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ABSTRACT OF THE DISSERTATION

Compact Modeling of Quantum Effects in Double-gate
MOSFETs
by
Wei Wang
Doctor of Philosophy in Electrical Engineering
(Applied Physics)
University of California, San Diego, 2007

Professor Yuan Taur, Chair

As CMOS scales down to the limits imposed by oxide tunneling and voltage
non-scaling, double-gate (DG) MOSFET has become a subject of intense VLSI
research. In this dissertation, quantum effects were investigated in both long
channel and short channel Double-Gate MOSFETs.

A 1-D numerical Poisson-Schrodinger solver was developed for the quantum
solutions in DG MOS structure. The solver can be expanded for the current
characteristics of DG MOSFETs because of equivalent influence of the quasi-Fermi

potential and the gate voltage on the inversion charge density. Through extension

poel



solutions in symmetric DG MOSFETs, quantum effects induced threshold voltage
shift was expressed as a close form function of the silicon thickness based on a
physical approximation. The gate capacitance degradation due to quantum effects
was modeled by the inversion layer thickness change, which can be extracted from
the inversion charge density. Quantum / — V' and C — V characteristics were
generated by the analytical classical potential model with the threshold voltage and
gate capacitance degradation implemented as quantum corrections.

Complicated quantum mechanical behavior of electrons in asymmetric DG
MOSFETs was investigated. The threshold voltage shift can be calculated with the
electron ground state energy calculated through different methods. An equivalent
small-signal capacitance circuit was developed to model the charge coupling
between the two gates and inversion channels. The capacitance model was valid for
different types of DG MOSFETs and different operation region.

A 2-D analytical potential solution to the Poisson’s equation was incorporated
into the Schrodinger equation for the quantum solutions in short channel DG
MOSFETs. With the eigen energies calculated through the perturbation method,
quantum subthreshold current was calculated. The results agreed well with the
simulated data by an iteration procedure. The quantum threshold voltage shift and
sunthreshold slope in short channel DG MOSFETs were expressed as close
functions of device parameters and bias, which can easily be implemented into the

classical model.
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Chapter 1 Introduction

1.1  Introduction to CMQOS Scaling

Since the invention of the metal-oxide-semiconductor field-effect transistor
(MOSFET), CMOS has been the driving engine of the semiconductor industry because of
its successful incorporation into the integrated circuits (ICs). CMOS technology
evolution in the past few decades has followed the path of device scaling to achieve
density, speed and power improvement. As indicated by the Moore’s law [1], the number
of transistors inside chips doubles every two years because of the shrinking size of
MOSFETs. It is well known that reducing the source-to-drain spacing, i.e., the channel
length of a MOSFET, increases the driving current in the channel. Other than that, it also
leads to the short-channel-effects (SCE) [2]. The most undesirable short-channel-effect
for digital application is a reduction in the gate threshold voltage (V;) at which the device
turns on, especially at high drain voltage. The reduced gate threshold voltage causes the
subthreshold leakage current to increase dramatically, which makes the device difficult to
turn off. Full realization of the benefits of the new high-resolution lithographic
techniques therefore requires the development of new device designs, technologies, and
the structures that can keep the short-channel-effects under control at very small
dimensions.

The scaling concept is schematically illustrated in Figure 1.1, in which the device
dimension (both horizontal and vertical) and the device voltages are scaled by the same

factor to keep the electrical field inside the device constant.
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Figurel.l Schematic illustration of the scaling principle of silicon technology. (Adapted
from [3]).

The reduction of the vertical dimension of MOSFETS, i.e., the gate oxide thickness,
enhances the gate control over the channel, which improves the short-channel behavior.
Thin oxide also improves the driving capability of MOSFETs. However, ultrathin gate
oxide will lead to high gate leakage current due to direct tunneling. Alternative gate
dielectric materials with higher permittivity (high-K) than SiO2 [4] have been exploited
to increase the physical thickness while maintaining the same effective-oxide-thickness
(EOT). It is also illustrated that the well doping concentration is also scaled up by the
same factor. In deep submicron, non-uniform well doping profiles in both vertical and
lateral direction are developed for the suppression [5-6]. Super steep retrograde channel
doping [7], which is made possible by the ion implantation, gives the device designer an
additional degree of freedom to tailor the profile for meeting both the threshold voltage

and off-current requirement. In lateral direction, more highly doped regions near the two



ends of the channel are beneficial to the suppression of short-channel-effects, since they
help to compensate charge-sharing effects from the source-drain fields [8]. Such a self-
aligned channel doping is often referred to as halo or pocket doping [9]. With optimally
designed 2-D non-uniform doping profile (superhalo), nearly identical Ion and Ioff for
devices of different channel lengths within the process tolerances can be achieved [10].
To improve the MOSFET performance, many other technologies have also been
developed such as shallow source/drain extension to reduce the amount of channel
depletion charges controlled by the drain [6], a lightly doped drain (LDD) structure [7] to
relieve hot-electron reliability problems at high voltages, self-aligned silicide [11] to
reduce the channel sheet resistance and the contact resistance, stained Si, Ge or SiGe

channels to increase the channel carrier mobility [12], etc.

1.2 Quantum Mechanical Effects in Bulk MOSFETSs

Even though constant-field scaling introduced in section 1.1 provides a basic guide
line to the design of scaled MOSFETs, reducing the voltage by the same factor as the
device physical dimension is too restrictive. The CMOS delay degrades rapidly once the
threshold voltage V; exceeds 25% of the power supply voltage V4. When Vg, is reduced
toward shorter channel length, it becomes increasing difficult to satisfy both the
performance and off-current requirements. Another reason is the reluctance to depart
from the standardized voltage levels of the previous generation. The general trend is that
V44 has not been scaled down in proportion to the oxide thickness #,,, and V; has not been

scaled down in proportion to V,, as is evident in Figure 1.2.
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Figure 1.2 Trends of power-supply voltage, threshold voltage, and gate oxide thickness
versus channel length for CMOS technologies from 1 pm to 0.1 um (Adapted from [13]).

As a result, the operating electric field in MOSFETs becomes higher accompanying
the device scaling. In the presence of such a high electric field, significant carrier
quantization is observable in the MOFETs. Also well known is that in the inversion layer
of a MOSFET, carriers are confined in a potential well close to the surface. The well is
formed by the silicon conduction band which bends down severely toward the surface
due to the gate field and the oxide barrier which is essentially infinity for the inversion
carriers. Because of the confinement of motion in the direction perpendicular to the
surface, one should treat the inversion electrons quantum mechanically as a 2-D electron
gas [14]. The quantum mechanical behavior of inversion electrons differs from their

classical behavior significantly. Due to the quantization, the electron energy levels are



grouped in discrete subbands in the normal direction instead of classical 3-D continuous

energy states.
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Figure 1.3 Surface potential well and surface charge distribution for a representative Si
surface. The ground state is about 40 mev above the bottom of the conduction band. The
dashed line indicates the Fermi level in the inversion layer (Adapted from [14]).

As shown in Figure 1.3, even the lowest subband is some energy (40mev in this case)
above the bottom of the silicon conduction band. On the other hand, the wave function
must be zero at the surface where the potential barrier is infinity. As a consequence, the

electron concentration is also zero in the surface and therefore peaks below the surface,

which is contrast to the classical model as shown in Figure 1.4.
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Figure 1.4 Schematic diagram of the classical and quantum inversion charge distribution
in the direction perpendicular to the silicon-oxide surface.

Quantum effects of the inversion electrons affect MOSFET operation in two aspects.
First of all, since the electrons occupy at subbands above the bottom of the silicon
conduction band, more band bending is required to populate even the lowest subband and
therefore the threshold voltage becomes higher. Second of all, the inversion layer forming
below the surface suggests the finite inversion layer thickness and thus reduces the total
gate capacitance. This reduces the transconductance and the current drive of a MOSFET
since it needs higher gate voltage to produce a given level of inversion charge density.

Quantum effects in MOSFETs have been studied extensively since 1970’s. A full
solution of the silicon inversion electron can be obtained by solving coupled Poisson’s
and Schrodinger equations self-consistently [14-17] during which a numerical method
must be used. However, a simplified method is possible under subthreshold conditions.

First, it is reasonable to decouple the two equations because of low inversion charge



density. Since band bending is solely determined b the depletion charge, the electric field
can then be treated nearly constant (&;). Therefore, it is a good approximation to consider
the quantum well as composed of an infinite oxide barrier for x < 0, and a triangular
potential V(x) = g&sx for x > 0. The solutions of Schrodinger equation are Airy functions

with eigen values E; given by [14]
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where 4 is Planck’s constant and m, is the effective mass of electrons perpendicular to the
surface. For silicon in the <100> direction, there are two groups of energy subbands, or
valleys. The lower valley has a two-fold degeneracy (g = 2) with m, = 0.92m,, where m,
is the free-electron mass. The energy level is designated as E;. The higher valley has a

four-fold degeneracy (g = 4) with m , = 0.19m,. The energy levels are designated as

2/3
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With the energy levels in two valleys, the total inversion charge per unit area is expressed

as [18]
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where £ is the Boltzmann’s constant, 7" is the temperature in Kelvin, n; and N, are the
intrinsic carrier and doping concentration in silicon, my; = 0.19m, and my = 0.42m, are

the density-of-states effective masses of the two valleys and s is the surface potential.



Note the classical inversion chare density per unit area for the subthreshold region is

given by [18]
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When the field is small, both the lowest energy level Ey and the spacings between the
subbands are less than kT at room temperature. A large number of subbands are occupied
and 02" is the same as O,“. However, the subbands spacings are larger than kT and
only a few lowest energy subbands are occupied. Therefore, Q2" is significantly less
than Q,-CL . This means that additional band bending AI/ISQM is required to obtain the same
inversion charge density as the classical value. When the field beyond 106 V/cm, only the
lowest subband is occupied by electrons, and

Ay z&_ kT In 8rgm,E,
* g q N,

(1.5)

Knowing 4 l//SQM, one can easily calculate the threshold voltage shift due to quantum

effects
AKQM = mA wSQM (1.6)

where m is the body-effect coefficient of MOEFETs.

Triangular well approximation is one of the most widely used methods for carrier
quantization in MOSFETs [19-21]. However, in strong inversion region, the inversion
charge density is very high and the triangular potential-well approximation is no longer

valid. In the case of high field and only the lowest energy subband is populated, an



approximate expression for the average distance of electrons from the surface was

derived through a variational approach [15]
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where O =0, +§QZ. is a combination of the depletion and inversion charge in the

channel. Such an inversion layer thickness adds the effective gate oxide thickness about

3-4 A and effectively reduces the current drive and transconductance of MOSFETs.

1.3 Double-Gate MOSFETs - Advantages and

Additional QM Confinement

Through years of technology developments, conventional bulk MOSFET technology
is currently progressing to the 45nm regime [22, 23]. It is also believed that CMOS will
still be the dominant technology in the near future. However, fundamental and practical
scaling limits impose tremendous challenges beyond the 45nm technology node [23-25].
Severe short channel effects come from the nonscaling of the silicon energy. Quantum
mechanical tunneling current through the thin gate oxide becomes significant. The
random dopant fluctuation effects increase with shrinking device size and leads to
threshold voltage variation from device to device. These effects constitute the limiting
factors of CMOS scaling at present [26].

Multi-gate MOSFETs, such as Surrounding-gate [27], Pi-gate [28], Omega-gate [29],

Tri-gate [30] and Double-gate (DG), have been proposed to be the alternatives for bulk
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MOSFETs beyond the 45nm node. Numerical simulation and analytical analysis have
shown better scalability of multi-gate MOSFETs over bulk MOSFETs. Among multi-
gate MOSFETs, the DG MOSFET is the most promising device structure because it is
best compatibile with conventional planar technology although other candidates might

have better performance than the DG MOSFETs.

Figure 1.5 Schematic diagram of a double-gate MOSFET

With two gates on the both sides of the channel, DG MOSFET has a better
performance than the conventional bulk MOSFET. Figure 1.5 shows the schematic
diagram of a double-gate MOSFET. The key benefit of DG MOSFETs is better short
channel effects immunity over the bulk MOSFETs. In principle, DG MOSFETs can be
scaled to the shortest channel length for a given oxide thickness [31], because the bottom
gate can effectively screen the field penetration from the drain, hence suppress the short
channel effects. Based on the general scale length theory [32], the threshold voltage roll-

off due to short channel effects is proportional to exp(-zL/24;), where L is the channel
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length and /; is the scale length. Therefore the minimum channel length imposed by short
channel effects is ~24,. The scale length of bulk MOSFETs and DG MOSFETs can be

expressed approximately

gsi
ﬂ'l = Wd + tox (1.8)
gsi
A=t + - 2, (1.9)

ox
where W, is the depletion width in bulk MOSFETs, ¢, is the silicon film thickness and ¢,
is the gate oxide thickness. Reducing W, in bulk MOSFETs requires higher doping
concentration which results in increased junction capacitance, reduced carrier mobility,
degraded subthreshold slope and increased band-to-band tunneling from the drain to the
body. By using a ¢; much smaller than W, DG MOSFETs can avoid these dilemmas and
achieve tight control of short channel effects.

Since the two gates are connected and switched together, DG MOSFET also has an
ideal subthreshold slope. In the subthreshold region, the conduction band of the silicon
film moves along with the applied gate voltage (volume inversion). As shown in Figure
1.6, the body effect coefficient m equals
_ AV,

Ay,

m (1.10)

and hence, the subthreshold slope is ideal 60mv/dacade.
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Figure 1.6 Schematic diagram of conduction band shifting with applied gate voltage.

In DG MOSFETs, the silicon body is usually undoped or lightly doped, which leads
to oseveral benefits. First of all, the threshold voltage variation due to random dopant
fluctuation effects is greatly reduced because the threshold voltage of DG MOSFETs is
controlled by the gate work function instead of the dopants. Second of all, the undoped
body greatly reduces the source and drain junction capacitances and hence, improves the
switching speed of DG MOSFETs. Third of all, the elimination of depletion charges also
provides an enhancement of carrier mobility because of reduced coulomb scattering and

surface roughness scattering.
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Figure 1.7 Schematic diagram of a symmetric (left) and an asymmetric Double-Gate
MOSFET.

Figure 1.7 illustrates two different types of DG MOSFETs: symmetric DG MOSFETs
in which the two gates have identical work functions and asymmetric DG MOSFETs in
which the two gates have different work functions. There are two operation modes for
DG MOSFETs. One is the three-terminal mode in which two gates are tied and switched
simultaneously. The other is the four-terminal mode in which only one gate is switching
with the other back gate constantly biased. The back gate voltage enables the possibility
of dynamic threshold voltage with the cost of losing the ideal 60mv/decade subthreshold

slope.
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Figure 1.8 Different topologies of DG MOSFETs (Adapted from [33]).

In principle, DG MOSFETs can be manufactured by one of the three topologies
shown in Figure 1.8. Type I (planar type) DG MOFET [33] has the channel layer in the
silicon wafer plane so that it controls the channel thickness by thin film deposition rather
than by lithography. The drawback is the difficulty to align the top and bottom gate. Type
IT (vertical type) DG MOSFET has the channel in the vertical direction and is most
compact for DRAM application [34]. However, it is topologically difficult for a CMOS
application. Type III (Fin type) DG MOSFET [33], in which current flows horizontally
through the fin channel, has the highest packing density for high speed logic applications.

Quantum mechanical behavior of inversion electrons in DG MOSFETs is much more

complicated than in bulk MOSFETs. In DG MOSFETs, the potential well is formed by
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the front gate oxide barrier, the conduction band and the back gate oxide barrier.
Therefore the confinement of motion not only comes from the conduction band of the
silicon body, but also comes from the silicon film thickness. This additional confinement
modulates the potential well and hence the energy levels and wave functions significantly.
It becomes dominant when the silicon film is extremely thin or the field is very small
(subthreshold region of symmetric DG MOSFETs). Quantum effects in DG MOSETs are
hence more complicated than bulk MOSFETs because of the combined confinement
mechanism. Since quantum behavior of electrons generally depend on both the silicon
thickness and the shape of the silicon conduction band, modeling of quantum effects is in

great interest of researching rather than applying the results from bulk MOSFETs.

1.4  Compact Modeling of MOSFETSs

As mentioned in section 1.1, MOSFET has been the main building block of integrated
circuits ever since its invention. Accordingly, compact modeling of MOSFETs has also
been continuously evolving for complex circuit design. To achieve fast and accurate
circuit simulation results, explicit algebraic equations of device terminal parameters such
as I-V and C-V characteristics are required. Compact model of MOSFETs usually starts
from a precise core model — long channel classical model. All specific physical
phenomena including quantum effects, short channel effects, channel length modulation,
etc., are then implemented into this core model as modifications. Figure 1.9 illustrates the

schematic structure of a compact model for a MOSFET. The evolution of MOSFET
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Figure 1.9 Schematic diagram of a compact model for the bulk MOSFETs.

compact model follows the trend from simple, piecewise models to complicated,
continuous models to provide more accurate circuit simulations. The piecewise models
such as early versions of BSIM model provide separate equations based on the charge
sheet approximation for different operation regions. This leads to the discontinuous first
order derivates of current and charge and hence severe convergence. Non-physical
mathematical smoothing functions are adopted in recent BSIM3/BSIM4 models to
overcome the convergence problem. Another prominent issue with the BSIM models is
the violation of source and drain symmetry, which means source and drain are not
interchangeable with each other in BSIM. Both the current model [35] and the
capacitance model [36] are shown to be asymmetric with respect to the source and drain
in BSIM models. To avoid the disadvantages of BSIM models, the surface potential

models such as PSP [37] and HiSIM [38] models have been developed as the next
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generation of compact model for bulk MOSFETs. Without introducing the threshold
voltage, one single surface potential equation valid for all the operation regions is solved
for the solution in these models. The symmetry property can be preserved by using the
symmetric linearization techniques [39].

However, there still lacks a comprehensive compact model for DG MOSFETs,
especially when quantum effects dominate. Various approaches have been applied to
study quantum effects in DG MOSFETs, including the nonequilibrium Greens function
[40], density gradient model [41], [42], and Monte Carlo simulation [43]-[45]. The
mathematical complexities of these models make them impractical for compact modeling.
In another work, quantum subband energy levels [46] and the quantum threshold shift [47]
have been investigated through a variational approach. However, only the potential and
charge distribution have been worked out. No drain current equation has been developed
for a compact model. A quantum compact model [48] was previously developed based on
the approximation of a single sine wave function for different energy subbands. This is
only valid for an infinite, flat potential well under subthreshold condition. Once the DG
MOSFET is strongly inverted, the field due to electrons themselves causes a bimodal
wave function with peaks near the surfaces not well represented by the sine function. In
this work, we bridge the gap by implementing quantum effects into an analytic potential
model [49, 50] as quantum corrections for DG MOSFETs. We also investigate quantum
effects in the short channel DG MOSFETs based on a 2-D analytical potential solution.

The dissertation of this work is listed in the next section.

1.5 Outline of The Dissertation
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In chapter 1, the concept of CMOS scaling is first introduced. Quantum mechanical
effects in bulk MOSFETs and methods of investigating quantum effects are reviewed.
The structure and advantages of DG MOSFETs are then summarized. After introducing
compact models for bulk MOSFETs, objective and status of compact modeling of
quantum effects in DG MOSFETs are presented. The rest of the dissertation is organized
as follows.

Chapter 2 introduces the 1-D numerical Poisson’s and Schrodinger solver for DG
MOS structure, including the numerical methods of solving equations and the iteration
procedure of finding self-consistent solutions. Classical and quantum results from the
solver are presented. The 1-D solver is then extended to also calculate the DG MOSFET
drain current.

From the extensive solution from the solver, threshold voltage shift and inversion
layer capacitance for symmetric DG MOSFETs are extracted as closed form functions of
silicon thickness and inversion charge density in Chapter 3. With these modifications, the
analytic compact potential model is shown to reproduce quantum I-V and C-V curves of
symmetric DG MOSFETs consistent with those obtained from the full quantum solutions.
CMOS circuit simulations using the full model are also presented.

Chapter 4 focuses on compact modeling of asymmetric DG MOSFETs. Threshold
voltage shift is extracted as closed form function of silicon thickness and device built-in
field by using the eigen energy levels calculated through the variational approach.
Another expression for the energy levels is also obtained based on physical observations.
An equivalent small signal capacitance model is developed to model the gate capacitance

degradation due to quantum effects in asymmetric DG MOSFETs.
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In chapter 5, quantum solutions are obtained by incorporating the 2-D analytical
potential solution for DG MOSFETs in the subthreshold region. Quantum subthreshold
current is obtained through a iteration procedure as well as a double integral in which the
eigenvalues of Schrodinger equation is calculated through the perturbation approach.
Approximate expressions of quantum threshold voltage roll-off due to short channel
effects and quantum subthreshold slope are derived.

Conclusions of the dissertation and discussion of future directions beyond the scope

of this work are drawn in the last chapter.



Chapter 2

A 1-D Poisson-Schrodinger Numerical

Solver

2.1 The Coupled Poisson And Schrodinger Equations

The salient feature of a DG MOSFET is the thin silicon layer which is beneficial to
device scaling. Quantum effects arise due to the confinement of electron motion in the
thin silicon film in contrast to the confinement by the surface potential (or field) in bulk
devices. To obtain the quantum electrical characteristics of a DG MOS structure, one

needs to solve the coupled Poisson and Schrodinger equations self-consistently [51]:

d2
(‘;;gx) =4 p(y) @Y
and
e d’p, (x
_JZTJZ() +(=qw ()., (x) = E, ¢, ,(x) (22)

1

where x is the coordinate along the normal direction, y(x) is the electrostatic potential, ¢
is the electronic charge, & is the silicon permittivity, 7 is the Planck’s constant, m; is the
electron effective mass in the ith valley, ¢;;(X) is the normalized wave function associated
with the eigenenergy E;; of the jth subband in the izh valley and —q y(x) is the potential

energy.

20
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Figure 2.1 The schematic band diagram of a double gate MOSFET. The electrostatic
potential is reference to the quasi-Fermi level of the n* source/drain.

The two equations couples with each other through the potential energy term in the

Schrodinger equation and the electron density »(x) which is given by the eigen energy E;;

and the wave function ¢, ;(x) as:

kT
h?

n(x) =7 gm’ > I+ e g, ()] 2.3)
i J

where £ is the Boltzmann’s constant, 7 is the temperature in Kelvin, Er is the Fermi level,
g and m; are the degeneracy and density-of-state effective mass in the it valley,
respectively.

w(x) is related to the gate voltage V, and oxide thickness ¢, through the boundary
condition at the silicon-oxide interfaces, as shown in the schematic band diagram of a

double gate MOSFET (Figure 2.1).
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where ¢, is the oxide permittivity, Ag and Ag, are the work function difference

between the gate electrode and the intrinsic silicon, and ¢; is the thickness of the silicon
film.
A 1-D Poisson-Schrodinger solver is then developed to solve these two equations

iteratively for a 1-D MOS device.

2.2 Numerical Method Of Solving The Equations

2.2.1 Solving Poisson Equation

The subroutine “Poissonl1” and “Poisson” in the solver are used to solve the Poisson
equation numerical. The difference of these two subroutines will be discussed in section

2.4. Assuming we know the solution in the m"

computation loop, which is the
electrostatic potential " (x), the electron density n™(x) and the hole density p™(x).

And now we need to solve the solution in the next loop. The solutions in the two

consecutive loops relate to each other after defining the increment of the potential

Ay (x) =" (x)—yw"(x), the electron density An(x)=n""(x)—n"(x) and the hole

density Ap(x) = p"*(x) - p"(x).
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From the Boltzmann’s relations (2.7), one can easily express An(x)—Ap(x) in terms of

the incremental potential Ay (x) .

n(x) = nieW(x%T p(x) = nl.e_qy/()%T 2.7)
g(n"(x)+ p"(x)
An(x)—Ap(x) = ( T ) Ay (2.8)

Then we need to divide the device to a certain mount of mesh. In the discrete
computation mesh, the differential becomes finite difference. Substitute (2.8) into (2.6)
and we obtain:

Ay (x+ Ax)-2Ay(x)+ Ay (x — Ax)

(Ax)®

_ l//(m) (x + A.X) + Zl//(m) (X) _ W(M) (.X' — A.X')

(Ax)*

n"(x) - p" () +N, -N," 4 -

g . +«9—S,-(AH(X) Ap(x)) (2.9)
_ "+ A) + 29 () -y (- Ax)

(Ax)?
v n"(x)-p"(x)+ N, —-N, N q* (0" (x) + p"(x)) Ay (x)

&g

i gsikT
where Ax is the length of the mesh.
Rearrange (2.9) in terms of the incremental potential in three consecutive meshes and we

have:
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The above equation can be expressed in a tridiagonal matrix form:
. : Ay(i-1) b(i—1)
1 c(i) 1 Aw(i) |=| bG) 2.11)
L U Aw(i+D) b(i+1)

where ¢(i) is the diagonal element of the matrix which stores the coefficients of the
Ay (i) termin (2.10), and the lower-subdiagonal and upper-subdiagonal elements which

represents the coefficients of the Ay (i +1) and Aw (i —1) term in (2.10) respectively are

both the constant 1.

(i) = —2— a2 LD+ (D)

v (2.12)

and b(@) is the element of a vector which stores the right hand of (2.10).

b(i) = (i +1) 20 (0) + w(i—1) — (Ax)? LA = PO TN =N o)

With ¢(7) and b(i) fully known, an algorithm named “Lu3” can be used to calculate the
solution of (2.11), which is the vector that stores the incremental potential Ay (i) at every
mesh. If the maximum value of Aw (i) is small enough (smaller than an criteria we set up which
is 10® V in the solver), the loop will be terminated and the w(x), n(x) and p(x) at that loop

are the final solution of the Poisson equation. If the maximum value of Aw (i) is greater
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than the criteria, the potential is revised to y(x)+ Max(Aw(i))/10 and another loop starts.

The same procedure is repeated till the maximum incremental potential is smaller than

the criteria.

2.2.2 Solving Schrodinger Equation

The subroutine “schrodinger” in the solver is used to solve the Schrodinger equation
numerically. Just as solving the Poisson equation, the differential becomes the finite

difference and the Schrodinger equation has the following formula:

2(pi,j (x) - 2% (x+Ax) - b (x —Ax) y

Ax? [ a j_ QI//(X)(pi’j(x) - Ei,j(”i,j(x) (2.14)

2m,

1

Rearrange (2.14) in terms of the electron wave function in three consecutive meshes and

we have:

(Di,j (X + A)C) + @i,j (x - Ax) _

2
(Ax\/ﬁ/h) (Ax\/ﬂ/h)z =E, .0, (x) (2.15)

Now, it is straight-forward to see that the solution of Schrodinger equation has been

> —qy(x) |, (x) -

turned into finding the eigenvalues and eigenvectors of a symmetric tridiagonal matrix A
whose diagonal elements and sub-diagonal elements are shown in (2.16) and (2.17),

respectively.

A7, i) =

> —qy(x) (2.16)

2
(aviam 1)

A(iyi—1) = AGi—1,i) =

(2.17)

-1
(el 1]
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With the matrix “A” fully known, we can use the “bisection” algorithm to calculate the
eigen value which is the eigen energy and use the “inverse iteration” algorithm to
calculate the eigen vector which is wave function in both valleys.

After obtaining the eigen energy and the wave function of all the subbands in both
valleys, the electron density can be calculated by summing the contribution of all the

subbands through (2.3).

2.2.3 Solving Poisson and Schrodinger Equation Self-

Consistently

As mentioned in the section 2.1, the Poisson equation and the Schrodinger equation
couple with each other through the potential energy term. To obtain the correct solution,
an iteration procedure is needed to solve the two equations self-consistently. Figure 2.2
shows the process flow of the iteration procedure. First we solve the Poisson and obtain
the initial potential in the subroutine “poissonl”. The electron density is also calculated in
this subroutine using (2.7). This means that we obtain the classical solution which
includes both the classical potential profile and the classical electron distribution after
completing this subroutine. Then, we substitute the initial potential into the potential
energy term and solve the Schrodinger equation in the subroutine “schrodinger”. The
quantum electron density is also calculated in this subroutine. Using this quantum
electron distribution, we then solve the Poisson equation again in the subroutine
“poisson2”. Note that in the subroutine “poisson2”, only the potential is solved while the
electron density is fixed at the quantum one obtained from the subroutine “schrodinger”.

This ensures that the final quantum results are the self-consistent solutions of both
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Poisson and Schrodinger equations. After completing the subroutine “poisson2”, we have
two potentials. One is the potential in the current loop, and the other is the one in the
previous loop or the initial potential. Then, the two potentials are compared with each
other. If the difference between the two potentials is smaller than the criteria (10-6 V)
that we set up in the solver, the final self-consistent quantum solutions are found. If the
two potentials do not converge with each other, another iteration loop starts. The same
procedure repeats until the correct solutions are obtained. The computation loop number
for the quantum solution depends on the device size, the gate bias and the criteria.
Usually the bigger the device, the higher the gate voltage, and the smaller the criteria, the

more the computation loops are needed.
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Figure 2.2 The flow chart of the numerical iteration procedure used to solve Poisson and
Schrodinger equations self-consistently.

2.3 Classical and Quantum Results from the 1D Solver

From the 1-D numerical solver, we can obtain the classical electrostatic results by
solving the Poisson equation only and quantum results by solving the Poisson and
Schrodnger equations self-consistently. Figure 2.3 (a) shows the classical electrostatic
potential profile in the silicon film at several values of gate voltage Vg and Figure 2.3 (b)

shows the corresponding classical inversion electron density. At small gate voltage, the
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inversion electron density is very small and its influence on the potential is negligible.
The conduction and of the silicon film therefore remains essentially flat and follows up
the change of the gate voltage. As a result, the electron density is also essentially flat,
which is called “volume inversion”. As Vq increases, the potential profile starts bending
the silicon conduction band and does not follow up the gate voltage change due to the
voltage drop in the gate oxide. At high V, the inversion is very strong and so is the band
bending. As a consequence, the electron density has two sharp peaks at the silicon-oxide

interface as shown in Figure 2.3 (b).
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Figure 2.3 The classical (a) electron potential and (b) density obtained from the Poisson-
Schrodinger solver as a function of position in the silicon film for a symmetric DG
MOSFET with midgap gates. Three gate voltages /,=0.3, 0.6 and 1.5 V are considered.
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However, the pictures are different due to the quantization induced by the confinement of
the oxide barrier and silicon conduction band. The quantum potential and electron density
at different gate voltages are shown at Figure 2.4 (a) and (b), respectively. At low gate
voltage, although the potential profile still remains flat because of the weak inversion, the
high enough oxide barrier confinement leads to zero wave function at the two silicon-
oxide interface. Therefore, the electron concentration peaks at the center of the silicon
film. As Vg increases, this electron concentration peak remains at the middle of the
silicon film until the gate voltage Vg is so high that the peak in the center will become

two peaks close to the two interfaces.
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Figure 2.4 The classical electron (a)potential, (b) density and (c) wave function of the
lowest subband obtained from the Poisson-Schrodinger solver as a function of position in
the silicon film for a symmetric DG MOSFET with midgap gates. Three gate voltages
V,=0.3, 0.6 and 1.5 V are considered (Figure 2.4 (b) and (c) continued).
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The electron wave function of the lowest subband shown in Figure 2.4 (c) partially
explains the reason. At a small Vg, the potential is flat but the probability of electrons
appearing at the center is the greatest due to the oxide barriers at the interfaces. With
increasing Vg, the potential profile bends up, which means that the potential energy bends
down. In other words, the silicon conduction band in the center is the highest in the whole
silicon film. Therefore, the probability of electron appearing at the center will decrease
because electrons tend to stay at low energy states. Accordingly, the wave function
between the center and the interface will increase due to the normalization requirement.
However, this effect is weak because the band bending is not strong when the V is not
too high. At a high Vg, the band bending is very strong and the high potential energy at
the center prevents the electrons from populating there, Therefore, the maximum
probability of electrons appearing will move to the place between the center and the

interface.

2.4 Expanding The Solver To MSOFET - Influence Of

Quasi-Fermi Level

The 1-D numerical solver can be used to calculate the current of a DG MOSFET
through the integration of the 1-D electrostatic solution of corresponding MOS structure.
Figure 2.5 shows the schematic diagram of a long channel DG MOSFET. The same
voltage Vy is applied to the two gates, and different voltages ¥ and ¥, are applied to the

source and
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Source

\

S

Figure 2.5 Schematic diagram of a long channel DG MOSFET. The quasi-Fermi potential
V is constant in the vertical direction.

drain respectively. The quasi-Fermi potential ¥, which stays constant in the vertical(x)
direction according to the gradual channel approximation, equals to V; at the source and
V; at the drain. The inversion charge sheet density Q; at y, which is the electron
concentration n(x,y) integrated over the silicon film varies with y, or equivalently with V

from the source to the drain.

0,=q| " n(x,y)dx (218)

The Pao-Sah’s integral indicates that the drain current 7, is proportional to the integral of

the inversion charge sheet density Q; as a function of ¥ from the source to the drain.
W v,
I, = ﬂffn 0, (Vg1V)dV (2.19)

where u is the electron mobility, W is the device width and L is the channel length.
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It is clear that one needs the inversion charge sheet density as a function of the quasi-
Fermi potential along the channel to do the integral and then calculate the current. The 1-
D solver we developed can calculate the classical and quantum inversion charge density
for the DG MOS in which V;= V, To simplify the problem, the default value of V,/V;
used in the solver is zero. The classical and quantum Q;-V, curves for V;= V;= 0 shown

in Figure 2.6 are both obtained from the solver.
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Figure 2.6 Classical (solid line) and quantum (dash line) O~V curves obtained from the
solver on both linear and logarithmic scale for an n"p” DG MOS. The area under the

curve from V,- Vs to Vg - V, is proportional to the drain current of corresponding DG
MOSFET.

Along the channel, the Poisson’s equation at y becomes

d*(y(x)-V)
dx*

=L p(x) (2.20)
E .

St

with the boundary condition.
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Vo=V -Ap-y(x=1,12)  dy

on Si . 221
t, dx |x=+ 2.21)
V,~V-Ap-y(x=—t,12)  dy
ox = _gsi T t (222)
t, dx |t

Comparing (2.20), (2.21) and (2.22) with (2.1), (2.4) and (2.5), one can easily find out
that there is no difference between the potential solution of the DG MOSFET channel
with a gate bias V, and quasi-Fermi level 7 and the solution of a DG MOS with a

different gate bias V, — V. Consequently, one has

0 (v,.V)=0"(v,-7.0)). (2.23)
In the quantum case, the quasi-Fermi potential does not show up in the Schrodinger
equation and hence the eigenenergy levels and wave functions are the same with those of
corresponding DG MOS. The influence of the quasi-Fermi potential is pulling down the
Fermi level Er in (2.3) by the amount of V. However, decreasing the gate voltage Vg by

the amount of V has the same affect, which leads to

0 (V. r)=0" (v, -7.0) 220)
(2.23) and (2.24) mean Q«(V,,V) as a function of quasi-Fermi potential V" in the DG
MOSFET can be obtained from the Q(V,,0) data of the 1-D DG MOS. Through the
transformation in (2.24), the area under the 1-D DG MOS Q,(7,,0) curve from V, - V; to
Ve - V4 which is shown graphically in Figure 2.5, can be substituted for the Qi(V,,V)
integral in (2.19). Therefore the Pao-Sah’s integral becomes the integration of Q; as the

function of the gate voltage
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I, = #%Kd 0,(v,V)av = —ﬂ% Vzg_f o.(v,,0)av, (2.25)

Conventionally the source voltage is defined as the ground potential, and the drain

voltage is V=V, - Vs, then we have

W Vgins ' '
I, = _ﬂfjv 0, (Vg 70)dVg (2.26)
g
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Figure 2.7 Classical (solid line) and quantum (dash line) 1,V characteristics at different
gate voltage V,. All the curves are obtained from the integration of Q;(V;,0) data.

The 1~V characteristics at different V, obtained from the integration of Q,(V;,0) curve
are shown in Figure 2.7. By this method, one can avoid solving the coupled Poisson,
Schrodinger and current continuity equations self consistently to obtain Q«(V,,V) in the
Pao-Sah’s integral. The electrostatic results of a DG MOS obtained from the
Poisson/Schrodinger solver are extended directly to the I-V characteristics of a DG

MOSFET. As shown in Figure 2.6, the higher threshold voltage and the smaller gate
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capacitance due to quantization cause the area under the quantum Q;(¥,,0) curve to be
smaller than the area under the classical curve for the same gate and source-drain
voltages. For the same reason, the quantum drain current is smaller than the classical
current at the same gate and drain bias in Figure 2.7. In saturation, the quantum current is
about 20% lower than the classical current for the DG device studied, due mainly to the

gate capacitance degradation.



Chapter 3

Compact Modeling of Quantum Effects

in Symmetric DG MOSFETSs

3.1 Thickness And Field Dependent Quantum Effects

3.1.1 Infinite Square Well Behavior At Low V,

As discussed in 1.4, the quantum well in a DG MOSFET consists of the front and
back oxide barriers and the conduction band of the silicon film, therefore, both the silicon
thickness and the electrical field (slope of the conduction band) play important roles in
the quantum effects. However, when V, is below the threshold voltage, the silicon
conduction band remainss essentially flat and follows up the change of the gate voltage
due to negligible influence of the small inversion electron density on the potential profile.
In other words, the quantum well mostly acts like an infinite square well whose eigen

energy levels and wave functions only depend on the silicon thickness as:

h27z_2j2
E = , [ =1,2,3,000 3.1
T 2mtl / G-D
zsin 7 , O<x<t,
(0]' (.X) = tw tsi ‘ (3.2)
0, x<0,x>¢,

40
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Figure 3.1 The first two lowest eiegn energy levels in the g = 2 valley and the lowest
energy level in the g = 4 valley of a symmetric DG MOSFET compared with the
corresponding eigen energy levels of an infinite square well.
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Figure 3.2 Wave functions of the two lowest subbands of a symmetric DG MOSFET
(line) compared with corresponding wave functions of an infinite square well (symbol).
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Figure 3.1 shows the first three lowest eigen energies of a DG MOSFET with different
silicon thickness compared with the eigen energies of an corresponding infinite square
well. The wave function comparison is illustrated in Figure 3.2. The excellent agreement
of both eigen energy and wave function verifies the validity of treating the DG

MOSFETs at low V, as an infinite square well.

3.1.2 Effect Of Band Bending On Quantum Solutions

When V, is above the threshold voltage, the conduction band starts to bend and hence,
the electrical field becomes significant, which has a strong influence on the eigen energy
levels. As illustrated in Figure 3.2, the eigen energies increase rapidly with the surface

field after the device is turned on.
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Figure 3.3 The lowest two eigen energy levels in both valleys versus the surface field of a
symmetric DG MOSFET.

This means that quantum effects in a symmetric DG MOSFET at high V, depend on both
the silicon thickness and the shape of the conduction band. It is shown in Figure 3.4 that
instead of changing monotonously with #; at low V, case, the eigen energy has an

minimum around a certain value of #; when V is high.
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Figure 3.4 The lowest two eiegn energy levels in the g = 2 valley and the lowest energy
level in the g = 4 valley of a symmetric DG MOSFET at V,=1.5 V.

This phenomenon was observed before but no physical explanation are given. The
physics behind this energy minimum is the combined silicon thickness and field influence
on the eigen energies. As t; decreases, the eigen energies tend to increase according to
the uncertainty principle. On the other hand, the surface field also decreases due to
decreasing inversion charge sheet density (V; increase with decreasing ¢;) and hence the
eigen energies tend to increase. The opposite energy tendencies with varying ¢,; therefore

lead to the energy minimum in Figure 3.4.

3.2 Threshold Voltage Shift Due To Quantum Effects

3.2.1 Definition Of V, Shift
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The quantum threshold voltage is higher than the classical one due to the discrete
energy levels which is higher than the bottom of the conduction band. Figure 3.5
illustrates the definition of the threshold voltage shift due to quantum effects and the gate
capacitance as well. The V; shift is extracted from the parallel shift of Q- V, curve at
subthreshold region with respect to the classical curve at the same inversion charge sheet

density Q;.
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Figure 3.5 Classical (solid line) and quantum (dashed line) mobile charge sheet density
0; of symmetric DG MOSFETs in both linear (right) and logarithmic (left) scales versus
gate voltage.

As discussed in 3.1.1, the potential remains essentially flat in the subthreshold region of a
symmetric DG MOSFET, which means the voltage drop across the gate oxide is

negligible. Therefore, the oxide thickness does not affect both classical and quantum

inversion charge densities and hence, the threshold voltage shift as shown in Figure 3.6.
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Figure 3.6 Threshold voltage shift of a symmetric DG MOSFET with different silicon
and oxide thickness.

3.2.2 Expression Of V, Shift

Due to volume inversion, the classical inversion charge sheet density is

qV,
cL_ [l kT e
Q. = IO gne®” ' dx = qnt et (3.3)

181

And the quantum inversion charge density is

kT . L
QiQM: (jzhz {gmd;ln(l+e(li’ E’)/kT)+g'md';1n(l+e(E-’ & )/kf)}

qu_gj/kT (3.4)

kT . [
:ihz {gmdze E//kT_I_g m, Ze E]/kT}e[ 2
J J'
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where E; is the eigen energy ((3.1)) of the infinite square well based on the discussion in
3.1.1. In (3.4), we assume that the Fermi level is at least several AT below the lowest
eigen energy level.

From the definition of V;, one has.

cL OM AV, JkT
Qi :Qi e’ / (3.9)

Substituting (3.3) and (3.4) into (3.5) yields an expression of the V; shift.

2
av =KL, 7o

t

7 +i (3.6)
qkT[gdee_E’/kT +g'm, 'Ze_Ef /kTJ
j J

3.2.3 First Energy Level Approximation

From the compact modeling point of view, (3.6) is too tedious. Rewrite (3.6) by

subtracting £ in every E;, one has

2
AV :k—Tln nt.h

g El
| +2—q+?' (3.7)
qkT(gmdze—(Ej—E])/kT n g,md ,Ze—(Ej —E])/ij
j

=
The first term in the right side of (3.7) is a weak function of #; and its value largely cancel
with E,/2g, which is the second term in the right side of (3.7). Therefore, the V;shift can

be expressed as a closed form function of ¢;.

you _yct Z Ay :E W’

t t q :W (3.9)
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where m =0.91my is the larger effective mass in the two valleys.
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Figure 3.7 Threshold voltage shift due to quantum effects as a function of silicon film
thickness. Symbols (#,,=1nm (circle) and #,,=2nm (star)) are obtained from the Poisson-
Schrodinger solver. The line is calculated from (3.8).

The first subband approximation in (3.8) is justified in thin Si films where the energy
spacing between the subbands is larger than k7 so that electrons predominantly occupy
the lowest subband. For thick Si films, the subband spacing decreases and several
subbands may be populated. But in that case, the quantum V; shift is small and the error
associated with equation (3.8) is much less than £7/g. Figure 3 7 shows that the threshold

voltage shift calculated by (3.8) is in good agreement with that obtained directly from the

Poisson-Schrodinger solver. As expected, the result is independent of #,,.
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3.3 Gate Capacitance Degradation And Effective

Inversion Layer Thickness

3.3.1 Definition of Effective Inversion Layer Thickness

The distribution of inversion charges from the surface due to quantum effects
suggests the finite thickness of the inversion layer. This means an inversion capacitance
in series with the oxide capacitance. In the presence of this inversion capacitance, the
total gate capacitance, or the slope dQ,/dV, in Figure 3.5, is reduced.

do, 2
AR 69)
g

ox iny
_ox 4 v

& &

ox Si
where #;,, is defined as the equivalent inversion layer thickness. The factor of two arises
from the two symmetric channels of the device. The fact that electrons are distributed
farther away from the surface due to quantum effects increases the inversion layer
thickness and causes gate capacitance degradation. It can be modeled in terms of a
parameter,

5tinv = tianM - tinvCL (3-10)

where ti,,vCL and t,-,wQM are extracted from the classical and quantum Q;-V, curves via (3.9).

3.3.2 Extracting Effective Inversion Layer Thickness

There are two different methods to extract o, in (3.10) through the classical and
quantum f;,,. Figure 3.8 shows the classical and quantum OV, curves. The quantum

curve is shifted to the left by the value of AV, to ensure the influence caused by V; shift is
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eliminated. The first method is using the slopes at point A and B which have the same
gate voltage to calculate of;,, through (3.9) and (3.10). The other one is using the slopes at

point B and C which have the same inversion charge sheet density.
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Figure 3.8 Classical and quantum Q-V, curves for a symmetric DG MOSFET. The
quantum curve is shifted to the left by the amount of AV, to ensure the same off-state
condition.

In general, o, is a weak function of Q;. In bulk MOSFETs, an approximate
expression for the quantum inversion layer thickness in the electric quantum limit was
derived by Stern [18]. A similar approximate expression for d¢;,, is found to apply to DG

MOSFETs,

hz 1/3
ocg ..
5t — S1

myv * 311
m qQ, G40
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where a is a fitting constant to represent the influence of the classical inversion layer thickness.
Its value is also different when using different methods to extract ot;,,: oo = 10.5 at same V, and a
=7 at same Q. Figure 3.9 compares dt;,, vs. O; calculated from (3.11) and those obtained from
the Poisson-Schrodinger solver for symmetric DG MOSFETs with different silicon and oxide
thickness. Quantum degradation of gate capacitance can then be modeled as an effective increase

of the oxide thickness ¢, by (&,/&:)dt;,, based on (3.11).
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Figure 3.9 Increase of inversion layer thickness due to QM effects, ot;,,, as a function of
O; calculated from (3.11) (line) and obtained from the Poisson-Schrodinger solver
(symbol) for three sets of silicon and oxide thickness. o, 1s extracted at the same V, in

(a) and at the same Q; in (b).
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3.4 Analytical Classical Potential Model

In the undoped DG MOSFETs, due to absence of the depletion charge, Poisson’s

d’y(x)
dx’?

=4 y(x) with n(x)= ne®* can be rigorously solved to obtain an

si

equation

analytical expression for the potential in the silicon film [49]

2
w(x)=V- 2kT In| Lo |47 cos 2Px (3.12)
a |28\ 260

where V is the electron quasi-Fermi potential at a point along the channel, and the

dimensionless parameter £ is a function of V to be determined from the boundary

condition

VA=) dy
ox t St dx

ox

(3.13)

Substituting (3.12) into (3.13) leads to

C](Vg —A¢—V) 2 |2g,kT et
—In| — ” =ln f—In|cos f|+2—=2% Btan 3.14
2kT t,\ ¢’n 4 [ 'B] et panf G149

ox"si

From Gauss’s law, the classical charge density is

d e. kT
0=26, | =857 ptanp (3.15)
dx =t 4

Differentiating (3.14) yields



54

av 2kT(1
dp q

E+tanﬂ+%(ﬂse&ﬂ+tan,b’)} (3.16)

By substituting (3.15) and (3.14) into the current continuity equation and integrating [16],
a continuous, analytical drain current expression is obtained for all regions of MOSFET

operation,

I=p— jQ(V)dV—ﬂ IQ(V)ﬁdﬂ

W 4, (2ij {ﬂt ﬁ_ﬂ_+ Edos g2 o 5
L t, q

A, (3.17)

ox”si

Ba

Here, S, [ are solutions to (3.14) corresponding to V being the source voltage V; and the
drain voltage V,, respectively. Figure 3.10 compares the /;-V, characteristics calculated
by the analytical model with the 2-D numerical simulation (ISE) results. They are in
excellent agreement in different operation regions.

Using the Q«(f) expression, the gate capacitance can be expressed in terms of £.

_do, dQ dp _ 48 ﬂsecz,Bthan,B
g
av, dpdv, L ;+tan,8+ ”t‘”“ (ﬂsec ﬂ+tan,8)

ox" St

(3.18)
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Figure 3.10 I4-Vys curves of a symmetric DG MOSFET at different gate voltages. The
solid line is calculated from (3.17) and the dashed line is from the ISE results.

3.5 Implementation Of Quantum Effects In The Compact
Model

3.5.1 Implementation of V; Shift

Although no specific definition of threshold voltage is invoked in the analytic
potential model, the threshold voltage shift due to quantum effect can be implemented by
changing the gate work function in (3.14) from A¢g to Ag +AV,, with AV, given by (3.8).
Quantum threshold voltage shift can be also implemented as an effective change in the

silicon thickness in a classical compact model for symmetric DG MOSFETs.



56

R 1x10 5 T T T T T T T T T 5.0x10ﬁfg
& 6 ]
S 1x10 8
-7
C bao’y - 4.0x10°—
O 1x10° o
a 1x10° F left igh *?
B rom left to right {20008
S 1x10™ 4 t,=20,10,5nm S
S o
S a0t =
o ©
Q _ 6
2.0x10°®
O 1x10™ o
5 . @
e 1x107° = 8
C 1510 3 1 10x10°%
G 5
o 1x10™ g
‘'~ -16 doo a
g 10" 4 g
-17 1 2
= 10 -— Y7177

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Gate voltage Vg V)

Figure 3.11 Quantum inversion charge sheet density Q; in both linear (right) and
logarithmic (left) scales as a function of the gate voltage V,. All curves (same #,, = 1 nm
but different #;;) are obtained from the solver.

Figure 3.11 presents the quantum Q;-V, curves obtained from the Poisson-Schrodinger
solver for a symmetric DG MOSFET with different silicon thickness. It shows that the #;
dependent V; shift due to quantum effects only occurs in the subthreshold region and does
not affect the on-state Q; for #; > Snm. To implement such effects in a classical model, we
make use of the fact that the subthreshold current obtained from (3.14) and (3.17) in the

limit of B < <1,

q(V,-A¢) 4V

]ds:lu%anitsie oll-e (3.19)

is proportional to #; (volume inversion), whereas and the on-state current (in the limit of

~ 1/2) is insensitive to #;. Then, the quantum induced V; shift can be implemented as an
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effective change in the silicon thickness which shifts the subthreshold current by the AV

of (3.8) without affecting the above-threshold characteristics.

2. 2
gAYy, 'z

oM T . 2mkTL
[, =t,e =1,e (3.20)

3.5.2 Effective Gate Work Function and 6t;,, At Same V,

There are different combinations of the implementation of quantum effects into the
classical compact model since we have different methods of implementing V; shift and
extracting ot;,,. Among them, the simplest combination is implementing V; shift by
effective gate work function and extracting Jt;,, at the same V,. At a given bias Vg, we
first calculate the classical boundary parameter ﬂCL using (3.14) with A¢ changing to A¢g
+AV,. Then, we can obtain O,“" through (3.15) and dt;,, through (3.11). After updating 7,,
with 2,2V,

si Si

1/3
t M (B =t, +i(2lgsih2/m*q*l6tg“kq]wﬁa tan,BCLJ (3.21)

we can calculate the quantum boundary parameter <.

a(V,=A9=AV=V)  [2 [e T
2kT t,\ ¢’n

=In g% —ln[cosﬁQM]+2

o ot (3.22)
gsitm, (ﬂ )

ox"si

£ tan 2

Note that both “ and 2" appear in the above equation. It is extremely difficult to
obtain an explicit expression of dVg/dﬁQM since we can not derive an explicit relationship

between fand %Y. Consequently, we are unable to obtain expressions for the drain
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current and the gate capacitance. To simplify the problem, we can neglect the
involvement between f““and 2. Then, following the same procedure in section 3.4, we

can obtain an expression of the drain current

2
W e, 2kT
Ly =p— -
L tsi q
B B 3.23)
oM?2 EYAZ‘QM ﬁCL 2 ' ( '
% ﬂQM tarl,BQM _IB n ST oy ( )(ﬂQM) tan2 ,BQM
2 goxtsi
B, it

where 2" and £,2" are the solutions to (3.22) corresponding to V being the source
voltage V, and the drain voltage Vy respectively, and 7,,2"(B"), 1,.2M(B/ ") are
calculated from (3.21) using A", ;" accordingly.

And the gate capacitance is

B sec’ B2 + tan g

3.24
g L + tan ﬁQM + 28Sit§M (ﬂCL ) (:BQM sec? ﬁQM + tanﬂQM) | |
B &t

ox”si

By incorporating the quantum corrections, it is possible to generate /-V and C-V curves
from the classical model that resemble the quantum /-7 and C-V curves as shown in

Figure 3.12 and 3.13.



59

-3
120" ——CTassical from Poisson-Sch. solver
- - - - Quantum from Poisson-Sch. solver
1.0x10° - e Classical from compact model V =15V
< - o Compact model with QM corrections SN
\-:g 8.0x10™ tsi:lonm, tolenm
E L W=1um, L=1um
D 6.0x10" |-
p—
>
3 L
c 4|
‘T 4.0x10
P
D L
2.0x10" |-
0.0 |
1 | 1 | 1 | 1 | 1 | 1 | 1
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

Drain voltage V _ (V)

Figure 3.12 [;-V4 curves obtained from the analytical compact model (symbol)
compared with those obtained from the Poisson-Schrodinger solver (line) for a symmetric
DG MOSFET at two different gate voltages.
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Figure 3.13 Classical (solid line) and quantum C-V curves (dotted line) obtained from the
Poisson-Schrodinger solver compared with the classical C-V curves with quantum
corrections (symbol).
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3.5.3 Effective Silicon Thickness and otj,, At Same Q;

We can avoid the differential and integral problem in section 3.5.2 by extracting o,
at the same ;. Quantum effects have been incorporated into the analytic potential model
for DG MOSFETs by changing the silicon thickness from ¢; to 2" and replacing ¢, by

QM _ QM . . . _
toxo = totOtiméndesi, Where t,= is given by (3.20) and &t by (3.11). Since Q; =
8(&ilty)(kT/q) franf, t,,2" depends on the bias voltage through the parameter 2V

L2 (B =t + 2251, (A7)
E .

S

£ Te h’t M . (5.23)
_(Sm*gﬂ.kTﬂQM tan ,BQMj

0oxX

gsi

P! can be solved from the boundary equation (3.14) in its quantum form,

q(V,—Ap-V) |2 et
oM 2
2kT 15 qn,

o (3.26)
=In g2 - ln[cosﬁQM ] + 2%ﬁw tan BV
Differentiating (3.26) leads to
d 2kT( 1 :
dﬂZM . ( i +tan S+ 27 ( B2 sec’ B2 + tan B2 )j (3.27)
where
- 2
r=— (tox +5 Sl ( ﬂQM)J (3.28)

The quantum drain current is then
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_ W e, (%_Tj
ST g
B
o » (QM)2 Ssi(tox+ié5tmv(ﬁQM)j N . (329
x| %" tan B 5 + o (" (,B tan )
B

where 82", 5 are the solutions to (3.26) corresponding to ¥ being the source voltage
Vi, and the drain voltage V,, respectively, Stmv(ﬁ?QM), Stinv(ﬁdQM) are calculated from

(3.25) using £,2Y, 5,2 accordingly.

The effective oxide thickness in which equals 7 +%§tmv ( B ) is close to £,,2" which

1 .
equals to 7, +§5tinv ( L ) . Changing from one to another only causes small errors (less

than 2% even for #,, =1nm). This justified what we did in section 3.5.2. If we do the same

simplification here, the current will be

;oW e, (2T ’
ds — /’lf th
2 7 (330)
oM OM | pOM s .
om oM _ (ﬂ ) Eiloe (B™7) ( pom om \?
x| p<" tan B 5 + o (,B tan )
B
The quantum gate capacitance C, = dQy/dV,, 1s calculated from:
&, L2 sec® f2 +tan pOY
¢, =4 3.31)

t

st

+tan 2 +2r (ﬂQM sec” B + tanﬂQM)

1
B
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SPICE3 simulations have been run to demonstrate the impact of quantum mechanical
effects on the gate capacitance and the drain current. Figure 3.14 and Figure 3.15 show
the comparison of classical and quantum C-V and /I-V curves obtained from the Poisson-
Schrodinger solver and those calculated from the analytic potential compact model with
and without the quantum corrections. Both C-V and /-V curves are in good agreements.
Comparing Figure 3.14 and Figure 3.13, we found that by extracting d¢;,, at same Q; and
calculating C, using (3.31), a better agreement of the C-V curves agreement improve is

obtained.

9.0x10° — = : '
{— Classical from Poisson-Sch. solver
. .

&~ 80x10°1-- - - Quantum from Poisson-Sch. solver B
g sox0°4 @ Classical from compact model R
g { © Compact model with QM corrections

-6

Oc, 6.0x10" 4 tsi:30nm’ -
O 50x10° -
(&]

c o

g 4,0x10° =
3 o
8 3.0x10° -
g |
©  2.0x10° -
@ |
©  1.0x10° -
O |

0.0 L
-1.0x10° T . T . r

0.0 0.5 1.0 I 15
Gate voltage Vg V)

Figure 3.14 Classical (solid line) and quantum C-V curves (dotted line) obtained from the
Poisson-Schrodinger solver compared with the classical C-V curves with quantum
corrections (symbol).
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Figure 3.15 [;-V4 curves obtained from the analytical compact model (symbol)
compared with those obtained from the Poisson-Schrodinger solver (line) for a symmetric
DG MOSFET at two different gate voltages.

Figure 3.16 shows the waveforms at two successive stages of a CMOS inverter chain
in response to a step input signal. The figure plots the pull-up of one stage and the pull-
down of the next stage with and without the QM correction. The compact model also
includes a parasitic gate to source or drain overlap capacitance of 0.3 fF/um per gate per
edge. It is observed that the propagation delay with QM effects is about 20% longer than
that without QM effects for the same V,. This is because quantum effects degrade the

current more than the capacitance, which contains an extrinsic component independent of

Lox.
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Figure 3.16 Voltage waveforms at successive stages of a DG CMOS inverter chain

generated from the analytic potential compact model with quantum effects (solid line)
and without quantum effects (line with symbol).

The text of Chapters Three, in part, is a reprint of material that appears as “Compact
modeling of quantum effects in symmetric double-gate MOSFETs” by Wei Wang,

Huaxin Lu, Shih_Hsien Lo and Yuan Taur, submitted to Solid State Electronics.



Chapter 4

Compact Modeling of Quantum Effects

In Asymmetric DG MOSFETSs

4.1 Quantum Effects In asymmetric DG MOSFETSs

In an asymmetric DG MOSFET, the work functions at the front and back gates are
different. As shown in the schematic band diagram (Figure 4.1), the silicon band becomes
sloped between the two gates. This leads to a built-in electrical field across the silicon
film even at zero gate voltage. In the subthreshold region, this built-in field does not
change with the gate voltage. In other words, the silicon bands move as a whole with the
applied gate voltage, similar to the symmetric DG MOSFETs where the built-in field is
zero. Therefore, the subthreshold slope of asymmetric DG MOSFETs is also 60
mV/decade. Due to the presence of this built-in field, the quantum mechanical behaviors
of electrons in asymmetric DG MOSFETs are much different from those in the
symmetric devices. The potential well does not behave like an infinite square well
because of the slope of the conduction band. Consequently, the electron eigen energy

levels are higher with respect to the eigen energy levels in the infinite square well.

65
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Figure 4.1 Schematic band diagram of an asymmetric DG MOSFET at zero gate voltage.
The left gate is assumed to have smaller work function than the right gate

As illustrated in Figure 4.2, the ground state energy of electrons in a n'p’ gate
MOSFET (the left gate has the same work function as 7" silicon and the right gate has the
same work functions as the p" silicon) is much higher than the ground state energy in a
symmetric DG MOSFET discussed in Chapter 3. The sloped conduction band causes
higher electron population on the left side of the silicon film as shown in Figure 4.2. The
centriod of the inversion charge distribution moves closer to the left surface as the built-

in field increases, e.g., the two gate work functions become more.
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Figure 4.3 Wave function of the first two subband electron in an asymmetric DG
MOSFET with n'p" gate work functions compared with that in a corresponding infinite

square well.
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However, when the silicon film is very thin, the strong confinement in the silicon film
causes the centroid to move to the center of the film just like the symmetric device. The
electrostatic coupling between the front channel and the back gate is stronger than the
classical case since the front channel is closer to the back gate due to quantum effects.
Therefore the difference between the Q;-V, characteristics of symmetric and asymmetric

DG MOSFETs is smaller than the classical case as shown in Figure 4.4.
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Figure 4.4 Classical and quantum Q;-V, curves at both linear (right) and logarithmic (left)
scales of symmetric and asymmetric DG MOSFETs. Asymmetric curves are shifted to
keep the same off-state condition with the symmetric curves.
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an asymmetric DG MOSFET.
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Figure 4.6 Classical and quantum gate capacitance of an asymmetric DG MOSFET with
n'p" gate work functions and different silicon thickness.
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Beyond the subthreshold region, the surface field increases with increasing gate
voltage. As a result, the electron eigen energies increase rapidly as illustrated in Figure
4.5. Due to the asymmetry of the gate work functions, the two gates have different
threshold voltage and the gate with smaller work function turns on first. Consequently,
the C-V curves have a step shape around the threshold voltage of the back gate which can
be seen clearly from the classical curves in Figure 4.6. It is different in the quantum case.
When the silicon film is thick, the step shape in the C-V curve presents for the same
reason. However, the step disappears in the curve with moderate silicon thickness and

appears again when the silicon film becomes very thin.
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Figure 4.7 Electron occupation ratio of the lowest three subbands as a function of the gate
voltage for an asymmetric DG MOSFET with two different silicon thickness: (a) #; = 2
nm and (b) #; = 5 nm. The Q;-V, curves are also plotted.
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The step feature in the thin silicon film case does not arise from the asymmetry of
gate work functions. As one can see in Figure 4.7, in the case of thin #;, electrons only
populate in the lowest energy subband before the critical ¥, where the step occurs. After
the critical V,, electrons start to populate at higher energy subbands and hence, the total
charge density increases much more rapidly with increasing V,, which leads to the step
shape in the C-V curves. This critical V, is higher than the threshold voltage when ¢ is
thin. The critical V, decreases with increasing f; because the differences between the
energy subbands become smaller. When ¢ is larger than 5nm, the critical V, becomes
smaller than the threshold voltage and therefore, no step is observed after device turning

on in Figure 4.7 (b).

4.2 Threshold Voltage Shift — Thickness And Field
Dependence

4.2.1 Expression Of V, Shift

As discussed in the last section, the electron eigen energy levels not only depend on
the silicon thickness but also depend on the built-in field which comes from the
asymmetry of the gate work functions. As a result, the threshold voltage shift due to
quantum effects also depends on both the thickness and the field as shown in Figure 4.8.
When ¢ is thick, confinement by the thickness is weak and the field dependence
dominates. However, thickness confinement becomes stronger when ¢; is thinner. In the

case of extremely thin ¢, the V; shift is completely dominated by the thickness.



0.45 T T T T T
< 0404
N—r _
s
O’>H 0.35
2 i
P 0.30
=
= i
[%2) 0.25
<) ]
(@]
© 0.20
=
o 1 E=1,3,5, 7e7V/Im
> 0.15 S
o - e
8 0.10 '%' = [ [ —n [ L]
n . v\“\O*f”fo— —e —eo—0—o
Q0054 v
< V—v
— ] V—vV—v—v
0.00
T T T T T
0 2 4 6 8 10

Silicon thickness t_ (nm)

73

Figure 4.8 Threshold voltage shift due to quantum effects of asymmetric DG MOSFETs
with different silicon thickness and built-in field. The data are obtained from the 1-D
numerical solver simulation.

An expression of V, can be obtained using the same procedure as we did for

symmetric DG MOSFETs. Due to the built-in field, the potential across the silicon film is

W(x):Vg_A¢1_

=V, ~Ad -

A¢2_A¢1 {x_i_&t ]

&
(95 X+ itox
Eox

gox

g .
t,+2—"t
&

ox

4.1)

where Ag, Ag, are the work function of the front gate (the one with lower work

function) and the back gate (the one with higher work function) respectively, and &, is

the built-in field.
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Therefore, the classical inversion charge sheet density is

KT 1 V,~Ad— “8z 4§, ’
Q,-CL:J‘; n.e e? VI gy — n,— . ekT( J(l—e a ] (4.2)

The quantum inversion charge sheet density is given by

kT E, £
07" = j][hz {gmdgln(He(E’ E’)/kT)+g'md';1n(l+e(Ef & )/kT)}

EZ Elj 4.3)

kT o —( —Ag— Eai SLE to
:Z_hZ {gmd+g'md'e (E E])/kT}ekT Eox

Through the classical and quantum charge density, one can obtain the expression of the

threshold voltage shift due to quantum effects.

a8,
nah’|l—e "
. E .
AI/, — gvtsz ln : + g +£_ gvtsz
2| q& (gm +g'm e BT 1 2g g 2 G

In the above equations, only the lowest subbands in both valleys are kept. However, one

needs to find out £ to calculate the threshold voltage shift.

4.2.2 E,; Calculation — Airy Function Approach

Comparing an asymmetric DG MOSFET in the subthreshold region with that of a
traditional triangular well, one finds that the Schrodinger equation is the same. The
boundary condition at x = 0 is also the same and the only difference comes from the right

boundary condition — zero wave function at infinity for triangular well and zero wave
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function at x = ¢; for asymmetric DG MOSFET. The Schrodinger equation in a triangular
potential well in the moment space can be solved rigorously.

2
p . d
— hE — =F
) (D(P)+l sdp€0(p) (0(19) (4.5)

The solution is the wave function at the moment space ¢(p).

. 3
i [p
=4 —|—-F
o(p) exp{hgs[ pﬂ (4.6)

6m

where A4 is the normalization constant. The wave function in the spatial coordinate space

can then be calculated as

1

o= o)

2wh * h| 6m &, &, 4.7
A e u’
=—| cos| —+ué du
7k (3 :
where
_1
u= p(2hm8s) % (4.8)

. _E (27716;}%
- c PP (4.9)

and 4 is another normalization constant. Note the right side of (4.7) without the constant
A'is exactly the Airy function with the variable & In the triangular potential well, the
ground eigen energy level can be calculated from the highest zero point (excluding the

infinity) of the Airy function using (4.9), and the second eigen energy level can be
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calculated from the second largest zero point and so on. In an asymmetric DG MOSFET
with the built-in field, the situation is much more complicated due to the right boundary
condition at x = ;. However, the eigen energy levels should still relate to the zero points
of the Airy function through. For every eigen energy level, there also exists a down limit
which equals to the corresponding energy level of an infinite square well. This is caused
by the thickness confinement. In other words, the ground state energy can be found as the

largest number which satisfies the following conditions.

.| E (2m&, Re
Airy z |\ 7 =0 (4.10)
, E ) 2m€, R
Airy|| t, = | T =0 (4.11)
'’
E| (4.12)
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Figure 4.9 Electron ground state energy as a function of the built-in field of an
asymmetric DG MOSFET with different silicon thickness. The dashed line the ground
energy of the triangular potential well.

It is difficult to give an expression of the ground state energy although we can obtain
it by a table-lookup method. For compact modeling, we need to know £, as a closed form
function so that we can calculate the V; shift through (4.4). As discussed before, the field
confinement dominates when the field is very high and the thickness confinement
dominates when the thickness is very thin and the field is not that high. From Figure 4.9,
one can observer the fact that the ground state energy eventually equals the ground
energy of the triangular well when the field is high enough for different silicon thickness.

A simple fitting expression can then be given based on this observation.

)%

El = (Ethickness (tsi )n + Eﬁeld (gs )" 4.13)



78

h27z_2

Where n = 3/4 is a fitting parameter, £, , () :Wand E ;4 (E,) are the ground

St

state energy of the infinite square well and triangular well, respectively.

hzngz %

Eﬁeld (&) =n m

(4.14)

Here y, is the largest zero point of the Airy function. Figure 4.10 shows the ground energy
of electrons calculated by (4.13) in the two-fold valley, compared with data obtained
from the solver directly. Using E; (and E, with m) calculated from (4.13), one can
calculate the V; shift through (4.4). The comparison between the calculated V; shift and
those obtained from the solver is shown in Figure 4.11. As one can see, both the ground

energy and V; agree with the simulation results well.
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Figure 4.10 Comparison of the electron ground energy calculated by (4.13) with those
obtained from the solver for an asymmetric DG MOSFET with different silicon thickness.
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Figure 4.11 Comparison of the threshold voltage shift due to quantum effects calculated
by (4.4) and those obtained from the solver directly for an asymmetric DG MOSFET.

4.2.3 E; Calculation — Variation Approach

Since we are mostly interested at the electron ground state energy, the variation
method can also be used for the energy calculation. Based on the quantum confinement

trends in the high field and thin silicon limits, a trial wave function is

(p(x) =asin (?j e (4.15)

where the coefficient a can be calculated through the normalization.

) b(;z2 +b ) e
a=— oot (4.16)

The expectation values of the kinetic and potential energies are
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2 } d2
(E)=-7— Ot (D(X)—(p(x) dx = +—— 4.17)
and

<Ep> = Lj ¢(x)gE xp(x)dx

q&.  q&it, q& bt (4.18)

S

2 -1+ b

The expectation value of the electron ground energy is then

E =(E)+(E,)

n'x’ Wb q&, _q&t,  qEbt; (4.19)
> + - 2bt, T 2,2

2mt;, 2m 2b —l+e no+bt,

According to the variation principle, the variation parameter b should minimize the

energy E, i.e.,

dE
db

(4.20)
This nonlinear equation is difficult to be solved analytically. Using the asymptotic
behavior of (4.19) as ¢, ~ 0, b is approximated as

b (3mq8s j%

Py 4.21)

However, the ground energy calculated through (4.21) and (4.19) does not agree the

simulation results well when ¢ is thin because of the approximation used for (4.21).
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4.3 Gate Capacitance Degradation - Equivalent
Capacitance Model

4.3.1 Equivalent Small Signal Capacitance Circuit

In asymmetric DG MOSFETs, there exists electrical coupling between the two gates
and the inversion channels. This coupling makes the inversion charge distribution and
gate capacitance behaviors much more complicated than in symmetric DG MOSFETs.
For a comprehensive picture of the charge coupling between the gates and the channels, a
small-signal equivalent capacitance circuit is developed for the asymmetric DG

MOSFETs under equilibrium. Figure 4.12 illustrates such a circuit, wherey  andy , are

and Q, = gsicjl—l// are the charges
x

x=lg;

the potential in the silicon surfaces, O, = —gsid—w
X x=0

in the front and back gate, respectively. Except for the two inversion capacitances C;; and
Ch, there is an additional capacitance C;; in Figure 4.12, which represents the coupling

between the gates and the inversion channels. The A—type network adopted in Figure 4.12

is a physical representation of the linear relationship between the small signal quantities

(60,,60,) and (8y,,,dv,,). From the equivalent circuit, one can write

o0, _ C,+C —C oy,
5Q2 - _Csi CIZ + Csi 5‘// s2 (#22

Similarly, one can also obtain the linear relationship between the small signal quantities

(60,,50,) and (6V,,,07,,)
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o Q1 _ Cox Cil + Csi _Csi Cox + Cil + Csi Csi 5Vgl
s0,) M| -c, cC,+C, c c +C,+C,)\ov, | ¢

St St

where

M:(Cox+cil +Csi)(cox+Q2 +C9i)_cs2i (4~24)
Or= &,E O=-¢,;5
Cox w C.'vi w Cox
Gatel © +H_ 51 H 2 _H+ O QGate2
Gl —— — G2

n"S/D

Figure 4.12 Schematic small signal capacitance equivalent circuit of an asymmetric DG
MOSFET under equilibrium condition, i.e., there is no current flow between the source
and the drain.

The three components of capacitance behave differently with increasing gate voltage
as shown in Figure 4.13. In the subthreshold region, the inversion charge is negligible
and so are the inversion capacitance C;; and Cp. On the other hand, Cy; equals to &/t
which means that the charge coupling is between the two gates. When V, is above the
threshold voltage, C;; increases rapidly. Note that C;» increases slowly because of the

charge coupling. In the meantime, Cj; starts to decrease because of the screening of the

gate field by the front channel. When V, is higher than the threshold voltage of the back
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gate, the second channel forms and Cj;, rises rapidly as well. However, C;; becomes

negligible due to the strong screening by the two inversion channels.

0144 ——C .

i1
Ci2
0.12 C. —

Sl
41 t.=10nm,t =1nm
S| 0oX

<0104 prat 4
c O n'p’ gate
~ i
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(&] i
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S 0.04 4 c -
O g ox
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0.0 0.5 1.0 15 2.0 2.5
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Figure 4.13 Capacitance components C;;, Cp, and Cy; versus the gate voltage for an
asymmetric DG MOSFET of #,; = 10 nm with n"/p" poly gates.

The equivalent capacitance circuit is valid for both three-terminal and four-terminal
asymmetric DG MOSFETs. In Figure 4.14(a), the two gates are tied together and
switched simultaneously. The gate capacitance is larger than C,, as expected since there
are two inversion channels. In the four-terminal case (Figure 4.14(b)), the back gate is
biased at a constant voltage below the back gate threshold voltage and only the front gate
is switched. Consequently, the gate capacitance is smaller than C,, since only one
inversion channel is formed. However, it is clear that the back gate bias can affect the

threshold voltage of the device through the charge coupling between the front channel
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and the back gate. The solid line is the slope of Q; — V, curve obtained from the solver
and the dashed line is from the equivalent circuit calculation. In both cases, the calculated

curves agree well with the data from the solver.
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Figure 4.14 Comparison of the gate capacitance obtained from the solver and calculated
using the equivalent circuit for (a) three-terminal and (b) four-terminal asymmetric DG

MOSFETs
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4.3.2 Equivalent Inversion Layer Thickness

To further illustrate the meaning of the capacitance components, we define the

equivalent inversion layer thickness #;,,1, tin, for the two inversion channels such that
ty, on(x 0 (i
J. xﬁdx =t  — n(x)dx (4.25)

and

0 lsi
- (tsi o tinvZ )W J-O n (X) dx (4.26)
s2

where n(x) is the inversion charge density. In other words, ¢, is the center of mass of the

incremental charge in response to the incremental change in y,, and #; - fis0 1s the center
of mass of the incremental charge in response to the incremental change in y,. Making

use of the Poisson’s equation and the matrix definition (4.22), one can obtain a general

relationship between the capacitance components.

l, l, t .
Lvlcil — _inv2 Ciz — 1_ Si
E . £ &

SI Si ST

Csi (4.27)

As discussed previously, C;; becomes negligible after both surfaces are strongly inverted.
Therefore, the inversion capacitances are given by the distance between the charge

centroids and the respective surfaces.
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Figure 4.15 Quantum equivalent inversion layer thickness versus the gate voltage for an
asymmetric DG MOSFET of ;= 10 nm, #,, = 1 nm with n'/p" poly gates.

Figure 4.15 shows the equivalent inversion layer thickness calculated from (4.27).
Note there is a distinct plateau for V, values between the front and the back threshold
voltages in both classical and quantum case. This plateau implies that the back gate also
contributes to the inversion charge in the front channel through charge coupling between
them. On the other hand, #,,; does not change significantly with increasing gate voltage
after strong inversion. Due to quantum effects, the inversion charge in the left channel is
at a distance away from the left surface. Therefore, the quantum ¢,,,; is always larger than
the classical #;,,; and the quantum C;; is smaller than the classical C;; accordingly (Figure
4.16). The t;,», and C;, behavior is more complex. Before the back gate turns on, the
quantum coupling between the front channel and the back gate is stronger than the

classical case because they become closer to each other. As a result, the quantum ¢, is
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smaller than the classical #;,,, and the quantum Cj, is smaller than the classical Cj
accordingly (Figure 4.17). After the back gate turns on, the classical and quantum ¢, ,
C» become similar to #,,; , C;; because the back channel is further away from the right

surface.
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Figure 4.16 Front channel inversion capacitance versus the gate voltage for an
asymmetric DG MOSFET with different silicon thickness.
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Figure 4.17 Back channel inversion capacitance versus the gate voltage for an
asymmetric DG MOSFET with different silicon thickness.

4.4 Analytical Classical Potential Model

In an asymmetric DG MOSFET, the solution of the Poisson’s equation at high gate

voltage is

2T | t, | ¢'n, . (2
l//(x):V— p ln[zj‘g 2Z ];T sm(%Jraﬂ Large V, -V (4.28)

where o and B are constants to be determined from the boundary conditions

£ Vg —Ag, VYV :_SSid_W
t dx

ox

=0 =&,6 (4.29)

gox Vg _A¢2 _WSZ — (9Si dW
t dx

ox

X=tg = _gsig2 (430)

From (4.28), one can obtain the potential in the two surfaces



v =V Lz 2253,./(7; LT | 2,8_
g \¢’'nt, q sin (o — f3)

kT 2¢ kT 2kT 2
Wo=V+—In| —"— |+ In<— P
q g nt, q sm(a + ,6’)

and the electrical field as well.

4kT
El:q—tSlﬂCOt( ﬂ)

E, =4kTT,Bcot(a+ﬂ)
qsi

(4.31)

(4.32)

Substituting (4.31) into the boundary condition and summing (4.29) and (4.30), one has

f(a,ﬂ)zln{w}+2rﬁ[cot(a—ﬁ)+cot a+ﬁ] ‘I(Az—m:
sin

kT

And from (4.29), one can obtain

Vv =ag+ kT, (2gﬁkrj+2len{ 20
Sin

g \a'nt) q
where r=¢_t. /¢t . Based on the Gauss’s law, the total inversion charge is
de kT
0 =¢,8-8&)= B| cot(a - B)—cot(a+p)]

Sl

The current can be obtained by integrating Q; along the channel
W iV
Ly=p—[, 00NV

At low gate voltage, the potential solution becomes

0 (4.33)

(4.35)

(4.36)

2 *
l//(x)=V—2kT ln{;} /2q ’Z:T Sinh(z’f x+a*ﬂ Small V, -V (4.37)
q gsi kY2
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However, following the same procedure from (4.31) to (4.36), we can also obtain the
drain current for the low gate voltage case. Figure 4.18 compares the drain current from

the analytical potential model and the 2-D ISE simulation results.

1.6x10°

Analytic potential model ~ Vgs=2
3 L [tsi=10nm 5 2-D simulation —_
1.4x10 [ ltox=1.5nm e

3| |A1=0.56V -~
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3 1.0x10° I et /

( L
—8.0x10"} /-/ Vgs=1.5

6.0x10* S

4.0x10™
2.0x10™

Figure 4.18 Classical I — Vs characteristics from the compact model compared with the
2-D numerical simulation results (ISE) for an asymmetric DG MOSFET.

4.5 Implementation Of Quantum Effects In The Compact

Model

The quantum threshold voltage shift can be implemented into the classical model by
change V; to V, + AV,, where AV, is calculated through (4.4) with E; obtained from (4.13).
It is difficult to obtain C;;, Cp, and Cy; as close form functions of the device parameters

due to their complicated behaviors. As a result, the quantum gate capacitance degradation
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is difficult to be implemented into the classical model. However, for the first order
approximation, we can use a constant oxide thickness change d¢,, for the gate capacitance
degradation implementation. Note that the built-in field decreases due to the increasing
oxide thickness, which decreases the classical inversion charge density. In other words,

an additional threshold voltage shift will be produced by changing #,, to ¢, + 6t,. The

definition of this additional threshold voltage AV, is

O Voot )= O™ (V, + AV, 1, + 61, (4.38)

Using (4.2), one can calculate AV, as

_a&,,

' gSi ' kT 1—8 kT !
AV, =8—fox(5s—5s)+—1n — (4.39)

ox q l_e_ﬁtsi

where 5; is the new built-in field after changing ¢, to #,, + 0.

g' _ A¢2 _A¢l
s = - (4.40)
t,+ 2i(tox +6t,.)
E

ox

The positive value of AV, means the threshold voltage increases by changing #,, to #,, +
Ot,y. To eliminate this additional threshold voltage variation, the final shift of the gate
work function is given by AV, —AV, . In other words, to generate the drain current with
quantum correction, one needs to increase the two gate work functions by AV, — AV, and

to change #,, to 7, + 0t,. Figure 4.19 shows the I, — Vs characteristics produced by this

method.
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Figure 4.19 I;-V, curves obtained from the analytical compact model (line) compared
with those obtained from the Poisson-Schrodinger solver (symbol) for an asymmetric DG
MOSFET with n'/p" poly gates at two different gate voltages.



Chapter 5

Compact Modeling of QM Effects In

Short Channel DG MOSFETSs

In previous chapters, quantum effects are investigated and implemented in the
analytical long channel core model for DG MOSFETs. In a short channel DG MOSFET,
variation of the electric field in the channel direction becomes comparable to the
corresponding variation in the vertical direction due to the strong source and drain field
penetration. Consequently, the Gradual-Channel approximation is no longer valid and
solving 1-D Poisson’s equation in the vertical direction is not sufficient to give us
comprehensive understanding of the device characteristics. Further insight into the
electric performance of a short channel DG MOSFET can be gained by examining the

two-dimensional Poisson’s equation.

82w(x,y) 621//(x,y)_ P
ox’ ! o e ©-)

Si

where the electrostatic potential w(x,y) is defined as the intrinsic potential at a point (x,y) with
respect to the Fermi potential of the n" source (at the conduction band edge), and p is the total

charge density including. Figure 5.1 shows the schematic diagram of a double-gate
MOSFET. The x-axis is along the vertical direction and the y-axis is along the horizontal

direction with the origin at point O.

94
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V, ,work function difference A ¢,

V,, work function difference A ¢,

Figure 5.1 Schematic diagram of a double-gate MOFET.

5.1 2-D Analytical Solution Of Poisson’s Equation In

Subthreshold Region

For short channel devices, the primary concerns are the threshold voltage roll-off and
the subthreshold slope, both in the subthreshold region where the mobile charges are
negligible. The depletion charges are also negligible since we focus on the undoped (or
lightly doped) DG MOSFETs. Consequently, the 2-D Poisson’s equation in both the
insulator regions and silicon regions becomes

%(g(x)%—fj+%[8(x)aa—;’fj=0 (5.2)

where &(x) is a step function due to different materials
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g, -t —t,/2<x<—t;/2
e(x)=1¢, -t /2<x<t,/2 (5.3)
g, t,/2<x<t,/2+t

If we assume the source and drain junctions are abrupt, the boundary conditions are:

Top gate: y(—t,/2—t,.,y)=V, —Ag O<y<L (5.4)
Bottom gate: w (¢, /2+1,.,y)=V,, —Ad, O<y<lL (5.5)
Source: y(x,0)=E,/2q —t,/2<x<t,/2  (56)
Drain: y(x,L)=V, +E, /2q -t /2<x<t,/2 (5.7)

A full analytical potential solution can be obtained after solving the Poisson’s equation in

the 2-D boundary value problem [52].

AD -AD, . AD +AD,
t.+2¢e,t, /¢, g 2

N b, sinh[7(L —.y) / 2]+ ¢ sinh(zy/ A) cos(x/ 1) (5.8)
sinh(wL/4,))

w(x,y)=

where the coefficients b; and ¢; are

247 tan(a,, | 2)sin(at, /24,) E, .Y, +A¢2}
1~ ; N T VaTT o
7[2t0x ti+ s.ln(”tsi /ﬂl) tox _2q 2

2 sin(2rxt/A)
227 tan(xt, / A)sin(xt, 1 24) I

4 i . 2
ﬂ-ztox ti + éln(ﬂ-tﬂ /ﬂ’l) Z‘ox - 1
2 sin(2xt, /A)

G

And the scale length A, is the largest eigen value of the following equation.

s, tan(zt, /A )=¢, tan(nz /2 -7t /21)
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The Vy dependence in c; is responsible for DIBL and the V, dependence in b; and ¢,

subthreshold slope degradation.

Constant electrostatic potential contours calculated from the analytical solution for
symmetric DG MOSFETs are compared with 2-D ISE simulation results in Figure 5.2.
The agreement is quite good (with relative error less than 2%). It is clear that the
maximum potential along x=0 has a minimum in the y direction. The minimum is located
approximately midway between the source and the drain. Potential variation in the x

direction is much less than that in the y direction.

4 Drain

Figure 5.2 Constant electrostatic potential contours based on the analytical solution (solid
curves) for symmetric DG MOSFETSs, compared with 2-D simulation results (dashed
curves). Here, Vg1=Vy=Vs=0.2V, V4=1V, L=60nm, t;=10nm, and t;=1.5nm.

5.2 Classical And Quantum Subthrshold Current
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5.2.1 Classical Subthreshold Current

Knowing the potential solution, we can proceed to derive the subthreshold current.
Note that the electron quasi-Fermi potential V is essentially constant in the x-direction,
which means that the MOSFET current density J flows predominantly in the y-direction
(from source to drain). The current density (both drift and diffusion) can then be written

as

dV(y)
J=—qun(x,
qun(x,y) & (5.11)
Integrating in x- and z-directions and one has
dVv
1,(y)=—tWO.(y) ) (5.12)
dy
where Qi() is the inversion charge per gate area
o) = Cl_rﬂ/z n(x, y)dx = q_“tﬂ/z n eV )TN gy
d 02 —t,02 ¢ (5.13)

Based on the current continuity, integration of (5.12) with respect to y from 0 to L yields

Vas  _
ﬂWIO e qV(y)/deV(y) ~ ,uWkT[l—GXP(_qus /kT)]

J~L dy L dy (5.14)
0 t/2 (x,)/ kT J.O ;2 (x,9)/ kT
q‘[ ne'  dx J ne'  dx

;72 " ;2 "

1

ds

The classical subthreshold current can only be obtained through numerical calculation

due to the double integral in (5.14).
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5.2.2Quantum Subthreshold Current From The Solver

Due to the very low low mobile carrier density in the subthreshold region, it is a
reasonable approximation that the charge will not affect the potential profile, which
means that one can decouple the Poisson’s and Schrodinger equations. Therefore, we can
incorporate the analytical potential solution into the Schrodinger equation directly to
obtain the wave function and hence, the quantum electrostatic carrier profile instead of

solving Poisson and Schrodinger equation self-consistently.

h do(x
AN (e, ))e(x) = Ep(x) (515
2m  dx
0" = 4”;2” 3 gim” S Inf1+ OV (5.16)
i J

Based on current continuity, an iterative procedure (shown in Figure 5.3) is then
employed to find the drain current level. At a given gate and drain bias, we first solve the
Schrodinger equation at the first slice (source) and then calculate the inversion charge
sheet density through (5.16) with zero quasi-Fermi level. The current continuity condition
(5.12) then, yields the quasi-Fermi level at the next slice through an initial guess of the

current Jguess as follows:

1 1
V,=V +ﬂ—WQ—1guessAy (5.17)

il
where Ay is thickness of the uniform slice, Q;; is the inversion charge sheet density in the

first slice, ¥} and V5 is the quasi-Fermi level in the first and second slice respectively.
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Figure 5.3 Schematic diagram of the procedure to obtain the subthrshold current for short
channel DG MOSFETs.

With a known quasi-Fermi level, solving Schrodinger equation yields the inversion
charge sheet density through (5.16) in the second slice. The same procedure is repeated

till the quasi-Fermi level at the last slice (drain) is obtained.

I 1
VN = VN—I +_—1guessAy (518)
iN-1

where Q.1 and V. is the inversion charge sheet density and at the (N-1)th slice

respectively and Vy is the quasi-Fermi level at the last slice (drain).
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If the calculated quasi-Fermi level 'y at drain does not equal the drain voltage Vg, the
initial estimate of the current level Iy 1s revised and the iterative calculation is repeated.
This process is repeated until the correct current level is found.

Figure 5.4 compares classical and quantum subthreshold current obtained by this method
for both a symmetric and an asymmetric DG MOSFET. Quantum effect is significantly
stronger in asymmetric DG MOSFETs than it is in symmetric DG MOSFETs because the
“built-in field” in asymmetric DG MOSFETs is much higher. However, quantum effect
in a symmetric DG MOSFET becomes significant when the thickness of silicon film is
very thin. It is also observed that quantum effects make the V; roll-off worse than

classical case in asymmetric DG MOSFET.
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Figure 5.4 Classical (solid line) and quantum (dash line) subthreshold Ids-Vg
characteristics obtained from the iteration procedure for a symmetric (a) and an
asymmetric (b) DG MOSFET with different channel length.
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5.2.3 Quantum Subthreshold Current — Perturbation Approach

In section 5.2.2, to calculate the quantum subthreshold current, one needs to obtain
the eigen energy levels by solving the Schrodinger equation numerically from the solver,
calculating the charge sheet density and finally running the iteration procedure. It
requires plenty of numerical computation and hence, is not convenient for the compact
modeling. The problem is much simplified if we can calculate the eigen energy levels
analytically or approximately. Note that due to volume inversion, in the subthreshold
region of a long channel symmetric DG MOSFET, the quantum potential well acts like
an infinite square well whose eigen energy and eigen wave function are well known.
Approximate expression of energy levels can then be achieved by treating the short
channel term in the 2-D potential solution (last term in (5.8)) as a perturbation. The zero

order wave functions of an infinite square well from —,/2 to ¢, /2 are

Fcos[ﬂj j=13,5,...
tsi tsi

o)== (5.19)
\/:sin(ﬂj j=2,4.6,..
tsi lsi
with the eigen energy levels:
222 2
o _J h'r i
J 2m*t2 (5.20)

S1

The first order energy perturbation term for the odd states is the following based on the

non-degenerate perturbation theory.
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— 1t /2
s1n(tj7r—7Z X sin(ﬂ}c sin(]+”j
4£2]7r_7r 2Z 4[2]7r+7rj
tsi ﬂ‘l tw ﬁ'l A, 2
—A*Bj*sin( £

where the coefficient 4 and B are

b sinh(wj+c sinh[”yj
2 A - A

(5.22)
& sinh(“j
4
1 1 1
5= 2jr 7w ’ T 2jr o« (5.23)
4| 222 2 4| 222
tsi Z‘I /ll ZLsi Z‘I

Similarly, one can calculate the even states.

tsi/z .
El‘:m =4 I sin’ [ﬂ} cos (Ej
e ¥ 4

) pn : (5.24)
4(2177_” 2 4[217@”}

—=,/2

:A*Bj*sin(&
2
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For the purpose of compact modeling, it is sufficient to consider the first order
perturbation term only since the second order perturbation term is much smaller than the

first order. From the above calculation, the eigen energy levels for a short channel

symmetric DG MOSFET are:
222 2
Jhr .| 7t
E = S +A*B, *sin [—2/11 J (5.25)

With the eigen energy levels, one can easily calculate the charge sheet density along the

channel using (5.16).

E,
qVy=A9)———E; (¥)=qV (»)

Q-Qquk];Zg,-m;Zln 1+e[ 2 J/kT
i ;

’ h

Eg
q(V, —A¢)—7—E,- )—qV(y) | /kT

kT N
= 7q2'h2 Zj:gimi ;e

E
[q(Vg —A¢)—;J

(5.26)

_gkT

e
2
h

75 g s ool

J

The above equation assumes that the quasi-Fermi level is at least several A7 below the
lowest energy level. Substituting the charge sheet density into the current continuity
equation yields the subthreshold current.

luWkT(quds/kT _1)
19 = 9

J‘L 1 dy (5.27)
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Although the integral in the denominator still needs to be calculated numerically, the
problem is simplified by avoiding solving the Schrodinger equation and iterating with the
continuity equation. Figure 5.5 compares the subthreshold current at low (a) and high (b)
drain bias of a symmetric DG MOSFET with different channel length calculated from
(5.27) and those from the solver with the iteration procedure. The agreement is good for a
wide range of channel length. However, the deviation becomes large when the channel
length is comparable to the scale length in the case of thick silicon film. The reason is
that the first order energy perturbation due to the short channel term in the potential
expression (5.8) is comparable to the zero order energy and hence can not be treated as a
perturbation. However, these channel lengths are not practical due to the severe short

channel effects.
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Figure 5.5 Quantum subthreshold Ids-Vg characteristics obtained from the iteration
procedure (line) and perturbation method (symbol) of a DG MOSFET with different

channel length at low (a) and high (b) drain bias.



108

5.3 Quantum Short-Channel-Effects Induced V; Roll-Off

The threshold voltage decreases with decreasing channel length due to the
source/drain influence on the channel. In the quantum case, this becomes more severe
because of the quantum inversion charge distribution. Gate control over the channel is
weakened with the inversion charge farther away from the gate. As shown in Figure 5.6,
quantum threshold voltage drops faster with decreasing channel length than the classical

case.

300 +

///////////// -
. B :;A): ””” .
200 - O e 7
N
>~ 100+ ./
© RN -
g / Solid symbol--- Classical
§ 0 Open symbol--- Quantum
o —e—V,_=0.05V
o _ _
< -100 4 V=10V
o t =15nm, A =20.63nm
ey
l_
-200 i
-300 A
T T L |
1 10
L/A

1

Figure 5.6 Classical (solid symbol) and quantum (open symbol) threshold voltage V; for
an asymmetric (n'p’) DG MOSFET with different channel length (normalize to 1,). at
low (circle) and high (triangular) drain
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From the compact modeling point of view, we can assume a known classical V; roll-off
due to SCE in the classical model and focus on the V; shift due to quantum effects of the
short channel DG MOSFETs.. The definition of V; shift for the short channel devices due

to quantum effects is

> AV,
« kT T g)In10 ‘

IV, V) =13" (V. (5.28)

In (5.28), we assume the classical and quantum subthreshold slope S are the same. The
exponential term of V, in (5.27) is independent of y and can be taken out of the integral.

Therefore we have

QM(V + 5 AV .V ):emSIOAV[[;TT]QM( V.) 529
ds g (kT/q)lnlO t>" ds ds >" ds ( )
Combining (5.28) and (5.29) yields an expression of the V; shift.
S 2
el g0,/
0 (Vg ; Vds) .

The 2-D potential distribution has a minimum y,. (maximum barrier) in the y direction,

which can be obtained through oy (x, y)/8y|y=y =0. From the denominators of (5.14)

and (5.27), it is obvious that this minimum dominates the drain current level. If we
neglect the errors caused by the spatial variation of the electrostatic potential in the y
direction, one has

N

CL _ 1n10AV’(/:LTj oM
O (y)=e o7 (v.) (5.31)
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where

L A, c
Y, =————In(-") 5.32
2 27 b (5:32)

Substituting the classical and quantum inversion charge density expression into (5.31)
yields:
s

2 E
/2 ey )T 7Nf,(ij gkT (q(Vg—Aqﬁ)—g ] /kT .
St i j

Substituting the analytical potential expression (5.8) and using (5.22) and (5.25), one

obtains
tsi H
, (12 ZA(yC)cos[ i j/krd
i 9 2 _E J‘ e X
elnlOAVl[ij = —niﬂ-h e %kT —t /2
kT [—E?—Auc)s,- [ZH /kr (5.34)

Dgm ) e
i J

The V; shift depends on both V, and V4 through the parameters b; and c; in A(y.), which
implies that quantum subthreshold slope differs from the classical one. The subthreshold
slope will be discussed in detail in the next section. Note that the potential also has a
maximum at x. (x. = 0 for symmetric case) in the x direction and the coefficients B; of the
energy perturbation term follow a descending order of B;>B,>B;>... Since the error
caused by substituting x with x. in the numerator mostly cancels with the error caused by

substituting all B; with B;, one obtains a simple equation for the V; shift.
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where AVtLONG is the V; shift of long channel DG MOSFETs based on the definition in

chapter 3.
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kT S gy e (5.36)
i j

From the above derivation, we finally obtain the V; shift of a short channel DG MOSFET

as a closed form function of the device parameters and the terminal biases.

. 1nSlo kT{ Ao 2A A(yc){1+2Bl Sin(mﬁm (537

q q ! 24

Figure 5.7 shows the V; shift calculated from (5.37) and that obtained from the solver.
The subthreshold slope used in the calculation is the classical slope obtained from the
simulation data from the solver. The agreement is good for the entire range of the channel

lengths shown.
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Figure 5.7 Threshold voltage shift due to quantum effects calculated by (5.37) (circle)
and obtained from the solver (square) versus the channel length (normalize to 4,).

5.4 Quantum Subthreshold Slope

The fact that the inversion charges are farther away from the surface due to quantum
effects not only worsens the short channel V; roll-off, but also degrades the subthreshold
slope as illustrated in Figure 5.8. For same channel length, the effective oxide thickness

as well as the scale length increases due to the finite quantum inversion layer thickness.
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Figure 5.8 Classical (solid symbol) and quantum (open symbol) subthreshold slope for an
asymmetric DG MOSFET with different normalized channel length at low (square) and
high drain (circle) voltage.

For symmetric DG MOSFETs, we can also obtain an approximate expression for the

quantum subthreshold slope based on the classical one, which is straight forward for

compact modeling. Take the logarithm and then the derivative of (5.30) and one has

dlog,, ([dCSL) _ demsloAV’(quJ . dlog,, (IdQSM)

av, av, av, 39
It can be rewritten using the definition of the subthreshold slope.
L __S (aYdar, 1
ST nlo\kT) av, " s% -39

Take the derivative of (5.37) and substitute it into (5.39).
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1 ‘, 2B, . (#t,\|dA(y.) 1
_ = ln 10 Si 1 _ 1 sin si c +
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From (5.22) and (5.32), we obtain
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D=-——
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2 sin(2xt; / A) A

Using (5.40), (5.41) and (5.42), we can easily calculate the quantum subthreshold slope

from the classical one. Figure 5.9 compares the quantum subthreshold slope from the
approximate calculation and that obtained from the solver directly. The classical slope

used in the calculation is also obtained from the solver.
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Chapter 6

Summary

Starting with a review of CMOS scaling and modeling of quantum effects in bulk
MOSFETS, this dissertation focuses on the compact modeling of quantum effects in DG
MOSFETSs. The threshold voltage shift and gate capacitance degradation due to quantum
effects are extracted from a numerical solver and implemented in an analytical compact
model for DG MOSFETS.

The numerical methods of solving Poisson’s and Schrodinger equations, including
the iterative procedure in obtaining self-consistent solutions of the two coupled equations,
are described in Chapter 2. The 1-D numerical solver developed for DG MOS capacitors
is extended for calculating the current-voltage characteristics of DG MOSFETSs based on
the fact that in Pao-Sah’s integral, the integration of inversion charge density over the
quasi-Fermi potential is equivalent to that over an “effective” gate voltage.

An analytic compact model with quantum corrections is developed for symmetric
double-gate MOSFETSs in Chapter 3. Two distinctive quantum effects are extracted from
extensive numerical solutions using the 1-D Poisson-Schrodinger solver. First, the
threshold voltage shift as a function of the silicon film thickness is implemented as an
effective change in the silicon film thickness that produces the same shift in subthreshold.
Second, quantum degradation of inversion layer capacitance is expressed as a closed-

form function of the inversion charge sheet density and implemented as an effective
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increase of the gate oxide thickness. After incorporating these effects in an analytic
potential model for DG MOSFETS, the I-V curves generated by the compact model are in
good agreement with those obtained directly from the Poisson-Schrodinger solver.
Transient simulation of CMOS circuits shows that quantum effects have significant
impact on the delay of DG MOSFETS.

Chapter 4 focuses on the complex quantum mechanical effects on the charge and
potential in an asymmetric DG MOSFET. The built-in field in the subthreshold region
due to the asymmetric gate work functions causes the threshold voltage shift to depend on
the silicon thickness as well as the built-in field. With the electron ground state energy
calculated by an analytical approximation, the threshold voltage shift is expressed as an
explicit function of the device parameters. To account for the charge coupling between
the two gates and the inversion channels, an equivalent small-signal capacitance circuit is
developed which can be used to extract the equivalent inversion layer thickness. The
threshold voltage shift is implemented in the classical analytical potential model as an
effective change of the gate work functions. A constant increase in the effective oxide
thickness representing gate capacitance degradation to the first order approximation is
implemented in the classical model.

A 2-D analytical solution to Poisson’s equation for a DG MOSFET in the
subthreshold region is incorporated into the Schrodinger equation to obtain the quantum
solutions. With the electron eigen-energy levels calculated by a perturbation approach,
the quantum subthreshold current is calculated accordingly. The short channel threshold
voltage roll-off is more than the classical case because the quantum inversion charge is

further away from the silicon surface. For the same reason, the quantum subthreshold
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slope also worsens. Using an analytical approximation, the quantum threshold shift and
subthreshold slope in short channel DG MOSFETs are expressed as closed-form
functions of the device parameters and the terminal bias voltages.

The developed quantum compact model for DG MOSFETSs has been implemented in

a SPICE environment and released to the design community for circuit simulations.
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