective change in the 

silicon thickness in a classical compact model for symmetric DG MOSFETs.  
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Figure 3.11 Quantum inversion charge sheet density Qi in both linear (right) and 
logarithmic (left) scales as a function of the gate voltage Vg. All curves (same tox = 1 nm 
but different tsi) are obtained from the solver. 

 

Figure 3.11 presents the quantum Qi-Vg curves obtained from the Poisson-Schrodinger 

solver for a symmetric DG MOSFET with different silicon thickness. It shows that the tsi 

dependent Vt shift due to quantum effects only occurs in the subthreshold region and does 

not affect the on-state Qi for tsi ≥ 5nm. To implement such effects in a classical model, we 

make use of the fact that the subthreshold current obtained from (3.14) and (3.17) in the 

limit of β〈〈 1, 

( )

1
g dsq V qV
kT kT

ds i si
WI kTn t e e
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μ
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= ⎜

⎝ ⎠
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is proportional to tsi (volume inversion), whereas and the on-state current (in the limit of β 

≈ π/2) is insensitive to tsi. Then, the quantum induced Vt shift can be implemented as an 
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effective change in the silicon thickness which shifts the subthreshold current by the ΔVt 

of (3.8) without affecting the above-threshold characteristics.  

2 2

* 22
t
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q V
m kTtQM kT

si si sit t e t e
πΔ −−

= =
=

                                                                   (3.20) 

 

3.5.2 Effective Gate Work Function and δtinv At Same Vg 

There are different combinations of the implementation of quantum effects into the 

classical compact model since we have different methods of implementing Vt shift and 

extracting δtinv. Among them, the simplest combination is implementing Vt shift by 

effective gate work function and extracting δtinv at the same Vg. At a given bias Vg, we 

first calculate the classical boundary parameter βCL using (3.14) with Δφ changing to Δφ 

+ΔVt. Then, we can obtain Qi
CL through (3.15) and δtinv through (3.11). After updating tox 

with tox
QM,  

1/3
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we can calculate the quantum boundary parameter βQM. 
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Note that both βCL and βQM appear in the above equation. It is extremely difficult to 

obtain an explicit expression of dVg/dβQM since we can not derive an explicit relationship 

between βCLand βQM.  Consequently, we are unable to obtain expressions for the drain 
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current and the gate capacitance. To simplify the problem, we can neglect the 

involvement between βCLand βQM. Then, following the same procedure in section 3.4, we 

can obtain an expression of the drain current 
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2 2 2
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4 2
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where βs
QM and βd

QM are the solutions to (3.22) corresponding to V being the source 

voltage Vs and the drain voltage Vd respectively, and tox
QM(βs

CL), tox
QM(βd

CL) are 

calculated from  (3.21) using βs
CL, βd

CL accordingly. 

And the gate capacitance is 

( ) ( )

2

2

sec tan4
21 tan sec tanox

QM QM QM
si

g QM CL
si siQM QM QM QM
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+
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By incorporating the quantum corrections, it is possible to generate I-V and C-V curves 

from the classical model that resemble the quantum I-V and C-V curves as shown in 

Figure 3.12 and 3.13. 
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Figure 3.12 Ids-Vds curves obtained from the analytical compact model (symbol) 
compared with those obtained from the Poisson-Schrodinger solver (line) for a symmetric 
DG MOSFET at two different gate voltages. 
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Figure 3.13 Classical (solid line) and quantum C-V curves (dotted line) obtained from the 
Poisson-Schrodinger solver compared with the classical C-V curves with quantum 
corrections (symbol). 
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3.5.3  Effective Silicon Thickness and δtinv At Same Qi 

We can avoid the differential and integral problem in section 3.5.2 by extracting δtinv 

at the same Qi. Quantum effects have been incorporated into the analytic potential model 

for DG MOSFETs by changing the silicon thickness from tsi to tsi
QM and replacing tox by 

tox
QM = tox+δtinvεox/εsi, where tsi

QM is given by (3.20) and δtinv by (3.11). Since Qi = 

8(εsi/tsi)(kT/q)βtanβ, tox
QM depends on the bias voltage through the parameter βQM. 
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βQM can be solved from the boundary equation (3.14) in its quantum form, 
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Differentiating (3.26) leads to 

( )' 22 1 tan 2 sec tanQM QM QM QM
QM QM

dV kT r
d q

β β β β
β β

⎛ ⎞
= − + + +⎜ ⎟

⎝ ⎠
            (3.27) 
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The quantum drain current is then 

 



 61

( ) ( )
( )

2

2
2

4 2

12
45         tan tan

2

QM
s

QM
d

si
ds QM

si

QM
QM si ox inv

QM QM QM QM
QM

ox si

W kTI
L t q

t t

t

β

β

εμ

ε δ ββ
β β β β

ε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎡ ⎤⎛ ⎞+⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥× − +
⎢ ⎥
⎢ ⎥⎣ ⎦

   (3.29) 

where βs
QM, βd

QM are the solutions to (3.26) corresponding to V being the source voltage 

Vs, and the drain voltage Vd, respectively, δtinv(βs
QM), δtinv(βd

QM) are calculated from 

(3.25) using βs
QM, βd

QM accordingly. 

The effective oxide thickness in which equals (12
45

QM
ox invt tδ β+ )  is close to tox

QM which 

equals to (1
3

QM
ox invt tδ β+ ) . Changing from one to another only causes small errors (less 

than 2% even for tox =1nm). This justified what we did in section 3.5.2. If we do the same 

simplification here, the current will be 
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The quantum gate capacitance Cg = dQi/dVg, is calculated from: 
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SPICE3 simulations have been run to demonstrate the impact of quantum mechanical 

effects on the gate capacitance and the drain current. Figure 3.14 and Figure 3.15 show 

the comparison of classical and quantum C-V and I-V curves obtained from the Poisson-

Schrodinger solver and those calculated from the analytic potential compact model with 

and without the quantum corrections. Both C-V and I-V curves are in good agreements. 

Comparing Figure 3.14 and Figure 3.13, we found that by extracting δtinv at same Qi and 

calculating Cg using (3.31), a better agreement of the C-V curves agreement improve is 

obtained. 
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Figure 3.14 Classical (solid line) and quantum C-V curves (dotted line) obtained from the 
Poisson-Schrodinger solver compared with the classical C-V curves with quantum 
corrections (symbol). 
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Figure 3.15 Ids-Vds curves obtained from the analytical compact model (symbol) 
compared with those obtained from the Poisson-Schrodinger solver (line) for a symmetric 
DG MOSFET at two different gate voltages. 
 

Figure 3.16 shows the waveforms at two successive stages of a CMOS inverter chain 

in response to a step input signal. The figure plots the pull-up of one stage and the pull-

down of the next stage with and without the QM correction. The compact model also 

includes a parasitic gate to source or drain overlap capacitance of 0.3 fF/μm per gate per 

edge. It is observed that the propagation delay with QM effects is about 20% longer than 

that without QM effects for the same Vt. This is because quantum effects degrade the 

current more than the capacitance, which contains an extrinsic component independent of 

tox. 
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Figure 3.16 Voltage waveforms at successive stages of a DG CMOS inverter chain 
generated from the analytic potential compact model with quantum effects (solid line) 
and without quantum effects (line with symbol). 
 
 

The text of Chapters Three, in part, is a reprint of material that appears as “Compact 

modeling of quantum effects in symmetric double-gate MOSFETs” by Wei Wang, 

Huaxin Lu, Shih_Hsien Lo and Yuan Taur,  submitted to Solid State Electronics. 

 

 



Chapter 4   

Compact Modeling of Quantum Effects 

in Asymmetric DG MOSFETs 

4.1 Quantum Effects In asymmetric DG MOSFETs 

In an asymmetric DG MOSFET, the work functions at the front and back gates are 

different. As shown in the schematic band diagram (Figure 4.1), the silicon band becomes 

sloped between the two gates. This leads to a built-in electrical field across the silicon 

film even at zero gate voltage. In the subthreshold region, this built-in field does not 

change with the gate voltage. In other words, the silicon bands move as a whole with the 

applied gate voltage, similar to the symmetric DG MOSFETs where the built-in field is 

zero. Therefore, the subthreshold slope of asymmetric DG MOSFETs is also 60 

mV/decade. Due to the presence of this built-in field, the quantum mechanical behaviors 

of electrons in asymmetric DG MOSFETs are much different from those in the 

symmetric devices. The potential well does not behave like an infinite square well 

because of the slope of the conduction band. Consequently, the electron eigen energy 

levels are higher with respect to the eigen energy levels in the infinite square well.  
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Figure 4.1 Schematic band diagram of an asymmetric DG MOSFET at zero gate voltage. 
The left gate is assumed to have smaller work function than the right gate 

 

As illustrated in Figure 4.2, the ground state energy of electrons in a n+p+ gate 

MOSFET (the left gate has the same work function as n+ silicon and the right gate has the 

same work functions as the p+ silicon) is much higher than the ground state energy in a 

symmetric DG MOSFET discussed in Chapter 3. The sloped conduction band causes 

higher electron population on the left side of the silicon film as shown in Figure 4.2. The 

centriod of the inversion charge distribution moves closer to the left surface as the built-

in field increases, e.g., the two gate work functions become more.  
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Figure 4.2 The comparison of electron ground state energy between an symmetric DG 
MOSFET with n+p+ gate work functions and an infinite square well. 
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Figure 4.3 Wave function of the first two subband electron in an asymmetric DG 
MOSFET with n+p+ gate work functions compared with that in a corresponding infinite 
square well.  
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However, when the silicon film is very thin, the strong confinement in the silicon film 

causes the centroid to move to the center of the film just like the symmetric device. The 

electrostatic coupling between the front channel and the back gate is stronger than the 

classical case since the front channel is closer to the back gate due to quantum effects. 

Therefore the difference between the Qi-Vg characteristics of symmetric and asymmetric 

DG MOSFETs is smaller than the classical case as shown in Figure 4.4. 

 

 

Figure 4.4 Classical and quantum Qi-Vg curves at both linear (right) and logarithmic (left) 
scales of symmetric and asymmetric DG MOSFETs. Asymmetric curves are shifted to 
keep the same off-state condition with the symmetric curves. 
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Figure 4.5 The lowest two eigen energy levels in both valleys versus the surface field of 
an asymmetric DG MOSFET. 
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Figure 4.6 Classical and quantum gate capacitance of an asymmetric DG MOSFET with 
n+p+ gate work functions and different silicon thickness. 

 



 70

 

Beyond the subthreshold region, the surface field increases with increasing gate 

voltage. As a result, the electron eigen energies increase rapidly as illustrated in Figure 

4.5. Due to the asymmetry of the gate work functions, the two gates have different 

threshold voltage and the gate with smaller work function turns on first. Consequently, 

the C-V curves have a step shape around the threshold voltage of the back gate which can 

be seen clearly from the classical curves in Figure 4.6. It is different in the quantum case. 

When the silicon film is thick, the step shape in the C-V curve presents for the same 

reason. However, the step disappears in the curve with moderate silicon thickness and 

appears again when the silicon film becomes very thin.  

 



 71

 

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

n=3

n=2

n=1

G
at

e 
ca

pa
ci

ta
nc

e 
(F

/m
2 )

O
cc

up
at

io
n 

ra
tio

Gate voltage (V)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

tsi=2nm 

 

(a) 

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

n=3

n=2

n=1

G
at

e 
ca

pa
ci

ta
nc

e 
(F

/m
2 )

O
cc

up
at

io
n 

ra
tio

Gate voltage (V)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

tsi=5nm 
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Figure 4.7 Electron occupation ratio of the lowest three subbands as a function of the gate 
voltage for an asymmetric DG MOSFET with two different silicon thickness: (a) tsi = 2 
nm and (b) tsi = 5 nm. The Qi-Vg curves are also plotted. 
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The step feature in the thin silicon film case does not arise from the asymmetry of 

gate work functions. As one can see in Figure 4.7, in the case of thin tsi, electrons only 

populate in the lowest energy subband before the critical Vg where the step occurs. After 

the critical Vg, electrons start to populate at higher energy subbands and hence, the total 

charge density increases much more rapidly with increasing Vg, which leads to the step 

shape in the C-V curves. This critical Vg is higher than the threshold voltage when tsi is 

thin. The critical Vg decreases with increasing tsi because the differences between the 

energy subbands become smaller. When tsi is larger than 5nm, the critical Vg becomes 

smaller than the threshold voltage and therefore, no step is observed after device turning 

on in Figure 4.7 (b).  

 

4.2 Threshold Voltage Shift – Thickness And Field 

Dependence 

4.2.1 Expression Of Vt Shift  

As discussed in the last section, the electron eigen energy levels not only depend on 

the silicon thickness but also depend on the built-in field which comes from the 

asymmetry of the gate work functions. As a result, the threshold voltage shift due to 

quantum effects also depends on both the thickness and the field as shown in Figure 4.8. 

When tsi is thick, confinement by the thickness is weak and the field dependence 

dominates. However, thickness confinement becomes stronger when tsi is thinner. In the 

case of extremely thin tsi, the Vt shift is completely dominated by the thickness. 
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Figure 4.8 Threshold voltage shift due to quantum effects of asymmetric DG MOSFETs 
with different silicon thickness and built-in field. The data are obtained from the 1-D 
numerical solver simulation. 
 

An expression of Vt can be obtained using the same procedure as we did for 

symmetric DG MOSFETs. Due to the built-in field, the potential across the silicon film is 
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where 1φΔ , 2φΔ  are the work function of the front gate (the one with lower work 

function) and the back gate (the one with higher work function) respectively, and sε  is 

the built-in field. 
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Therefore, the classical inversion charge sheet density is 
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The quantum inversion charge sheet density is given by 
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Through the classical and quantum charge density, one can obtain the expression of the 

threshold voltage shift due to quantum effects. 
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In the above equations, only the lowest subbands in both valleys are kept. However, one 

needs to find out E1 to calculate the threshold voltage shift. 

 

4.2.2 E1 Calculation – Airy Function Approach 

Comparing an asymmetric DG MOSFET in the subthreshold region with that of a 

traditional triangular well, one finds that the Schrodinger equation is the same. The 

boundary condition at x = 0 is also the same and the only difference comes from the right 

boundary condition – zero wave function at infinity for triangular well and zero wave 
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function at x = tsi for asymmetric DG MOSFET. The Schrodinger equation in a triangular 

potential well in the moment space can be solved rigorously.  

( ) ( ) ( )
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2 s
p dp i p E
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ϕ ϕε+ == pϕ                                                              (4.5) 

The solution is the wave function at the moment space φ(p). 
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where A is the normalization constant. The wave function in the spatial coordinate space 

can then be calculated as 
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where  
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and A’ is another normalization constant. Note the right side of (4.7) without the constant 

A’is exactly the Airy function with the variable ξ. In the triangular potential well, the 

ground eigen energy level can be calculated from the highest zero point (excluding the 

infinity) of the Airy function using (4.9), and the second eigen energy level can be 
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calculated from the second largest zero point and so on. In an asymmetric DG MOSFET 

with the built-in field, the situation is much more complicated due to the right boundary 

condition at x = tsi. However, the eigen energy levels should still relate to the zero points 

of the Airy function through. For every eigen energy level, there also exists a down limit 

which equals to the corresponding energy level of an infinite square well. This is caused 

by the thickness confinement. In other words, the ground state energy can be found as the 

largest number which satisfies the following conditions. 
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Figure 4.9 Electron ground state energy as a function of the built-in field of an 
asymmetric DG MOSFET with different silicon thickness. The dashed line the ground 
energy of the triangular potential well. 
 

It is difficult to give an expression of the ground state energy although we can obtain 

it by a table-lookup method. For compact modeling, we need to know E1 as a closed form 

function so that we can calculate the Vt shift through (4.4). As discussed before, the field 

confinement dominates when the field is very high and the thickness confinement 

dominates when the thickness is very thin and the field is not that high. From Figure 4.9, 

one can observer the fact that the ground state energy eventually equals the ground 

energy of the triangular well when the field is high enough for different silicon thickness. 

A simple fitting expression can then be given based on this observation.  
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Where n = 3/4 is a fitting parameter, 
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Here γ1 is the largest zero point of the Airy function. Figure 4.10 shows the ground energy 

of electrons calculated by (4.13) in the two-fold valley, compared with data obtained 

from the solver directly. Using E1 (and E1
’ with m’) calculated from (4.13), one can 

calculate the Vt shift through (4.4). The comparison between the calculated Vt shift and 

those obtained from the solver is shown in Figure 4.11. As one can see, both the ground 

energy and Vt agree with the simulation results well. 
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Figure 4.10 Comparison of the electron ground energy calculated by (4.13) with those 
obtained from the solver for an asymmetric DG MOSFET with different silicon thickness. 
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Figure 4.11 Comparison of the threshold voltage shift due to quantum effects calculated 
by (4.4) and those obtained from the solver directly for an asymmetric DG MOSFET. 
 

4.2.3  E1 Calculation – Variation Approach  

Since we are mostly interested at the electron ground state energy, the variation 

method can also be used for the energy calculation. Based on the quantum confinement 

trends in the high field and thin silicon limits, a trial wave function is 
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where the coefficient a can be calculated through the normalization. 
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The expectation values of the kinetic and potential energies are 
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The expectation value of the electron ground energy is then 
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According to the variation principle, the variation parameter b should minimize the 

energy E1, i.e., 

1 0dE
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=                                                                                                                  (4.20) 

This nonlinear equation is difficult to be solved analytically. Using the asymptotic 

behavior of (4.19) as , b is approximated as sit ∞∼

1
3

2

3 smqb ε⎛ ⎞= ⎜
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⎠
                                                                                              (4.21) 

However, the ground energy calculated through (4.21) and (4.19) does not agree the 

simulation results well when tsi is thin because of the approximation used for (4.21). 
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4.3 Gate Capacitance Degradation – Equivalent 

Capacitance Model 

4.3.1 Equivalent Small Signal Capacitance Circuit 

In asymmetric DG MOSFETs, there exists electrical coupling between the two gates 

and the inversion channels. This coupling makes the inversion charge distribution and 

gate capacitance behaviors much more complicated than in symmetric DG MOSFETs. 

For a comprehensive picture of the charge coupling between the gates and the channels, a 

small-signal equivalent capacitance circuit is developed for the asymmetric DG 

MOSFETs under equilibrium. Figure 4.12 illustrates such a circuit, where 1sψ and 2sψ are 

the potential in the silicon surfaces, 1
0

si
x

dQ
dx
ψε

=

= − and 2
si

si
x t

dQ
dx
ψε

=

= are the charges 

in the front and back gate, respectively. Except for the two inversion capacitances Ci1 and 

Ci2, there is an additional capacitance Csi in Figure 4.12, which represents the coupling 

between the gates and the inversion channels. The Δ–type network adopted in Figure 4.12 

is a physical representation of the linear relationship between the small signal quantities 
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Similarly, one can also obtain the linear relationship between the small signal quantities 

 and ( )  ( )1 2,Q Qδ δ 1 2,g gV Vδ δ
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( )( ) 2
1 2ox i si ox i si siM C C C C C C C= + + + + −                                         (4.24) 

 

Cox CoxCsi

Ci1 Ci2

Gate1 Gate2

n  S/D+

+ - +-ψs2ψs1

Q = ε  E1 si 1 Q =-ε  E2 si 2

 

Figure 4.12 Schematic small signal capacitance equivalent circuit of an asymmetric DG 
MOSFET under equilibrium condition, i.e., there is no current flow between the source 
and the drain. 
 

The three components of capacitance behave differently with increasing gate voltage 

as shown in Figure 4.13. In the subthreshold region, the inversion charge is negligible 

and so are the inversion capacitance Ci1 and Ci2. On the other hand, Csi equals to εsi/tsi, 

which means that the charge coupling is between the two gates. When Vg is above the 

threshold voltage, Ci1 increases rapidly. Note that Ci2  increases slowly because of the 

charge coupling. In the meantime, Csi starts to decrease because of the screening of the 

gate field by the front channel. When Vg is higher than the threshold voltage of the back 
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gate, the second channel forms and Ci2 rises rapidly as well. However, Csi becomes 

negligible due to the strong screening by the two inversion channels. 
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Figure 4.13 Capacitance components Ci1, Ci2, and Csi versus the gate voltage for an 
asymmetric DG MOSFET of tsi = 10 nm with n+/p+ poly gates. 
 

The equivalent capacitance circuit is valid for both three-terminal and four-terminal 

asymmetric DG MOSFETs. In Figure 4.14(a), the two gates are tied together and 

switched simultaneously.  The gate capacitance is larger than Cox as expected since there 

are two inversion channels. In the four-terminal case (Figure 4.14(b)), the back gate is 

biased at a constant voltage below the back gate threshold voltage and only the front gate 

is switched. Consequently, the gate capacitance is smaller than Cox since only one 

inversion channel is formed. However, it is clear that the back gate bias can affect the 

threshold voltage of the device through the charge coupling between the front channel 
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and the back gate. The solid line is the slope of Qi – Vg curve obtained from the solver 

and the dashed line is from the equivalent circuit calculation. In both cases, the calculated 

curves agree well with the data from the solver. 
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(b) 

Figure 4.14 Comparison of the gate capacitance obtained from the solver and calculated 
using the equivalent circuit for (a) three-terminal and (b) four-terminal asymmetric DG 
MOSFETs 
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4.3.2 Equivalent Inversion Layer Thickness 

To further illustrate the meaning of the capacitance components, we define the 

equivalent inversion layer thickness tinv1, tinv2 for the two inversion channels such that 

( ) ( )10
1 1

si sit t

inv
s s

n x
0

x dx t n x dx
ψ ψ

∂ ∂
=

∂ ∂∫ ∫                                                           (4.25) 

and 

( ) ( ) ( )20
2 2

si sit t

si inv
s s

n x
0

x dx t t n x dx
ψ ψ

∂ ∂
= −

∂ ∂∫ ∫                                              (4.26) 

 

where n(x) is the inversion charge density. In other words, tinv1 is the center of mass of the 

incremental charge in response to the incremental change in 1sψ , and tsi - tinv2 is the center 

of mass of the incremental charge in response to the incremental change in 2sψ . Making 

use of the Poisson’s equation and the matrix definition (4.22), one can obtain a general 

relationship between the capacitance components. 

1 2
1 2 1inv inv si

i i
si si si

t t tC C
ε ε ε

= = − siC                                                                        (4.27) 

As discussed previously, Csi becomes negligible after both surfaces are strongly inverted. 

Therefore, the inversion capacitances are given by the distance between the charge 

centroids and the respective surfaces. 
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Figure 4.15 Quantum equivalent inversion layer thickness versus the gate voltage for an 
asymmetric DG MOSFET of tsi = 10 nm, tox = 1 nm with n+/p+ poly gates.  
 

Figure 4.15 shows the equivalent inversion layer thickness calculated from (4.27). 

Note there is a distinct plateau for Vg values between the front and the back threshold 

voltages in both classical and quantum case. This plateau implies that the back gate also 

contributes to the inversion charge in the front channel through charge coupling between 

them. On the other hand, tinv1 does not change significantly with increasing gate voltage 

after strong inversion. Due to quantum effects, the inversion charge in the left channel is 

at a distance away from the left surface. Therefore, the quantum tinv1 is always larger than 

the classical tinv1 and the quantum Ci1 is smaller than the classical Ci1 accordingly (Figure 

4.16). The tinv2 and Ci2 behavior is more complex. Before the back gate turns on, the 

quantum coupling between the front channel and the back gate is stronger than the 

classical case because they become closer to each other. As a result, the quantum tinv2 is 
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smaller than the classical tinv2 and the quantum Ci2 is smaller than the classical Ci2 

accordingly (Figure 4.17). After the back gate turns on, the classical and quantum tinv2 , 

Ci2 become similar to tinv1 , Ci1  because the back channel is further away from the right 

surface. 
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Figure 4.16 Front channel inversion capacitance versus the gate voltage for an 
asymmetric DG MOSFET with different silicon thickness. 
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Figure 4.17 Back channel inversion capacitance versus the gate voltage for an 
asymmetric DG MOSFET with different silicon thickness. 
 
 
4.4 Analytical Classical Potential Model 

In an asymmetric DG MOSFET, the solution of the Poisson’s equation at high gate 

voltage is 

( )
22 2ln sin Large 

2 2
si i

g
si si

t q nkT xx V V
q kT t

β Vψ α
β ε

⎡ ⎤⎛ ⎞
= − + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
         (4.28) 

where α and β are constants to be determined from the boundary conditions 

1 1
0

g s
ox si x si

ox

V d
t dx 1

φ ψ ψε ε ε ε=

− Δ −
= − ≡                                                          (4.29) 

2 2
2si

g s
ox si x t si

ox

V d
t dx
φ ψ ψε ε ε ε=

− Δ −
= ≡ −                                                          (4.30) 

From (4.28), one can obtain the potential in the two surfaces 
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⎧ ⎫⎛ ⎞⎪ ⎪ ⎪= + + ⎨ ⎬⎜ ⎟⎪ +⎪ ⎪⎝ ⎠ ⎩ ⎭⎩

                                  (4.31) 

and the electrical field as well. 
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β α β
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                                                                                     (4.32) 

Substituting (4.31) into the boundary condition and summing (4.29) and (4.30), one has 

( )
( ) ( ) ( ) 2 1sin ( )( , ) ln 2 cot cot 0

sin 2
qf r

kT
α β φ φα β β α β α β
α β

⎡ ⎤+ Δ − Δ
⎡ ⎤≡ + − + + −⎢ ⎥ ⎣ ⎦−⎢ ⎥⎣ ⎦

=  (4.33) 

And from (4.29), one can obtain 
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   (4.34) 

where /ox si si oxr t tε ε= . Based on the Gauss’s law, the total inversion charge is 

( ) (1 2
4 ( ) cot cotsi

i si
si

kTQ
qt

)εε β α β α βε ε ⎡ ⎤= − = − − +⎣ ⎦                          (4.35) 

The current can be obtained by integrating Qi along the channel 

( )d

s

V

ds iV

WI Q V
L

μ= ∫ dV                                                                                    (4.36) 

At low gate voltage, the potential solution becomes 
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    (4.37) 
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However, following the same procedure from (4.31) to (4.36), we can also obtain the 

drain current for the low gate voltage case. Figure 4.18 compares the drain current from 

the analytical potential model and the 2-D ISE simulation results. 

 

 

Figure 4.18 Classical Ids – Vds characteristics from the compact model compared with the 
2-D numerical simulation results (ISE) for an asymmetric DG MOSFET. 
 

4.5 Implementation Of Quantum Effects In The Compact 

Model 

The quantum threshold voltage shift can be implemented into the classical model by 

change Vt to Vt + ΔVt, where ΔVt is calculated through (4.4) with E1 obtained from (4.13). 

It is difficult to obtain Ci1, Ci2, and Csi as close form functions of the device parameters 

due to their complicated behaviors. As a result, the quantum gate capacitance degradation 
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is difficult to be implemented into the classical model. However, for the first order 

approximation, we can use a constant oxide thickness change δtox for the gate capacitance 

degradation implementation. Note that the built-in field decreases due to the increasing 

oxide thickness, which decreases the classical inversion charge density. In other words, 

an additional threshold voltage shift will be produced by changing tox to tox + δtox. The 

definition of this additional threshold voltage '
tVΔ  is 

( ) ( )', ,CL CL
i g ox i g t ox oxQ V t Q V V t tδ= + Δ +                                                     (4.38) 

Using (4.2), one can calculate '
tVΔ as 

( ) '
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s
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q t
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q

e

ε
ε

εε
ε ε

−

−

⎛ ⎞
−⎜ ⎟Δ = − + ⎜

⎜ ⎟−⎝ ⎠
⎟                                                    (4.39) 

where '
sε  is the new built-in field after changing tox to tox + δtox. 

( )
' 2 1

2
s

si
si ox

ox

t t oxt

φ φ
ε δ
ε

ε Δ − Δ
=

+ +
                                                                                 (4.40) 

The positive value of  means the threshold voltage increases by changing t'
tVΔ ox to tox + 

δtox. To eliminate this additional threshold voltage variation, the final shift of the gate 

work function is given by . In other words, to generate the drain current with 

quantum correction, one needs to increase the two gate work functions by  and 

to change t

'
tV VΔ − Δ t

t
'

tV VΔ − Δ

ox to tox + δtox. Figure 4.19 shows the Ids – Vds characteristics produced by this 

method. 
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Figure 4.19 Ids-Vds curves obtained from the analytical compact model (line) compared 
with those obtained from the Poisson-Schrodinger solver (symbol) for an asymmetric DG 
MOSFET with n+/p+ poly gates at two different gate voltages. 
 

 

 

 

 

 



Chapter 5   

Compact Modeling of QM Effects In 

Short Channel DG MOSFETs 

In previous chapters, quantum effects are investigated and implemented in the 

analytical long channel core model for DG MOSFETs. In a short channel DG MOSFET, 

variation of the electric field in the channel direction becomes comparable to the 

corresponding variation in the vertical direction due to the strong source and drain field 

penetration. Consequently, the Gradual-Channel approximation is no longer valid and 

solving 1-D Poisson’s equation in the vertical direction is not sufficient to give us 

comprehensive understanding of the device characteristics. Further insight into the 

electric performance of a short channel DG MOSFET can be gained by examining the 

two-dimensional Poisson’s equation. 

                           
( ) ( )2 2

2 2

, ,

si

x y x y
x x

ψ ψ ρ
ε

∂ ∂
+ =

∂ ∂
−                                                          (5.1) 

where the electrostatic potential ψ(x,y) is defined as the intrinsic potential at a point (x,y) with 

respect to the Fermi potential of the n+ source (at the conduction band edge), and ρ is the total 

charge density including. Figure 5.1 shows the schematic diagram of a double-gate 

MOSFET. The x-axis is along the vertical direction and the y-axis is along the horizontal 

direction with the origin at point O.  
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Figure 5.1 Schematic diagram of a double-gate MOFET. 

 

5.1 2-D Analytical Solution Of Poisson’s Equation In 

Subthreshold Region 

For short channel devices, the primary concerns are the threshold voltage roll-off and 

the subthreshold slope, both in the subthreshold region where the mobile charges are 

negligible. The depletion charges are also negligible since we focus on the undoped (or 

lightly doped) DG MOSFETs. Consequently, the 2-D Poisson’s equation in both the 

insulator regions and silicon regions becomes 

( ) ( ) 0x x
x x y y

ψ ψε ε
⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

=                                                                 (5.2) 

where ( )xε  is a step function due to different materials 
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x t x t

t x t t
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− − ≤ < −⎧
⎪= − ≤ <⎨
⎪ ≤ < +⎩

                                                    (5.3) 

If we assume the source and drain junctions are abrupt, the boundary conditions are: 

1 1Top gate: ( / 2 , ) 0si ox gt t y V y Lψ φ− − = − Δ < <                           (5.4) 

2 2Bottom gate: ( / 2 , ) 0si ox gt t y V y Lψ φ+ = − Δ < <                           (5.5) 

Source: ( ,0) / 2 / 2 / 2g sx E q t x tψ = − i si< <        (5.6) 

Drain: ( , ) / 2 / 2 / 2ds g si six L V E q t x tψ = + − < <         (5.7) 

A full analytical potential solution can be obtained after solving the Poisson’s equation in 

the 2-D boundary value problem [52]. 
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where the coefficients b1 and c1 are 
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And the scale length λ1 is the largest eigen value of the following equation. 

tan( / ) tan( / 2 / 2 )si i n ox sit n t nε π λ ε π π λ= −  
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The Vds dependence in c1 is responsible for DIBL and the Vg dependence in b1 and c1 

subthreshold slope degradation. 

Constant electrostatic potential contours calculated from the analytical solution for 

symmetric DG MOSFETs are compared with 2-D ISE simulation results in Figure 5.2. 

The agreement is quite good (with relative error less than 2%). It is clear that the 

maximum potential along x=0 has a minimum in the y direction. The minimum is located 

approximately midway between the source and the drain. Potential variation in the x 

direction is much less than that in the y direction.  

 

Figure 5.2 Constant electrostatic potential contours based on the analytical solution (solid 
curves) for symmetric DG MOSFETs, compared with 2-D simulation results (dashed 
curves). Here, Vg1=Vg2=Vg=0.2V, Vds=1V, L=60nm, tsi=10nm, and ti=1.5nm. 

 

5.2 Classical And Quantum Subthrshold Current 
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5.2.1   Classical Subthreshold Current 

Knowing the potential solution, we can proceed to derive the subthreshold current. 

Note that the electron quasi-Fermi potential V is essentially constant in the x-direction, 

which means that the MOSFET current density J flows predominantly in the y-direction 

(from source to drain). The current density (both drift and diffusion) can then be written 

as 

( )( , ) dV yJ q n x y
dy

μ= −  (5.11) 

Integrating in x- and z-directions and one has 

( )( ) ( )ds i
dV yI y WQ y

dy
μ= −  (5.12) 

where Qi(y) is the inversion charge per gate area 
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/ 2 / 2
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i it t
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− −
= =∫ ∫                    (5.13) 

Based on the current continuity, integration of (5.12) with respect to y from 0 to L yields 

[ ]

( , ) / ( , ) /

( ) /

0

/ 2 / 20 0

/ 2 / 2
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q x y kT q x y kTsi si
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ds L L
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i it t

W e dV y WkT qV kT
I dy dy

q n e dx n e dx
ψ ψ

μ μ
−

− −

− −
= =∫
∫ ∫

∫ ∫
          (5.14) 

The classical subthreshold current can only be obtained through numerical calculation 

due to the double integral in (5.14). 
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5.2.2 Quantum Subthreshold Current From The Solver 

Due to the very low low mobile carrier density in the subthreshold region, it is a 

reasonable approximation that the charge will not affect the potential profile, which 

means that one can decouple the Poisson’s and Schrodinger equations. Therefore, we can 

incorporate the analytical potential solution into the Schrodinger equation directly to 

obtain the wave function and hence, the quantum electrostatic carrier profile instead of 

solving Poisson and Schrodinger equation self-consistently. 

2 2

* 2

( ) [ ( , )] ( ) (
2

d x q x y x E x
m dx

ϕ ψ ϕ ϕ− + − = )                                                     (5.15) 

( )( )*
2

4 ln[1 ]ijE qV y kTqm
i i i

i j

qkTQ g m e
h
π − −= +∑ ∑                                               (5.16) 

Based on current continuity, an iterative procedure (shown in Figure 5.3) is then 

employed to find the drain current level. At a given gate and drain bias, we first solve the 

Schrodinger equation at the first slice (source) and then calculate the inversion charge 

sheet density through (5.16) with zero quasi-Fermi level. The current continuity condition 

(5.12) then, yields the quasi-Fermi level at the next slice through an initial guess of the 

current Iguess as follows: 

2 1
1

1 1
guess

i

V V I
W Qμ

= + Δy                                                                                      (5.17) 

where Δy is thickness of the uniform slice, Qi1 is the inversion charge sheet density in the 

first slice, V1 and V2 is the quasi-Fermi level in the first and second slice respectively. 
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Figure 5.3 Schematic diagram of the procedure to obtain the subthrshold current for short 
channel DG MOSFETs. 
 

With a known quasi-Fermi level, solving Schrodinger equation yields the inversion 

charge sheet density through (5.16) in the second slice. The same procedure is repeated 

till the quasi-Fermi level at the last slice (drain) is obtained. 

1
1

1 1
N N guess

iN

V V I
W Qμ−

−

= + Δy  (5.18) 

where QiN-1 and VN-1 is the inversion charge sheet density and at the (N-1)th slice 

respectively and VN is the quasi-Fermi level at the last slice (drain). 
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If the calculated quasi-Fermi level VN at drain does not equal the drain voltage Vds, the 

initial estimate of the current level Iguess is revised and the iterative calculation is repeated. 

This process is repeated until the correct current level is found. 

Figure 5.4 compares classical and quantum subthreshold current obtained by this method 

for both a symmetric and an asymmetric DG MOSFET. Quantum effect is significantly 

stronger in asymmetric DG MOSFETs than it is in symmetric DG MOSFETs because the 

“built-in field” in asymmetric DG MOSFETs is much higher. However, quantum effect 

in a symmetric DG MOSFET becomes significant when the thickness of silicon film is 

very thin. It is also observed that quantum effects make the Vt roll-off worse than 

classical case in asymmetric DG MOSFET. 
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Figure 5.4 Classical (solid line) and quantum (dash line) subthreshold Ids-Vg 
characteristics obtained from the iteration procedure for a symmetric (a) and an 
asymmetric (b) DG MOSFET with different channel length. 
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5.2.3 Quantum Subthreshold Current – Perturbation Approach 

In section 5.2.2, to calculate the quantum subthreshold current, one needs to obtain 

the eigen energy levels by solving the Schrodinger equation numerically from the solver, 

calculating the charge sheet density and finally running the iteration procedure. It 

requires plenty of numerical computation and hence, is not convenient for the compact 

modeling. The problem is much simplified if we can calculate the eigen energy levels 

analytically or approximately. Note that due to volume inversion,  in the subthreshold 

region of a long channel symmetric DG MOSFET, the quantum potential well acts like 

an infinite square well whose eigen energy and eigen wave function are well known. 

Approximate expression of energy levels can then be achieved by treating the short 

channel term in the 2-D potential solution (last term in (5.8)) as a perturbation. The zero 

order wave functions of an infinite square well from –tsi/2 to tsi /2 are 

( )0

2 cos            1,3,5,...

2 sin            2, 4,6,...

si si
j

si si

j x j
t t

x
j x j

t t

π

ϕ
π

⎧ ⎛ ⎞
=⎪ ⎜ ⎟

⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪ =⎜ ⎟⎪ ⎝ ⎠⎩

                                                  (5.19) 

with the eigen energy levels: 
2 2 2

0
* 22j

si

jE
m t
π

=                                                                                                          (5.20) 

The first order energy perturbation term for the odd states is the following based on the 

non-degenerate perturbation theory. 
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where the coefficient A and B are 
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Similarly, one can calculate the even states. 
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For the purpose of compact modeling, it is sufficient to consider the first order 

perturbation term only since the second order perturbation term is much smaller than the 

first order. From the above calculation, the eigen energy levels for a short channel 

symmetric DG MOSFET are: 

2 2 2

* 2
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* *sin
2 2

si
j j

si

tjE A B
m t

ππ
λ

⎛ ⎞
= + ⎜

⎝ ⎠
⎟                                                                    (5.25) 

With the eigen energy levels, one can easily calculate the charge sheet density along the 

channel using (5.16). 
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The above equation assumes that the quasi-Fermi level is at least several kT below the 

lowest energy level. Substituting the charge sheet density into the current continuity 

equation yields the subthreshold current. 

( )/

0 ( )
( )2 *

2

1

1

ds

g
g

j

qV kT

QM
ds L

E
q V kT

E y kT
i i

i j

kTW e
qI

dy
qkT e g m e

φ

μ

π

⎛ ⎞
−Δ −⎜ ⎟⎜ ⎟ −⎝ ⎠

−
=

∫
∑ ∑

                (5.27) 

 



 106

Although the integral in the denominator still needs to be calculated numerically, the 

problem is simplified by avoiding solving the Schrodinger equation and iterating with the 

continuity equation. Figure 5.5 compares the subthreshold current at low (a) and high (b) 

drain bias of a symmetric DG MOSFET with different channel length calculated from 

(5.27) and those from the solver with the iteration procedure. The agreement is good for a 

wide range of channel length. However, the deviation becomes large when the channel 

length is comparable to the scale length in the case of thick silicon film. The reason is 

that the first order energy perturbation due to the short channel term in the potential 

expression (5.8) is comparable to the zero order energy and hence can not be treated as a 

perturbation. However, these channel lengths are not practical due to the severe short 

channel effects. 
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Figure 5.5 Quantum subthreshold Ids-Vg characteristics obtained from the iteration 
procedure (line) and perturbation method (symbol) of a DG MOSFET with different 
channel length at low (a) and high (b) drain bias. 
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5.3 Quantum Short-Channel-Effects Induced Vt Roll-Off  

The threshold voltage decreases with decreasing channel length due to the 

source/drain influence on the channel. In the quantum case, this becomes more severe 

because of the quantum inversion charge distribution. Gate control over the channel is 

weakened with the inversion charge farther away from the gate. As shown in Figure 5.6, 

quantum threshold voltage drops faster with decreasing channel length than the classical 

case.  
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Figure 5.6 Classical (solid symbol) and quantum (open symbol) threshold voltage Vt for 
an asymmetric (n+p+) DG MOSFET with different channel length (normalize to λ1). at 
low (circle) and high (triangular) drain 
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From the compact modeling point of view, we can assume a known classical Vt roll-off  

due to SCE in the classical model and focus on the Vt shift due to quantum effects of the 

short channel DG MOSFETs.. The definition of Vt shift for the short channel devices due 

to quantum effects is  

( , ) ( , )
( / ) ln10

CL QM
ds g ds ds g t ds

SI V V I V V V
kT q

= + Δ                                        (5.28) 

In (5.28), we assume the classical and quantum subthreshold slope S are the same. The 

exponential term of Vg in (5.27) is independent of y and can be taken out of the integral. 

Therefore we have 

2

ln10( , )
( / ) ln10

t
S qV

QM QMkT
ds g t ds ds g ds

S ( , )I V V V e I
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Combining (5.28) and (5.29) yields an expression of the Vt shift. 
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The 2-D potential distribution has a minimum yc (maximum barrier) in the y direction, 

which can be obtained through ( , ) / 0
cy y

x y yψ
=

∂ ∂ = . From the denominators of (5.14) 

and (5.27), it is obvious that this minimum dominates the drain current level. If we 

neglect the errors caused by the spatial variation of the electrostatic potential in the y 

direction, one has 
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where 
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Substituting the classical and quantum inversion charge density expression into (5.31)

yields:  
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Substituting the analytical potential expression (5.8) and using (5.22) and (5.25), one 

obtains 
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      (5.34) 

The Vt shift depends on both Vg and Vds through the parameters b1 and c1 in A(yc), which 

implies that quantum subthreshold slope differs from the classical one. The subthreshold 

slope will be discussed in detail in the next section. Note that the potential also has a 

maximum at xc (xc = 0 for symmetric case) in the x direction and the coefficients BBj of the 

energy perturbation term follow a descending order of B1B >BB2>B3B >… Since the error 

caused by substituting x with xc in the numerator mostly cancels with the error caused by 

substituting all BBj with B1B , one obtains a simple equation for the Vt shift. 
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where 
LONG

t
VΔ is the Vt shift of long channel DG MOSFETs based on the definition in 

chapter 3. 
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From the above derivation, we finally obtain the Vt shift of a short channel DG MOSFET 

as a closed form function of the device parameters and the terminal biases. 
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Figure 5.7 shows the Vt shift calculated from (5.37) and that obtained from the solver. 

The subthreshold slope used in the calculation is the classical slope obtained from the 

simulation data from the solver. The agreement is good for the entire range of the channel 

lengths shown.  
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Figure 5.7 Threshold voltage shift due to quantum effects calculated by (5.37) (circle) 
and obtained from the solver (square) versus the channel length (normalize to λ1). 
  

 

5.4 Quantum Subthreshold Slope 

The fact that the inversion charges are farther away from the surface due to quantum 

effects not only worsens the short channel Vt roll-off, but also degrades the subthreshold 

slope as illustrated in Figure 5.8. For same channel length, the effective oxide thickness 

as well as the scale length increases due to the finite quantum inversion layer thickness. 
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Figure 5.8 Classical (solid symbol) and quantum (open symbol) subthreshold slope for an 
asymmetric DG MOSFET with different normalized channel length at low (square) and 
high drain (circle) voltage. 
 

For symmetric DG MOSFETs, we can also obtain an approximate expression for the 

quantum subthreshold slope based on the classical one, which is straight forward for 

compact modeling. Take the logarithm and then the derivative of (5.30) and one has 
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It can be rewritten using the definition of the subthreshold slope. 
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Take the derivative of (5.37) and substitute it into (5.39). 
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From (5.22) and (5.32), we obtain 
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where the consant D is 
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Using (5.40), (5.41) and (5.42), we can easily calculate the quantum subthreshold slope 

from the classical one. Figure 5.9 compares the quantum subthreshold slope from the 

approximate calculation and that obtained from the solver directly. The classical slope 

used in the calculation is also obtained from the solver. 
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Figure 5.9 Quantum subthreshold slope from the solver (solid symbol) and from the 
calculation (open symbol) versus the normalized channel length at different drain voltage 
Vds = 0.05 V (triangle) and Vds = 1 V (circle). 

 



Chapter 6   

Summary 

Starting with a review of CMOS scaling and modeling of quantum effects in bulk 

MOSFETs, this dissertation focuses on the compact modeling of quantum effects in DG 

MOSFETs. The threshold voltage shift and gate capacitance degradation due to quantum 

effects are extracted from a numerical solver and implemented in an analytical compact 

model for DG MOSFETs. 

The numerical methods of solving Poisson’s and Schrodinger equations, including 

the iterative procedure in obtaining self-consistent solutions of the two coupled equations, 

are described in Chapter 2. The 1-D numerical solver developed for DG MOS capacitors 

is extended for calculating the current-voltage characteristics of DG MOSFETs based on 

the fact that in Pao-Sah’s integral, the integration of inversion charge density over the 

quasi-Fermi potential is equivalent to that over an “effective” gate voltage.  

An analytic compact model with quantum corrections is developed for symmetric 

double-gate MOSFETs in Chapter 3. Two distinctive quantum effects are extracted from 

extensive numerical solutions using the 1-D Poisson-Schrodinger solver. First, the 

threshold voltage shift as a function of the silicon film thickness is implemented as an 

effective change in the silicon film thickness that produces the same shift in subthreshold. 

Second, quantum degradation of inversion layer capacitance is expressed as a closed-

form function of the inversion charge sheet density and implemented as an effective 
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increase of the gate oxide thickness. After incorporating these effects in an analytic 

potential model for DG MOSFETs, the I-V curves generated by the compact model are in 

good agreement with those obtained directly from the Poisson-Schrodinger solver. 

Transient simulation of CMOS circuits shows that quantum effects have significant 

impact on the delay of DG MOSFETs. 

Chapter 4 focuses on the complex quantum mechanical effects on the charge and 

potential in an asymmetric DG MOSFET. The built-in field in the subthreshold region 

due to the asymmetric gate work functions causes the threshold voltage shift to depend on 

the silicon thickness as well as the built-in field. With the electron ground state energy 

calculated by an analytical approximation, the threshold voltage shift is expressed as an 

explicit function of the device parameters. To account for the charge coupling between 

the two gates and the inversion channels, an equivalent small-signal capacitance circuit is 

developed which can be used to extract the equivalent inversion layer thickness. The 

threshold voltage shift is implemented in the classical analytical potential model as an 

effective change of the gate work functions. A constant increase in the effective oxide 

thickness representing gate capacitance degradation to the first order approximation is 

implemented in the classical model. 

A 2-D analytical solution to Poisson’s equation for a DG MOSFET in the 

subthreshold region is incorporated into the Schrodinger equation to obtain the quantum 

solutions. With the electron eigen-energy levels calculated by a perturbation approach, 

the quantum subthreshold current is calculated accordingly. The short channel threshold 

voltage roll-off is more than the classical case because the quantum inversion charge is 

further away from the silicon surface. For the same reason, the quantum subthreshold 
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slope also worsens. Using an analytical approximation, the quantum threshold shift and 

subthreshold slope in short channel DG MOSFETs are expressed as closed-form 

functions of the device parameters and the terminal bias voltages. 

The developed quantum compact model for DG MOSFETs has been implemented in 

a SPICE environment and released to the design community for circuit simulations.   
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