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An Analysis of Flame Propaegation
James A Sethian
.. Abstract |
We de’vélop a'mgtﬁemﬁticgl theory of flame propagation and analyze the
stability of a ;ﬂame front. We ;consi.d'le‘_r a premixed, combustible fluid and model

the front between the burnt and unburnt regions as an infinitely thin curve

~ propagating in‘a_ direction normal to itéelf at a constant speed. We assurne

[

that the specific volurne of a fluid particle‘ increases by a fixed amoﬁnt when it
burns. . ’ |

. Our re_sulté sh_&w a deep analogy between the equations of flame propaga-
tion and hyperbohé 'systems- of t‘:onserxiration laws: We introduce the notion of
ignition curves and an entropy condmon whlch enable us to solve the equa-
tions of ﬁame propagauon in t.he abeence of fiuid motion. Ve prove that any
1nma] front asyrnptotlcallv approaches a circle as it burns, and that 1f tv»ov

fronts start close to each other, they remain so. As the front moves, it may

- . form cusps, which are the result of colliding ignition curves and form in the

same way that shocks develop in the solution of hyperbolic systems. These
cusps absorb sections of the flame front, destroying information about the ini-
tial. shape of the frbnt: once a cusp forms, it is impossible to retrieve the ini-
tial data by solving the equations of motion backwards in time. We use our

theory to discuss the difficulties involved in a numerical approximation to the

“equations of flame propagation. Finally, we analyze a numerical technique,

_developed by Chorin, that does not rely on a discrete parameterization of the

initial front, and use it to illustrate the results of our theorems.



ii

‘cknovl edgements

I would like to thank my thesis adviser. Alexandre Chorin, for the gen-
erous encouragement and guidance he gave me during my years at Berkeley:. ]
beneﬁted gt:eatly from his mathematical intuition and insight. It was a
prmlege to work vnth l'nm o |

I would also like to t.hank Ole Hald for his unbounded enthusxasm Our

countless dxscussmns were invaluable to me.

I would like to thank Antoni Oppenheim for serving as the outside reader,
and Carl Quong for _makiné available to me the facilities of {he Computef' Sci-
ence and Methemetics'_ Group at the Lewrenee Berkeley Laboratory. ] arn
honored to_have b_eeﬁ a Dani'erth Fellow while in,gradue.te school. The ﬁnane'ial
support and encouragement of the ,Danfort..h Foundzation gave me tﬁe oppor-
tunity and freedom to pursue my research. Finally, ] would like ‘te thank Cat:h-'

erine Willis for her patienee and help in editing this work.



iii

CONTENTS
Introduction...... e, -1
Chapter 1 Formulation of Model ................... | ......................... .. B
Chapter 2 The Evolut;ion of Flame F‘rohts R I fereeneens 10
Section 2.1 Equations of MOUOD... ........oevivereeroeeeeeereesesseeroreo) 10
Section 2.2 Evolution of a Sm-goth, Convex Front..................c.... ... 18
Section 2.3. Eyolution of a Piecewise Smooth. Convex Fron§ ............. 33 -
Section 2.4 Evolution of a Non-Convex Front ......... S 74
Sectioﬁ 2.5 Comparison of Flame P'rop_agation. with Gas Flow..... e, 95
Chapter 3 Flame Propagation with Volurﬁe Expahsion ........................ : 99
Section 3.1 Effects of Volume Expansion........... I T 99 -
Sectiop 3.2 Boundary Conditions ..., .. 20T
Sec@ion 3.3 theri;al Modeling by Finite Differences............... e ;09
‘Cha‘pt'er 4 Numeric‘al Simulations ... e 114
Section 4.1 The Method..,._...........,..; ....................... ........ s 114
Section 4.2 Exafnples of Numerical Sirnulatioﬁs ............................... 18
COnCIUSION. ......vovevereieaierennn PP ....130
Bibliogfaphy ............... SEPS o T R 134



Introduction

One of the main goals of a theory of combustion is to predict the shape of

a flame as it burns. In this work; we develop a méthematic'al theory of flame
propagation to analyze t.he stability and smoothness of a flame front. We then
present a numerical technique to model the motion of a burhing front, and use

this technique toillustrate the results of our theorems.

In the past few decades, a considerable amount of attention has been
focussed on flame stability. The pioneering work in this field is the analysis of a-

plane flame front by L. Landau in 1944 [10]. By ignoring all but hydfddynamic

" eflects, Landau was able to show that such a front is unstable with respect to

small perturbations. Since then, there have been numerous investigations of
flame stability for a variety of combustion models, see Markstein, [11], Zeldo-
vich, [17], Zeldovich, {18] and Istratov and Libroi;ich (8] A éomprehensive.
though now outdated, account may be found ih Markstein [12]. A review of
current work may be found in Sivashinsky [15].' | |

‘A 'standard technique employed in stability investigations is linear pef'tur-
bation-v analysis. As Markstein points out, such a iechnique has its drawbacks.
For example, the results vare valid only in the limit as the amplitude of thé per-
turbations goes t.o zero. There may be steady-statéramplitudes in regions of
linear instability. Furthermore, there are phenomena that are so fundamen-

tally non-linear that they do not submit to a linearized analysis.

]ri this §vork. we proceed'in a different rﬁanner. We solve, analytically and
geometrically, the equations of a particular_modellof flame propagation. .Our}
results show a'deép analogy between the solutions of the equations describing
the propagation of a flame front and the solutions of hyperbolic systems of
conservation laws. We show that, as the flame front moves, cusps form and

then disappear, and prove that, in our particular model of flame propagation,

o



flame fronts are stable.

- In Chapter One we consider an incompressible, viscous, premixed, com-

bustible fluid. A “premixed, combustible fluid” is a fuel that exists in one of two
states, burnt and unburnt. The flame front is idealized as an infinitely thin
curve separating the burnt and the unburnt regions. We assun:ie that the flame
pr‘;_opagates into the unburnt fluid in a direc.tion normal to itself at a umfprm
speed. We further .ass‘ume that the specific vblumg of each fluid particle
increases by a fixed amb'unt as it changes from unburnt to burnt. Thﬁs, there

is a velocity field induced by the propagation of the flame.

With vthes‘e assumptions, our problem becomes one of following a flame
propagating in a direction normal to itself while interacting with a moving
fluid. A somewhat related prjoblern concerning the motion of a surface whose
velocity equals its mean curvature at aﬂy poinf was analyzed with some

interesting results by Brakke [1].

In Chapter Two, we suppr'ess the effects of the velocity field produced by

volume expansion. We introduce the idea of ignition curves, which enable us to -

solve the equations of flame propagation. These ignition curves are seen to

play a role in our equations analogous to that of characteristics in the solu- -

tions of hyperbolic -equatioﬁs. Continuing the analogy with conservation laws,
we develop an entropy conditivori for flame 'propagation. With these tools, we

prove the following:

i) 1f two initial fronts start close together, they remain close together. In

this sense, flame fronts are stable. Furthermore, any initial front asymp-

totically approaches a circle as it burns.
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2) ~ As the front moves, it forms cusps, which are the result of colliding igni-
_tion curves, and develop in the same way that shocks form whén charac-
teristics collide. These cusps "swallow up" sections of the flame front as
they move, d'estroyingvinforma'tion about the initial shape of the flame
front. Oncé a cusp forms, it is impossible to retrieve the original ﬁame

shape by solving the equations of motion backwards in time. _ | .

In Chapter Three, we use oﬁr theory of flame propagation to show that ‘
numerical methods that attempt to solve the equations of motion by finite
difference techniques face serious obstacles. In particular, numerical vtecvh-
niques that rely on marker particles placed alongbthe front will have great
difficulty following the front. In Chapter,Foﬁr. we present a numerical method
for following flame fronts, t"l.evelope'di by Chérin'[Z]. that does not rzély on a

discrete parameterization of the flame front. We show that the reason for the

_great success of this method is clear when viewed from within the framework

of our theory of flame propagation. Finally, we use the numerical technique to

ibllustrate the results of our theorems.



Chapter One
- Formulation of the Model

In this ‘c"h'apter. we présent our model of turbulent combustion. Ve give a

'physical 'description. followed by a mathematical formulation.
We consider two-dimensional, vtscous flow inside a given'region. On solid

‘walls, we require that the normal and tangential velocities are zero. We make

the following assumptions:

1)

: face between the burnt and the unburnt reaxom as an Lnﬁmtel\ thin ﬁame

2)

3)

"The fluid is a mixture of fuel and air, in which“each fluid particle can exist
~in one of tv‘vo' states, burnt and unburnt. When the ternperatufe" of an

unburnt 'p'varticle becomes sufliciently high, it undergoes an instantaneous

change in volume due to heatlng and becomes burnt. 'I'he ratio of the den-

' 51ty of an. unburnt partlcle to that of a burnt partlcle depend= on the mix-

ture under study’ and isa prescrlbed constant 'I'hus we regard the inter- -

- front. actmg as a source of spemﬁc volume.

The front propagates at a fixed speed in a direction normal to itself into

the unburnt fluid. The lower the ignitioh ternperature of the fuel, the fas-

" ter the flame propagates.

Compressibility effects can be ignored and sound waves travel infinitely

fast. This balances pressure forces.

In our model, the fluid motion affects the position of the flame front, and

the exothermic expansion along the front influences the fluid velocily. As an

illustration of this process, consider a fluid flowing down a channel. Suppose

we ignite this fluid near the inlet, i.e., raise the temperature beyond the igni-

tion point. The flame will propagale as the surrounding particles are ignited.

o
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on solid walls.

‘The resulting change in vo_lume of these 'part_icles pushes the nearby ﬁuid, and

t_.hi'si exothermic velocity field, added to the vun_der"lying fluid flow, carries the
flame front down the channel. |

In this mbdel. we ignore variations in the flame proiaagation speed due to
molecular diffusion and chemical kinetics, and disregard three-dimensional

—

effects such as vorticity stretching:

We now develop a mathématical formulation of this model. Let 2 be the

‘velocity of the fluid at a point (z.y) ie, 2=(u(z.y)v(z.y)). Let“y(s t)

parameterize by s the posmon of the ﬁame front at time ¢; glven s, 7(s t)
yields the coordinates ‘(Xp‘. Yr)ofa ﬂuid-particle that changes from unburnt to-

burnt at time ¢. Thus

Fe=Xe(s ) Yr(s 8)) 1 '<u)

N

Let R be the Reynolds number and let k£ be the prescrlbed speed at thch the '

Lﬁame burns

The ﬁuiﬂd motion on either side of the flame front must satisfy the momen-

tum equation for viscous flow, hamely

/. | T

where EDt—is the total derivative, P:P(: ) is the pressure, p=p(zy) is the

density, V is the gradient and W2 is the two-dimensional Laplacian. We restrict -

| p to two possible values; pu in the unburnt fluid and pb in the burnt fluid. The

boundary condluons for viscous flow are

=mugwua»30'\ )



- Since the flow is incompressible on both sides of the flame front,

v-a(z.y)=0 o (14)

in the burnt and the unburnt regions. _waéver, along the front, where the fluid

undergoes a volume expansion as it burns, the divergence is necessarily non-

zero; each expanding particle pushes the surrounding fluid, and thus in any
small -do,ma‘h_.:, along the flame front, the flow in cannot equal the flow out. By
using the cons.ex"va_tion of mass, we wiil derive an expression for the effect of
~ this volume expansioh( on the fluid velocity.: |

Acroés the moving front, mass coming in from one side eﬁuals .the rﬁass
leaving on the other side, that 1s (pu, ) must be continuous across the front,
where p is the density and 'u.,, is the velocity component normal to the front.‘
Suppose the flame is moviné from left to right. The fluid on the left is burnt
and has a lowef density (due to expansion) than the unburnt fluid on the right.

(ASee Figure (1. 1)5

A | (f\m-\e Fronv

UnBURNT

IT]

Figure 1.1

If we imagine a coordinate system moving with the front, then the conserva-

tion of mass requires that

G

e



Puily = Py o (1)
where 2, and E; are the velocmes of the fluid normal to the front on the _

unburnt and burnt sides, respectxvely Here, an overbar denotes velocmes
relative to the moving front. Let u, and w; be the velocmes on the nght and
left respectively, and let S be the velocity of the front, all taken in a fixed
frame. From conservation of ﬁass. we have that |

Pu(ur—S)= py (1, -S) | , | (1.6)
Thus, ' ' ' o

pultr=u)=(oy P )(S k) @

Adding (u';u' {(pu—ps ) to both sides and solving for (u, —;),we find

Recall that k is the prescribed speed of propagation. This speed, plus the aver-
- age of the velocity on the left and the right, equals the observed speed of the

front as seen from the fixed frame: -

. +1u, ' ‘ )
s=k+(l‘%"_) - (.9)
Substitution yields
; | pu=ps ).\ -
' {(up—yy)=2 k : . ' :.:0
\Ur »l)-{Pu"'Pb‘() . - ( )

)

Hence, across the flame there is a jump in the normal velocity of magnitude

Pu = |
2 S (e
{p +po k) (:12)

We now consider the‘ motibn of the ﬂame front. As seen from the fixed

reférence frame, the front is both carried by the flow and advanced normal to



itself by the burning process. For the moment, we assume that the front
¥(s.t) is a regular, closed, smooth curve, Then, at a point (Xp,Yr) on the

front, the normal vector of unit length is

aY» . 8Xr

bs 72 o 742 (1.12)
72 T 1
{(i,f) E”"’)%} {aYF)z (aﬁ)] J |

The requirement that the front move normal to itself at speed k, as well as

ride mth the fluid flow means t.hat we have the system of partial differential

equatlons
. 0Yr
0 Xp e ds - A
=k : +u(Xp.Y,
3 -k a}’p 6Xp . 72 (Xr.YP) (1.13)
(s )

| 7
atF = —k pe as 7r+v (X, Yr) (i.14)
{ F) as : )J . o |

~In Chapter Two, we will show that the front may lose its smoothness as it -

moves. This will reqmre us to amend our equations for the motion of the flame.

We summarize the eq'uétions'olf our model. On both sides of the lame,

D1 1ca, VP (<5
o= i R (2..8)
va=0 )

where p=p, in the unburnt region and pﬁpb in the burnt region. On solid walls

11‘=\u'.'u')=-0 ‘ , (:.27)



Across the front, there is a jump in the normal velocity of magnitude

' ‘ : T T P R
R - 1.18
- o ’[pm() B SB1.)
- It wé,paramete!‘izé the flame front by s at time t, then the trajéctory of each

point (Xg(s.t).Yr(s.t)).of the front must satisfy

0Yr
8Xx) 3 | : 2 oy
_a_t};=k aY SX 7t u(Xp, Yr) (1.19)
S 8Xp - '
" 8Yp ' s - ' N R,
) =F - +v X ("
o . ot BYF BXF ; 172 \ F.Yr) ‘ ,\_-.20:)
| (Eryes Py |

FEES

where K.k .p,.p, are val}l‘prescribed constants.
“In this chapter. we have developed our combustion equations as a time-
-, dependent free boundary value problem. In the next chapter, we analyze the

stability of the flame front.
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Chapter Two

'l'l}'e Evolution of Flame Fronts
In- this chapter, we study the motion of a flame propagating in a
premiked. combustible fluid with no Boundaries. We ignore the effects of the
velocity field produced by volume expansion along the front by assuming thAt
| the denéities of the burnt and unburnt ﬂui‘ds'= are 'thev same. In addition, we
ignore pre-existing vorticity. Thus, we considér a simplified version of our ori-,
ginal equations (1.15)f(1.2_0).

Let D be an unbounded domain filled with a premixed, combustible fluid,
and let y be a simple closed curve lying in D. Suppose that all the particles
inside y are burnt and all the pariicles ou(side are unburnt. We ignite the p.ar-
ticle}}s‘ élong y. The position of the front changes as the surrounding unburnt
fuel is ignited. We prove that flame front asympt‘otically approaches a circle as
t goes to infinity. ]n-paf‘tiétﬂar. we show that, aé tvhe ﬁu__id burns, cusps may
deVelbp,in the front. These c'uspé form in the‘same way that shocks form in
the solutions of hyperbolic equatiohs. We develop an entropy condition’.lsimi—v '

_lar to the one employed in gas' dynamic;s; that allows us to continue the solu-
tion beyond the time when cusps first appear. When a cusp forms, information

about the initial shape of the flame is lost.

2.1. Equations of Motion

We begin by considering the equations of motion for the flame front. Let
v{s) be a simple closed curve in D, parameterized by s; for eachs€ 0,5], ¥{s)
vields a point {z{s).y{s)) in D with ¥{0)=y{S). Suppose the particles inside ¥

are burnt and those outside are unburnt. We shall always assume that vy is
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parameterized so f.hat the burned region is on the left as we travel along the
curve in the direction of increasing s. At ¢ =0 we ‘ignite the particles along v.
As the surrdunding unburnt fuel is ignited, the boundary between the burnt
and theﬁ unburnt particles changes. Let ¥(s.t)=(z(s.t).y(s.t)) be the position
of the front at time ¢ and let a and g be thqcoord‘mate functions of ¥ at ¢t =0;
that is, 7(s.0)=(a(s ).8(s)). For the moment, we assume that a and g are both
twice differentiable, and that a2+8%#0 everywhere. |

The ﬁ_ame frﬁnt propagates in a direction normal to itself with constanﬁ
speed k. At a point (z(s.t).y(s.t)) oh the front, the tangent vector is {z;.ys)

and the velocity vector is (z;.¥;). Thus,

- (Zey) (2 .95)=0 (21)
eyl =k? (2.2)
z(s.0)=als)  y(s.0)=A(s) - (23)
, O<s<S ‘
.Equatioh (2.1) is simply '
ZeZs +Y Ys =0 (2.¢)

Differentiation of (2.2) with respect to s yields

= Zy Ty +Y Yrs =0 (2.5)
and with respect to t yields
Ty Ty +Yy Yy =0 ' (2.6)
We show that zy =yy =0. Differentiating {2.4) with respect to ¢, and using {2.5),
we find that
0z, +Y Ys) o ;
0= ""—‘—sa‘t‘g"= Ty s YT Ts + Y Yst HYu Ys 2.7)
= Ipxs+YulYs

Together with (2.6), this implies that either z, =y, =0 or z;y,=z,Yy;. Suppose

Zsy =2;ys. Together with (2.4). this implies that z2+y°=0. which violates
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(2.2),. or that z2+y2=0. Since a2+B2#0, there exists some £,>0 such that for

O<t <t,, z2+yZ2#0. Let ¢, be the smallest time such that r2+y2#0. Then, for

O<t <t,,
zg=0 (2.8)
Yu=0 - ‘ o | (2.9)
Integrating (2.8) and (2.9) with respect tos and using the initial conditions, we
get '
z(st)=f(s)t +als) - (2:10)
y({st)y=g(s)t +pgs) -~ (2.11)

where f and g are unknown functions of s. Substitution of (2.10) and '_(2.'11)

‘into (2.2), (2.4) and (2.5) yields

frs+99:=0 (2.:8)

. o - f(fst"'.as)_'_*'g(gsvt"’ﬁs) =0 . (R.14)
‘Substitution of (2.13) into (2.14) yields o

: S Jos+gBs =0 . , (2.15)
Substitution of (2.12) into (2.15) yields. '

B -

T =k Gagyr =8

- Qs X
9= T &

‘Thus. the position of the front at time t is'given by

t)=k S SN (s) (2.:8
Tt =k menvr TS (2:8)

.{ -. 'as / - ’ ‘
yis.t) = -k t+ps) 2.:9)

(aF+5)?



-
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‘See Figure (2:1).

13

" Remark. We can extend the solution beyond the time when z2+y?=0 if we

consider only real analytic solutions. Then, since z; =y, =0 for t<t, and the

solutions -are real analytic, we have zy; =y, =0 for all 20, and the solutions
(2.18)-(2.19) hold. Furthermore, this shows the solution is unique in the space

of analytic solutions.

Example 2.1 As an example, consider the parabolé y=z2 Suppose that the
particle.s ébove the par&bola are burnt and those particles below are uhburnt.
At £=0, we ignite the particles along the curve y=z2 We wish to determine
the position of front as it moves in a direction normal to itself ivifh speed k.
Although this is not a closed curve, (2.18) and (2.19) still determine the motion
of the parabola, since (2.1), (2,2) and (2.3) express only the local behavior of a

point on the curve. Let a{s)=s and g8{s)=s% Then

2s ~
Z(S.t) = k_;z4s,‘,+—1)l/2—t +s ‘ (2.20)
i f 1 7 :
yisit) = -k Wt + 52 : (2.21)
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{x(s.0,y (50

a
7

/ (xemyes)
N\ ' X S
Y | |

\ﬁr,_

Figure 2.1

This completes the example.

The following example shows that we cannot simultaneously require that s
parameterize the curve by arc length for all time and demand that each sec-

tion of the curve move in a direction normal to itself with constant speed.

Example.z.z Let y(s)=(a(s).p(s))=(cos(s).sin(s)). s € [0.2r], thus aZ+pZ=: "

Using (2.18) and (2.19), we have, withk =1,

z(s,t) = (t+1)cos{s)  y(s.t)= {t+1)sin{s) (2.22)

s€;0,2r]
Given t, (z(s.t),y(s.t)) maps the interval [0.2%] onto a circle of radius (t+:),

centered at the origin. In Figure (2.2), we show the position of the front for
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several valuesof t.

{xio8,y059

Figure 2.2

Note that z2+y2 = (t+1), and thus, for t >0, the curve is not parameterized by
arc length. This is because there must be some "stretching” in the image of
the parameter s if we are to require that for each ¢, s=0 and s =27 are sent to

the same point, regardless of the length of the flame.

If we define

z'(s.t) = (t+1)cosf(t—iﬁ | (2.23)
y(s.t) = (+Dsin(y) (222)

then (z°(s.t),y’(s.t)) maps the interval [0,2n(t+1)] onto a circle of radius
(t+:) centered at the origin, with a2+B2%=1. However, this does not'satisfy‘ the

differential equation (2.1). The motion of this front is depicted in Figure (2.3).
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{ )(‘*(_5,1:‘) ,\/*(6‘,&\‘&

Figure 2.3

This completes the example.

Let ¥{s) equal the angle between the directed tangent to the front at the
point (z(s.t).y(s.t)) and the positive z axis. In our first lemma, we show that

95 (8(s .t)) is independent of t.

Lemma 1. let (z(s.t).y(s.t)) be given by (2.18) and (2.19), whereﬂaf-i-ﬁf#o.
Then a '

1) For'each s. the curve (z(s.t).y(s.t)).t €[0.,=) is a straight line with

~

Bs

slope equal to



=

) If‘d:t.an“(:%.then

a(tén_l(ﬁ)) = Bas A5 —Qls Bs
o (@2 62)

Hence, both quantiiies are indépéndent of t.

Proof. Differentiation of (2.18) and (2.19) with respect to ¢ yields

Z = k B (ol +63)

Yy = =k o (af+p2) 72

(2.25)
(2.26)

Pick a point (z(s,,0).¥(s,.0)) on the initial curve. The trajectory of the curve

equal to k. Using (2.25) and (2.26). we have

v “kas{ad+pd) 2 o
z kB (af+BA)7V% B
: " v -a; (s
Thus, the trajectory is a straight line with slope —ﬁ sli ;) _
s\Sy)
Using (2.1). we have ’
Yo . 2 . Bs
Zs Yi as
Hence,
atan"(gs—) atan—l(_ﬂs_)
09(s.t) _ T _ T Vg

os _ os Os

_ (6ss 05 —04s s )
T (ad+B3)

o {x(st)y(sy.t)), te[0,=) must always be normal to the front, and have speed

{2.27)

(2.28)

{2.29)

Thus, the chén'ge in?das a fuh_ction of s does not depend on t. This completes

the proof.
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2.2. Evolution of A Convex, Smooth Flame Front

Our objectwe is to show that the shape of the burnt region becomes cir-
cular as the front moves normal to itseif 1nto the unburnt fluid. Wlthout loss of

generality, we assume that the flame moves with unit speed.

Remark.. Throughout this chapter, we assume that all curves have finite arc

length.

Deﬁmt.lon We say t.hat a curve 7(s) is convex if, as we go along the curve in
the direction of increasing parameters the angle the directed tangent (as.8s)

makesmth the positive z axis is non—decreasmg when measured in a counter-

B

clockmse direction. In other words, 6,tan"( = (Bes 05 —0ss Bs {02 +B82) 7120

for s€[0,5].

Dveﬁnition.. We say that ¥ is a(sifnple. 'closed! regular, parameterized. posi-

tively oriented plane curve of .class C? if y(s)={a(s).B(s)) is a map of the

closed interval /=[0,5] i'nf.o R? such that B

1). aand B are both C? functions of s.

2) v(s)#0Oforsel.

3) 9y{s) and its first two derivatives agree at 0 and at S: ¥(0)=y(S).
Y(0)=¥(5). ¥ (0)=7'(S). |

4) 1 t,.t,€[0.S). t,#t5 then ¥{t,)#¥(t,).

5) If we go along the curve in the direction of increasing parameters, the

interior of the curve remains to the left.

Theorem 1. Let ¥ be a simple, closed, regular, positively oriented, convex

plane curve of class C?. Suppose {(BssQs—asf8s)>0. The particles inside Y are
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burnt, those outside are unburnt, and at ¢ =0, we ignite the particles along .

Then the propagating front is always convéx. Furthermore, let
EEDFE) = gpiEcDyE)
where (z(s.t).y(s.t)) is the solution (2.18)-(2.19) and L(t) is the length of the

front at time . Then, as t +=, the shape of the burned front becomes circular.

That.is, _given £, there exists ¢, .such that for all tv>t,,,
1) (%(s.t),y(s.t)) isoutside a circle of radius (-é%—r—— ¢) and inside a circle of

. 1
radius (2" +t).

2) l 21?— K(Z .§) |<e, where K(Z,7) is the curvature of (Z(s.t).F{s.t)).

Remark. The _convéxity of the initial curve is contained within the assumption
that {Bss&s —0gs fs)>0. However, the strict inequality limits us to convex curves

that are nowhere straight.

. Proof. The proof will consist of three parts. First, we show that the front is
always convex. Second, we show that as the front burns, its length increases.
Finally, we show that the shape of the burnt region must become circular as

t e,
Using {2.18) and (2.19), we have, for k=1,

Bs

(§t) = ——tSt +af Ty
I\S ) (af+632)l/2 | a\s-) ) ‘ . . \2 30)
yist) =~ —25 __t 4 gis) (2.3:)

- {(aZ+pyV? |

Since v {s)#0 evervwhere, we are assured that (a3+ﬂ;"_) can never vanish. From

Lemma ., we have
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¥ o L o .

8, (tan ‘(;:%) = (Bus s —0s 85 ) (0 +85) 7! (2.32)

Since (fg 05 ~Qgs Bs)>0, this irﬁplies that the front is always con_vex._We now
‘prove that as the front burns, its length increases. First, we show that

(z2+y2)>(a2+B32). i,Diﬁeren;iation of (2.30) and (2.31) with respect to s yields

I = [ﬂss(asz"'ﬁse)-vz—ﬂs (o 0gs ;'.ﬁsﬁssvx‘asz"’ﬁsz)-s./a]t‘ + dai (2'33)

Ys = {-ass (a2+B2) ™V 2+a, (_,as_a,:s +B5Bss ) (0 +8E) ™Y/ 2] t +6s (2'34‘)

Hence,

-

zi+yl? = P& (ad+B5) 1% + B3 (s 05 +BsBss (02 +BE)Ot2 + 0f  (2.35)
255 (024 B2) 717 2, (05 g +Bs Bus (0 +B2) /212
+ 20 B (aF+85) 7%t — 2B, (0t 0as +B5 fss J(0F+BE) ™%t + a1y
+ 02 (0Z+BD M + 20 0ur +B Bus (0ZHED N2 + 2
~200s (0 F+BE) 1 0t (0, +Bs ) 0 FHED) /P82

Writing as a quadratic in ¢, we haye
.zs?+y's = (aZ+B2) + {(ﬂs s ~0ss Bs )0+ BE) Y 2}t | (2.36)
+ {(Bs"'sm?s)(af;ﬁs'")” - (aséss4ﬁs ﬁ;s)?(a§+ﬂ§)'2}t2
- (oRepD) + {'zwssas—asasxasws)-W}t '+'{<as+‘ﬁs>-2< o '—_assmz]tz -
= (a3+ﬁs2){l + 2(Bs as—assﬁs)(asz*'ﬁsz)—s;zt +“'(5s.sﬂ'as-“Xsﬁs 2(03+B§)'3t2]

L= (a§+ﬂf){1 + (Bss s -assﬁs)(a§+ﬁf)’a’zt}
Since (Bss s —ags Bs)>0, (zsz+ysz)$(a§+ﬁ§) for t>0. To show that the total

length of the front increases as it burns, we show that any section of the initial

1



b3

Rl

© curve must increase in length as it moves. Choose §,.5,€[0,S], s,#s; The

length of the initial curve from's; to s;'is

f (a2+ﬁz)”2ds ‘ - (2.37)
At any time £, the length of the front froms, tosspis

L) s . .
f (z2+y2)V 2ds - (238)
Since (z:{"ﬁ-y,?) > (a2+p2) for t >0, the section must lengthen as it moves.

We want to show that the shape of the burnt region approaéhes a circle as
£+ Let | |
8(s.t) = tan-“y’ LR  (2.39)
8
¥{s,t) is the angle the directed tangerit to the front at (z(s.t).y(s.t)) makes

with the positive z axis, measured in the counterclockwise direction. Let

s '

S(f+yd)V s
Us.t) = 5 - {2.20) -

f(zsa"'ysz)vzds

At any tune t, l (s t) is the length of the front from O to s, dmded by the ‘total

.length of the front. Thus 1(0.t)=0 and {(S.t)=1. Since (z2+y?) = \as B2)>0,

the denominator.in (2.40) cannot vanish. We now prove that, as we go along the

front in the direction of increasing s, the change in ¥ with respevct to 1.

approaches the constant 27 as ¢ »=. Differentiation of (2.40) with respect to s

yields |
Bli{st) _ ‘(zZ+¥yd)V?

. 0s TS ' | "2."7:)
{(xsz+ys2)l/2d5 '

Using (2.29) and {2.36), we have
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. - .yi_ . . “
po(s.t) _ g0 (2.42)

ol - ol

e Ys
dtan}(=—) .
(zs s
os al

s , .
{(ﬂ s~ Bs) | {("‘sz*ﬂf)"z{l+(ﬁssas-assﬁs)(a5+ﬁf)’3’2t]dsl
| (a;-i-ﬂf) B (Olf*'ﬁf)‘/z[l"'(ﬁssas—ﬂs;ﬁs)(af+ﬁf)'3/2t} J

Evaluating the limit of (2.42) as t +o, we have

(2.43)

.
4 2. a2y-1 —_ ]

i 8865 8) _ [(Bas 0 —0es ) | [(af b e a“ﬁ’)ds'

t+= 0L (aZ+82) | | (0248 (Bssos—aufs) |

s, ,_
= J(od+B) B0 B )

Since the curve is simple and closed, the tangent vector must go through a

rotation of 27 as we go along the curve from beginning to end. Hence, |

’ | A
lim ——S—J—B‘s_ast't =2rn ~ T (R44)

f Y]

/'We can now complete the proof. Two curves have the same shape if there
exists a rescaling, a translation and a rigid body rotation that carries the first
onto the second. Define L(t) to be the length of the front (z(s .'t).y(s,t)) at

time t,

L{t) = [(af+E)?ds | (2.45)

o\u,

and define a rescaled version ¥(s.t) of the front:
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Fis.t) = (Z(s.t)F(s.t)) = { ’,Eml "?Ifft")l} (2.46)
_ For any ¢, ¥(s.t) has length one. since o |
s ve
[z 2+ﬁ."’)"2ds J [ "I’J‘z] “ds (2.47)
o0 : _ v

=1 ‘
- L Jwrdyis

| =“13'('L) =1
Under this scaling, the expression aa? is mvanant as can be seen by checkmg
that
- Us : /L ’
dtan™}( — -y L - . :
( z ) _ Otan (f,/L ) (2.48)

e . ol
-1 Y5
dtan (Is)
ol .

. Here, we have used the fact that l(f(vs_.t),y('s,t’)) =i(z(s,t).y(s.t)). Since

¥(s.t) has total length orie, then { is the sarhe'as' E‘a_rc length, as may been séen

from (2.40);

‘s
JEEgb) e

Hz.g) = 5 = [(ZE+7§)/2d¢ {2.49)
J@2gdyeas |
¢ .
~ dtan™{ ?L) .
z
Thus, ———E,-z——s—is the change in the angle between the directed tangent and
the positive z axis \ﬁth _’respeét to arc length.
Choose ¢£. We now show that we can put a circle of radius (5——— £) inside

7(s.t)' for t greater than some ¢,. From (2.42), we know that there exists a t,

such that, for ¢ >tab. '



at.an'“ Y )

ol <2n( Zm:}

Since (2.48) is invariant under the rescaling, we have

i

(2.50)

~6tan’_“(

HI\EFI

(2.51)

3 <en( )

We translate ¥(s.t,) so that (0.¢t,)= —0) and rotate so that the tangent to

1- 2m:

¥{s.t,) at ¥(0.t,) points straight up.

Let C! be the circle of radius (-2—11—7-— ¢) centered at (£,0).- We parameterize

C, by arc length and let

C(s) =

(g_(s).v &) e

+t s)sin

=1 X
= [( - g)cos A
2 2 L__ )

‘on

’1
) Oss<_‘_._

. : ‘2 . ‘
Clearly, C,(0) = —2——0) and the ta.ngent to C p01nt= straxght up at s =0. Thus,

€, and ¥ are tangent at s=0 and are both positively oriented. Furthermore,

since u2+v2=:, we have that

R
atan"(us )
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Pl

N Thus, for all t>t,, the change in the angle the directed tang'ént makes with the
pos’itive z axis is greater for C, than it is for ¥(s); C, "curves in” faster than
J(s), and thus they cannot cross. Therefore, for t >t,, 7 is outside C,. (See Fig-

ure (2.4))

[(%.03 |

&0)

' Figure 2.4
A similar argument shows that thereis a circle Co of radius (5-11-—+ £) lying out-
. : t

side 7. Curvature is defined as the change in the angle between the directed
h tangent and the positive z axis with respect to arc length. Thus, the curvature
" of the inner circle is greater than that of 7, and the curvature of the outer cir-

cle is less than that of ¥. As £-0, the inner circle and outer circles come

“

together, trapping the scaled front, and the curvature of ¥{s) approaches 2’1_
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This completes the proof.

We would like to extend Theorem 1 to include convex curves with straight
line segments. However, the curvature of the rescaled version of such-a curve -
cannot approach a constant, since the straight line segments alyvays have zero
curvature. Thus, we are content to prove that the scaled front can be trapped

between two arbitrarily close circles.

‘Theorem 2. Let ¥ be a vsimple. closed, regular, parameterized, positively

oriented, convex plane curve of class C2. Then
i) The propagating front is always convex.
'2) Given ¢, there exists a f, such that for all £>t,, the interior of

(Z{s.t),§!s.t)) contains a circle of radius ('2117_’_ £), and (Z(s.t)Fis.t))

lies inside a circle of radius (‘7+ £).

Proof. By Lemma 1, as(tan"’(%s—)) = (Bss Qs —a“ﬁs)(af«kﬁf)“‘. By assumption,
, X & :

this is non-negative, hence the front is convex.

We now show that

e
PEE [f"’(s,t)+'y2(s,t_)} = o= (2.54)

Using (2.36) and (2.43), we have
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—_ : s )
L(t) = {(zsuy‘z)vzds . : o | (2.55)
= f 2+ﬂ )Vz{l"'(ﬁuas _assﬁs)(“f"'ﬁf)—a/zt }ds ‘
0

!n

:f ?+ﬁ2)l/2ds +t f(ﬁ“(a;.’_;usﬁdds

(aZ+68)2ds + ¢ fa.(tan ("’ Beyy as

o\u, o

= L(O)+21rt
Thus. using (2 1i8), (2. 19) and (2 46) '

o2 [_= ]2 .]2 z2 (> ey
O T Y L’t)J L’t)[ v’ ] \2.56)
- 1
"~ (L(0)+2nt)?

12 + 20, -os)ale gDt + (a3+ﬁ;")]
* Evaluation of the limit 'aé t +e yields

/ l1m (22 + yz) = (2.57)

12")2
Therefore, given ¢, we can find a ¢, such that for £ >¢{,, the distance from any

point on the scaled front (E.y) to the origin is gf‘eater than (él—-- £) and less
than { \2 + c) Hence, we can.inscribe msxde the front a circle of. radm~

(L g) at . -
(55 g) and one outside of radn;s \2 +£).

All thét remains is to show thét’ ihe interior of (¥.7) contains the smaller
circle. We do this by proving that

lim as(tan"(z—)bo ' (2.58)

This will mean that the original front and the rescaled front contain the origin.

Ve have that
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- ys Yz :
_ 8, (tan l(71—)) = ?z—afyz—)fﬁ ‘ (2.59)
{N.B. By (2.36). (z,"’-’+y,"’)z(a,2+ﬁ,2)>0. thus the denominator cannot vanish:|

Using (2 18) and (2.19), we have that
TYs —YZT; = (ﬁs Qg ’auﬁc)(a +ﬁs2)-l t2 _ (2_-60)
+ [ (02482172 + (0B, B0 ) (Bus 00—t Ba) (a2 +82) Y2 | £

+ aﬁsﬁ"aﬁvs :
If (Bss s —ass 85 )>0, then the coefficient of t? is positive. If (Bss s —0tss s ) =0,

then the coeflicient of £2 is zero and the coeflicient of t is positive. Thus,

%im (zys —yzs)>0 and hence iim 95 (tan™( :T))>O. This completes the proof.

Remark. We present here an alternate proof when (Bss s —Qgs Bs )>0. Let A(t)
be the'érea inside the scaled front at time t. 1f ‘.A is Bounded by a positivély
oriented. , simple, closed curve w(s) = (a{s).8(s)), where s€[a.b] is an arbi-

trary parameter and w{a)=w(b), then

(L{0) + 2mt )2 ]

Using (2.60), evaluatlon of the limit as t »« yields

) o . ) .
é—f(aﬁ —Ba)dt B | (2.63)
(See Do Carmo [4¢]). Thus, the area of the scaled front at time ¢ is
Alt) = __1_} (Zys"’yzs) Is .. : - ¢ 62)
_ ' 2 4 L3(t) A
Recall that '
L(t) = L(0) + 2nt T (263)
Thus. '
1 1 | 7 »' .
Alt) = 5 Jizys —yzs)ds (2.6%)

<
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s S
. 1 1 (B s anﬁsL,
lim 4(:) =5z jo' ds ‘ (2.65)

'.'_Il_l 5 ds
-2,41r2-{ S8
_ 11
241r22’r
=1
4r

Py

Thus, as ¢ -0, the area enclosed by the scaled-down front ¥(s) appr;oachés v

We state without proof the ]sbperirn‘etric Inequality: Let Cbea simple , closed,
plane curve with length 1, and let A be the area of the region bounded by C. '
Then (1 — 4mwA)=>0, and equaiity holds if and only if C is a circle. {See Do Carmo

[4]). We have shown that

S %193 (1_}— %nA(t)) = (i = 4nl 71_-)) =0 | (2.66)

Thus, since the curve is convex, the front approaches a circle.

We have studied the propagation of a smooth, convex flame front. The tra-
jectory of ‘each point s,,€[0.5] on the front (that is, the curve
(st ):y(é,,t)). t€0,=)) always points in a direction normal to the front, and

" has a constant speed k. {See Figure {2.5)).
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{x (5,,0, Y8, ,-1\‘3
1 efoo)

Figure 2.5

We may view these trajectories as objects akin to characteristics; they
are curves along which the temperature required for ignition is transported.

Our equations

z(st)=k Wf;?)—‘ﬁ_t + als) | - (2.67)
\ © o y(sit) = -k @%{7{‘ + B(s) | (2.68)

describe a family of ignition curves; given §,€[0,5], (z{s,.t).y(s,.t)) . tc[0,<)
is the ignition curve starting from (a{s,).8(s,)) with speed k. Since we require
that the flame always burn in a direction normal to itself, by definition the

ignition curves must be normal to the lfr'ont at all times. In addition. in Lemma

Bs

1 we showed that the ignition curves are straight lines with slope if the

flame propagates at a constant speed.

We mention in passing that there are other models of flame pro’pag:—ition

in which the ignition curves are not straight lines. For example, Markstein [::]
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proposed that the flame speed be taken as a function of the curvature at any
point. The natter;.ihe curve, the faster the flame burns. In this case, the igni-
tion curves are .normal. to the front but are not straight lines. (See Figure

(2.6)).

(x5, A qusn‘:S&

te ‘."la’)

o ]l——’

.
: -’
... o
- -
M e

Figure 2.6 -

Returning to our model of a flame propagating at a uniform. constant
épeed. in our next iefnma we prove that the ignition curves leaving the initfal
front fan out over all of the unburnt fluid. That is, given anv point in the
unburnt- fluid, there is one and only one ignition curve passing through thét

point.

Lemma 2. Let 7(s)=(a(sl).ﬁ(.s)) be a simple, closed. regular. convex,
parameterized, posiiively oriented, plane curve of class C% Assume that the
particles inside ¥ are burnt, and those outside are unburnt. At ¢ =0, ’ignité the
particles on the curve v, and assume that the flame propagates in a direction
normal to itself with constant speed. Suppose (z,.%,) is a point that lies out-

side . Then there is one and only one ignition curve leaving ¥ and passing

through (z,.y,).
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Proof.- We need orﬂy check that the mapping (z (s.t),y’(s':,‘t-)')"*gi_ven in (2.67)
and (2.68) is invertible. Then, given (z,.y,). there will be a unique s; and ¢,
such that (z(s).£,).y(s1.t,)) = (z1.¥,). and the unique ignition curve will be the

—0,(s))

Bs(s1)
Jacobian of (2.28) and (2.29) is

one leaving y(s,) with slope Vithout loss of generélity. let k=1. The

zZ; Iy
Ys Ye

=Ty ~YsZt . (269)
. S o= [{ ss _(as2+ﬁ$)_l/2-ﬂs (a‘s.ass ;ﬂsﬂss)(‘avsz"'_ﬂ.sz)_wz]t +og ][‘as (‘a32+ﬁs2)—1/2}

. (Bss s —Qss ﬁs )
= - t + (a2+82)1/2
For a convex curve,
: _ ) (ﬁss.as -.ass_ﬁs )>O » . L (270)
therefore o ‘
Zs :‘ » . p .
Ys Yt g 0 o (2.72)

Thus; the mappihg is invertible and there exists a unique s,-and t, such that

(x{s)t)y{s1ty)) = (z,.v,) This completes the proof. '

Given any point in the unburnt fluid, its ignitiorﬁ curve provides the location of
the "fuse” that ignites that point. The temperature required for ignition is

passed with speed k along the ignition curve to that point.
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2.3. Evolution of Convex, Piecewise Smooth Flame Fronts :

What happens if the initial curve is not of class C?? For example, consider

a convex curve with an outward pointing cusp, as shown in Figure (2.7)

Figure 2.7

Suppose that the curve is twice differentiable everywhere exéept at the point

| P. At P, the hnorrﬂn,al is not. Eieﬁned.f _and ﬁhus__ t.he direction. of mort'i‘:o-n is

unspecil%i_ed, We ;_do not know how to_vl Flraw the ignitiqﬁ cﬁrve;s ‘i.n:th:e tri‘an“gular g
region above P.“Aﬂsimilarv éuestipn occurs in thve study of the ’n'.notion of '_a'; '.g.aS‘

| behind a piston. If the piston is withdrawn at a supersonic speed, the charac-

terisiics fan out, 1eaving an open area. In that afea. we'cons‘trL\zct a rarefaction

wave to bridge the solution. For the outward pointing cusp, how shall we fill in

the ignition curves above P to provide a physically correct solution?

Consider a domain D in which all the particlés are unburnt, and suppose
that at £ =0 we ignite the particle located at a point (z.y) €D. The surrounding
unburnt particles will becomé ignited as the high ignition temperature Is
passed on, and these newly burnt particles will ignite their surrounding

unburnt neighbors. For ¢t >0, the flame front will be a circle, centered at {z.y). .
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with radius kt . (See Figure (2.8)).

Exeancing Foowr

Figure 2.8

The ignition curves spread radially out from (z.y)., and the front moves ina_ |

direction normal to itself with speed k.

With this in mind, we return to the outward pointing cusp and extend igni-
tion curves radially from the point P into the unburnt fluid at the same speed

as elsewhere on the front. (See Figure (2.9))
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. Figure2.9

P

This will provide the bridge between ignition curves P4 and PC, and will give

"us a way to move the front so that, for t>b; there will be a well-defined and

continuously-turning normal vector.- =

We now make these ideas more precise.

Definition. Let '7(s)=(a'(“s)_;ﬁ(s)), s€[0.5]. '7‘(0)57('5) be a closed, parameter-

1)

2)
3)

4)

ized, positively oriented, plane curve. Suppose that
-y is a piecewise C? function of s. That'is, a) v is a continucus function of s

and b) there exists a finite number of points 0=sc<s1< ...... <s,=S such

that on every closed interval [s;,s;,,]. 0<i<n -1, ¥ is twice diﬂ'efentiable.

7(0)=%(S). ¥ (0)=¥(S). ¥ (0)=¥(S).

e

Wherever the curve is twice differentiable, {a2+82)#0.

v is convex; that is a) at all points where the curve is twice

differentiable, as(tan"(z—s%) >0, and b) if s; is a point where ¥ is not
. S
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twice differentiable, lim {tan"( A )}s lim [tan L)]. In other words,
\ o

.*“- ."‘{
the angle the directed tangent makes with the positive z axis is a non-
decreasing function of s, wherever it is defined and measured in the v

counterclockwise direction.

Then we shall refer to any curve satisfying the above as a convex, piecewise C?
and piecewise regular curve, where it is understood that the curve is also

closed, parameterized, and positively oriented.

We can now descnbe the propagation of a convex, piecewise C? and piece-
~ wise regular mmal front. At any point (a{s), ﬁ\s)) where the curve is twice
differentiable, the normal ‘is well-defined, and we may use {2.67)-{2.68) to |
>det‘erm'me the path of the ignition curve starting at {a{s).8{s)) - From any

point s;€(0,S) where the curve is not twice diﬁerentiable. we extend a group

’ ' o . —a
of ignition curves, one for each angle between lim (tan™{ ‘ﬁ 2
s-8~ : s
lim (tan‘“ >)). inclusive. (Note that the slope of the 1gmtlon curve is the

s=st ' 5s
negative reciprocal of the slope of the tangent, and that if a<b, then
~i/a<=/b )- These ignition curves fan out radially from {a{s;).f{s;)). car-

ryving -the high ignition temperature and bridging the solution between the

_a ’
ignition curve on the rlght with slope lim \tan \Z ) and the one on the left
S"S‘ . s

-a
with slope lim (tan~ ).
s-st Bs
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Example 2.3 We give an example of the propagatibn of b"a convex, pieéewise c?
and piecewise regular flame front. Let ¥(s )=(a(s ).8(s)). s €[0,3n/ s +2]. where

o

co's(s -n/2) Dss<n/2
. R _l 1 . n/2ss<n/2 +1
o als) =] _s4(ns2 +2) n/2 +1€s<N/ 2 +2 (272)
: ' a S cos(s -2) ‘n/ 2 +2<s<3n/2 42
: sin(s-n/2) - L Oss<n/2
| s-nv2  n/2ss<n/2 41 /
Bls) = 1 n/2+1€s<n/2 +2 273)
‘sin{s-2) n/2 +2<s<3n/2 +2

A check shows that a and g are both C? functions of s everywhere except at
s=n/2, n/2 +1, and at n/2 +2. Fuftherm"ore; ¥ is closed, convex, and posi-
tively oriented. Thus, ¥ is a .convex, piecewise C? and piecewise regular curve.

The trace of 7y is shown in Figure {2.10).

gVar2 . 0 CseThaly

¥

Figure 2.10
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Assume that the particles inside y are burnt, and those outside are

unburnt. At £ =0, we ignite the particles along 7.

Except at s=n/2 +1, a and g are C' functions of s, with (a2+8%)=1. Thus,

given 5,€[0,3n/ 2 +2], sl#n/z +1, the normal at (a(s).8(s)) exists and we can

use (2.67) and (2.68) to determine the path 6f the ig.njtion curve emanating

from (a(s,).B(s,)). In Figure (2.11), we show those ignition curves.

.(‘.\S {5_:“}a-\\\

 Bwr

Figure 2.11

kcos{s —n/R)t +cos(s —-r/ 2)
kt+1
—s+(r/2 +2)
k cos(s —2)t +cos{s —2)

z(s.t)b=

—k sin{s -n/ 2)t +sin{s =r/ 2)
§-n/2
—kt+1
ksin{s —2)t +sin{s -2)

y(s.t)=

1 TTT@

A

____>“
i
—

O<s<n/2
i/ 2ss<n/ 2 +:
n/2 +1<s<n/2 +2
/R +2<s<31/2 +2

(2.74)

O<s<n/2
i/ 2<s<ri/2 +.

2 ' b=
7
n/2 +.€s<1/2 +2 (2.75)

T/ 2 +2<s<31/2 +2

This gives the position of the front at time t for s€.0,3r/2 +2], s#n/2 +_.
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At point' P, we wish to extend ignition curves into the unburnt fluid, as

shown in Figure (2.12).

T | -

- Burer

Figure 2.12

. Unfortunately, such a construction poses a minor diﬁicu]ty.-We need to be able
to distinguish one ignition curve from another, but we have only the value
s=r/2 +! at oﬁr‘disposal. (Elsewhere on the front, there is a one-to-one
‘correspondence between values of s€[0,3n/2 +2] and ignition curves). We
choose to reparameterize the initial curve vy in such a way that there are
"enough" values of s at P to facilitate a full set of ignition curves. Let

71={a,{s).8:(s)). §€[0,3n/ 2 + 3], where

cos{s -1/ 2) O<s<n/2

1 0 n/R<ss<n/2 +1
o, {s) = 1 /2 +1€s<r/2 42 (2.76)
-s+(rn/2 +3) T/ 2 42<s<n/2 43 '

cos{s -3) . 7n/R2 +3<ss<3n/2 43
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| sin(s-n/2) Oss<n/2

(s=n/2) n/2<s<n/2 +1 ,_ L
Bi(s) = 1 n/2 +1<s<m/ 2 42 (2.77)
: 1 ' /2 +2<s<n/2 +3

sin{s -83) n/2 +3<s<3n/2 +3

"Note that the trace of 7, is the same as that of 9, but that for all
se[n/2+1,n/2 +2], '(al(s).p,(s))=(1.1). This will provide us with “enough"
valueé of vs at P to givé one tb each radial ignition curve. (From now on, we
omit the suBscript 1). Also, a and § are C' functions of s with al+B2%=1fors

notin[n/2 +1,n/2 +2]. Let.
z(s,t)=k(cos(%(s—ﬂ/2 FONE+L ~ (278)

y (s.t)=k (sin( g—(s —n/2 +1)))t+1 (2.79)
for ta_Ov, n/ 2 +1<s<n/2 +2. This corresponds to a family of ignition curves
leaving P, given s €[n/2+1,n/2+2], we have (z(s.0)y (s.0))=(1.2).

z2+y#=k? and %“= tan (g—(s-("/ 2 +1))). (See Figure (2.13)).
| ¢ .
X (Mlea 24) N &i;\i)&
. Yé&(000) . : ’
. ‘{X(}fo ,Y.(,S,i)% ‘-

(ha yChus]

L€ (s, 00)

RE:
Buryr

[1]

Figure 2.13

We need o‘nly check that ignition curves leaving P match up with the ignition

curves given in (2.78) and {(2.79). Using {2.76),(2.77),(2.78) and {2.79), we have
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lim  (z(s.t)y(s.£)) =(kt+1,1)=  lim  (z(s.t)y(s.t))

(s~(ns2 +1))" v (s+(n/2 +1))*
, lim (z(s.t)y(s.t))=(1kt+1)= lim (z(s.t)y(s.t))
(s+(n/2+2))" ‘ (s~(ns2 +2))* : :

Thus we have extended ignition curves from every point on the initial front.

The full set of ignition curves are

kcos(s —fi/ 2)t +cos(s—n/2) Oss<n/ 2

kt+1 . n/2<€s<n/2 +1
z(s,t) =1 k(cos((n/2)(s—=n/2+1)))t+1 n/2 +1<ss<n/2+2 (2.80)
—-s+(n/2+3) n/2 +2<s<n/ 2 +3
k cos(s —3)¢ +cos(s —3) n/2 +3<s<31/2 +3
ksin(s -n/2)t +sin(s-n/2) = 0ss<n/2
s-n/2 n/R<s<rn/2 +2
y(s.t) ={ k(sin{(n/2){(s=n/2+ 1))t +1)+1 n/2+iss<n/2+2 }{2.8:)
; : kt+1 ‘ /2 +2<s<n/2 +3
k sin(s =3)¢ +sin(s -3) 7/ 2 +3<s<3n/2 +3

This gives the positiqn of the front for £20 and s €{0,37/2+3]: This completes

the example. ' -

VOur £echm'que for.deciding how to move a curve in a direction normal to
itself when the normal is not defined has been based on physical arguments.
We developed a smooth tranéition from the ignition curve deﬁned from the
right at a corner to the igm’tio'n curve defined from the left by méans of.a set
of igniti'on curves fanning out from the point in question. Ih our next theorem,

we show that such a construction is a natural extension of our earlier results.

Theorem 3. Let 7y be a convex, piecewise C® and piecewise regular curve. Sup-

pose that the particles invsidey are burnt, and those outside are unburnt. At
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" t=0, we ignite the particles along 7.

1)

2)

3)

There exists a sequence ¥,(s)=(a.(s).8.(s)). s €[0.5¢], 7,(0)=7,(5%) of sim-
ple, closed, regular, convex, parameterized, positively oriented plane

curves of class C! such that

lim 7,(s) = {s) - (282)

=0
for s €{0,5¢].

For each ¥,, suppose ihat ihe,particles inside?/, "are'burnt and those out-
side are unburnt. At t=0 wev ignite the particles along v,. Assume fhat the
flame front vy, propagates in a direction normél to itself with speed k and
let i‘ts‘position at any tiI:Ile t be given by (:,(s,t)‘yt(s,t)), s€{0,5¢] Sup-
pose we allo_.w‘.the front initially at 7(5) to move in a direction normal to
itself with speed k, wherever the normal is defined. Then, at those points
where the norn'lal;is not defined, we cvan construct ignition curves in such

a way that

Um tr(z.(s.t)y.(s.t))= tr{z{s.t)y(s.t)) (2.83)
where (z(s.t)y(s.t)) is the vposition of the front at time t. Here,

tr(z:(s_.t).y(s.,t)) is the trace of the curve (z(s.t)y(s.t)), svefO,S].A and

tr{z.(s.t ) y.:(s.t)) is the trace of the appfoximating curve 7,.

For t >0, (z{s,t).y(s.t)) is a curve of class C° Furthermore, the normal

to (z(s.t)y(s.t)) exists everywhere and is a continuous function of s.

Proof. We begin by parai'neterizing ¥{s) by arc Iength;;-this can be done since

v is piecewise C? Thus, we assume that a2+82=: wherever the derivative is

defined.

We now construct a sequence of curves ¥, of class C! that tend to y as ¢ _

tends to zero. Let s, be a point where v(s) is not differentiable with'respect to

-
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s. let o,(s)=lima,, of(s;))=lima,, B;(s;)=1lm§pB,, and
s-si ‘ ‘ s+s¢ s~ sy
\ ) :
B (s1) = lim B,; these limits must exist since the curve is piecewise C?, Since
."“ : .

the curve is parameterized' by arc length, aJ(s;)#a;(s;) if and only if
B (s,)#Bs(s1). We shall assume here, for the sake of space, that a (s1).

a;(s,). BS(s,). and 85 (s,) are all non-zero; the formulation of v, is only slightly

different when one or more of them is negative.

Bs (s1) » Bs (s1)

as(sy) a_s_(sl)_'

We claim that We prove this indirectly.: Suppose they

were equal. Since the curve is parameterized by arc length. either
atis))=as(s)) and Bf(s;)=H5(s1). or af(s,)=—a;(s,) and B} (s,)=—F;(s,). The
former cannot be true since it implies that 7 is differentiable at s,. The latter

cannot be true since it implies that the curve is not positively oriented.

Since v is piecewise C? there exists some & such that for
sels,-6.5,)U(s,.s,+6]. a; and B, are non-zero. Furthermore,

Be(s) | Bulsi+(si-s))
0, (8) . as(51#(5,-5))
By {s1) # Bs (s1)

ot (s)) as(s))

for s,—d<s<s,, since 7y is’ convex and

Choose & suéh that 0<e<é. Draw the line tangent to y at {a{s +£).B(s,+£))
in the difection {—ag (s.1+::).—;3, (s,+£)). Draw the line tangént to ¥ at
{a{s,—¢).8{s,~¢)) in the airection ('a; (s,~£).8s(s,—¢)). They must intersect at
some po(irvlt. P, since their slopes are not equal. Assume, without loss of gen- '
erality, that (as(s,—¢).Bs (s;—¢)) is closer than {(a,(s,+£).8s{s1+¢)) to the point

P. {(see Figure (2. 14)) and consider the curve y.{s)={a.(s).8,(s)) defined by



and

Bels)=

Figure 2.14

als) . ' . s<Z,

S—s;+¢& ‘
——,%—-—sin"(as (s1-€)))—Bs(s1—¢)|+als,—¢) Z;<s<Z,
ofs,+&)—&

a(s —ﬁ—LBQ+2€) . Za<s<Z,

(s ;(}—?’Sl—t))'}a Z2<5<Zg

(2.85)

_ Bis) s<Z, "
§—S1+¢ ,
R’ —sin"}ag{s,~£)))+a (s, —¢)|+B{s,~¢) Z,<s<Z,

‘s +5 -R ’ _ i. _

B(s-R-Lgg+2e) | ZgsssZ,|
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Z,= 8¢
Z, = R+s,-¢
Zs= §+s1—s+LB§
Zy= R+Lpg+S—2s
where

- R, ' [ﬁs(sl"’s)
Bs(s1+¢) _ Bs (s1~¢) las(sl"'a)

os(s,+e) oas(s,-e1l)

R= (a(sl+€) a(s;—£))+p(s,—£)=p(s +¢)

R = 1+ﬂs(31‘5)as(31+5)+ﬁs(51 t)ﬂs(sl"'s) I
y =

as(s1 -t) - l 1=(as(s1=€)as(s1+£)+B: (s, —€)Bs (5, +£))) /2
R=F lsm ‘(as(81—8))+005"(ﬂs(81+£))]
G=R [ﬁs (s1+8)—Bs (s, =€) ]"’0‘(81—5)
ﬁ R l-—as(s,+s)+as (s,—£) ]+5\s1—£)
Lo = ((B-a{s1+£))%+ (B=pis,+2)))?
For ss's 1-‘-}: v, is the same as ¥. For s,—s<s-<ﬁ+s‘1—s the trace of 7, is the arc
1 of the circle, parameterxzed by arc length, tangent to the line AP at the point
‘}‘\SI—E) and tangent to the line PB at the point @  For
F+s,-e<s<R+s,—t+Lpg. the trace of Ve is just the straight line, again
‘parameterized by arc length , connecting Qr to the point ¥{s,+¢); here Lpg is
. just distance from @ to B. For R+s,—t+Lpg<s {ﬁ+LBQ+S-Zs. the trace of v,

is the same as the trace of ¥{s) from s,+¢ to S. (See Figure {2.:5))
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.

Figure 2.15

We need to check two things; first, that 1:1-1.% Ye(s) = ¥(s) and se‘con.d-,.t,hat
¥:(s) is a curve of class C!.

Since = 7' is"‘ péraxheterized by arc , "l._eng'th.
lim (a(S'x-S)-ﬂV(SrE))v=lti§g(cx(s,+s).ﬁ(s1+e))=(a(sl).ﬂ(§,)).' Hencé. as £+0, R
vanishes aﬁd ‘E=o.('($1) and B=f(s;). By construction, Lpg vanishe_s.l thus
lim 7. =, s€0,5] | |

We now che;:k that .y, is a.curve of class C! for §,—~0<s<85,;+86. Wé only
check at the p'oihts s=s,~¢, R+s;—¢ and ﬁ+sl—é+LgQ.- since the curve is
_infinitely differentiable everywhere élse‘ We ‘hote that sin{cos™}{a,))=—8;.
* sin{cos™}(Bs))=~as, cos(sin"(as).)=—ﬁs and cos{sin™}(f;))=—as.
We first check @, and a, at s=s,~¢.

“lim o = als;=¢) / | (2.86)
s-(s,-c)” \&
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im0 = (B, (60 B, (1) sals =) = alsme)

lim a, = o, (s,—¢)
s-(s -:) _

lim o, = -sm\—sm“(a, (s,—s))) = o4(5,—¢)
.*('l-c)‘

Thus, a, and its denvatlve_m‘atch at s:s,-e. We now check g, and B. at the

same point.
lim = B(s,—¢ ' :

potm B = Bls1—¢) - (278?)

lim 8, = R(sin{-sin"}(a{s,~¢)))+a{s—¢))+Bis, —¢)

: s-o\s -t : S .
= B(s,-¢)

~lim  Bg = Bs(s,—E)
s-o(sl—c)"

lim B, = cos{-sin} \as s,—s)))+as (s,—s)+ﬁs (s,-¢)

Cs(sy-e)*

=Bs(sl_5)v \, _
Thus, v, is differentiable at s =s;~¢. We check a, at s=R+s,~¢.

“lim o =7Rcos(sin"(as(s,—s))#‘cos“(ﬁs(sl+s))—sin"(as (s,-¢)))
s+{F+s -¢€)~ _ . _

: ‘ﬁs(sl‘s)] + afs;—¢) (2.88)
Rips(s1+6)=a(s1-0)| + als,—e) =
lim o, =@
"s+{R+sy-¢)*
Checking a,. we have .
lim  a, = —sin{sin™ (e (Si—s))+co"s"(ﬁs(51+£))—sm"(as {s\-¢)))
s+(R+sy—¢)” : _ :

= —sin{cos™}{ s\s,+é))) = 05 (S +¢E) (2.89)

N . als+e)-@
lim o, = ———
s+{Besy—c)* Lpg
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_ a(s,+&)-a .
T ((@-alsy+e))2+(B-Bis +£)))V?

1

- Blsi+e)+Rou(s1+8)-a (51-2)| -ls1—2)

1+ T
a(sy+e)~Rif, (51+8) =B (51-2)|-als1—e)

= g (s,+¢)
Thus, o, and its derivatives match at s=R+s,~¢. We check f, and g, at the

same point.

Jim 8. = R{sin(sih-*(d;(s,—e))+cos-’-<ﬁs (s1+£))-sin"a (s, +€)))
s+{R+s~2)” .

+og(s,—e)| + B(s,—€) . (2.90)

= R{-O‘s (s)+e)+as (s1-€)] + B(s,—¢) = B

im B =§

;o . s~{R+s,-¢e)*
Checking B,. we have
pim B. = cos(sin™{as(s,~¢))+cos (B, (s, +£))—sin™} (0 (5, ~¢)))
s+{P4s;-¢c)” . : : i ) .

= Bo(sihe) | (2o
. _ Bls +2)-B

lim
s+(R+s, o) _ﬁ_‘ . Lpg
Bis,+e)=B
({@-a{s +e))*+(B-Fs,+¢))%)"/?
1 =

. _ i/%
¢(51+E)‘R{5s (s1+£)—Bs (51‘5)]‘0‘(51-8) l

I+ .
TR YA ) p

[gny

= .. ] 1/<




7 al(s,+¢)

(1+ 1_-af(s1+s)_; vt
al(s,+¢)

R ereu
5s(sl+5)

(B2(s,+e)+al(s, +e))V?

_ = By (s1+£) :
Thus, v, is differentiable at s=F+s;—¢. Next, we check the point

. s=R+s,~e+Lgg. For a,, we have
lim a, = als,+¢) '
8*(R+81‘C+LBQ)- ¢ ' v . o (292)

lim = o, = als,+¢)
s-o(R+sl-c+LBQ)‘

For a,. we have previously shown that the section of v, between R+s,-¢ and

E+s,~£+Lpy has slope ac(s,+s),.~thu_s a, matches. For 8,, we have

im = Bls,+8) . -
s"(-k""S]-E‘I'LB'Q)" ﬁt» ﬂ\ : 1 v ) ‘ (293)

s;(k{slig;xugo)* B = fisite) _
Similarly, we have shpwh that B, = Bs(s,+¢) for the line, thus f, matches at .
s=R+s,~c+Lpp. Finally, a,(f_?+LBQ+S—v28)=a(S.)=a(0) _ | ‘and |
Bc(}_?+LBQ+S—2£)=B(S)=ﬁ(0)." Thus, 7.(s) is a curve of class C! for
s&(s;—6.5,+6), and y.(s)=+¥(s) as £+0. We repeat this process at each of the
points sj"whefe 7 is not differentiable, until we pfoduce a curve ‘y',A of class C!

that tends to y as £-+0. This completes the first part of the proof.

We now construct ignition curves for ¥(s) at a ébint s, where v.is not
differentiable. Ohr' goal is to show that if we allow the family of curves v, to
 burn for a time t, then as £-0, they will tend towards the solution

{(z{s.t))y(s.t})). where (z(s.t,)y(s.t})) is the position of vy after it has burned
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for a time ¢t;.

We first reparametrize ¥(s) so that there are "enough” values of s at
v7(s;). (We followed this procedure in the previous example.) Let
¥(s)=(a(s ).B(s)). s €[0.S]. where -
| a(s) s<s,;

Q(S) = a(s 1) 8 1SS$31+1 (294)
‘cx(s—l) §,+1<s<S5+1

_ [ g(s) s<s, . «
- B{s)={ Bis;) s,€s<s5,+1 (2.95)
‘\ﬂ(s—l) §1+1<s<S+1 '

7 'and ¥ have the same trace with ¥(s)=y{s) for s<s, and ¥{(s+1)=vy(s) for
s>s,. From now on, we omit the overbar. ‘

We .- extend ignition curves from v(s) at the point 7(51). Let

—Qg —~Qs

} ; both these limits exist since

@y = lim tan™Y{ ) and o; = lim tan™}{—
s-sy s s-s{ Bs

the curve is piecewise C'. We construct ignition curves

z(s.t) = kcos{{w;—w, )(§ =S )+wr+7)t + as,) {2.96)

y{s.t) = ksin{{v;—, )(s =5 )+, +7)t + Bls) (2.97)
for £=0, s,<s<s,;+1. Thus, using (2.93)-(2.94) to provide ignition curves for

s<s; and s;+1<s, we have the full set of ignition curves

kBs(s)t + afs) - s<s,
z(s.t) ={kcos{{w, ~ws){s—5,)+w,+m)t + als,) s;€5<s,+1 (2.98)
kBs(s—1)t + als-1) S,+:<s<S+1-
—kog{s)t + B(s) N s<s,
yis.t) = {ksin{{w, -0, ){s =5))+u, +m)t + B(s)) s, <s<s;+1 | (299)
—kog{s=2)t + B{s-1) §,+.<s<S+:

This gives the position of the front at time ¢.
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- We now check that, for t>0, the normal to (z(s.t)y(s.t)) isa continuous
function of s. We need only check at s=s, and s =s,+1, since both z and y are

differentiable everywhere else. We first check for continuity at s=s;:

lim (z(s, t)y(s ) = (kB (s1)t +afs;).~kag(s))t +B(s,)) (2.100)

."31

lim, (2(s.£)y(s.)) = (B (1)t +ax(s) ko ()t +6(s1)

3"81

We now check the normal (y, /z;)ats=s,.

}1}:’1 (‘yg/zg) = ‘as(sl)/ﬂs(sl) = tan(wy) © (2.101)
im (ye/z) = tan\w,+1r) = t,an(o,.) (2.102)

Checking continuity at s=s,+1, we have '

lim _ (;(s.t).y(s.t))=(kﬂs(Sx+1)t+a(31+1)--kas(81+1)‘+ﬂ(51)12.102)

s~(sy+1)

lim (z(s t)y(s.t))=(kBs(s)+ )t +a(s;+1).~kag(s,+1)t +8(s,))

s~{sy+1)

Finally, we check the normal (y;/ z;) at s=s,+1

lim  (y/z) = tan(w +7) = tan{wy) (2.108)

s~(s+1)"°
. Qg (sl+1)
lim /Z —— = tan’w
pals #1)* (v ,‘) By (s,+1) l)

Thus, the third claim of the theorem is verified.

Let (z.(s.t).y.s.t)) be the ignition curves of the ' initial curve
Ye={a{s).8:(8)). Al that ~ remains is to “show that

]ing triz (s.t)y.ls.t))=tr(z{s.t)y(s.t)). Since v, is a curve of class C!, we
c’ N . " . .
may use {2.67) and {2.68) to find its ignition curves. We have

8.,

Wf + a,(s) (2.104)
7] s

z(st)=k



52

yels.t) =~k - )Va t+B(s) "(2j105)

@ 2",+B;,
where a, and B, are deﬁned in (2 84) and (2. 85) Since cxc +ﬁt =1, we have
‘z,(s.t) =k Bt + a.(s) (2.1086)
Yels.t) = =k ot + B,(s) (2.107)
We now check that hm tr(z.(s.t), y,(s t))=tr( (s t)y(s.t)) for t=0. We check
this in four sections; for s<s,-¢, for s,-s('s <R+s,-¢, - for
R+s,—ts<s<R+s,—t+Lpg, and for R+s;~e+Lpo<s<R+Lpo+S—2¢. At first
glance, it would seem that the section of (z.y.) for sl—s<ssﬁ+s,—s must
disappéé\f as £-0, since R-0 as &-0. Howvever.v the length of the front
(z (s .i),y,(s ;'t)) between those two points is a furiction of €. thus we must be
extremely careful in our anélysis.
Our "t'é'c_hm'que will be to repara‘meterize s,eg“tions of the curve by, arc
length and then make cOmpar;épps._. Note tbat 13{101 1?:0 1:13;1 _1.3950,

lim {(~0g)= sm(w,) and hm ’ﬁs)=coS(wl).
S"'Sl . S"S‘ . . *

1) s<s,-¢ . For s<s,-¢, ’ae(s)=a(s) and B.(s)=B(s) for all £>0. Thus,

tr(z;y.) =tr{z.y)for s<s,—¢.

2) s,—e<s<FR+s,-¢ . For any fixed t,>0, we show that, as £-+0. the trace of
the curve (z.y,) for S1—t<sS<R+s,—¢ approaches the trace of the curve
(z.y) for 51€s<s,+1. Let

L

e s o
(s t,) =kt ,cos(F+ wr+T) + als,).
. 1 .

.

Yis t,)—lct,sm\k + w +7) + Bis))
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Oss’<(w~we) kt, © = - - (2.108-2.109)
This is a parameterization by arc length of the section of (z (s.t))yis.ty)

between s, and s,+1. Let

i,(#',t;) =1{kt1+R ]coé

:'ﬂfr;—??;sm‘i(as (s,=¢)) ] -RB, (sl"t.)":a(s lv_:) :

4

Yels"ty) = [_ktl"'R ]sin[ k—:ﬁ—sm“(as (51‘5))] Ray(s,~¢)+B(s,¢)

-05s_<_‘(lct,+1?) (;in"(_q,(s,—s))fcps“(ﬁ,(s,ﬂ))) (2.110A-2.‘111)

This is a pararﬂeterization by arc - length of the section of

(Zs.t) .y (s .ty) forl"’s,—sSS's'}—?+s,—-sﬂ. Evaluation of the limit shows that

. lixrol F(s’t)) = kt,cos(’;st——m,m)m(s,) . (2.112)
el ] _ _
=z(s’t,) (2.::3).

lim F.(s*.t,) = kt sin{ —+w, +7)+(s,)
€~0 ktl

=g(s'.ty)
Hence, they have the same trace in that range.

R+s,—e<s<K+s,—e+Lpgy This section of {z,.y,) is just the straight line
segment of length Lpy. As £+0, Lpg=0, and this section _vaxiishes.
R+s,—e+Lposs<sR+Lpg+S—2c . We have that

Yels) = ¥is -_ﬁft—LBQ—l).
Evaluation of the limit yields

lim 7,(s) = 7(s=1)
e~C

Thus, as £+0. the trace of {z,.y.) approaches the trace of (x,y). This com-

'pletes the probf.

t
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Remark. We have constructed a specific set of C! curves v, that tend to a
piecewise C' curve ¥ and showed that, for t=0, (z,.y.)*(z.y). where the igni-
tion curves at the point of diéco'ntinuity are constructed in our special way.
This is no}t the op;iinal_result. Ideally, we should be able to show that our con-
~ struction isurﬁque; that 1s any set of smooth irﬁfial deta_tending towards ¥
‘burns-into a set of curves that tend towards our constructed _soldtion_. The
main stumbling block in such an approach is that it is hard>.to determine if two
curves ha§e the same trace when they afe not pérameterized by the same
object. Ih the specific case we chose, the app_roximation. elements were
straight lines and curves, both of whichrcan easily be parameterized by arc
length. This made our com;.>arison. straightforward. Unfortunately; it is not a
| simple matter to provide a.n ectﬁal parametefization by arc length of an arbi-

trary curve.

.Th_e arguments in Theorem 2 showing _thai any convex flame front burns
ibntvo a circle require that the initial curve be of class C2 In Theorem 3, we con-
structed ignition curves for initial curves that were only piecewise C?. Now
that we are able to follow the probagatien' of a piecewise' c? flame front in va

“direction normal to itself, we wish to extend Theorem 2.

Theorem 4. Let ¥ be a convex, piecewise C?, and piecewise regular curve. Sup-
pose that th.e particles inside ¥ are burnt, and those outside are unburnt. At

t =0, the particles along ¥ are ignited. Assurne that the flame moves along the
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ignition curves constructed in Theorem 2. Then, as t -+, the shape of.the

burned region becomes circular.

Proof. We assurﬁe;‘ l_’of the moment, that given ¢, there exists a simple, closed,
regular, parameterized, positively oriented,  convex, plane curve
71(s)'=(a1(s),ﬁ,(s)), s€[0.5,]. 71(0)=7,(S,). of class C? that lies inside y a dis--

tance less than ¢.: That is, given 5,€[0.5,]. srar[lérg] ly(s)=y(s,)! <&, given

s,E{O;S]. sg})i'glj l‘yl.(s)—'y(s 1){<e, and every point on ¥, is in the closure of the

interior of . With this assumption (to be proved later). we now show that the
original curve ¥ can be trapped between two curves that can be made arbi-
trarily close, both of which burn into circular regions. This will complete the

proof.

Since 7, is a closed, convex curve of class C?, we may use {2.67) and {2.68)
. to move it in a direction normal to itself with constant speed k. Let ¥,{s,t) be
the position of the front at time £, that is. 7,(s,0)=y;(s). Then, by Theorem 2,
as t »=, 9,(s,t) approaches a circle. Deﬁn_e ahother curve 72(S)=(a.2(8),62('$)),’
s€{0,5,] such that 72<s)=7,(s.28/k);.thus ¥als) 1s the position of the pro-
- pagating front v, at time t=2e/ k. Let y,{s.,t) be the position of the front Y2 ét
time t, that is, 72(s.O)=72. Since Yya(s.t)=y(s.t +2e/k), y2{s.t) also burns
into a circle. ' ‘

We claim that, for all £, y,{s.t) and y;(s t) are éxaétl)' ab distance 2¢ from
each other. We prove that, giveh siE[O.S,], fyé(s,.t)—yl(s.t);':és. Let
71(s,.t)¥(z1(s.t)'.y1(s.t)) and yo(s t)=(z5(s.t)yz(s t)). Then, using (2.18) and

{2.19), we have
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g L 4
z(s.t) =k Wt ta(s) (2.114)
yi(s.t) = Wt + By(s) (2.115)

By definition, az=z,(s,0)=z,(s.2c/ k), and Bz(s )=ya(s, 0) =y, (s. 2e/k) Hence,

yl,(s.2£/k)
({z1,(s.Re/ k))?+(By, (s 2e/ k))?)/2

Ts.t) =k t +z,(s.Be/k) (2.1186)

{—0‘1,,(df,;"ﬂf;)-1/2"’0‘1,(01,“1,"'ﬂl,ﬁx',,)(a?,+ﬁ;“,)—a/2}(2€) + By,
t

. = k ‘ -
(af +82)" "2{ + B, ai,,m,'xa;i+af,)~3’2<ze)]

_:W(ZE)HXI

{‘0‘1,,(012,+ﬁi?,)+0‘1,(0‘1,01,,+ﬁl;51,)}(a12,+ﬂl )¥2(2e)+8,
k .

= t
(0‘12,“'312,)_1/2[1+(ﬁ1”al,‘0‘1,,51,)(%2,+5i)v_3/2(25)}
af 'HBZ )72 (e) + oy
‘ 51,{(51,,0‘1,-01,51, \0‘1,""31,)_3/2’25)*' } ?1
=k t + oz +ﬁ:2 )1/2{25)+a,

(af +8%,)" 1/2[ (81,01, —1 By, ) af +Bf, ) 3/2'25)] s :
_ B, B,
=k (0L +BL)V? 't + (af+BE )1/2\25) toy

Here, we have used {2.37)-(2.42). Similarly,

z,,(s.2e/ k) '
((z),(s .26/ k))%+{y, (s.2e/ k))*)V?

yols.t) = =k t +y,(s2e/k)2.:17)
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| {6,.(ai+ﬁ,2.)'-7-»”2—ﬁ,'.(a,.a,_+ﬁ,.ﬁ,_)(a;".+ﬁf.)'5’z}(28)+al.

= -k ' — t
(ai",fﬂi",){l + (ﬂn_ou.—al.ﬂ,.)(a;"_+ﬁi)“‘”"’(2g)]
(—z-r,e—)r/?(&)wl ,

{’sln(“ +ﬁl.)‘31.(°‘1.°‘1.,+ﬁl ﬁx.,)J("h.*'ﬁl,) 3"‘”2z)+a,
=k — , t
(alz,*’ﬁ?,)"a{l + (ﬁxqa,.-a,.ﬁl.)(a;".+ﬁ,2')'3’2(2:)} |
| H -all. : » . | 4
* Gy |
| .“l.{(“l.“l,,"‘ﬁx,ﬁx,,)(a;z'+B;".)'3’2(2£)+1} . o
=k )1/'2\28)""91 o

t +
(a12.+plz.)l/>2{1 (ﬁl al al ﬂl )(al +ﬁl ) ye 2 )} (.al +ﬁl

al’ -

- l ) -
BT AT AR F rci
’ ] -

' 'I'herefore givens,€[0.5,].

: 2 ' 2
{72(§l.t)—7,(s,.t)]=l{zg(s,.t)—zl(s 1'-")] +{yg(s',,t)—y1(s,.i)] J l/2(2.1,‘18)

2 12
- —al' N
(0‘1 +ﬁx) )+ (0‘12,+ﬁi2,) %)

= (4e9)1/2 = 2¢
Thus, 7,(s.t) and 7,(s.t) are a distance 2¢ from each other and therefore can-

not cross.

We now prove that y,{s,0) lies outside the original curve v a distance less
than 2¢. Suppose part of ¥, is inside the original curve y..Then there exists an
§€/0.5,] such that y,{5,0) is inside ¥. By Lemma 2, we can draw the ignition

curve from 72(5._0) to the curve 7;. By Lemmma :, this curve is a straight line
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not'mal to '7,; thus the s_hortes_t distance from 7,(5.0) to the cur\;e 7, is the
length of that igrntton cvur've’:' |v2(S .0)—7,(§.b)|=25. Continue this ignition
curve ahead in tu‘neuntll it erossesthe origina] curve 7; Ithev point where the
two mtersect will be more than 2 from 71 which violates the assumption that
| all points of 7 are within £ of ¥,. Thus, ¥; is out51de 7. Since y; and v, are 2¢

apart, then 7; lies outside ¥ a distance less‘than 2¢ .

We now clalm that, for all t, 7 s t) réemains between 7:.(s. t) and yq{(s.t).
We prove this by contrachctlon Suppose there emsts some s, and t, such that
v(s.t;) is outside (s .f,). If we draw the ignition curve from ¥{(s;.t,) to the
curve 7g(s.0). its length must be greater than:kt,. Since ¥{s.0) is inside
Yals, 0). this implies that 7(s,’,t ) is further than~.lct from y(s.0),” which is
‘1mpos~1ble Conversely. suppose there exists some s, and t, such that ¥{sy.t,) -
is inside ¥,(s.t,). If we drau the 1gn1tlon curve from ¥{s,.0) passing through
¥{s1.t,). it has length Ictl Contmue this ignition curve ahead in time until it
hits 71 at some point P. (This must happen since we are supposmg that
“yisy.t;) lies inside (s tl)) The distance from P on 7(s. ty) must be greater.
than kt y fromy{s ‘;O).. Since ¥,({s,0) is inside {s,0), then-the distance from P.to
vi{s,0) is,greaterthan kt,, whjoh is impossible. Thus, ¥ is trapped between two
eurves 1 and s which, by Theorem 2. must burn_into circles.
All that remains is to shotn-* that there exists a convex curve ¥; of class C*
, bl\m'f 1n51de ¥ a distance less than e. \%e construct such a curve in two steps:
first, we mscrlbe a convex polyoon that hes inside 7 a distance less than ¢/ 2. |
and second, we smooth out the corners of the polygon so that the resu]tmg
curve is of class C? | retains its convexity, and lies a distance less than &/2

inside‘the polygon, thus vielding the result.
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We s"tart' af the point ¥(0)=(a(0).8(0)). and iet s, be the lérg’est:value‘Of s
such that each point of the chord connecting ¥(0) to ¥(s,) is within £/ 2 of the
section of .the initial curve betwéen §=0 and s =sy; this can be di;ne sil_'xce the
cﬁfvaiur;e of the initial curve is piecewi.se- C‘a Furtherm'or_e. since v is convex,
no part of the chord can lie oﬁtéidg 7. From 7(s,). we can find the largest value
of s, say sz such that each point of the chofd connecting ¥(s,) to ¥(sz) is
ﬁthin e/ 2 of the section of the im{ial curve between s=s; and s =s2.v(We éfe
doing nothing mofe thaﬁ buiding a discrete approximation to the length of the
curve, which can be done for ahy curve that is pieéewise C'). We continue this -

process until we reach s=S. (See Figure (2.16)).

Figure 2.16

This produces a convex polygon lying a distance less. than £/ 2 inside Y. Our _
goal is to smooth out the corners of the polygon so that the resulting curve is
convex, of class C?, and lies a distance less than &/ 2 inside the pé)lyg_on. Let
7P°LY(§)=(a’;°LY(s)V.VBPOLY(S)), s€[0,SP%Y] be a parameterization of :the

polygon by arc length.
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We now ‘_exhibit. a function that smooths corners. Considef the function
J (z) defined by
:i—z z<ue o
r@) =1, . | - (2.119)
a—(Z‘us—z) r>ue .
where ¢, u, and v are constants such that £>0, O<u <1', O0<wv<1, and u?+v?=1.

The graph of f (z) is shown in Figure (2.17).

£+
1 v
(ueNe)

N

VNN

Flo0) . ' (2ug, By

Figure 2.17
We will exhibit a convex curve of class C? that lies below f{z) a distance less
~than .

We reparameterize the curve (z,f {z)).~—=<z <=, by arc length as follows:

' 5(s)=(a(s).B(s)).s €(~=.=), where

’éz—s) —=<s<¢ » :
=ley={ 12.:20
a(s) {:(2£—s) . e<s <=c} 2.220)
_ vs ~0<S <E ) .
- . 52
'ﬁ(s)'{v(&:—s) 555<x] Ve _

The trace of ¥(s) is the same as the graph of f(z). and aZ+B2=1 at points -
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' “where ‘_thé derivative is defined. We deﬁng 7,(8):(&,(s),_ﬁ‘(s)), €(-=,=)as fol-

lows:

- B (s) = [u(Zc—s) -w<s<w} | o '(2.1223

vs —wls<0

: , -:v-s—s‘ + vs . D<s=<¢
Bs)={_, = o (2.12)
’ : :Us-(zs—s)"-i» v(2e-s) e<s<Re} - '
4t -
v(2e-s) , 2e<s <

.. (See Figure (2.18))

75(5)"

-~ Figure2.18

~ We claim that 7,(s)iis a cot;vex curve !of_l_ciassl €% lying below ¥{s) a distance

‘less fhan €. | o |

‘1) We check that 7,( s) is of claes C‘2 “e need only check ﬁ,\s) at the pomt=
s=0, s=¢, and s= 25 since B. is mﬁmtelv dlﬁerentlable everwhere elsc

(@, is infinitely dlﬁerentlable) Vbe have, for ﬁus)
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hm (vs) 0= hm (—S‘ + us) - '(2.1'-24)
8-0" .

—vE

lim (—s4 + vs) =
g~ 8

+ve = Im (5 (@) 4 v(@-s)) @129

lim (——(Ze—s)“+v(2::-s)) 0= hm (11(28—8)) (2.126)
se(2e)- 483 s~(2t ' ‘

Thus, B, is a continuous function of s. We now check ‘the first derivative.

lim (v)=v = hm (——-s"+ 'u) o - (2.127)
s-0". -C+ v
lim (-;—-s3 +v)=0-= hm (—(28-8)3—1/) (2.128)
8 g~ .
lim (—-— (2e-s)? -v)=—-v = lim (—-u) (2.129)
s~(2c)‘ g3 s~+(2e)*

Thus, B; is a continuous function of s. Finally, we check the second

derivative:

lim (0) = 0 = i 230}
s-o!:‘(.) ’ U+ (2 30)
lim (“3%s2 = =3 2 iy (_3” (Bsf—s)?) (2.131)
st~ & _ PRy
lim 2e-s)?)=0= lim (0 k (2.1 '
| MZC)_( ( ¥) Jm ) - (2182)

Thus, ¥,.(s) is a curve of class C2.

2) We check that '7; lies below y(s) a distance less than €. For s<0 and s >2¢,
¥:{s)=%(s), thus we need only check for 0<s <és. There are no values of s
such that B.{s)=0 in that interval, since v and ¢ are both positive Since
B.(e)=3ve/ 4>0, B.(s)=0 for all 0<s<2¢, thus 7.(s) is above the z axis in
that interval. Since B.(s)<us for v0.<s _<e.: and Ec(s)<fu(2£—s) for £<s<2¢,
y.(s) is below 7. All points ih the triangle ABC lie a distance less thén £

away from 7, therefore 7, lies below 7 a distance less than ¢.

8) Since B, (s) is negative for 0<s <2, 7,(s) is convex.
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' We can now use the curve ’f’,(s) ‘to smooth the corners of YP%LY{s). Let
POLY (5,)=(aPOY (5,),B8P2Y (s,)). s, €[0,SPAY] be the location of a corner of the

polygon. (See Figure (2.19))

Figure 2.19

Since the polygon is parameterized by arc length, the directed unit vector

tangent to side 1 is lim (af%Y(s),87%Y(s)); and that tangent to side 2 is
3"8‘- ) . . )

lim (af%%s).8F%Y(s)). both taken in the direction of increasing s. Let
s-s* B .

(cos®,;sin®,;) = lim (afoLY(s),pPOLY(s)) ~and

55"

- (cos®,.sinvy = lim (af%¥(s).85%(s)). Then,
8"‘

costPOLY = (—cos®, , —sind,)-(cos®, , sind,) (2.133)
= —cos®¥, cosd, — sin¥; sind; '

. = —cos{¥2—9,) :
We wish to graft ¥.(s) onto the corner located at yP%Y(s;). The first step is

make $=9"%Y (§ is defined in Figure (2.18)). If we define w, O<w<n/ 2, such

z
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that (cosw , sinw)=(u,v).(» and v were assumed to be between 0 and 1 in Fig-

ure (2.18)), then

cos®d = (—cosw , sinw)-(cosw , —sinw) (2.134)
= —cos?w - sin%w
= —cos%w

If 9=9POLY then cos{2w)=cos(¥,;—8,). Since 0<¥FoLY<q, 132-191!<n. If 929,

Vo,

take w= and the reqﬁirement that O<w<n/2 is satisfied (if ¥,>%,.

6,0
2

“choose w= ). This implies
'(32—’61 '62_‘6]
B 2
Next, shrink the side AP in Figure (2.18) so that it has length £/ 2. (It is possi-

) (2.135)

u = cos{ ) v = sin{

ble that another corner of the polygon is located within £/ 2 of ¥"?L¥(s,); if so,
let the length of AB be one-quarter the distance along the curve to the closest

“corner. ). Thus, we have

Sp=5,. o
&, 2(s) = cos{ 22 D{e-s) = —w<s<e . (2.136)
[ -8 |
Sin("'z"z"']—)s —c<s<0
Bp=5,,
sin{ ) Somb
—— 2 tsin(ZEhs O<s=e/2|
_ . )_ ":\E/ 2)" 2 {2‘37) A
68/2\8 = . 152 1 o \ <
sm(—-——z———) S =Gy
T Taes 28 (8—8)4'*5111(-.2—2—-“9(8—S) £/ 2<s<¢
Y
‘ Vo= : '
o sin{ 22 Dy(e—s) £<S <=
\ _ )

This curve ¥,,:=(&,2{S).B.,2(s)) is convex, of class C? and stays within £/ 2 of
a corner with the same angle as $°%Y. All that remains is to rotate and
translate the curve until it fits on top of the corner located at ¥*%(s;) {such

a transformation preserves lengths, angles and differentiability, hence the
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properties of ¥.,2 are not disturbed).

The angle the vector BC in Figure (2.18) makes with the positive x axis is
—w. The angle the vector point'mg away from-the corner along side 1 in Figure

(2.20) makes with the x axis is ¥,-. Thus, we rotate ¥.,2 through an angle of
. B8, , . o o
(zﬁ,-n)—(-—w)=—-—2— — 7 in the counterclockwise direction about the point

B

' -9, V=5, |, o ‘ _
B=(g/2 cos{ 5 D es2 sin(iﬁ). Finally, we translate the curve so that

the point B is sent to Y"%Y(s;). (See Figure (2.20))
: - Py S
, / ¥ (53 '

Yz

Figure 2.20

Any point (z.y) is sent to {z°.y "), where

: Vot Vo4 V=0
. cos{ =—L—7) —sin{ 2l om| |z - Eeost 2
L’j = : SO L)
' T Bty , Betd, . T
sin{ ~5—~ ) cos{ 5~ ) Y — =sin{ ——2———):

» [:POLY( s )
+ ,
POLY ( 5-.')

Thus.
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._ o+, e 020 . >,‘l’2+131 g PV,
z° = cos(—5 ﬂ)(z, Zeos{—5—)) = sin{———n)(y Fsin{—%—))
“+aPAY (s, (2.139)
Yoty g Vptd 9= Vot |
= —zcos(—z—z——-—’)+-ez—_cos( 5 Dycos( > 1y +ysin B )
L A S T s
——2-sln( 22 1)vsm( 5 Ly+aPOLY(s,)
B+, B+ Cpory, n
= —zcos(—%—'—)+ysin(%—)+ g—cos(dz)+a”°“ (s;)
- . : \
. Bo+8 V-3 Vo+9 Bp—¥
y* = sin{ ——L —r){z - Lcos{~=—1)) +cos{ o —n){y - Esin{ ——13)
, 2 2 2 2 2 2
| +EP(s) (2.240)
P TR TP o=, .  Bp+®
= —zsin{ 5 1)+—2—snb'1( 5 lv)cos( 5 1)—ycos( 5 L)
o+ Bp=By . oo
+ L cos{ Z—Ysin{ =—1) 4+ gPOLY (s,)
27"y o 2
’ Byt S Bt |
= —zsin{; 22 l)—ycos(—gg-—lﬁ+ ‘;"Sin_('lsg)+ﬁ'POLY(Si)

Thus, we "glue” the section ¥,,3(s) from s =0 to s =¢ into the corner located at ‘

¥POLY (s.). Rotation and translation of 3,2 yield

For —e=<s<0:

Bp— o+ =By . Vpt¥
. 1 2+, V=V, Ut )
0.2 = (s —¢£)cos{ 5 Jeos{ > )+(s )sin{- 5 )sin{ 3 y (R.147)
(E ( POLY
+ \E‘)COS\'lsg) T (sy)
_ £ |
For O<s< =—
2
T, T R I— -3 Bpt B
. 1 ¢ 72 1 ST . 2 1y . 2 Iy
0.2 = {(s—¢&)cos{ 5 Jeos 5 J+{ 3 —+5 )sin{ 5 Jsing 5
2

+ (%— cos{B)+al2Y(s,)

For Z—<sse;
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Vo0, Va8
s—sin{—5—)

(s—s))sm\

-8 Vot , —(g-
02 = (s —£)cos{ —s—)cos( ——1) +{ 1868)

2 ’ 2 '’
42‘
= (;ﬁcos(ﬂzﬂa” oLY(s;)

For e<s<=; .

Qesz = (s —£)cos( 22 l)C s 22 L) +(e—s )sin{ 22 Dysing 22 LAY
+ (BJcos(sp)+aPar(s,
For —e<s=<0;
y —ecos( 2278 B8 BatSy . .
Berz = (s —ecos(—25—ysin e’ ) —(s)sin{ ~5cos{ =5—1) (2.142)

(%‘)Sin(ﬁz)+ﬁP0LY(st) .

£
]-"qr 0<s < o | . | . . .

: Vp—8,, . VotV Y Vo1, Bo+ 6,

o _ / VNl 28T 2N TS (o2 TN TR
= (§—¢tjcos sin - +8 )Sin CO:
Bes2 = (s—&)cos{ g ST T TS )sin( 5 5 )

3

+ (SIsin{2)+87(s,)

. . _
.For 2—<s<s; v
Bp—5 B+ —s Vo=, Bo+ 1,
Bes2 = (s—¢€)cos{ 2 1)sin\ 2 " 2 lA’e—s))sm’ Ycos| )
| 2 2 s 2 2
2
ENcinfag POLY
+ {Fsin{Se) + 75 (s1)
For £<s <=;
Ve~ Ny T+, V-0, \ Vo+ U, \

L4 .
BC,2=(s—s)cos(‘2 Jsin{— )—{&—s)sin{ 5 Yeos( 5

|m

+ (Dsin{B;) + ALY (s;)

[av]



Thus, we define v,(s)=(a.(s).8.(s)). s €[0,SPOLY] a5 follows;

For 0$ss(s1——;—):

o (s) = aPAY(s,)

For (s; - %(s <sy;

1§2+1§
z O+

B
a.(s) = [(s—(si—;—))}cos( 22 l7‘¢:os(

Vp—0 V2470, |
s —{si= 2 sin{ =5 —Hsin{ )

—~

+ g—)cos(‘ﬁ2)+a”9”(si‘)

For s;<s<{s; + -;—): '

| o T S W
acl(s)={(s—(si--;—))]cos( 22 l_)cos( 5 %+

3 781N 5/

. £ B2y, . Vet
+(e~{s ~{s:=3))) sind

+ (";‘)005(192) + aP%Y (s, )

a(s) = aP%(s))

For OSSS’_S,;—;—);

B.(s) = pPY(s,)

For {s; —¢/ 2)<s<s;:

68

(2.143)



69

B (s) = {(S ~(si—e/ 2))-a}cos( 132;01 Isin{ 1’2;0‘ -

(s —(5. —£/ 2))
(s (s‘s :/ )L*r(s —(s;—&/ 2))|sin{
. 4=

V-, \ (1’24’131\
.2 7COS\ 2 7

+ Zsin{) +87H(s,)

For s;<s<(s;+£/2):

. - Bp—b ot S
Buts) = s =(sme/ D) efoos 225 9sm 2251y

~(e={s=(s;=¢/ 25))‘

o Vo=, . VptB
3 He—(s —(s;—&/ 2)))|sin( 2 1)cos( 2 l)
PR 2 R
2

+ Ssin() +87H (s,)

For (s;+&/ Z)SSSSPOL}/;, )

Buls) = B (s,)

Here, we"ha_v'e shifted the parameterization by (s;—¢/ 2) so that the two curves
" match up. By construction, 7,(s), s€[0,5P%Y] is a convex curve, lying a-dis-

£

> inside ¥P%Y(s), and thus a distance less than & inside the

tance less th‘én
original curve vy{s). Furthermore, we claim that Ye(s) is of class C? for-

S;— -g——sss' s+ ;— We check that a,{s) and B.(s ) and their derivatives match up

at s:sl--e— and s-=s.;+£— Using the definition of %, and ¥, we note that

2 2

£ ' oo L E £ . e LBy

5e0s(B2)+0 % (5,)=a"M (s, + 2, Ssin{B2)+ 87 (s:) =7 (s, + 3,
] R .. . — ) N

: -——z—cos(ﬁ,)+a”"”(si)=a”°“(s‘-—2—). and —é—sm(v,)+§’°5’“ (s,)=pFP%LY s, ~ ).

s
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We first check a, and its derivatives at s=s;+ ;— For o, at s;+ ;— we have
lim (&) = aPoLY(s;+ &) = Ecos(u,)+BPOLY (s,) .
£+ 2 2 t (2.145)
s~(s‘+-é-)
. £
- lim () = Seos(2)+67 (s:)
s*(s‘i»;—)'
For a;, we have
lim (a;) = cos(By) .
34(3{+;—)‘( c) : ( 2) (2.146)
. V=0 o+ B
lim (e)= lim cos{ 22 Dyeos( 22 DY+
se(s g soloit 5
(e~{s—{si=e/2)))* | _ Ba=Bi, Bt
PR L3Sy 5 /SIhTF%)
4‘5‘ . . .
,‘(52—‘!9 Yot 5 . ,.192—’6 o 4+ ,;
= cos{— Deos > L) —sin( 5 Dys n(v 3 L) = cos{Bp)
For a,, we have
lim (a;)=0 )
s*(si+;—)+ ' v - (2.147)
. -318—15-—'8-—8/:2 2. = Bp+5
» s~(si+-;—)‘- s-oj(siivg—)_ £” 2 2
Thus, &, and its first two derivatives check at s =s; + ;— We now check £,.
‘ e s , o
lim (Be) = BP0 (si+ 5) = Ssin(S)+B7% (sy) (2.128)
s~(si+;—)*
lim  {B;) = Zsin{e)+87H(s)
s-o(sié:;—-)‘ .

For B, we have

im  (B;) = sin{$;)
s*(siog—)‘* o : \&-
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: . V-8 B+ B
lim (B)= lim cos( 22 sin( 22 -
s*(sﬁg—)‘ s-o(s‘+;—)‘ :
(e=(s=(si—e/2)))° [ 0298, o438y,
i 1lsin( Yeos{ )
‘ £ , 2 2
‘z

B~ Vo+ T B+ 0 '
Ssin{ =) +sin(—5—D)cos{ —5—) = sin(s;)

= cos(

For B.. we have

lim (B)=0 e
s_,(si+£_)+ ¢ ) ‘ (2;00)
. 3(e—(s—(s;—£/2)))* B~ B+
lim (B;)-—— " lim \ \ \813 ))) 5 ( 22 1 ) Os( 22 1 ) =0
s..(si{.é.a—‘ . - 8"(Si+‘2:—)- — .

Thus, B, and its first two derivatives agree at s=s.;+€—. We now check a, at

s=s;— &
=5, - &
-2
lim (o) = aP2l¥(s;- &) .
3*(51‘;—)_ | 2 (R.152)
=B, B+ : ’ .
lim (&) = —ecos{ —cos{ ——1)+ Ecos(¥,)+aP2Y(s,)
(o £y~ - 2 2 2
s+8—3) v

B,—5, R P VB, . Bo=B,, . Bp+D,
= —gcos( 5 Jeos( 5 )+2cos( > Yeos( 5 ) —sin{ 5 —¥sin{ = )

+ oPOLY(s,)

£ B2—%, BotB,, =By, VatY ry
»=§{—cos( Jcos( 5 ) —sin{ 5 )sing 5 N+l (s))

£ - £
—é-cos(ﬁl)+a‘°°”(si) = oY (s, -

For a,, we have

o . » hm (at) = Cos(ﬁl) ) ‘2 -\; 59)
S-o(si—;—)" \& =i
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o 9 o+
lim (a))= lim cos( 22 DYcos( "’2 Ly
s-(s‘—%)‘ : s*(s(-%)*
~(s—(s;—£/ 2))® 2=By, . UtV
+ £° +1 ( 5 /S ( CE
2
B8, VB, . - Vo= B+ |
= cos{ 22 Dycos! 22 LY +sin( 22 DYsin( 22' L) = cos(®,)
For o, we have '
s~(lsl:'n§": (o) =0 (2.153)
. —3(s—{s;=£/2))%  9,-% Vp#dy -
lim (&)= lim s, ))ﬁin( 2 _Dysin{—=——1=0
s*(si'é-)+ s-'(s‘—;—)*’ %__ 2 2 _
Finally, we check 8,.
i ‘ = RPOLY (o _E
s..(lsl.rfl‘_)- Bc) =8 s 2) » (2.152)
1 2 )
V-8 B+ '
lim () = —ecos(—z—)sin{ )+ Zsin(¥z) +87(s;)
s-c(si—;—)" - .
L =8, ety p| V=B, BptB BotS, .  p=
= —gcos| 5 Dsin( 5 l)+§{cos(.. 3 Dsin > D +cos! 5 Dsin{ > Ly
= +6707(s,)

£ V=0, . VotV Vot By, . Bo=D, POLY
=—§-{cos( > Ysin{ 5 )—cos{ 5 Isin{ 5 1+87LY (s,)

£ . , £

= - 5sin(s,)+8P (sy) = P (s - 5)
For B.. we have
lim  (B;) =sin{¥;) -
s-o(st’;—)_ ) (2.;50)'
N o= V- B+ V- B+
lim (8= lim cos{=—o—Dsin{—)-sin{ = _—Hcos( ——1)

s~ s (s~ 59 ¢ 2 2

= sin{3%,)
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For B,. we have

lim (B;) =0

PPt 1S . (2.156)
o - B(s—(si-£/2))? 8,9 Vp+8
lim (B.)= lm (s (s ; )Lsin( ¢ Dycos(2—9 =0
: s-o(s‘—;—)‘ . s*(s‘.-;—)"' E 2 - 2

2

Thus, a, and B, and their first two derivatives are all continuous for

L

si—%s.sssﬁ > We smooth the other corners in the same way to achieve the

desired result: a convex curve ¥,(s) of class C? lying inside the original curve y

a distance less than ¢. This completes the proof.
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2.4. Evolution of a Non-Convex Flame Front .

We have anaylzed the motion of a closed, convex, piecewise C? and piece-
wise regular flame front. In this section, we wish to analyze the propagation of
a non-convex ini_tiai front. By "non-convex", we mean that there exists a chord
connecting two points 7(s,,_0) and ¥(s2.0), 5,,5,€[0,5] on the initial curve that
passes through some part of the unburnt fluid. We begin with-a suggestive

example.

Example 2.4 Let y{s)=(a(s).8(s))=(~s §%), s€(~=,=). The trace of this curve

2. Suppose that the particles below the parabola are

is the parabola y=z
burnt, and the particles above are unburnt. (This agrees with our earlier for-
g rﬁulations in which the burnt region is on the left as we travel along the curve
in the direction of increasing s.) Suppose that at t=0 we ignite all the parti-

“cles located along y(s). We assume that the flame propagatés with unit speed.

As in Example 2.1, we may use equations (2'.18) and (2.19) to determine

the position of the front. Thus,

2s ‘ e
z(s,t)= (lresh/Et =% \R.157)
(s.t) = ————t + 52 (2158
ys.by= (1+4s52)1/2 ‘ (2.158)

{See Figure (2.21))
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{X(‘),t\‘, Y“*"X l

Burerr

Figure 2.21
We make the following obse_rvétions:
) For Osts‘é—; (2.157) and (2.158) are reversible. That is, the mapping

sta(z{s.t)y (;.t)) is ‘ir'wertible for all te[O,—lﬁ. We prove this by check-

2
ing that the Jacobian is non-zero for 0=t < é— From (2.69) we have -
s It | | Bss s —0ss Bs '

= - B0 4 (a248R)1/2 (2.159

=2 -t +(4s%+ 1)V

| 45%+2 o

= (452+1)"V2(2t —(45%+1)) .

’ .

Since 2t<{4s%+1) for 0<t<Z- , the Jacobian is non-zero. Given any

, 2
s 1€{—=,=), the ignition curve leaving the point {z{s,.0).y{s,.0)) on the ini-

tial parabola does not intersect any other ignition curve for 0<t <

(A]
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2) For t>-%—; the Situation is different; the mapping s.t+(z(s,t)y(s.t)) is no
| longer invertible. To see that this is so, consider f.he point (0,a), where
a->% (Note >thvat this is a point in the unburnt ﬁuid.) We claim that there
are two distinct ignition curves passing through (0,a). Let s,=(a-1/2)V?2
and sz;=—(a-1/ 2)"2. The ignition curve starting at the point
(z(s1.0).y(s:.0)) _iS

2((1“1./ 2)1/2

z‘_(s,,t) = a1/ DD 2 t —(a—-1/2)V? | (2.160)
= (a-1/2)V? [ _(,ﬂftl)l/z -1 ]
V) = o et (@2 (e
= Gt 2.

Similarly, the ignition curve starting at the point (z(s2,0),¥(s2.0)) is

—2{a-1/2)V2%

#00) = g gamyTt e o160
- ;(ar1/2)'1%2 { (—Im%i)m-— 1 }
yiszat) = (1+4(—(a—,11/2)1/2)2)1/z t (~a-1/ D)V  (z169)
N (A_a—tl)l"z. Hlemre).

Att=t={i/2)(4a-1)V? tﬁese two curves intersect, since
z(s,f)=0=z(s,t) - (2.182)
yispt) =a =ylsat). (2.165)

Unlike the situation in Lemma 2 in which the convexity of the initial data

implied that the ignition curves could not collide, in this example of a
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non-convex initial curve, the ignition curves intersect.

In Figure (2.22), we graph (2.157) and (2.158) for various values of ¢.

Figure 2.22

‘As the curve moves, it crosses itself at the point where the two ignition curves

collide. The previous calculation shows that this collision oceurs at the point

(0,a), g>%—. when t=(—é%(4a—1)"2.

) 1

Figure {2.22) illustrates the situation. At any time £> > the moving curve

~ can be divided into two parts: the pari above éndvincluding the crossover
point, and the part below. .The' part above and including the crossover point is
givén by (z(s.t)y(s.t)), for all s such that —os<{—1/R)(4t3-1)172 or
(1/2){4t?-1)Y%<s<=. The part below conrespohds to all s such that
(=17 2)(4t2=-1)1/2 \<s <(I1/2)(4t2—1')1’2. The pértiCIes located along the part
above and including the crossover point are the ones “on fire"” at time {; they
form the boundary between the burnt and unburnt particles. The part of the

A

curve below the crossover point passes through fluid that is already burnt.

~
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Thus, as any time t>-é: the actual flame front is a subset of the moving curve.
Hence, the position of the flame front at time ¢ is given by (z(s.,t)y(s.t)),

s€(w=,) for  t<x: and C (z(s.t)y(s.t))

se(—o,{-1/2)(4t3-1)V2]U[(1/ 2)(4t%-1)/2 =) for tz-;——, where z(s.t) and

y(s.t) are given by (2.157) and (2.158). In Figure (2.23). the position of the

flame front is shown for various values of £. -

Figure 2.23

In addition, we can show that for t> = the front develops a cusp, that is, a

2

point where the curve is continuous but not differentiable. To verify this, we

check thé one-sided derivatives. Using (2.28)..we see that

lim /Z) = lim (Bs/ & (o -
s~{{-1/2){at2-1)/ 8- (s 2,) s+l{-1/2)(at2-1)V/ 3] (Bs/ 25) (2.166)
= lim (25) = —(4t?3-1)V/2

s+ {-1/2){4t2-1)1/2)-

while

Pl
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lim /Z.) = lim -/Va i
s-[(-1/2)(a42-1)1/ B ¥/ 22) s~[(-172)(at2-1)1/ 2]+ (Bs/ 05) (R.167)

(2s) = (4t2-1)¥/2.

lim
s~((-1/2)(at2-1)1/2)*
For t>1/2, these two limits are not equal, hence the tangent is discontinuous.
Thus we have shown that an infinitely diﬂ'erentiable initial front can develop
- cusps as it burns and cease to be differentiable. Drawings to this effect were

first made in [18]. This completes the example.

We now consider an arbitrary. non—coavex initial curve and ask the follow-
ing questions: How shali we continue the motion of the flame front beyond the
pdint when ignition curves first collide? Which sections of our moving curve do
we eliminate so that the rernaining'portions form the actual boundary between
burnt and unburnt regions? (N.B. 1t is important to stress that for a convex

initial curve, ignition curves cannot collide.)

We now develop an "entropy condition” for our propagating flame front.
With the help of this condition, we will be able to continue our solution bevond
the time when ignition curves first collide. Let ¥(s)={a{s).B(s)). s€0,S] bea
simple, closed, regular curve of class C?. Suppose that the particles inside y
are burnt and those outside are unburnt. At =0, we ignite all the particles
along ¥ and allow the front to propagate normal to itself vﬁth speed k. Let
:;(i.y,t) be the indicator function of the burnt region; ¢{z.y.t)=1 if the parti;
cle located at {z,y) is burntat tirrle t and zero otherwise. Since the ignition
curve connecting the initial curve and the point (z,y) is a straight line normal
to the'initial curve, its ‘l‘ength eqaals thé distance from (;r.y) to the initia!

curve, and we have
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1 if(z,y)is burnt at t=0
° plzy.t) =1l (kt)> min (z-als)*+y-p)* e

0 (kt )2<s§?3.%1 (z —a(s))?+(y —B(s))?

p(z .y.t_) measures when the "news"” of the burning front reaches a particular
particle. From the definition of ¢, we see that if ¢(zgYe.tp)=1, then
¢(zoyo,t)=1 for all t >ty once a particle changes from unburnt to burnt, it

remains burnt for all £.

Definition. We say that a propagating flame front satisfies the entropy condi-

tion if once a particle burns, it remains burnt.

Our reasons for- the name k'”en.tropy condition” wili be made clear later. In this
work, we assume that the.ﬂame front satisfies the entropy conditioﬁ. Then if
two ignition curves cross at a particular point, whichever one arrives first will -
ignite the particle located there. |

Let (z(s1.t).y(s1.t)). (z(sat)y(sat)). $1.52€[0.S], t€[0,$o) be two ignition
curves that collide at some point P, and suppose that the ignition curve leav-
ing (z,_(s,,o),y(s.l.t))) arrives at P before (or at the same time as ) as the igni-

tion curve leaving (z(s5,0),5(52.0)). Then there exists t, and £ such that

(z(s1.t1)y(s1.t)=P=(z(s2.t2).y(s2.t2)) (2.169)

ti<ty

By the entropy condition, the ignition curve arriving first (of shortest length)
will be the one that ignites the particle at P. In our next lemma, we provev
that, for t >t,, the later arriving ignition curve can only pass through fluid that

has been previously burnt. That is, every particle on the ignition curve
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(z(sat)y(sat)) beyond the intersection point is burnt before the "fuse” from

(z (s2,0).y(s2.0)) reaches it. Thus, we can ignore its effects for £=t,.

Lemma 3. Let y(s)=(a(s).B(s)). s€[0.5] be a simple, closed, regular curve of
class C% Let (z(s.t),y(s.t)), s€[0,S], t€[0,») be the ignition curves of y as’
defined in (2.67) and (2.68). Suppose there exists §1,52€[0,5], s,#sp and t,,t;
such that (z(s,.t,).y(5s,.t,))=(z(s2t2).y(s2.t2)). with t,<t,. Then, given any

t3>t2.

o olré][(-’t(Sz ts)—z(s,0))*+(y( Sz-ts)-’y(syo))z] (2.170)

<{ 2(sate)-2 (52004 (y (sg.ts)-y<sz.o>'>2}

Furthermore, there exists a t<t3 such that ¢{z (s5.t3).y (s2,t5).)=1, where ¢ is

defined in (2.168).

Note that if £;=¢5, both cur'?es can be eliminated beyond the intersection

point.

Proof. Let !; be the distance from (z(s,.0).y(s,,0)) to (z(si.t1)y(s1t1)).
Then I;= Ict1 Let l, be thé distance from (Z(SZ,O).‘y(Sg,O)) to
(z(s.t2)y(Sa. tz)). Then lp=kts, and L;<l,. Let P be the point where the igni-
tion curves intersect; P=(z(sl, .Y (s1t))=(z(s2.t2).y(s2.t2)). Choose t3>ts
and let @=(z (sz,ts),y (s2.t3)). Let A’ be the point (z(s,,0),y¥(s,.0)) and Bvbe the |
point (z(s5.0),y(s20)). (See Figure (2.24)) '



B2

Figure 2.24

Then AQ<AP+Pg=l,+PQ<l,+ Pg=B0{. Thus, § is closer to A than it is to B,
hence, B cannot be the pomt that ignites Q ‘Define £ such that k&t =AQ. Then
. kf<BQ=kts. Thus plz (sa2.ts), 'y(sz. s).f)=1. This completes the proof. '\

Thus, we can eliminate the late-arriving ignition curve beyond the inter-
section point. In the next lemma, we prove that if an'ignition curve is elim-
inated, it must be eliminated by an ignition curve of equal length, and hence,

by>Lemma 3, both can have no effect beyond the intersection point.

Lemma 4 Let 7(s)=(a(‘§').ﬁ(s:))'. sE[OS] be a simple. closed, regular curve of
class C®. Let (z'(s.'t).y(s,t)), s;[O.S]. t €[0,=) be the ignition curves of y as
defined in (2.67)-(2.68). Suﬁpose. in accordance with Lemma 3, we eliminate
those parts of ignition curvés that reach previously burnt fuel. Then, if an igni-
tion curve is eliminated for t2¢f,, it is eliminated by an ignition curve of“équal

length. Hence, both pass through previously burnt fuel for £>¢,.

Proof. Suppose the curve leaving.‘y(s 1), §;€[0,S] is eliminated. Thus, there

 exists ¢, such that for 0<t<t,, (z(s;.t).y(s,.t)) p.aSSes though unburnt fuel.

and for t>t;, {z{s,.t)y(s,.t)) passes th}ough previously burnt fuel. Let the
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curve leax}ing ¥(s2), $2€[0,S] be the one that eliminates z(..sl.t),y(sl,t). That
is, there exists ¢z such that (z(sp.tp).y(sat2))=(x(s,t).y(s,..t1)) with te<t,..
We prove that tp=t,. Suppose not. Then tz2<t,, and all points (z (sl,f).y(sl,?)),
to<f<t, on the first ignition curve are closer to ¥(s,) then they are to ¥(sy),
and are thus burnt before the ign'itionv curve leaving 7(5'1) réachés them. This
means that the curve leaving ¥(s,) must have been eliminated before ¢, which
contradicts the_ hypothesis. Hence, t,=¢,, and bpth ignition curves are elimH- '

inated at the same time. This complétes the proof.

We can now describe the motion of a propagating flame front. We extend

ignition curves from the front according to our formulae

Bs

2D =k e T @17
o . -
y(s.t) = -k W’“ g (2.172)

and move the flame front along these ignition curves until there is a collision. .

- Eliminate those ignition curves that carry the initial front into the interé_ecf
tion point, since they are of the same 1éngth. Cbnt(inue moving the frqﬁt 'alo—lng
the refnaining ignition curves, all the while eliminating curves that“ c.:vollidyve.
This will give the position of thé front at any. time. At any time, each point of
the front can be tr&ced back along an ignition curve to the ;nitiél curve, slmce
the motion of the front is solely determined by the ignition curves. However,
there may be points on the initial curve Whose ign_ition curves are elimipatéd

before they reach the prppégating front.

We return briefly to Example 2.4 and point out that we have already used

this elimination procedure to follow the propagation of the parabolic flame

front. For O$t<%-. the ignition curves do not intersect. For each value of
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t>—é—, a pair of ignition curves of equal length intersect, one from

s=(-1/2)(4t2-1)"2 and one from s=(1/ 2)(4t2—1)i’2. To continue our solu-
tion beyond that time, we eliminate both of the curves. This is the solution we

previously found.

We are now able to explain our choice of the phrase "entro'py condition'.
If the initial curve is convex and of class C? the solution (z(s.t)y(s.t)) is
reversible; _gifren the position of the flame front at any time £, we may recon-
struct the initial data. This is because the ignition curQes cannot intersect,
énd thus it suffices to follow the front backwards in time along the. ighition

curves for a time ¢:

_ ys(s.t) e -
HEO ke D s e D rEED R
y(s,0) = =k z(s 1) (=) + y(s,?) : (R.174)

(& (s.8))2+(ys (s.E))9)V2

However. if the initial curve is not convex, the ignition curves collide. Oncéi
they collide, the results of Lemmas 3 and 4 show that we can eliminate them,
with no .eﬁe'ct on the solution. Thus, the position of the ﬁam.e front, after the
time when the ignition curves ﬁrst.collide, has no "knowledge' of those dis- A
carded ignition curves. Information is "swallowed up” at the collision point
and the solution ceases to be reversible; hence the name ';entrop}f". Each'
time we use the entropy condition to discérd ignitio:n curves, more informa-

tion about the initial data is lost.

. Example 2.5. As another example of the elimination of‘ignition -curves for
non-convex initial data, suppose the initial front is in the shape of the cardioid

v(s)={a(s).B(s))=(cos{s),sin{s){1—cos(s))). s€/0,2r]. Assume that the parti-
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cles inside y are burnt and the particles outsidé are unburnt. We ignite the
particles located along y and allowv the curve to propagate normally to itself

with unit speed. (See Figure (2.25))

DUONT S
ORI

Figure 2.25

Let B=y(r/3) and B'=\7(2ﬁ—n/ 3). These are the points whose ‘igmfion curves -
are in the positive z direction. Given s, 0<s <n/ 3, the ignition c'urve._.l‘veaving
7(5) collides with the one leaving y{2n—s). When they cvovllide. they are elim-
inated and the‘eﬂ'ect is that the cusp C "travels” alorig the z axis, ”siwallowing
vup" sections of the parameterizatioh. We wish to‘estabvlish the ré]at_ibnshi_p
betfveén the distance the cuép has traveled and the set of_ignitiSﬁ curves that
have been eliminated. Let P=7(sl). with 0<s,<r/ 3, and let I be the length of
the ignition curve between P and the point (A,0) where it hits the-z axis. (See

Figure (2.26))
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Figure 2.26

A calculation éhows that

_ (t—cos{sy))sin{s;)
~ cos{3s,/2)

{(2..75)
Since the flame travels with unit speed, the time it takes the front to reach
the point (A,0) is |

_ {i-cos{s,))sin{s,)

(2.178)

cos{3s,/2) ‘
Let g (.Si) = (1—222((;;)1)/53(5.1). .Ano‘ther calculation shows that -
= Lmoosteleosend @.:7)
Let h(s)> = (lfcos(sl))coé(sl/ 2). At time t, ignition curves of equal length

cos(3s,/ 2)
leaving ¥(s,) and 7(217-—s,) reach (A,0), and all the curves leaving ¥ between
v(2r—s,) and ¥{s;) have been eliminated. Thus, we know which ignition curves

“to eliminate at time ¢. Using (2.169) and (2.170), we have



h(g~}(t))
Bs

h(g7H(t))

z(s.t) =

0
y(s.t) ={ ——s
- (af+83)Y
0

!

t+a g i(t)<s <Rm—-g~(t)

t+f g i(t)<s<2r—-g~I(t)

[ (1-cos(g!(t)/ 2))cos(g~"(t)/ 2)
cos(3g "}(t)/ 2) :

(2(1—cos{s)))/?
(1—cos{g~}{t)/2))cos{g~}(t)/2)

cos(3g "}(t)/R)

0
sin{s )—sin(2s)
(2(1—cos{s)))?

0

\

s<g~(t)

_eri—g~Yt)<s

. p'

s<g~I(t)

_r—g " (t)<s

3\

s<g~i(t)

- (
cos(s)—cos(2s) t +cos(s)—cos?(s) g~ !(t)<s <Rm—g~(¢t)

_Rri—g~{t)<=s

s=g7Ht)

_2r=g~(t)<s

87

(2.178)

(2.179)

To uniquely define g~(t), we use t.he smallest value of s, between 0 and 2n

such that g (s,)=t. Since (a2+82)=2(1-cos(s)), calculating o and B; we find

(2.180)

t +sin(s)fcos(s)sin(s) g (t)<s<2r-g~}(t) }(2.183)

A drawing of (z{s,t).y(s.t)) for various values of ¢ is given in Figure {2.27).
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Figure. 2.27

~ We now show that as t-.};a, the cusp disappears and the propagating flame
front becomes differentiable at the point where it intersects the positive z

axis. Define rp*(t)_by. o

. 1/ Ys . .
Ht)= lim tan"!(=—)) . 2.182
Pt = lim(tan”(CE). (2.:82)

{See Figure (2.28))
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Figure 2.28 ~
.
Using {2.28), we then have
¢*(t)= lim (tan™! (&_)- ). ' (2.183)
s~(g~1))* &s
From the definition of g {s;), we have %im g Ht)=n/3. Therefore,
: B
BT +4) = 1 ~1 S o -gr
lim ¢*(¢) = lim_(tan™ (=)) (2.282)

S

= lim tan-! cos{s)—cos{2s)
son/3 sin{s )-sin{s)

=n/2.

Thus, the cusp opens to an angle of 7/2. By symmetry, the angle ¢{s~{r/2))
opens up to 7/ 2 also. Thus the tangent to ﬁhe curve becomes vertical and
changes direction continuously -at the point where the front intersects the

positive z axis. This completes the example.
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This exafnple shows that the traveling cusp engulfs sections of the initial -
curve until it itself disappears. In'Example 2.4, we showed that the collision of ,
ignition curves can cause a cusp to form in the solution. The creation and -
disappearance of cusps is a consequence of t.he eﬁtropy condition. In the next
theorem,. we show that any simple, closed, regular curve of class C? (convex or

not) burns into a circle as t »x.

Remark. We shall need the following ineqdality: If 10<i<a<bd, then
a—(a?=1%)V2>b ~(b%-1%)2, To show this, we let f(t)=t—-(¢3~1?)2 Then \

t t

W For t>l, = >i, which

F0)=1-(172 ) (¢85 VR Re ) =1 =0

implies that f(t)<0.

Theorem 5. Let y(s)=(a(s).f(s)). se{O.S"] be a simple, closed, régular. posi-
tively oriented curve of class C2. Assume that't'he convex-hull yy!s), s€[0,57]
of ¥ Iis piecewise .C? and piecewise regular‘.- Assume that the from propagates
in a direction normal to itself with séeed k. Then, as t »=, the shape of\the

burnt region approaches a circular region.

Remark. The convex hull of vy is the‘boundary of the smaliest convex set that
- contains al]lfpoint's of y; physically it corresponds to a membrane stretchéd as
tightly as possible around 7. It consists of pieces of the original curve con-
nected by straight lines, and ié tangent to the original curve at every point

where they touch.
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Proof. The proof will consist of showing that ¥ and yy approach the same
shape as t +»=. Since, by Theorem 4, yy must become circular as £ +=, so then
must y. Without loss of generality, we assume the front propégates at unit

speed.

We first note that if y is :c‘:onvex. then y and yy are the same curve and we
are done. In the non-convex case, along those sections of ¥y where vy and vy
touch, the two curves are tangent and their ignition curves are the same.

Thus, we focus our attention on thecse sections where ¥y and ¥ do not touch.

Let A and B be two points common to ¥ and vy, A=Y(s;) and B=y(s;),
such that the section of vy between A and B does not touch y. Thus, between

A and B, yy is a straight line segment connecting 4 to B. (See Figure (2.29))

Figure 2.29

We want to show that the section of the curve ¥ between A and B burns into
the same shape as does the line segment AB as t +=. Draw the ignition curves

of yy at A and B, since yy is'tangent to y at A and 5, they must be the same
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as the ignition curves of ¥ at 4 and B. Define /4 to be the ignition curve leav-

ing A and Ip to be the ignition curve leaving B. (See Figure (2.30).)

;

Figure 2.30

The ignition curves at A and B must be parallél, since they are both nor-
nial to the line segment ATB—.‘ We note.' that éhe ignition curve leaving any point
Pony betweén A and B can only inﬂuenpe the region between /, and /. sihce
any point outside that fegibn must Se nearer to 4 or to Br {and hence will be

ignited by the closer of the two) thanitisto P.

Choose £>0. We will show that there existsba t:_c 'such_ th&t for t >tg, eaéh
point of the flame front that evolved from the section of the original curve y
between 4 and F lies less than a distance ¢ from the'ﬁame‘ front that evolved
from tfle section of\the convex hull between A and 5. Iﬁ other w_/v'ords, as t—»x..
the two propagating flame ffonts get within ¢ of each other. |

Let 2! be the distance between A and B, and consider the set of points

£2+1°

from both 4 and 5,
2c

that lie between /, and Jp a distance greater than
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. ' £2+12
and a distance less than 5;

from the line segment AB;

A

] \
2.8 4

b=
0

%\-\‘Rﬂ (7*_\. 9:— - -
28 _~ -
-
—
- - 7
B "E’:
Figure 2.31

this corresponds to the shaded region in Figure (2.31). We claim that every
point in that shaded region is a distance less than ¢ from the line segment

" AF. To prove this, we note that the distance from C to AB is

2,42 ‘ . o
((5_2181,_)2_12)1/2‘ Thus the distance from C to AF is
2,;2 2,32 v 2,52 4 272,74 252 ‘
£<+1 £°+1 £°+l e+ 2%l +1% =247l S e e
28 - (( 28 ' )2_l2)l/2 = 28 - 482 )l/‘ (2-83)
- e241%  ef-2eP41Y )0
2¢ 482

: A AP il
T _ : 2¢ Yee

=£.

Since every point in the shaded region is closer than the point C to the seg-

ment AF . every point of the shaded region is less than & from AF .
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£2+1?

. Allow the section of
2¢

We can now complete the proof. Choose ty =

the convex hull between A and B to propagate at unit speed for a time ¢>t;
this corresponds to a line segment AF displaced a distance ¢ to the right.
Similarly, allow the section of the original curve y between 4 and B to pro-
pagate at unit speed .for the same length of time. We claim that this flame
front (labe‘lea ¥(t)) is within ¢ of the segment AF". There are only two possi-
bilities. No part of ¥{t) can be to the right of the .segment AF, since such a
point would be located a distance greater than t from the original curve,

which is impossible. Likewise, there can be no unburnt particle located to the

left of the shaded region (see Figure (2.32)), since such a point is located a

distance less than t from either A or B and thus must have been ignited by

time ¢.

Figure 2.32

Thus, ¥{t) must lie in the shaded region. We repeat the earlier argument to

see that every point in the shaded region lies a distance less than ¢ —{t2-12)/?

s
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from AF Finally, using the inequality proved earlier, wé .havev

t —(t2=1%)2<to—(t& ~1%)"/2=¢, since to<t. Thus, ¥(t) lies less than ¢ from 4F .

This completes the proof.

2.5. Comparison of Flame Propagation with Gas Flow in One Dimension

The situation we have presented is analogous to gas flow in one dimension.
In this section, we briefly explore the analogy. The comments that follow on

the solution of a conservation law are taken frorn.[B].

We consider the conservation law

u+( u?), =0. (2.186)

1
2
The characteristics are straight lines along which the solution u of (2.188) is

_ constant. Consider the initial data

: 1 =0 .
u(zl[)):[o 2(0] (2..87)

The characteristics do not fill out the (z,t) plane. as can be seen in Figure

(2.33).
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Figure 2.33

We fill out the (z,t) plane through the introduction of a rarefaction fan. This 1s _
a set of characteristics leaving the brigih that fan out and provide the transi-
tion vfro'm the characteristic on the left leaving the origin to the characteristic

on the right. (See Figure (2.34).)

> o

Figure 2.34 '
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Conversely, consider the initial data

u(z.0) = [? :ig} (2..le8)

Here, the characteristics cross each other. We introduce a shock with pr"opa-

gation speed s=1/2 to keep the characteristics from crossing. Thus, we get a

globally defined weak solution, as shown in Figure (2.35).

-Figure 2.35

In the abo.vev, we have made.use of an "entropy condition" which may be stated
as follows: A shock satisfies the entropy condition 1f when it separates the
cﬁaracter‘is._tics of one family, the characteristics can be traced back to the
initial data. |

The above discussion parallels our iheory of flame propagation. We have
' iritro.duced ignition curves along which the heat required for ignition-is tran-

sported. These curves are analogous to the characteristics of (2.186): curves

along which the solution u is carried. When the flame propagates with uniform
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speed, the ignition curves are straight lines, just as the characteristics of the -

simple conservation law (2.186) are straight lines.

In Section 2.3, we gave an example of ini.tial data for which the ignition
curves separated, leaving an open area. In Theorem 4, we showed that ignition -
curves could be constructed to fill in the open area, with the requirement that
each ignition curve reach back to the initial data. These ignition curves pro-
vided a transition ffom the ignition curves on the right to the ignition curves
on the left. ' In Section 2.4, iwe gave an examfole of initial data for whjt,;h the
igﬁition curves collided. We introduced an entropy condition that stipulated
that each particle burns 6nly once. This enabled us to continue the solution
beybnd the first collision. Our conétructed solution maintained the property
that every point of the rﬁovin,g front reach back along an igniiion curve to the
initial data.

Thus, the two entropy conditions have a similar result: they ensure that
we can al#ays’ trace back along characteristics/ignition curves to the initial

data. This promises that the sblution depends only on the initial data.

In the following chapters, we return to our full set of combustion equa-

tions {:.15)-{1.20).
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Chapter Three

Flame"Propagat.ion with Volume Expansion
In this chapter, we use the results of our theory of flame propagation to

analyze the full set of combustion equations (1.15-1.20).

3.1. Effects of Volume Expansion .

In Chapter Two, we studied the rnot‘ionJ of a flame propagating in a
premixed, combustible fluid with no boundaries. Since we éésumed that the
density ofn a particle remained constant as it changed from unburnt to burnt,
there was no motion imparted to the fluid by the flame. If the fluid is initially
at rest, it remains at rest.. Each fluid particle is "glued down", and changes

from unburnt to burnt when the flame reaches it. .

We now consider the effects of volume expansion. Assume-that the density
“of the unburnt fluid is py. the density of the burnt fiuid is p, .. and the flame
. propagates in a direction_hérmal to itself with speed k. Let p,<p, (the case
Pb >p;, is physically unreasonable). Each particle along the ﬁ'ame front eXpands '
as it burns, pushing the surrounding particl'es.'Since the flow of maés Yacross‘
the flame front is conserved, this su’ddén change in volume along the flame
front must be acc&mpam’ed by a jump in the normal component of the fluid

Pu —Pb

k. (See Chapter One). We
PutPy

velocity across the front of strength 2[
1-(ps / pu)

rewrite this as
{1+(pb/ Pu)

k. The smaller the density ratio (py/p.) between

the burnt and the unburnt fluids, the more the particles expand and the
greater the velocity jump. Likewise, the larger the flame speed. the greater

the velocity jump. The location of the boundary between the burnt and
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unburnt regions, as seen from a fixed reference frame, is a product of two fac-
tors: first, the charnge in individual fluid particles from unburnt to burnt and

second, the velocity field produced by their ‘resulting expansion.

We appeal to the theory . of single layer distributions. Let
7{s)=(a(s).8(s)). s€[{0.5] be a simple, closed, regular curve. We.assume that
is infinitely differentiable with respect to s. Suppose we spread a charge u(s)
along 7, where u is a C~ function such that u{0)=u(S), /JV(O)=;I(S), etc. If we

define the single layer potential ¢(z,y) as

S

vz y) = o) S rog(@ ety BN s (3)
. R 9 (af+65) : _

then it can be shown r5] that

) Atany péint (z.y) nét on 7, ¢ is twice differentiable and Vegizy) =0
2) glz.y)is conti‘nubus across . | | |
3) The tangential derivative of ¢ is‘cbntinuous across 7v.

4} The normal derivative of ¢ undergoes abjump of strength u across .

We use this to find the velocity field produced by volume expansion along

. . : . . Pu—Pb . . }

the flame front.- We uniformly spread a charge u=2 Y k along a flame
u b ' :

front y(s)={a{s).8(s)).s€:0,S]. Then the associated single layer potential is .



101

o s ) ] .
#zy) = §l—f {ﬁk(af’rﬁf) 1% 1og(<z—a<s>>2+<y-ﬁs»z)vzds (3.2)

{N.B. The term (a2+8%)~"? in the integrand of (3.4) is the reciprocal of arc
length. We need to divide u by the arc length to insure that the charge u
corresponds to a chargé per unit length of the flame §. Thus, if we let @ = Vg,

we have that

Vil =VVg=0 | - (3.3)
and the jump in the normal component of @ across the flame front is of

Pu =Py ' .
2 k (3.

We combine this velocity field with the burning motion of the front in a

strength

* direction normal to itself. Equations (1.13) and {1.14) become

0Yr |
0Xp ds =
=k - + u{Xr Yr) (3.5)
ot (« a)‘F )2 ‘ 6} )2)1/2 '
0Xr
0Yr 8s
—= -k + v {Xp. Yr) © (3.8)
ot Xr ., 6}' N '
(/ \1s2
\\ as ) 6 ) )
where
) [u(Xp, Yr)v{Xp. YF) } = :é—{lizn Ve + liln V;}
" and '

S
, _ Pu =P . , -
#z.y) = _277‘{2{/’:+P: ()R logiX =Xrla)) ¥ =Yils))) s
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Here, lim means the limit as we approach the poiht (Xr.Yr) on the front from
the burnt region in a direction normal to the front, and lim means that limit

as we approach the point (Xp,Yr) on the front from the unburnt region in a

direction normal to the front.

Example 3.1 Let 7(é)=(cos (s).sin (s)), s€[0,2n]. Suppose the particles inside .
v are burnt and those outside ére unburnt. The igm'tioh curves to this front
are the set of radial lines {z,y) = (t+1){cos{s).sin{s)), 0<t<e, s€.0.2r]. .At
t =0 we ignite the particleé lécated along . We wish to. fcﬂlow the mbfcion pf_ the

flame front.

Pu P

k per unit length placed along a circle
PutpPe

For a charge of strength 2{

of radius a, the resulting single layer potential-;o. from (3.4), is
v ] s Py —P ' | 172
=2 L2 (p — She —gsin32
¢lz.y) 27"’0[2[Pu+/>b k log{\zb acos — +(y asma) ds (3.7)

where y{s)={acos zsl—,a_s'mi—). se€i0,2ra]. {N.B. Since this is a parameterization.
by arc length, (a2+82)"V2 =1}

By symmetry, we must have

¢lz y) = ¢liz?+y?)1/20),  (38)
Hence, ' '
: R %abp p. " s /2 -
1 ) .8 . ;
;a(a;.y) = 57—7-{2{‘)-:+—m—}klog[((zz+y2)?’2—acosa—)2+(asma—)2 ds {3.9)

The substitution z = t—sz—yields
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' : _ 172
v(z.w-(—)z{”“ P |, I log[<<<x2+y2>"?—acos(z>>2+<asm'<_z>)2)] dz
Pu+py J 0

—p ) ®nm :
= 5‘3[2———“ +ﬁ: bk { 1og{zz’+y2—2a (z%+y?)" 2cos(z )+a2]d2 (3.10)
u ) .

k ofzry? _[z%4y2)"F
._( Pu"‘Pb flog . —2 o2 J cos{z)+1}idz

) 2n . /2 '
Pu—P ’ 22+ 2 2+ 2 .
= (%—) p:+p: -k{[logafﬂog{ azy —2{2 2y } cos(z)+1]}dz

» | 2n . . /72 |
_ (. G \JPuTPy g z2+y? zz+y21 (N
.= 2 ){—+pb—}k 2mloga +‘ {log[ 22 2 o7 J »cos\z)+* dz

Using the formula [7]

a

2n L 0 w3 o
(ne:ReDn,: ( “ = - (3.:2
~cJ[1og\'u, Zwlog\;)ﬂ)dz {anogwak u;2>1] (3.21)

fpu=po o
a klog{a)® z%+y%<a? :
riaferosar stnure 3
S (3.12)
d

we have

Thus ¢ is constant inside the circle. We rewrite ¢ in polar coordinates -

of Pu P kloga® r?<a? _

(r) = PutPp : (3.:3)
T)= \u Il
v a.[pu Py |

klogr? r%>a?
PutpPp ’

where

r? = z%4y?

Let 2 = Vg. Then Vi =V Vg = O 1n51de and outside the circle. ¢ is continuous”



across the boundary, since

. \ Pu—Pp 2 . - |
lim ¢{(r) = a k log a® = lim ¢(r 3.14
Jlim ¢(r) {p—-}wpo e = p(r) (3.14)

The radial symmetry of ¢ implies that the component of 2 in the direction
tangent to the circle is zero and thus continuous across the flame front.

Evaluation of the normal derivative across the front yields

o . oy . o
Br - im 5-=0 (3.15)
9t _ . By _ Pu=ps |, 1 | rm ey
or _rllgl+ or rllgl* _za[Pu’be “r (3.26)

=2 Pu—Pb k
Putpy

i d¢” . L . Bt :
where ar is the normal derivative from. the inside and —”—ar is the normal

~

derivative from the,outside.' Thus, %*f_— undergoes a jump of magnitude

2{2" :Zb k. Note that the normal velocities on either side of the circle are
u b

independent of the circle's radius.

The propagation of thé'ﬁame and the advection velocity field vield the
.positi‘on of.the front. Since v{s) is originally a circle, eacﬁ pdint both pro-
pagates radially outwards and is carried in a radial direction by the Qelocity

field.
We rewrite (3.5) and (3.6) in polar coordinates. Let (R{s.t).0(s.t)).
-s€.,0,2r], te0,=) be the position of the front at time ¢; then

{R{$,0),0{s.0))={cos{s).sin{s)). Then,

¢
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=k + ¢.(R.8) - . (3.17)

ot

80 _ ‘ '

T 0 : (3.18)
R(s0)=1 O(s.Q) =5

In (1.13)-(1.14). we chose the fluid velocity at the front to be the average of the

fluid velqcity from the burnt side and the fluid velocity from the unburnt sidé,

Thus,
8¢t , ¢=| _ [Pu=pn ],
k0= + 3.19
o #r(R.8) = "{ or  or | [pu+pb—J (8.19)
Substitution into (3.17)-(3.19) yields
or Pu—Po
—=k |i+- 3.20
ot PutPp , ( )
80 ' )
'éT= 0 o o . (3_.2;) )
: R{0s)=1 0{0,s) =s
Integration yields ( . : '
R(s.t) = 2k|——t + 1 S 22
N v - (a22)
Oist)=s _ {3.23)
Thus, '
(z{s, t)y(s t)) —{ {————-]1 v } os{s), sm.s)) (3.22)
s€i0, 2r ’

The larger the expansion ratio gl- the faster the flame moves. This completes
. (-] . ’

the example.
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' The'potential ¢ (3.12) is constant along the circular flame front. Thus. the
streamlines of this velocity field there are everywhere tangent to ihe family of
ignition curves associated wif.h such a front burnirig without volume expansion.
The fluid merely "pushes” the front at a uniform speed along the original set of

ignition curves. Each point on the front travels along its ignition curve with

speed equal to the propagation speed k plus the advection speed {2“:2" k.
’ ) . u [

(See Figure (3.1))

Pa- Q% Sk

s?ea:F\(-r i f’v&(b

(Du.: (A
X \f;\wvne Ex()AAsf\am

Volue Expansion

-Figure 3.1
Thus, we are able to recast our equations of motion (3.8)5(3.9) as equations

along the ignition curves associated with a front burning with no volume
expansion.

Given a more general curve, however, the potential associated with a sin-
gle layer distribution of constant chargé density will not be constant along the
front. There wﬂl bé a component of the velocity field tangential to the front.

The motion of the front, as seen from a fixed reference frame, will result from

o
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\

its propagation in a directioh normal to itself and the effects of the fluid velo-
city, which carry it in a different direction. If the curve is non-convex, the'
-~ situation is even more cbmplex. Since both the flame and the fluid are
advected by the flow, one can no longer tell when a particle will be ignited by
simply measuring its distance to the initial front. The motion of the front
depends on the ignition cur\lies.v the velocity field induced by volume expansibn
and our entropy condition.. We have not attempted in this paper to present a

general theory to account for such situations.

3.2. Boundary Conditions

We now consider the effect of boundary conditions on flame propagation.
Suppose the flame is burning inside a partially closed vessel. That is, let Dbea
_domain'an'd let ¥ be 'a éirriple. closed-cﬁrve lving in D. Let 8D be the boundary
" of D, and assume that 8D°<aD is the part of the boundary of D that does not
correspond to solid wall. We assume that the particles inside y are burnt ‘and

s

‘those outside are unburnt. At t =0, we ignite the particles along ¥.

Let 2 be the velocity field created by volume expansion along the flame
front. Our boundary conditions {1.17) force @ to be zero on solid walls. Since
the flow is incompressible in the burnt region, by the divergence't_h'evorem we

have that

f(’u‘ﬁb)\ds = f va = : (3 25)

\V.

where at any point P on the flame front, 7, is the inner unit normal and

(a'ﬁb)zginp (2 -1) .with R approaching P from the burnt region along the nor-
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-mal. (See Figure (3.2))

unp,ukNT

D %o\\' A \"Q\\.

Figure 3.2
Equation {3.25) statgé that if no volume is created or destroyved inside the

burnt region, then the net flow through its boundary is zero. Since the normal

Pu—Pb

u TPb

_ ) T - ) _ Px.",‘Pb / |
9 = [(11 m,)ds = !;[('d ,) z{mk}ds (3.26) x

velocity must undergo a jump of 2[ k across the flame front, then

where, at any point P on the flame front, 7, is the outer unit normal and

: (11‘1‘1.“)=101n; (2-#,) with @ approaching P from the unburnt region along the

Pu Py
, c Uy) = J (@2 ,)ds 27
N 2{p—«}u+pb k)= [@ s (3.27)

_Where L{y) is the length of the flame front. The flow is also incompressible out-

normal. Hence,
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side the burnt region, thus

.

[(a-m)ds - é(a-mds = M[mv-a =0 (3.28)

where 7 is the outward pointing normal. Substitution of (3.27) into (3.28)

" yields

) = Pu"Po )
a[p (2-7)ds z{puwb k L{7) ,(3.29)

Since 1 is zero on the complement of 8D°,

f@a)yds =2

{pu Wy
eD"

oL k 1{y) ' (3.30)
Equation (3.30) states that the volume'produced along the flame front must be
allowed to ﬁo;v out through aD'. The longer the flame, the more volume pro-
duced. The more v;ylurne produced, the faster the. exit velociﬁy éf- the fluid

_through 8D°. This flow of fluid out the exit is reflected in the velocity field at
-the flame front. Furthermore, we cannot close off the vessel corﬁpletely and

still require that the densities of the unburnt and burnt fluids remain con-

stant.

3.3. Numerical Modeling by Finite Differences

In this section. we use our theory of flame propagation to show that finite
difference methods that attempt to model the flame’s motion face serious obs-
tacles. We assume the motion satisfies Equations {1.25)-{:.20) and the entropy

condition.
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Let 7(s),s€[0,5], ¥(0)=y(S) be a simple, closed curve. The particles
inside 7 are burnt and those outside are unburnt. At £=0, we ignite the parti-
cles aleng v. In this ciiscussion, we neglect pre-existing vortjcity. {N.B. Our
objective is to show the inapplicability of finite difference techm'qees to this
problem. The addition. of another advection field to the flame's motion can

‘only make matters worse.} |

Consider an at_tempt to repﬁresent the flame by a set of marker particles‘.
~ Choose n points 0=5,<5,<...... <s,=S. We interpolate the initial position of the -
b' flame front at the boints Sy

We wish to move each max_‘k‘erAin _the direcgion given by our equatiens of
motion for flame propagation. ¥ith (;i.yi) as the position of the i* marker aﬁ
time ¢, we hope to interpolate and obtain a good a’pproxirnatvion to the vp,\osition
of the flame front. | | /

To move the marker (z;.y;). we must know the fluid velocity and the nor-
mal rdirect‘ion at ihat point. At time t;, one way to determine this direction is
to make use of the neighboring marker -b‘oin’ts. For example, one could approx-
imate the front at (z;.y;) by the paf'abola through (z;-1.%:i-1). (zi.%). and

-(:riﬂ.yiﬂ). and use this to determine the normal direction. Let

NX; ((Zij Yieg) oo Az ) (Zivk Yisr)) . J.k=0 _ 3.32)

be the z component of the approximated unit normal at {z; y;). Similarly, let

NY (@i Yicj)oon Zi W) Tise Yane)) T k20 $3.32)
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be the y component of the approximated unit vector. For brevity, we write
NX; and NY;. Thus, NX; and NY; represent finite difference approximations to .
the spatial derivatives in the equatibns of motion (1.19) and (1.20). The motion

of each marker point is described by

Bz, : -

—;tl-= k -NX; +u(z,y;) © (8.33)
a . . : . .
6?? =~k -NY; + vz, y) - (3.34)
| i=1n-1

\

| The velocities © and v represent the velocity field indﬁced by volume expan-
sion and depénd on the position of the flame front (and thus all the marker
points). We have written them as functions of only (z;,y;) forvthe sake of brev-
ity. For an example of a numerical scheme for the propégation of a flame
written in this form, see [9]. One then solves Equations (3.33)-(3.34). The sim-
plest iechnique is to use Eu]er's method .to. advance the positién of the marker
points in time. Of course, the functions © and v may be complicated, having

* arisen from the solution of an elliptic partial differential equation.

We now use our théory of flame propagation to see the problems involved
in such a formulation. We can ignore the eflects of the advection field for our
analysis.

N , .

Let vy be the convex hull of 7. We have seen in Chapter Two that, along
those sections of 7y touching vy, the length of any given piece of the initial
front cahnot decrease as it moves. Moreover, if the section is not straight, its,

length must increase (Equation 2.44). The greater the curvature of the initial

front between two neighboring marker points, the more that section
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lengthens. As the marker'point.s,get further apart, the approximating curve
becomes more suspect. Unfortunately, those sections that change the least

are the ones that keep their marker particles closest together.

The situation iS even worse for those sections of the initial froht that lie
inside the convex hull. We have shown in Chapter Two that, as such a section
propagates, cusps form and the flame front ceases to be differentiable. These

_cusps “swallow up” sections bf the front. Consider a collection of marker
points placed along such a section of the initial front. The first problem to con-
front is our entropy condition. Example 2.4 shéws that oné doesn’t want to fol-
low that part of the front whichl moves into. previously burnt areas. It is hard to
imagine a technique that could reconstruct the ﬁame front at each time :'step
from those points that are actually on the boundary between burnt and
unburnt fluid, énd kn‘ow hom; to avoid the rest of them. The second problerh is
that the marker poinis tend to cluster .together in a small area around the
cusp. As the markers clus‘tér; small errors in their positions can cause huge
errors in the determination of .the nof'mal direction to the front. For example,
for a parabola through three points.‘ two of which_ are close together, srﬁall
changes in their position cause rad"ical changes in the shape of the parabola.
Thus the tendency of ihe marker points to cluster can cause a large error.in
the determination of the direction in which the front is to move. Typically, the

front becomes highly unstable and de\}elops wild oscillations.

In summafy. since one needs to know the orientation of the front th a
point to determine where next to move it, too fine a discretization leads to
gréét numerical eri‘or in this determination as marker points cluéter
together;.. and too coarse a discretization leads to an overly simplified and

unsatisfying resolution of the front. As if almost by designv. the effect of the
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motion of a flame in a direction normal to itself is to bunch up marker points
where they do the most harm and spread them out where they would have

done the most good. _ | T

In the next chaptér., we preselnt a numerical method_fo'r following flame"

fronts that does not depend on a discrete parameterization' of the front.
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Numerical Simulations

In the last chapter, ‘we showed that numerical methods that attempt to
follow a flame front by finite diﬁ'ereﬁée techniques face serious and possibly .
insurmountable obstacles. In this chapter, we present a numerical method,
developed by Chorin [2]. which d_oes not rely on a‘discreté parameterization of
the movingfront. This method has been used with gre‘at success in the numer-.
- ical simulation of turbulent combustion ([6] and [14]). We show that the rea-
son for the success of Chorin’s method is clear when viewed from within the
framework of our theqry of ﬁamé propagation, ;and that the method arises
naturally from our theory of ignition curves. The central idea of this method is
. an gxprjession of our entropy condition that once a particle burns it remains
" burnt. We use this method to demonstrate the results of our theorems, illus-

tr.at\ing spréading and colliding ignition curves, cusp formation and flame

reversibility..

4.1. The Method

¥We first use our theory of flame pro;;agation to set the stage for the

numerical me.tho‘d. .

Let 7(s)=\a(s).ﬁ(s‘)) be a simple, closed curve. Assume that the particles
* inside y are burnt and the particles outside are unburnt. At t=0, we ignite the
particles along 7. and assume that the front propagates in a direction normal
to itself with speed_ll:. For the moment, we assume that p, =p;, thus the fluid

remains at rest.

In {2 :68), we defined the indicator function ¢{z,y.t) of the burning front;

¢z, y.t)=: if the particle located at {(z.y) is burnt at time t, and zero

€
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otherwise. .
‘We found that
11 if (z,y) is burnt at t=0
- 25 min ((z— 24 (v —B(s))2 : '
P y.t) = |1 (k)= min (z-a(s))+y—H(s)) (a1

10 < min, (2 -a(s))P+ (v -6

At time ¢,, the boundary of the set of (z,y) such that ¢{z.y.t,)=1 corresponds
to the position of the flame front at time ¢,. : | '
We now formulate ¢{z.y.t.) in a different way. For each s€[0.5], let D, {t)

be the closed disk of radius kt centered at y(s). (See.F‘igure (4.1))

Figure 4.1

Choose an;v point s,e{O.S]' on the initial curve. Clearly, every point
(z .y)EDs!(t) must be burnt by time ¢, since any such point is located a dis-
tance‘lessl than kt from ¥{s,). Consider the set D{t), defined as the union of

the interior of y with Dy(t) as we range over all possible values of s€0,5].
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That is,

D(t) = [.D7 ]‘u{segs] Dy (t) | (4.2)

where D, is the interior of .

" We claim that, given a point (z,y) and a time ¢,, p(z.y.t;)=1 if and only if
(z y)eD(t,). First, suppose ¢(z.y.t,)=1. Then, by the definition of ¢, there
| exists an § such that |(z.y)—y(§)|<kt,. Therefore, (z.y)cD(t,) cD{t,). Con-
versely, suppose (z,y)eD(t,). Then either i) for some §, (z ,y)eDg(tl.) and s'o.
¢lz.y.t))=1orii) (z,y)eD, and p{z.y.t,)=1forall t. | |
Thus, at any time t, the position of the flame ffont is given by the bogn-
dary of D{t). Note that our construction of D(t) obeys our entropy conditi(.m.
This is because D{t) is formed from the union of all disks of radius k¢t with
. centers on the initial front. Any particle within that union is "couhtéd" ie.
1gni§ed, only once, regardles; of how many disks I {¢) contain it. The position
- of the front at any tim_e‘t is the envelope of the region formed by the expand-

ing disks D, {t), s€{0,S] and the original area D,

We now describe an alternate way of constructing D{t). Let DE(t) be the
translat.on of the original ‘region D, a distance kt in the direction {c2s0,sin®).
That is, {z.y)eD8{t) if and only if (z —(kt )cosO,y ~{kt )sin®@)cD,. By taking the

union of all such possible translations as © ranges from 0 to 27, we see that

Dity=D, U] o DSt | 9
v r 3)
. c!C.2n] =

We now present a numerical method, developed by Chorin, that moves the

front by approximating the above construction.
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Assume for the moment that we possess an algorithm that will translate
the region D, in a given direction at a'given speed 'A(we shall describe such an
algorithm shortly). Consider the eight angleé 6, = (l‘—l)rr/ 4,1=1,2,....B. If we
form the eight regions D:‘ (At) . each one being the translation of the original
region D, a divstance kAt in the dirggtion (cos®,,sin@;) , then the union of‘

these regions together with D, will approximate the burnt region at time At .

The algorithm Chorin used to translate D, in the eight directions is the
Simple Line Interface Calculation {SLIC) method, developed by Noh and Wood- .
ward [.13]. We irnposé a square grid i,j of uniform mesh length on the combus-
tion domain, and a’_ssign a number f;, DSf.;,-si to each square. The number f;
corresponds to the fraction of fluid within the square 7,5 that is burnt. Thus, if
'y(sA) separates the fluid at =0 into the two rv‘egions.‘ burnt and unburnt, the
squares outside have J=0, squares inside havé Jij=1, and those that strb"avd-
dle ¥ have. f;; between 0 and 1 The field of numbers f,,,- allow one to recreate
.the approximate positioh of the front. ' |

The algorithm mové_s the bumf region by drawing in each cell an intérvface
which représents the_'bou:idary between the burnt and uhbtimt fluid. The
.orientation. of t_he interface depends on the valuebof Jiy and the Jij's m the
cell’'s neighbors. The burntﬂ fluid is then transported in the given direction. and
| a néw set of fy;'s are created, which approximate the burnt region translated
" a distance kAt in the given direction. | |

‘»L"sinvg, this algorithm, we may approximate the position of the flame front
at any time t. At time t =nAf, n an integer, At a time step, we have an array
of.cell fraétions fij (n), which ‘cban be used to describe the burnt region at time

t We move the burnt region in each of our eight directions ©, a distance kAt

8 ’ ' .
Let f;'(n) be the array of cell fractions obtained from moving the burnt
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region at time £ in the direction 8;. Let f,"?_"(n)':f,;,- (n). Then the burnt region
at time (n+1)At will be approximated by

Jy (n+1) = max fig‘(n)  (4.4)

- This advances the front in a direction normal to itself a distance k At .

We have been content to merely sketch the outlines of the numerical

method and of SLIC. For a complete presentation, see [2] and [13], fespec-.

tively.

4.2. Examples of Numerical Simulations

In this section, we use the numerical method presented above to illus-

trate some of the results of our theory of flame propagation.

Let y be the boundary of the square centered at the/origin with sides of
unit length,L and assumne that the particles inside o are burnt and those outside
are unburnt. At t=0, we ignite the particles along y. We assume that the front

-
!

travels in a direction normal to itself with speed k= -é—

From our theory of flame propagation, we know that the ignition curves
extend from each corner in a radial manner, filling in the space between the
ignition curve on the left at a corner and the ignition curve on the right. (See

Figure {£.2)).
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At any time f, the position of the flame front may be described as follows:
Fach of the four sides has moved in a direction normal to itself a distance kt,

and these segments are connected together by four circular arcs.

In Figure (4.3), we show the results of a numerical simulation. We chose a

mesh width A =.05, a flarne speed k=.5 and a time step of At=.1. For display

purposes, we shaded those squares with f;>.25. We display the results at

t=0, t=2.0 and t=4.0. The results show the propagation of each side of the

-

square, and the circular arcs connecting these sides. This illustrates our con-
struction of radial ignition curves at the corners.

We now show the idea of flame reversibility. Since the initial curve y is
convex,‘our theory of flame propagation maintains that we should be able to
take the position of the front af any time ¢t and "burn it backwards” until we
‘r'each the. initial shape. Numierically, we let f2¢% = :—f2d : this will inter-
change the places of the burnt and unburnt regions. At t=4.0, we switch the

burnt and unburnt regions. In Figure {(4.4), we show the results of this front
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- propagating inwards at £=4.0, t=6.0 and t=B.0. At £=8.0, the position of the
front is about the same as it was at t=0. Thus, the numerical method

preserves our notion of flame reversibility.
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Furthermore the numer1cal method does an equally good job of illustrat-
mg the irreversibility of non-convex initial flame shapes bet 'y be the boundary
of the square cent.ered at the origin with sides of length 5. Assurne that; the
particles outside ¥ are burnt and those inside are unburrxt. Thus, the initial

:_curve is not convex (that is, the burnt region is not a convex set) andvthe‘.igni-

' vtivon curves intersect for any £ >0. (See Figure (4.5))

\SuRNT

L

Buent Dot
Bt

RBueny

Figuré 4.5
If we allow this front to propagate, 6ur tﬁeory.r)f ﬁarﬁe propagation dictates
-that’ information abotut the initial ‘sha'pe-of;the flame will be lost. In Figure
(4.6), we show the results at t=0, i=2 and t=4. At t=4, we interchange the
burnt a.rrd unburnt fluids, and allow th’e"fron‘t to burrr_"in the other direction”.
In Figure (4.7), rwe show the.results at t=4, ‘t=6 and ¢t =B. Clearly, the front at
¢t =8 does not look like the front at t =0. This illustrates the irreversibility of a

non-convex initial shape.
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Finally, we consider a smooth, non-convex curve that develops a cusp as it

moves. Let y(s)=(a(s).8(s)). s€[0.6n], where o and B are defined as follows:

[ —cos(s) O<s<n/2
~cos(s) 7/ 2<s<3n/R2
3cos(s/3) 3n/2<s<9n/2

—cos(s) 9n/2<s<1in/2
| —cos(s) 11n/ 2<s<6rm

4

. sin{s) - Oss<n/2 .
—sin(s)+2 n/2<s<3r/2
3sin(s/3) 3n/2<s<97/2
-sin{s)-2 9n/2<s<iin/2

sin(s) 1im/ 2<s<6bm

3 /

(4.5)

Note that v is parameterized by arc length, and possesses a smoothly turning

normal vector. We assume that the particles inside ¥ are burnt and those out-

side are unburnt. At £=0, we ignite the particles along . We let the front pro-

pagate with speed ='%'f

Using our formula for ignition curves, a lengthy but

straightforward calculation shows that the position of the front (z{s.t).y(s.t )

is given by

Fort<:

z{s.t)= -é—’ﬂgt +a

Q
O<s<6r

y(s.t) = —1—ast + B

o
-~
g
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For t>1
z(st) = Bt +a | (48)

y(s.t) = —é—ast +8

The position of the front for various values of t is shown in Figure (4.8). We

note that as the front moves, a cusp forms at t=1.van.d travels along the posi-
tive x axis, “swallowing up” sections of the front. In Figure (4.9). we show the
results of the application of Chorin's flame pr;opagatiori élgﬁrithm to this prrob-
Iem for various values of t. Thev rﬁethod does an excelleﬁt job of showing the‘

formation and absorption of the cusp.

The above computations were performed on a VAX computer— at the

Lawrence Berkeley Laboratory, Berkeley, California.
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Conclusion ‘

We have developed a theory of flame propagation for a-simphﬁed model of
combustion. We considered a premixed, combustible fluid in which each fluid
particle could exist in one of two étates. burnt and unburnt. We modeled the
flame front between the burnt and unburnt regions as an infinitely thin curve
propagating in. a direction normal to itself at a constant, prescribed speed. We
assumed that the séeciﬁc volume of each fluid particle increased by a fixed

amount as it changed from unburnt to burnt.

We began (Chapter One) by presenting the full set of combustion equa-
tions for ouf model, that is, the equations of fluid mechanics for viscous,
incompressible ﬁow_:together with our equations ‘of flame propéga.tion In
Ché'pter Two, we suppressed the effects of ihe. velocity field produced b\
volume expansion. Through the introduction of ignition curves, we were able
to solve our equations'of ﬁame‘prop_agation. These ignition curves carry the
temperature required for ignition, and play a role in our equations analogous
to that of characteristics in the solutions of hyi)erbolic equations. Continuing
the arialogy with the theory of conservation laws, we developed an entropy °
condition for flame pfopagation that stipulated that no particle could burn
more than once. With this theory of ignition curves arid our entropy condition.

we proved the following:

1) If two initial fronts start close together, then they remain close together
as they propagate. In other words, flame fronts are stable. As the front
moves, oscillations in its initial shape are smoothed, with the result that

the burning front asymptotically approaches a circular shape.

2) As the front moves and deforms, it develops cusps. At such points, the

curve ceases to be differentiable These cusps are a result of colliding
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ignition vcurves and our entropy condition. They form in a manner similaij
to the way in which shocks form when characteristics collide. These cusps
"swallow up" sections of the flame front as they move and destroy infor-
mation about the initial shape of the flame front. Once a'éusp forms, it is
irnpoésible to retrieve the original flame shape by sél-ving the equations of
motion backwards in time. Each ignition curve carries information about

the initial shape of the front, and that information is lost in a collision..

In VChapter Three, we returned:. to oﬁr full set of combustion equations and . -
showed that the streamlines of the velocity field produced by volume expan-
sion are not, in general, normal to the flame front. Thus, when viewed from a -
fixed ff;ame of reference, the motion of the flame is no longer solely in a direc-

tion normal to the front.

We then used our theory of flame propagation to show that .a numerical

‘approximation to’the_equétions of motion based on finite difference tech-

niques contains numerous drawbacks. As the front burns, the parameteriza-

tion changes dramatically as certain sections expémd while others are wholly

"eliminated through the formation of cusps. Those numerical methods that

discretely parameterize the curve will have great difficulty following the flame
front, since the formation and absorption of these cusps takes place on a
variety of scales. In particular, since one needs to determine the orientation

of the front at a pbint to establish where next to move it, too fine a discretiza-

~ tion can lead to great numerical error in the determination of this direction as

marker points cluster together, and too coarse a-discretization can lead to an

overly simplified resolution of the front.
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In Chapter Four, we presented a numerical method, developed by Chorin,
for following flame fronts which did not rely on a discrete parameterization of
the front. We showed that the reason for the great success of Chorin's method

is clear when viewed from within the framework of our theory of flame propa-

gation, and that the method arises naturally from our theory of ignition

curves. The central idea of this method, the application of Huygen's principle
to move the front in a direction normal to itself, is an expression of our
entropy condition that once a particle burns it remains burnt. Finally, we used

~

this numerical technjque’ to illustrate the results of our theorems, demon-

strating the idea of spreading and colliding ignition curves, flame reversibility

and cusp formation.

There are several directions suggested for further work. One possibility is
to investigate thé rnbdel proposed by Markstein in which the flame speed is
taken as funcﬁon of the curvature at any point. In this case, although-the igni-
tion. curves are always normal to the front, they are no longer straight lines.

Thus, a simple solution to the appropriate equations of motion is not readily

apparent. With or without a solution, can one still show that any flame front -

asymptotically: approaches a circAle‘? Although our entropy condition is still

appropriate, do cusps form in the same manner, if at all?

Another possibility is to analyze tvhve interaction of ignition curves with the
velocity field produced by volume expansion along the flame front. As men-
tioned earlier, the motion of the flame is a combination of the transformation

of particles from unburnt to burnt and the advection field produced by their
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resulting expansion. How does one rigorously deal with the effects of volume
expansion at places where the curve is not differentiable? A third possibility is

to remove the constant pressure approximation in the equations of motion.

" Finally, how does one show that the solutions to these sorts of problems are |

unique?
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