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An Analysis of name Propagation 

.lames A. Sethian 

Abstract 

i 

We develop a mathematical theory of flame propagation and analyze the 

stability of a name front. We consider a premixed, combustible nwd and model 
. ' 

the front between the burnt and unburnt regions as an infinitely thin curve 

propagating in a direction normal to itself at a constant speed. We assume 

that the specific volume of a nwd particle increases by a fixed amount when it 

burns. 

Our results show a deep analogy between the equations of flame propaga-

lion and hyperbolic systems of conservation laws. We introduce the notion of 

ignition curve·s and ·an entropy condition which enable us to solve the equa-

lions of name propagation Jn the absence of nuid motion. We prove that any 

initial front asymptotically approaches a circle as it burns, and that if two 

fronts start close to each other. they remain so. As the front moves, it may 

form cusps. which are the result of colliding ignition curves and form in the 

same way that shocks develop in the solution of hyperbolic systems. These 

cusps absorb sections of the name front. destroying information about the ini­

tial shape of the front: once a cusp forms. it is. impossible to retrieve the ini~ 

tial data by solving the equations of motion backwards in time. We use our 

theory to discuss the difficulties involved in a numerical approximation to the 

'~quations of fiame propagation. Finally. we' analyze a numerical technique, 

. developed by Chorin, that doe~ not rely on a discrete parameterization of thP 

initial front, and use it to illustrate the results of our theorems. 
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1 
lntroducUon 

One of the main goals of a theory of combustion is to p.redict the shape of 

a flame as it burns. In this work, we develop a mathematical theory of flame 

propagation to analyze the stability and smoothness of a flame front. We then 

present a numerical technique to model the motion of a burning front, and use 

this technique to illustrate the .results of our theorems. 

In the past few decades, a considerable amount of attention has been 

focussed on flame stability. The pioneering work in this field is the analysis of a 

plane flame front by L. Landau in 1944 [10]. By ignoring all but hydrodynamic 

effects, Landau was able to show that such a front is unstable with respect to 

small perturbations. Since then, there have been numerous investigations of 

flame stability for a variety of combustion models, see Markstein, [ 11], Zeldo· 

vich, [17], Zeldovich, [16] ~nd lstratov and LibroVich [B]. A comprehensive, 

though now outdated, account may be found. in Markstein [ 12-]. A review of 

current work may be found in Sivashinsky [15]. 

A standard technique employed in stability investigations is linear pertur­

bation analysis. As Markstein points out, such a technique has its drawbacks. 

For example, the results are valid only in the limit as the amplitude of the per· 

turbations goes to zero. There may be steady-state amplitudes in regions of 

linear instability. Furthermore, there are phenomena that are so fundamen­

tally non-linear that they do not submit to a linearized analysis. 

In this work, we proceed in a different manner. We solve, analytic~ly and 

geometrically, the equations of a particular model of flame propagation. Our 

results show a deep analogy between the solutions of the equations describing 

the propagation of a flame front and the solutions of hyperbolic systems of 

conservation laws. We show that, as the flame front moves, cusps form and 

then disappear, and prove that, in our particular model of flame propagation, 
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flame ·fronts are stable. 

In Chapter One we consider an incompressible, viscous, premixed, com­

bustible fluid. A "premixed, combustible fluid" is a fuel that exists in one of two 

states, burnt and unburnt. The flame front is idealized as an infinitely thin 

curve separating the burnt and the unburnt regions. We assume that the flame 

propagates into the unburnt fluid in a direction normal to itself at a uniform 

speed. We further assume that the specific volume of each fluid particle 

increases by a fixed amount as it changes from unburnt to burnt. Thus, there 

is a velocity field induced by the propagation of the flame. 

With these assumptions, our problem becomes one of follo\\-ing a flame 

propagating in a direction normal to itself while interacting with a moving 

fluid. A somewhat related pr.oblem concerning the motion of a surface whose 

velocity equals its mean curvature at any point was analyzed with some 

interesting results by Brakke [ 1]. 

In Chapter Two, we suppress the effects of the velocity field produced by 

volume expansion. We introduce the idea of ignition curves, which enable us to 

solve· the equations of flame propagation: These ignition curves are seen to 

play a role in our equations analogous to that of characteristics in the solu­

tions of hyperbolic equations. Continuing the analogy v.ith conservation laws: 

we develop an entropy condition for flame propagation. With these tools. we 

prove the following: 

1) If two initial fronts start close together, they remain close together. In 

this sense. flame fronts are stable. Furthermore, any initial front asymp-

totically approaches a circle as itburns. 
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2) ' As the front moves, it forms cusps, which are the result of colliding igni-

. tion curves, apd develop in the same way that shocks form when charac­

teristics collide. These cusps "swallow up" sections of the flame front as 

they move, destroying information about the initial shape of the flame 

front. Once a cusp forms, it is impossible to retrieve the original flame 

shape by solving the equations of motion backwards in time. 

In Chapter Three, we use our theory of flame propagation to show that 

numerical method~ that attempt to solve the equations of motion by finite 

difference techniques face serious obstacles. In particular, numerical tech-

niques that rely ·on marker particles placed along the front will have great 

difficulty following the front. In Chapter Four, we present a numerical method 
' . 

for following flame fronts, developed by Chorin [2], that does not rely on a 

discrete parameterization of the flame front. We show that the reason for the 

. great success of this method is clear when viewed from within the framework 

of our theory of flame propagation. Finally, we use the numerical technique to 

illustrate the results of our theorems. 
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Formulation of the llodel 
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In thls chapter, we present our model of turbulent combustion. We give a 

physical description, followed by a mathematical formulation. 

We consider two-dimensional. viscous flow inside a given region. On solid 

walls, we require that the normal and tangential velocities are zero. We make 

the following assumptions: 

1) The fluid is a mixture of fuel and air, in which 'each fluid particle can ,exist 

in one of two states, burnt and unburnt. When the temperature of. an 

unburht particle becomes sufficiently high, it undergoes an instantaneous 

change in volume due to heating and becomes burnt. The ratio of the den­

sity of an unburnt particle to that of a burnt particle depends on the mix~ 
',·· 

tuie under study· and is a prescribed constant. Thus, we regard the inter-

face between the burnt and the unburnt regions as an infinitely thin flame 

front, acting as a source of specific volume. 

2) The front propagates at a fixed speed in a direction normal to itself into 

the unburnt fluid. The lower the ignition temperature of the fuel. the fas-

ter the flame propagates. 

3) Compressibility effects can be ignored and sound waves travel infinitely 

fast. This balances pressure forces. 

In our model, the fluid motion affects the position of the flame front, and 

the exothermic expansion along the front influences the fluid velocity. As an 

illustration of this process, consider a fluid flowmg down a channel Suppose 

we ignite this fluid near the inlet, i.e , raise the temperature beyond the igni-

lion point The flame will propagate as the surrounding particles are ignited. 
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The resulting change in volume of these ·particles pushes the nearby fluid, and 

this. exothermic velocity fleld, added to the underlying fluid flow, carries the 

flame front down the channel. 

ln this model, we ignore .variations in the flame propagation speed due to 

molepular diffusion and chemical kinetics, and disregard three-dimensional 

effects such as vorticity stretching. 

We now develop a mathematical formulation of this model. Let a be the 

velocity of the fluid at a point (z,y), i.e., 'll=(u(z,y),v(z,y)). Let J(s,t) 

parameterize by s the position of the flame front at time t; given s, J(s ,t) 

yields the coordinates (XF,YF) of a fluid-particle that changes from unburnt to 

burnt at time t . Thus 

(: .1) 

""-· 
Let R be the Reynolds number, and let k be the prescribed speed at which the 

' . 
flame burns. 

The fluid motion on either side of the flame front must satisfy the momen-

tum equation for viscous flow, namely 

Dil = ~2.;1- VP 
Dt R ~ p· 

(1.2) 

where f:t is the total derivative, P=P(z ,y) is the pressure, p=p(z ,y) is the 

density, Vis the gradient and V2 is the two-dimensional Laplacian. We restrict 

p to twc:> possible values; Pu in the unburnt fluid and Pb in the burnt fluid. The 

boundary conditions for viscous flow are 

1l = (u(z.y),v(z,y)) = 0 (:.3) 

on solid walls. 
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· · Since the flow is incompressible on both sides of the flame front. 

V·'il(.:z: ,y)=O (1.4) 

in the burnt and the unburnt. regions. However, along the front, where the fluid 

undergoes a volume expansicm as it burns, the divergence is necessarily non­

zero; each expanding particle pushes the surrounding fluid, and thus in any 

small domain along the ftame front, the ftow in cannot equal the ftow out. By 

using the conservation of mass, we will derive an expression for the effect of 

this volume expansion on the tluid velocity. 

Across the moving front, mass coming in from one side equals the mass 

leaving on the other side, that is, (pUn) must be continuous across the front, 

where p is the density and Un is the velocity component normal to the front. 

Suppose the flame is moving from left to right. The fluid on the left is burnt 

and has a lower density (due to expansion) than the unburnt fluid on the right. 

(See Figure (1.1)) 

Figure 1.1 

lf we imagine- a coordinate system moving with the front, then the conserva-

tion of mass requires that 
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(1.5) 

where ;z,. and U, are the velocities of the fluid normal to the front on the 
- . 

unburnt and burnt sides, respectively. Here. an overbar denotes velocities 

relative to the moving front. Let u.,. and ut be the velocities on the right and 

left respectively, and let S be the velocity of the front. all taken in a fixed 

frame. From conservation of mass, we have that 

Pu(u,.-S)= p, (u,-S) (1.6) 

Thus, 

Pu (u.,. -u, )=(pu-p, )(S """''.Lt) (1.7) 

Adding ( u, ~ HPu -p,) to both sides and solving for (u,.-ti.,).we find 

(u.,.-ut)=_2[Pu-Pb j[s-(u,+u,. ~~ 
· Pu+p, 2 

( 1.8) 

Recall that k is the prescribed speed of propagation. Thj.s speed, plus the' aver­

. age of the velocity on the left and the right, equals the observed speed of the 

front as seen from the fixed frame: . 

Substitution yields 

S=k +( u, +u.,. ~ 
2 

[~p (u.,. -u, )=2 " " (k) 
Pu+Pb 

{ :.9) 

c:.:o) 

Hence, across the flame there is a jump in the normal velocity of magnitude 

(:. __ ) 

We now consider the motion of the flame front. As seen from the fixed 

reference frame, the front is both carried by the flow and advanced normal to 



B 

itself by the burning process. For the moment, we assuine that ~he front 

1'(s ,t) is a regul~r. closed, smoo.th curve., Then, at a point (Xr. Yr) on the 

front, the normal vector of unit length is 

aYr 
as 

axr 
as 

( 1.12) 

The requirement that the front move normal to itself at speed k, as well as 

ride with the fluid tlow means that we have the system of partial differential 

equations 

BXr = k 
{Jt • 

{J}p. . . 
--=-k 

{Jt 

BYr 

-r---~-{J::..;s::._.__..---.-.-,.,.4 + u (X F, y F) 
t BYr :~2+t BXr ~2)·)1· 
' {Js l ' {Js l 

BYr 
{Js . .... 

1 
___ ...;:;_;;; __ _,.

1
..,..
1
.......-{+v (Xr. Yr) 

1 a Yr :~ 2+ 1 BXr ) 2) . 

' Bs 7 
' Bs 

( 1.13) 

(' 'I.) \ J..- : 

ln Chapter Two. we will show that the front may lose its smoothness as it. 

moves. This will require us to amend our equations for the motion of the ftame. 

We summarize the equations of our model. On both sides of the ftame. 

( ... "') 
\- .• v 

\7·'11 = 0 ( . . 6) 
\- -

wherep=pu in the unburnt region and p=pb in the burnt re~ion On solid walls 

'll=(u,v)= 0 ( . . 7) 
\ ".-

•• 



Across the front, there is a jump in the normal velocity of magnitude 

2[Pu -p, (k) 
Pu+p, 

9 

(1.18} 

If we parameterize the .flame front by s at time t, thE!n the trajectory of each . 

point (Xr.(s ,t ), YF(s ,t)) ·Of the front must satisfy 

BXF = k 
{Jt 

. BYF = -k 
Bt 

BYF 

~--...:;8~5-----.,........,.,..-l+u (XF, Y.P) 

It BYF )2+( BXF )2)) 
\ Bs Bs 

where R.k ,p"" .p, are all.prescribed constants. 
~· ~ ' 

(. 19)' \l ... 

(:.20} 

In this chapter, we have developed our combustion .equations as a time-

dependent free boundary value problem. In the. next chapter, we analyze the 

stability of the flame front. 
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Cb.apler Two 

1be Evolution of name Fronts 

In this chapter, we study the motion of a flame propagating in a 

premixed, combustible fluid with no boundaries. We ignore the effects of the 

velocity field produced by volume expansion along the front by assuming that 

the densities of the burnt and unburnt fluids' are the same. In addition. we 

ignore pre-existing vorticity. Thus, we consider a simplified version of our ori-, 

gina! equations (1.15)-(1.20). 

Let D be an unbounded domain filled with a premixed, combustible fluid, 

and let 1 be a simple closed curve lying in D. Suppose that all the particles 

inside 1 are burnt and all the particles outside are unburnt. We ignite the par-

ticles along 1· The position of the_ front changes as the surrounding unburnt 

fuel is ignited. We prove that flame front asymptotically approaches a circle as 

t goes to infinity. In particular, we show that, as the fluid burns, cusps may 

develop in t.he front. These cusps form in the same way that shocks form in 

the solutions of ·hyperbolic equations. We develop an entropy condition, simi­

lar to the one employed in gas dynamics, that allows us to continue the solu-

lion beyond the time when cusps first appear. When a cusp forms, information 

about the initial shape of the flame is lost. 

2.1. Equations of Motion 

We begin by considering the equations of motion for the flame front. Let 

1(s) be a simple closed curve in D, parameterized by s; for each s E:: O,S ], 1(s) 

yields a point (x(s),y(s)) in D with 1(0)=1(S). Suppose the particles inside 1 

are burnt and those outside are unburnt We shall always assume that 1 is 

-~ , 



11 

parameterized so that the burned region is -on the left as we travel alohg the 

curve in the direction of increasing s. At t =0 we "ignite the particles along -y. 

As the surrounding unburnt fuel is ignited, the boundary between the burnt 

and the unburnt particles changes. Let -y(s,t)=(z(s,t),y(s,t)) be the position 

of the front at time t and let a and (J be the-coordinate functions of -y at t =0; 

that is, -y(s ,O)=(a(s ),(J(s )). For the moment, we assume that a and (J are both 

twice differentiable, and that af+fJ:rto everywhere. 

The flame front propagates in a direction normal to itself with constant 

speed k. At a point (z(s,t),y(s,t)) on the front, the tangent vector is {z5 ,y5 ) 

and the velocity vector is (z~ ,y, ). Thus, 

(z, ,y, )· (z5 ,y5 )=0 

z (s ,O)=a(s) y (s ,O)=(J(s) 

Equation (2.1) is simply · 

z,zs+YtY.s=O 

Differentiation of (2.2) with respect to s yields 

and with respect to t yields 

(2.1) 

(2.2) 

(2.4) 

(2.5) 

zuzt +YuYt =0 (2.6) 

We show that zu =yu =0. Differentiating (2.4) with respect tot, and using (2.5), 

we find that 

B(z, %5 +y, Ys) 
0 = 8t = Zt Zst + Ztc Z,s +Yt Yst +Ytt Ys (2.7) 

= Zu Zs +yu Ys 

Together with (2.6), this implies that either zu =ytt =0 or X 5 Yt =z1 Ys Suppose 

X 5 Yt =x,y5 . Together with (2.4). this implies that x,2+y,2=0. which violates 
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(2.2). or that z,.2+y.2=0. Since a.l+Pf~O. there exists some t 1>0 such that for 

~t <t 1, z 5
2 +ybtO. Let t 1 be the smallest time such that z52+y52~0. Then. for 

~t <t1. 

zu=O 

. Yu=O 

(2.8) 

(2.9) 

Integrating (2.8) and (2.9) with respect to s and using the initial conditions, we 

get 

z (s .t) = f (s )t + ex(s) 

y(s.t) = g(s)t + p(s) 

(2: 10) 

(2.11) 

where f and g are unknown functions of s. Substitution of (2.10) and (2.1!) 

into (2.2). (2.4) and (2.5) yields 

J2+g2 = k2' 

ffs+99s = 0 

f(! 5 t+a5 )+g(g,t+{35 ) = 0 

Substitution of (2.13) into (2.14) yields 

f ex, +g Ps = 0 

Substitution of (2.12) into (2.15) yields. 

f ) Cl..s 
g ,s = -k (ai+Pi)ll2 

Thus. the position of the front at timet is given by 

) ex, p( ) 
y(s,t = -k , 2 +(32) 112 t + ,s ,a, s 

(2. 12) 

(2.:3) 

(2.:.~) 

'2 ~ -) \ . .:. 0 

f? • 6) ,_.-

(2.: 7) 

(2.:8) 

.• . 
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- _13_ -- - -- - - - - - -
---- -~---

Remark. We can extend the solution beyond the time when z.2+y,2=0 if we 

consider only real analytic solutions. Then, since z, =y11 =0 for t <t 1 and the 

solutions -are real analytic, we have zu =y, =0 for all t~O. and the solutions 

(2.18)-(2.19) hold. Furthermore, this shows the solution is unique in the space 

of analytic solutions. 

Example 2.1 As an example, consider the Piirabola y=z2 . Suppose that the 

particles above the parabola are burnt and those particles below are unburnt. 

At t =0, we ignite the particles along the curve y=z2 . We wish to determine 

the position of front as it moves in a direction normal to itself with speed k. 

Although this is not a closed .curve, (2.18) and (2.19) still determine the motion 

of the parabola, since (2.1), (2,2) and (2.3) express only the local beha\.ior of a 

point on the curve. Let a(s )=s and f3{s )=s 2. Then 

See Figure (2: 1). 

z (s ,t) = k ( 2 
28

) 1/ 2 t + s' 
· 4s +1 

y (s :t) = -k 1 t + s 2 
(4s 2+1)1/2 

(2.20) 

(2.2:.} 
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Fig.ure 2.1 

This completes the example.'· 

The following example shows that we cannot simultaneously require that s 

parameterize the curve by arc length for all time and.demand that each sec­

tion of the curve move in a direction normal to itself with constant speed. 

Example 2.2 Let ')'(s)=(a(s).~(s))={cos(s),sin(s)), s e: [0,21i], thus ai+~:s2=~. 

Using (2.18) and (2.19), we have, with k = !, 

z(s,t) = (t+1)cos(s) y(s,t) = (t+l)sin(s) (2.22) 

s e:~ 0,21i] 

Given t, (x(s,t),y(s,t)) maps the interval [0.21i] onto a circle of radius ~t+:). 

centered at the origin. In Figure (2.2), we show the position of the front for 
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several values of t. 
_, 

Figure 2.2 

Note that z8
2+y8

2 = (t + 1), and thus, for t >0. the curve is not parameterized by 

arc length. This is because there must be some "stretching" in the image of 

the parameter s if we are to require that for each t, s =0 and s =21T are sent to 

the same point, regardless of the length of the fi.ame. 

If we define 

(2.23) 

y •(s ,t) = U + l)sin( (t: l)) (2.2~) 

then (z•(s,t),y•(s,t)) rriaps the interval [0,21T(t+l)] onto a circle of radius 

(t + :) centered at the origin, ~ith o.i+Pi= 1. However .. this does not satisfy the 

differential equation (2.1). The motion of this front is depicted in Figure (2.3). 
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Figure 2.3 

This completes the example. 

Let "'(s) equal the angle between the directed tangent to the front at the 

point (z(s,t),y(s,t)) and the positive z axis. ln our first lemma, we .show that 

a. ("'(s ,t )) is independent oft. 

Lemma 1. Let (z (s ,t ).y (s ,t )) be given by (2.18) and (2.19), where af+Pi~O. 

Then 

1) For each s. the curve (z (s ,t ),y (s ,t )).t e:[ O,ac) is a straight line with 

-a 
slope equal to p, • . 

,,. 



__ 1'7--' ----.--
-------

---,------

!I< 

2) If ~=tan-1 ( tl~ ), then 
. z. . 

8(tan-1(u)) = 
8s 

p .. a.-a.,(J5 

(al+Pl) 

Hence, both quantities are independent of t . 

Proof. Differentiation of (2.18) and (2.19) with respect to t yields 

(2.25) 

Yt = -k a. (a:+Pi)-112 (2.26) 

Pick a point .(z (s 1,0),y(s 1,0)) on the initial curve. The trajectory of the curve 

· (z.(s 1,t),y(s 1,t )), t ~[O,ao) must always be normal to the front, and have speed 

equal to k. Using (2.25) and (2.26). we have 

Yt -ka.(ai+f:Ji)-112 -a5 

z, = k Ps (ai+f:Ji)-112 = Ps 
-a. (s 1) 

Thus, the trajectory is a straight line with slope ~~7-: 

Using (2.1), we have 

Hence, 

Ys = -Zt = f:Js 
Zs Yt as. 

= (f:JssO.s -O.ssf:Js) 
(o.s2+f:Ji) 

Ps(St) . 

{2.27) 

(2 28) 

{2.29) 

Thus, the change in u as a function of s does not depend on t. This completes 

the proof. 
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2.2. Evolution of A Convex, Smooth name Front 

Our objective is to show that the shape of the burnt region becomes cir­

cular as the front moves normal to itself into the unburnt fluid. Without loss of 

generality, we assume that the flame moves with unit speed. 

Remark .. Throughout this chapter, we assume that all curves have finite arc 

length. 

Definition. We say that a. curve ?'(s) is convex if, as we go along the curve in 

the direction of increasing parameters. the angle the directed tangent (cx5 ,{35 ) 

makes with the positive :r axis is non-decreasing, when measured in a counter­

clockwise direction. In other words, a.tan-1( Ps ~ = ((3 •• a.-assf3s)(ai+f3i)-1:i!!!:O . a. 

for s e:[O,S]. 

Definition. We say that ?' is a. simple, closed, regular, parameterized, posi­

tively oriented plane curve of class C2 if ?'(s )=(a(s ),(3(s )) is a map of the 

closed interval I=[O,S] into R2 such that 

1) ex and fJ are both C2 functions of s. 

2) ?''(s);.!Q for se:J. 

3) ?'(s) and its first two derivatives agree at 0 and at S: ')'(O)=')'(S). 

i(O)=i(S), i'(O)=i'(S). 

5) If we go along the curve in the direction of increasing parameters. the 

interior of the cu.rVe remains to the left. 

Theorem 1. Let ?' be a simple, closed. regular, positively oriented. convex 

plane curve of class C2. Suppose (f3sscx5 -cx85 {35 )>0. The particles inside')' are 
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burnt. those outside are unburnt. and at t =0. we ignite the particles along -y. 

Then the propagating front is always convex. Furthermore, let 

(z(s,t),y(s,t)) = Lft) ((z(s,t),y(s,t)) 

where (z (s ,t ).y(s ,t)) is the solution (2.18)-(2.19) and L(t) is the length of the 

front at time t. Then, as t -no, the shape of the burned front becomes circular. 

That. is. given t, there exists t0 such that for all t >t0 • 

1) (z (s ,t ),y (s ,t)) is outside a circle of radius ( 2~ - t) and inside a circle of 

1 
radius ( Zrr + t). 

2) ·[ ir. -·K(z,y) j<t, wh~re K(z,y) is the curvature of (z(s,t),y(s.t)). 

Remark. The convexity of t~e initial curve is contained within the assumption 

that ({355 o.5 -0.55 {38 )>0. However, the strict inequality limits us to convex curves 

that are nowhere straight. 

Proof. The proof will consist of three parts. First, we show that the front is 

always convex. Second, we show that as the front burns, its length increases. 

Finally, we show that the shape of the burnt region must become circular as 

t ... "". 

Csing (2.18) and (2.19), we have, fork=:. 

(2.30) 

Since -y'(s );tO everywhere. we are assured that (o.!+f3!) can never vanish: From 

Lemma:. we have 
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(2.32) 

Since (fJ. a. -a..{J. )>0, this implies that· the front is always convex. We now 

prove that as the front burns, its length increases. First, we show that 

(x.2+y,2)>(o.!+fJl). ,;Differentiation of (2.30} and (2.31) with respect to s yields 

Hence, 

Xs =I Pas (rii+fJl}- 112-fJs (a. a. ~fJ.fJ .. )(ai+fJi)-312)t +a. 

Ys = (-a.(ai+fJi)-112+as(?-s~ss+fJsfJ~)(ai+fJi)-312) t + fJs 
I 

Xs2+y.2 = fJ!(ai+fJi)- 1t 2 + fJi(asass +fJsfJss )2(ai+fJi)-3t 2 +a~ 

-2fJss (a.2+fJf)-112fJ.·(a5 ass +fJs {J55 )(ai+fJi)-312t2 

+ 2asfJss(af+fJi)-112t-:- 2{J5 (a5 a55 +{J5 fJ55 )(ai+fJf}-312t + a 5 

+ 2 ( 2+R2)-1t.2 2( R R )2( 2 R2)-3t2 Q2 a •• ,a. ~· + a. a. ass +~s ~·· a.+~. + ~· 

- 2ass ( af+ Ps2) -1/2as (as ass +fJs Pss) ( as2+ {Jf) -312t 2 

-2fJs ass (ai+fJi)- 112t + 2aa (a. ass +fJsfJss )(ai+fJi)-312t + fJs 
Writing as a quadratic in t, we have 

+ (<Pl. +<>i.) ( <>l+ Pll _, - ( "• <>.. + P, Pn )2 ( <>:+ P:l _, )t 2 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

= (af+fJi) + (z(Pss a. -ass Ps )( ai+fJi) -l/2 )t + I( as2+fJi)-2(fJss a 5 :..ass Ps )2)t 2 

= (af+fJi)ll + 2(fJss as -ass fJs )(ai+fJi)-312t + (fJss as -ass fJs )2(a.2+fJi}-3t 2) 

= (ai+fJi>(: + (fJss a. -a •• fJ. )(ai+fJit312tr 
Since (fJss a 5 -ass fJs )>0, (x5

2+y5
2)>(af+fJf) for t >0. To show that the total 

length of the front increases as it burns, we show that any section of the initial 



·~· 

21 

curve must increase in length as it moves. Choose s 1,s2e:[O,S], -s 1iJfs 2. The 

length of the initial curve fronts 1 to s 2 'is 

•e 
j(af+PfP12d.s (2,37} 
't 

At any time t, the length of the front from s 1 to s 2 is 

•e 
j(z.2+y,2)V2rJ.s 
•t 

Since (z.2+y5
2) > (af+Pf) for t >0. the section must lengthen as it moves. 

We want to show that the shape of the burnt region approaches a circle as 

t -+oo_ Let 

(2,39) 

't1(s ,t) is the angle the directed tangent to the front at (z (s ,t ),y (s .t )) makes 

with the positive z axis, measured in the coUnterclockwise direction_ Let 

ll 

j(zf+yl)112d~ 

l(s,t) = ~ (2.4-0) 

j(zt+y.2)112d.s 
0 

At any timet, l (s .t) is the length of the front from 0 to s, divided by the-total 

length of the front. Thus l(O,t)=O and l(S,t)=l. Since (z5
2+y5

2) ~ (a.f+Pf)>O. 

the denominatorjn (2-40) cannot vanish. We now prove that .. as we go along the 

front in the direction of increasing s, the change in 't1 \\oith respect to l 

approaches ~he constant 2r. as t -+cc. Differentiation of (2.40) with respect to s 

yields 

Bl (s .t) 
Bs 

l:sing (2 29) and (2.36), we have 

(z.2+y.2) 112 = -::s~.:._..::....:....;_ __ 

J (z52 +ys2) 11 2 d.s 
0 

·z L') ' .. -



Btan-1( Ys ~ 
8'1)(s ,t) _ z. 

Bl aL 

= 
Btan-1( Ys ) 

Zs · Bs 
as Bl 

J(a:+P:)112[1 + (P.sas -assPs )(a:+P:)-312t)ds 

(af+p:) 112[1 + (P.sas -assPs )(af+Pf)-312t) 

Evaluating the limit of (2.42) as t ... ...,-, we have 

lim a'l)(s ,t) = [ (Pss a. -a •• Ps) 
,.... al (a:+Pf) 

I I(D<i+~i) -·(~. "'• -o.,.p, )ds 

l (ai+Pi)-1(Pssas -a. Ps) 

s. 
= j(a.f+pi)-1(PssO.s-O.ssPs)ds 

c 

5 atan-1
( ~· ) 

=J . 5 ds 
c as 
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(2.?2) 

(2.43) 

Since the curve is simple and closed, the tangent vector must go through a 

rotation of 2rr as we go along the curve from beginning to end. Hence, 

1
. o'IJ(s ,t) _ 

2 lm .::It - 1i" 
t~lll,) v 

(2.44) 

. We can now complete the proof. Two curves have the same shape if there 

exists a rescaling. a translation and a rigid body rotation that carries the first 

onto the second. Define L(t) to be the length of the front (.:r(s;t),y(s,t)) at 

timet, 

s 
L(t) = j(ai+Pi) 112ds 

c 
and define a rescaled version j(s .t) of the front: 
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) _ )) -I z(s,t) y(s,t) j lf(s,t = (.f(s,t),y(s,t = L(t)·, L(t) (2.46) 

For any t, ')i(s ,t) has length one, since 

s sl 2 2)112 J(.f2+'"2)1/2ds = ~- z •. + Ys ... ds 
8 1#8 · '£2 · £2 0 0 . 

(2.47) 

. 1:, . 
= r(L> = 1 

Under this scaling. the expression ~~ is invariant. as cah be seen by checking 

that 

' 
Btan-1( !• ) Btan-1( _11s_I_L_) 

z. 'Z.I L ___ _.;;;.._= ___ _.;;;.._~ 
BL Bl 

Btan-1( Ys -~ 
x, =-----Bl 

.. _ Here, we have used the fact that L(.f(s,t).y(s.t)) = L(x(s,t),y(s,t)). 

(2.48) 

Since 

')i(s ,t) has total length orie, them l is the same as arc length, as may been seen 

from (2.40); 

Btan-1(!5 ~ 
Xs 

Thus, ----:
0
::-:l--'"----is the change in the angle between the directed tangent and 

the positive x axis ~ith respect to arc length. 

Choose t. We now show that we can put a circle of radius ( -
2

,;, - F) inside 
1i 

')i(s,t) fort greater than some t 0 . From {2.4-4), we know that there exists a i 0 

such that, fort >to, 
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atan- 11 y, :\ 
. 'z 7 1 
. • < 2ri .( 1 2 ) at - rrt 

(2.50) 

Since (2.48) is invariant under the rescaling, we have 

Bl 
1 

< 211' ( 1-2rrt ~ 
(2.51) 

We translate :y(s ,t0 ) so that :Y(O.t0 )= ( 2~ ,0) and rotate so that the tangent to 

:Y(s ,t0 ) at :y(O.t0 ) points straight up. 

Let C1 be the circle of radius ( 2~ -:- t) centered at (t,O). We parameterize 

C1 by arc length and let 

C1(s) ~ (u(s),v(s)) (2.52) 
'· 

=I( -1 
- t)c~s,. , 5 

+ t , ( .1__- t)sinl . 
5 

) 21i 1 l ) . 21i 1 l ) ,--t ,--t 
2rr 21i 

1 
. O~s~{-2• _-t) 

. 1i 
1 

Clearly, C1(0) = ( 2~ .. 0) and_ the tangent to C1 points straight up at s=O. Thus, 

C1 and 7 are tangent at s=O and are both positively oriented. Furthermore. 

since u 5
2+v5

2=:, we have that 

=!(~-•) sin'~~ •!Hcos'rB-~ l 21i • (t,.-- t) I n· 
( -·- - t) { ---- f) 

· 2rr · · 2rr J 

'2 -~) \ .:::>u . 

·•· 
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Thus, for all t >to , the change in the angle the directed tangent makes with the 

positive z axis is greater for cl than it is for :y(s ); cl "curves in" faster than 

:y(s ), and thus they cannot cross. Therefore, fort >t0 , 7 is outside C1. (See Fig-

ure (2.4)) 

Figure 2.4 

A similar argument shows that there is a circle C2 of radius ( -
2
1 + t) lying out-

, II 

side :;;. Curvature is defined as the change in the angle between the directed 

tangent and the positive z axis with respect to arc length. Thus, the curvature 

of the inner circle is greater than that of :y, and the curvature of the outer cir-

cle is less than that of :;;. As t .... O, the inner circle and outer circles come 

' 
together, trapping the scaled front, and the curvature of =y(s) approaches -

2
- . 
1i 



26 

This completes the proof. 

We would like to extend Theor.em 1 to include convex curves with straight 

line segments. However, the curvature of the rescaled version of such a curve 

cannot approach a constant, since the straight line segments al~ays have zero 

curvature. Thus, we are content to prove that the scaled front can be trapped 

between two arbitrarily close circles. 

Theorem 2. Let 1 be a simple, closed, regular, parameterized, positively 

oriented, convex plane curv~ of class C2. Then 

:) The propagating front is always convex. 

2) Given t, there exists a t0 such that for all t >to , the interior of 

(z(s,t),y(s,t)) contains a circle of radius ( 
2
1 - t), and (z(s,t),y(s,t)) 
11" . 

lies inside a circle of radius ( -
2

l + t). 
1i 

this is non-negative, hence the front is convex. 

We now show that 

lim (x2(s ,t )+y2(s ,t) )
1

/

2 

= 
t~- 2rr 

l:sing (2.36) and (2.?3), we have 

'2 -,) ' . Oo.: 

.r, 

.. 



s 
L(t) = j(z.2+y.2)112cJs 

o· 

= I'"" +tm;., '{ i+ (II. a. -a.. II.>, ~+m-3/•t }tts 

= i(o.l+Pl)1'2cJs + t j (P .. o.~ -o..;P.) ds 
o · · · o · (o..+P.) 

s . s 
= j(o.l+PlP'2cis + t Ja.(tan-1( P. n d.s 

0 0 o.. 

= L(0)+21Tt 

Thus. using (2.18), (2.19) and (2.46), 

-2+ -2 % + . : [ 2+ 2 ) . [~2 [~'2 
X y = L(t) L(t) = L(t) X y 

= 1 rlt 2 + 2(ap. -po.. )(al+Pl)-112 t + (o.l+Pl>] 
(L(0)+21it )2 

Evaluation of the limit as t .... .:oc yields 
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(2.55) 

(2.56) 

(2.57) 

Therefore, given t, we can find a t 0 such that fort >t0 , the distance from any 

point on the scaled fro.nt (z,y) to the origin is greater than ( 
2
1 - t) and less 

. 1i 

than ( -
2
" + t). Hence, we can inscribe inside the front a circle of radius 
1i 

. i 
( -2~ - t) and one outside of radius (

2
- + t). 

1i 1i 

All that remains is to show that the interior of (% ,y) contains the smaller 

circle. We do this by proving that 

(2.56) 

This will mean that the original front and the rescaled front contain the origin 

Vie have that 



28 

(2.59) 

~N.B. By (2.36), (z.2+y.2)~(a:+Pi)>O, thus the denominator cannot vanish: I 

Using (2.18) and (2.19), we have that 

zy.-yz. =.·(P.a.-a .. IJ.)(a:+pi)-1 t 2 

+ [ (ai+/Ji)l/2 + (aP.-Ila.)(P .. a.-a .. P.)(ai+lli)-312) t 

+ap;-aiJ. 

(2.60) 

If (f3.a.-a.f3,)>0. then the coefficient of t 2 is positive. If (f3 .. a.-a.f3.)=0, 

then the coefiicient of t 2 is zero and the coefiicient of t is positive. Thus, 

lim (xy5 --yx,)>O and hence lim c35 (tan-1(zn>b. This completes the proof. 
t .. .., . ,.... y 

Remark. We present here an alternate proof when (f3 .. a.-a.f3.)>0. Let A(t) 

be the area inside the scaled front at time t . If A is bounded by a positively 

oriented., simple, closed curve c.>(s) = (o.(s),f3(s)), where se:[a,b] is an arbi­

trary parameter and c.>( a) =c.>( b), then 

• fl . 

A = 1-j(o.(i-po.')dt 
2 II 

(See Do Carmo [ ~]). Thus, the area of the scaled front at timet is 

A 't) = .Ljs (xy. -yx.) ds 
\ 2 0 L2(t) 

Recall that 

L(t) = L(O) + 2rrt 

Thus. 

A(t) = ~ ( (L(O) ~ 2r.t )' J (ry, - yz, )ds 

L'sing (2.60), evaluation orthe limit as t ... .,., yields 

(2.6:) 

(2.62) 

(2.63) 

(2. 6.;) 

.. 



lim A ( t) = .L _1_j (fl. a, -a. fl,) d.s 
,... 2 4rr2 D (DJ+flf) (2.65) 

s Btan- 1( fl •. ':! 
·'1 1' 0:5

7 

= 2: 4rr2 £ Bs d.s 

= .!__1_211' 
2 4rr2 

= _1_ 
411' . 

Thus, as t ... o. the area enclosed by the scaled-doVtn front :y{s) approaches -·-. 
. 411' 

We state without proof the Isoperimetric Inequality: Let C be a simple , closed, 

plane curve with length 1, and let A be the area of the region bounded by C. 

Then (1 - 4rrA)~O. and equality holds if and only if Cis a circle. (See Do Carmo 

[ 4]). We have shown that 

· F~ (1- :r.A(t)> = (:- 4r.( 1r.n = o ( 2. 66) 
\ 

Thus, since the curve is convex, the front approaches a circle. 

We have studied the propagation of a smooth, convex flame front. The tra­

jectory of each . point s 1,e:[O,S] on the front (that is, the curve 

(x(s 1,t),y(s 1,t)), te:[O,oc:)) always points in a direction normal to the front, and 

has a constant: speed k. (See Figure (2.5)). 
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{xlc:., ,~, 'Y,.·j~~ 
-\._~(0,01) 

We may view these traj.ectories as objects akin to characteristics; they 

are curves along which the temperature required for ignition is transported. 

Our equations 

( t ) k Ps t + ,. '\s) 
z s, = (af+pf)l/2 "' 

y(s;t) = -k ( 2 Cls2)1i2 t + p(s) 
Cla+Ps 

(2.67) 

(2.68) 

describe a family of ignition curves; givens 1e::[O,S], (z(s 1,t),y(s 1,t)), te::[O,oe) 

is the ignition cw-Ve starting from (a(s 1),p(s 1)) with speed k. Since we require 

that the flame always burn in a direction normal to itself, by definition the 

ignition curves must be normal to the front at all times. In addition. in Lemma 

-ex 
1 we showed that the ignition curves are straight lines with slope -p;- if the 

flame propagates at a constant speed. 

We mention in passing that there are other models of flame propagation 

in which the ignition cUr-ves are not straight lines. For example. :W.arkstein ~::] 
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proposed ,that t~e .ftame speed be tak~n as a function of the curvature .at any 

point. The. flatter~ the curve, the faster the ftame burns. In this case. the igni­

tion curves are .normal to the front but are not straight lines. (See Figure 

(2.6)). 

.. · 
/ 

.. ··-' .. 
... ..· 

I : 
I • 

,.. .. 

. .. · .· .. .· .. ··. / .. . ..... ·· .. ·' .· .. .. ...... 

Figure 2.6 

{A (s, .~) .y~ s,, \:~~ 
-\:E:. to,Q)) 

Returning to our model of a flame propagating at a uniform. constant 

speed, in our next lemma we prove that the ignition curves leaving the initial 

front fan out over all of the unburnt tluid. That is, given any point in the 

unburnt· tluid, there is one and only one ignition curve passing through that 

point. 

Lemma 2. Let ')'(s )=(a(s ),p(s)) be a simple, closed. regular. com·ex. 

parameterized. positively oriented, plane curve of class c2. Assume that the 
. , 

particles inside -y are burnt, and those outside are unburnt. At t =0, ignite the 

particles on the curv.e -y, and assume that the tlame propagates in a direction 

normal to itself With constant speed Suppose (.:r 1.y 1) is a point that lies out-

side ')'. Then there is one and only one ignition curve leaving ')' and passin.; 
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Proof.~ We need only check that the mapping (.:z: (s ,t ),y (s J )l given in (2.67) 

and (2.68) is invertible. Then, given (z 1,y 1). there will be a unique s 1 and t 1 

such that (.:z:(s 1,t 1),y(s 1,t 1)) = (.:z: 1,y 1). and the unique ignition curve will be the 

one leaving ')'(s 1) with slope ~:(~:)) . Without loss of generality, let k = 1. · The 

Jacobian of (2.28) and (2.29) is 

.l ;: ;: l = z,y, - y,z, (2.69) 

= !rss (o}+Pi)- 112-Ps (as ass +PsPss )(~s2+Pi)-312)t +as )[-as (ai+Pi)- 1121 
. -[[-a.. (a;+{!';)-'"+a, (a, a,+{!, f!a )(ai+flit'"')t +{!,Jr. (a,2+f!i) -II •] 

= -[(/Jssas-O.ssPs) t + (o.i+Ps2)1121 
. (o.i+Pi) 

For a convex curve, 

(2.70) 

therefore 

l.:Z:s .:Z:t l ,.t 0 
Ys Yt 

(2.7:) 

Thus, the mapping is invertible and there exists a unique s 1 ·and t 1 such that 

(x(s 1,t 1),y(s 1,t 1)) = (x 1,y 1). This completes the proof. 

Given any point in the unburnt fluid, its ignition curve provides the location of 

the "fuse" that ignites that point. The temperature required for igniti?n is 

passed with speed k along the ignition curve to that point. 
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2. 3. Evolution of Convex. Piecewise Smooth Flame Fronts 

What happens if the initial curve is not of class C'!? For example, consider 

a convex curve with an outwarq pointing cusp, as shown in Figure' (2,7) 

Figure 2.7 

Suppose that the curve is twice differentiable everywhere except at the point 

P. At P, the normal is not. defined,. and thus the direction. of motipn is 

unspecified. We do not know how to draw the ignition curve,s in the triangular 

region above P. A similar question occurs in the study of the motion qf a gas 

behind a piston. Ifthe piston is withdrawn at a supersonic speed, the charac­

teristics fan out, leaving an open area. In that area, we construct a rarefaction 

wave to bridge the solution. For the outward pointing cusp, how shall we fill in 

the ignition curves above P to provide a physically correct solution? 

Consider a domain D in which all the particles are unburnt. and suppose 

that at t =0 we ignite the particle located at a point (x ,y) r;:.D. The surrounding 

unburnt particles will become ignited as the high ignition temperature i~ 

passed on, and these newly burnt particles will ignite their surrounding 

unburnt neighbors. Fort >0. the flame front will be a circle, centered at ~x ,y ) .. 



with radius let. (See Figure (2.8)). 

Figure 2.6 

The ignition curves spread radially out from (z ,y), and the front moves in a 

direction normal to itself with speed k. 

With this in mind, we return to the outward pointing cusp and e:ll.i.end igni­

tion curves radially from the point Pinto the unburnt fluid at the same speed 

as elsewhere on the front. (See Figure (2.9)) 
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Figure ·2.9 

This will provide the bridge .between igrution curves PA and PC, and will give 

· us a way to move the front so that. for t >0. there will be a well-defined and 

continuously· turning normal vector.· 

We now make these ideas more precise. 

Definition. Let ')'(s)=(a(s),p(s)). se:[O,S]. ;(O)=')'(S) be a closed, parameter­

ized, positively oriented, plane curve. Suppose that 

1) ')' is a piecewise C2 function of s. That is, a) ')'is 'a continuous function of s 

and b) there eXists a finite number of points O=sc<s 1< ...... <sn.S such 

that on every closed interval [si,si+ 1]. ~i~n-1. ')'is twice differentiable. 

2) 

3) 

4) 

')'(O)=')'(S), ')''(O)=')'·(s). ')'"(O)=')'··(s). 

Wherever the curve is twice differentiable. (a.i+Pi)~O. 

')' is convex; that is a) at all points where the curve is twice 

differentiable. 06 (tan-1( :: )) ~ 0, and. b) if s1 is a point where !' is not 
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twice differentiable, li~ ltan-1( p~ )L lim ltan-1( p, . >). In other words. 
. , .. ,, a, J"" , .. ,,• a, 

the angle the directed tangent makes with the positive z axis is a non­

decreasing function of s, wherever it is defined and measured in the 

counterclockwise· direction. 

Then we shall refer to any curve satisfying the above as a convex, piecewise C2 

and piecewise regular curve, where it is understood that the curve is also 

closed, parameterized, and positively oriented. 

We can now describe the propagation of a convex, piecewise c;;. and piece­

wise regular initial front. At any point (a.(s ),p(s)) where the curve is twice 

differentiable, the normal ·is well-defined, and we may use (2.67)-(2.68) to 

determine the path of the ignition curve starting at (a.(s ),(3(s )) From any 

point s, E:(O,S) where the curve is not twice differentiable. we extend a group 

-a 
of ignition curves, one for each angle between lim_ (tan-1( ~) and 

s .. ~ ,..s 

-a 
lim (tan-1( ~)), inclusive. (1\ote that the slope of the ignition curve is the s .. st ,..s · 

negali\'e reciprocal of the slope of the tangent, and that if a <b . . then 

-:;a < -:; b ). These ignition curves fan out radially from (a{s,).(J(sd). car-

rying the high ignition temperature and bridging the solution between the 

. -a 
ignition curve on the right with slope lim (tan-1( ~)) and the one on the left , .. s,- ,..s 

.,...a 
with slope lim (tan-1( ~). 

s .. st ,..s 
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Example 2.3 We give an example of the propagation of a convex, piecewise C2 

and piecewise regular tlame front. Let -y(s )=(a(s ).~(s )), s e:[0,31!'/ s +2].._ where 

a(s) = 

~(s) = 

cos(s -11'/ 2) 
1 

-s +(11'/ 2 +2) 
cos(s-2) 

sin(s -n/2) 
s -11'/2 

1 
sin(s-2) 

0Ss<11'/2 
11'/ 2ss <11'1 2 + 1 

n/2 +1Ss<n/2 +2 
· rr/ 2 +2sss3r./2 +2 

O:!Ss <11'/2 
1r/2Ss <r./2 + 1 

n/2 + 1Ss <11'/2 +2 
11'/2 +2:!SsS311'/2 +2 

(2. 72) 

(2.73) 

A check shows that a and ~ are both ce functions of s everywhere except at 

s=r./2. 11'/2 +1. and at 11'/2 +2. Furthermore: 1 is closed, convex, and posi­

tively orie~ted. Thus, 1 is a .convex, piecewise c;2 and piece\\-ise regular cur\·e. 

The trace of 1 is shown in Figure (2.:0). 

s=o 

Figure 2.10 



38 

Assume that the particles inside 1 are burnt, and those outside are 

unburnt. At t =0, we ignite the particles along 1· 

Except at s =1rl 2 +1. a and pare C1 functions of s, With (o.i+Pi)= 1. Thus, 

given s 1e:[0,31r/ 2 +2], s 1¢1r/ 2 +1. the normal at (a(s ),p(s)) exists and we can 

use (2.67) and (2.68) to determine the path of the ignition curve emanating 

from (a(s 1),p(s 1)). In Figure (2.11), we show those ignition curves. 

:r:(s,t)= 

y(s,t)= 

Figure 2.11 

k cos(s -7r/2)t +cos(s -'Tr/2) 
kt+1 

-s +(r./ 2 +2) 
k cos(s -2)t +cos(s -2) 

-k sin(s -1i/2)t +sin(s ~1i/2) 
s -1i/2 
-kt+l 

k sin(s -2)t +sin(s -2) 

O~s<r./2 

1i/2~s <r./2 +: 
1r/2 + 1~s <r.l 2 +2 
1r12 +2~ss3r./2 +2 

~s<r./2 

1i/2~s <r./2 + l 
r./2 + :~s <1i/2 +2 
r./2 +2~s~3rr/2 +2 

(2.74) 

(2. 75) 

This gives the position of the front at timet for s <o.3r./2 +2]. s ~rr/2 +:. 

-· 
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At point P, we wish to extend ignition curves into the unburnt fiuid, as 

shown in Figure (2.12) . 

/ 

Figure 2.12 

.. Unfortunately, such a construction poses a minor difficulty. We need to be able 

to distinguish one ignition curve from another, but we have only the value 

s =r./ 2 + 1 at our disposal. (Elsewhere on the front, there is a one-to-one 

correspondence between values of s e:[0,3rr/ 2 +2] and ignition curves). We 

choose to reparameterize the initial curve -y in such a way that there are 

"enough'' values of s at P to facilitate a full set of ignition curves. Let 

"'!I=(o.1(s),(j1(s)). sE[0,31T/2 + 3]. where 

cos(s -r./ 2) 
1 . 
1 

-s+(r./2 +3) 
cos(s -3) 

~S<1T/2 

1T/ 2~s <1T/ 2 + 1 
1T/2 +l~s~rr/2 +2 
r./ 2 +2<s <r.l 2 +3 

1T/ 2 +3~s~3r./ 2 +3 

(2.76) 



sin(s -n'/2) 
(s -rr/ 2) 

fl1(s)= l 
1 

sin(s-3) 

~s<rr/2 

rr/ 2~s <rr/ 2 + 1 
rr/ 2 + 1~s~rr/ 2 +2 
rr/ 2 +2<s <rr/ 2 +3 

Tr/ 2 +3~s~3rr/ 2 +3 
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(2.77) 

Note that the trace of. ')'1 is the same as that of ')', but that for all 

se:[rr/2 +1,rr/2 +2]. (cx 1(s),(l1(s))=(1.1). This will provide us with "enough" 

values of s at P to give one to each radial ignition curve. (From now on, we 

omit the subscript 1 ) . Also, ex and (l are C1 functions of s with a:+ (l52= 1 for s 

not in [rr/2 +l.rr/2 +2]. Let 

x (s ,t )=k (cos( i-'s -111 2 + 1 )))t + 1 

y (s ,t )=k(sin( i-'s -1112 +1)))t +1 

(2.78) 

(2.79) 

for t~O. rr/ 2 + 1~s~11/ 2 +2. This corresponds to a family of ignition curves 

leaving P; given s e:[11/2 +1,71'/2 +2]. we have (z(s,O),y(s,O))=(:.:), 

,_· 

;: = tan ( i-'s -(11'/2 + 1))). (See Figure (2.13)). 

\xl~/Ln;~) ,'{(_-ii)l.+l./t..)\ 
-\:.t-t_o,oo) 

Figure 2.13 

J{<!:>,•) > '((•,"-)~ • . 

\x(1t/'l+\,t.\ .y(11/~t\,t)\ 
\:. E: (a., oo) 

We need only check that igrution curves leaving P match up with the ignit10n 

curves given in (2.78) and (2.79). lJsing (2.76),(2.77),(2.78) and (2.79). we have 
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lim (z(s,t),y(s,t)} = (kt+1.1) = lim (z(s,t),y(s,t)) 
(B .. (tr/2 + 1))- (B .. (tr/2 +I))+ . 

lim (z(s,t),y(s,t)) = (1,kt+1) = lim (z(s,t),y(s,t)) 
(a .. (tr/2 +2W (• .. (tr/2 +2))+ " 

Thus we have extended ignition curves from every point on the initial front. 

The full set of ignition curves are 

z(s,t) = 

y(s ,t) = 

k cos(s -tr/ 2)t +cos(s -rr/ 2) 
kt+l 

k (cos((rr/ 2)(s -rr/ 2+ l)))t + 1 
-s +(rr/ 2+3) 

k cos(s -3)t +cos(s -3) 

k sin(s -rr/ 2)t +$in(s -rr/ 2) 
s-rr/ 2 

k (sin((rr/ 2)(s -rr/ 2+ l)))t +1)+ 1 
kt+l 

k sin(s -3)t +sin(s -3) 

OSs<rr/2 
rr/~s<rr/2 +1 

rr/ 2 + 1:Sssrr/ 2 +2 
rr/2 +2<s<1i/2 +3 
rr/ 2 +3:SsS31i/ 2 +3 

O:s;;s .<1i I 2 
rr/ 2:Ss <1i/ 2 +: 

rr/ 2 + 1~SS1i/ 2 +2 
1i/ 2 +2<s <rr/ 2 +3 
rr/ 2 +3sss3rr/ 2 +3 

(2.80) 

(2.8:) 

This gives the position of th~ front for t~O and s e:[0.31i/ 2+3]: This completes 

the example. 

Our technique for deciding how to move a curve in a direction normal to 

itself when the normal is not defined has been based on physical arguments. 

We developed a smooth transition from the ignition curve defined from the 

right at a corner to the ignition curve defined from the left by means of a set 

of ignition curves fanning oul from the point in question. In our ne:xi. theorem. 

we show that such a construction is a natural extension of our earlier results. 

Theorem 3. Let 1 be a convex. piecewise c:2 and piecewise regular curve. Sup­

pose that the particles inside 1 are burnt. and those outside are unburnt At 
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t =0. we ignite the particles along -y. 

ple, closed, regular. convex, parameterized, positively oriented plane 

curves of class C1 such that 

(2.82) 

for s E[O,S']. 

2) For each "'Yc· suppose that the particles inside "'Yc are burnt and those out-
' 

side are unburnt. At t =0 we ignite the particles alortg "'Yr.· Asswne that the 

flame front "'Yr. propagates in a direction normal to itself \\ith speed k. and 

let its position at any time t be given by (.:rr.(s ,t ),yc(s ,t )), sc:[o.sc]. Sup­

pose we allow the front initially at -y(s) to move in a direction normal to 

itself l_Vith speed k. wherever the normal is defined. Then. at those points 

where the normal is not defined, we can construct ignition curves in such 

a way that 

~~ tr(xc(s,t),yr.(s.t))= tr(x(s,t),y(s.t)) (2.83) 

where (x(s.t),y(s,t)) is the position of the front at time t. Here. 

tr(x(s,t).y(s,t)) is the trace of the curve (x(s,t),y(s,t)). sc:~O.S]. and 

tr(x,(s,t),y,(s,t)) is the trace of the approximating curve -y,. 

3) For t>O. (x(s,t),y(s,t)) is a curve of class CC. Furthermore, the normal 

to (x(s,t),y(s ,t)) exists everywhere and is a continuous function of s. 

Proof. We begin by parameterizing -y(s) by arc length;, this can be done smce 

-y is piecewise C2. Thus, we assume that a.i+f3i=: wherever the derivative is 

defined. 

We now construct a sequence of curves -y, of class C1 that tend to -y as r . 

tends to zero. Lets 1 be a point where -y(s) is not differentiable with respect. to 
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s. Let 

\ 

a._-(s 1) = lim a., 
• ... 1 
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(J;(s i) = lim (J., and 
.... 1 

p,+(s 1) = lim (J.; these limits must exist since the curve is piecewise (:2, Since • ... t 

the curve is parameterized by arc length, a:(s 1 )¢a.-(~ 1) if and only if 

(J5+(s 1)¢(J1-(s1 ). We shall assume here, for the sake of space, that a1+(s 1), 

a,-(s 1), (J5+(s 1), and (J5-(s 1) are all non-zero; the formulation of 1, is only slightly 

different when one or more of them is negative. 

were equal. Since the curve is parameterized by arc length. either 

ai(s 1)=a5-(s 1) and /l5+(s 1)=(J.-(s 1), or a5+(s 1)=-a:(s 1) and (J5+(s 1)=-P.+(s 1). The 

former cannot be true since it implies that 1 is differentiable at s 1. The latter 

cannot be true since it implies that the curve is not positively oriented. 

Since -y is piecewise C2, there exists some 6 such that for 

and Ps are non-zero. · Furthermore, 

{15 (s) fl5 (s 1+(s 1-s)) 
.:....:;..~-¢ for s 1 -6~s~s 1 , 
0.5 ( s) 0.5 ( s 1 + ( s 1 -s ) ) 

since 1 is con vex and 

fls+(s1) ¢ Ps-(s1) .. 
0.

5
+ (s 1) 0.8-(s 1) 

Choose t such tha:t 0<t<c5. Draw the line.tangent to 1 at (a{s 1+t),(J(s 1+t)) 

in the direction ( -a5 (s 1 +t), -(J5 (s 1 +t)). Draw the line tangent to -y at 

(o.(s 1-t),(J(s 1-t)) in the direction (a5 (s 1-t),{35 (s 1-t)). They must intersect at 

some point P,. since their slopes are not equal. Assume. without loss of gen-

erality, that (o.5 (s 1-t),{35 (s 1-t)) is closer than {o.5 {s 1+t),/35 (s 1+t)) to the point 

P, (see Figure (2.14)) and consider the curve 1,(s)=(o.,(s),p,(s}) defined by 



and 

Figure 2.14 

cx(s) 

-sin - 1(cxs (s 1-t )))-tis (si-t) I +cx(s 1-t) 

cx(s 1 +e)-a · -
L (s -(R.,..s 1-t ))+Ci 

. ]· ' s -s 1 + t Rsm, R 

'BQ 

a(s -R-LeQ+2t) 

{i(s) 

sin-1(as (s 1-t)))+as (s 1-e)]+{i(s 1-t) 

R's +t)-R . 
,..., I ,.. ( -'R- . + ))+:0 

L 
. ,s , -s 1 t ,.. 

'BQ 

{i(s-R-LeQ+2t) 

44 

(2.8?) 

s~Z 1 

(2.85) 

s~zl 



, .. 

where 

Z 1 = s 1-t 

Z2 = R+st-t 

Zs. = R+s 1-t+Lsr; 

Z4 = R+Lsr;+S-2t 

Rl = 1_ [ 1+o.5 (sl-t)o.5 (sl+t)+P5 (sl-t)P5 (sl+t) l 
O.s (s 1-t) ( 1-(o.. (s .-t )o.5 (s 1 +t )+Ps (s 1-t )Ps (s 1 +t))2)112 

R = R [sin-1(o.5 (s 1-t))+cos-1(P5 (s1+t))] 

a= R ~5 (st+t)-Ps(st.:..~) ]+o.(st-t) 

'P = R [.:...a.s(sl+t)+a.s (~~-t) ]+P(sl-t) 

LsQ = ((a-o.(s1+t:))2+(p-p(st+t))2)112 
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For sss 1.;..;t, 1£ is the same as 1· For s 1-t<ssR+s1-t, the trace of 1£ is the arc 

of the circle, parameterized by arc length, tangent to the line AP at the point 

1(s 1-t) and. tangent to the line PB at the point Q. For 
I 

R+s 1-t<s<R+s 1-t+LaQ. the trace of 1£ is just the straight line, again 

parameterized by arc length, connecting Q to the point 1(s 1+t); here Lar; is 

just distance from Q to B. ·ror R +s 1-t+ LaQss <R + LsQ + S -2t, the trace of "1£ 

is the same as the trace of1(s) from s 1+t to S. (See Figure (2.:5)) 
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Figure 2.15. 

We need to check two things; first, that lim ?'c(s) = ?'(s) and second, that 
£->0 . 

?'c(s) is a curve of class C1• 

Since is parameterized by arc length, 

vanishes and a=a(s 1) and ~=(3(s 1). By construction, LsQ vanishes, thus 

lim ?'c = ')', sE:[O,S]. 
t->C · 

We now check that ·?'t is a curve of class C1 for s 1-6<s<s 1+6. We orily 

check at the points s=s 1-t, R+s 1 ~e and R+s 1-t+LiiQ· since the curve is 

infinitely differentiable everywhere else. We note that sin(cos- 1(as))=-f3s, 

sin(cos-1({35 ))=-as, cos(sin - 1(as ))= -{35 and cos(sin~ 1 (f3s ))=-as. 

· lim ac = a(s 1-e) 
s->{s 1-t)-

(2.86) 



lim a~= a,(s 1-t) 
•~C•.-c)-

lim a~= -sin(-sin-1(a,(s.-t))) = a,(s.-t) 
•~(ace)+ , 
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Thus, ac and its derivative match at s=s 1-t. We now check /Jr; and p; at the 

same point. 

lim {Jr; = (J(s 1-t) 
s~(s 1 -c)-

.-

lim {J, = R(sin(-sin-1(a{s 1-t)))+a(s 1-t))+fJ{s 1-t) 
s~{s 1 -c)+ · - · 

= {J(s 1-t) 

lim fJ~ = {J5 (s 1-t) 
•~(•t-c)-

lim fJ~ = cos( -sin-1(a5 (s 1-t)))+a5 (s 1-t)+Ps (s 1-t) 
... ,.1_1:)+ . 

- R I ) , 
- t-'s\S1-t 

Thus, -y, is differentiable at s=s 1-t. We check a, at s=R+s 1-t. 
·, 

(2.87) 

lim a, = R[cos(sin-1(a5 (s 1-t))+cos-1 (Ps (s 1 +t))-sin-1(a5 (s 1-t ))) 
s .. ,,P. +5 1-t)- . 

Checking o.;. we have 

-:-Ps (s1-t)] + o.(s1-t) 

R~5 (s 1 +t)-p~(s 1 -t)r + a{s 1-t) = o 

lim a,= o 
· ... (Jhs 1-r;)+ 

(2.88) 

lim ex~= -sin(sin-1(o.8 (s 1 -t))+co's- 1 (1~5 (s 1+t))-sin-1(o.5 (s 1-t))) 
s .. (P.+st-r;)-

(2.89) 

o.(s 1+t)-o 
lim o.~ = --=----

s .. (P.ul-r;)+ LeQ 
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a(s.1 +t)--a 
= --------~~~----------

((a-a(s •+t ))2+({3-p(s 1 +t ))2)112 

1 = ~--------------~~--------------~ 

I . p(s 1+t)'+R[a.(s 1+t)-a.(s 1-t)]-p(s 1-t) 
1 

+ a(s 1+t)-R~.(s 1 +t):P.(s 1-t)]-a(s 1 --t) 
= a.(s 1+t) 

Thus, a, and its derivatives inatch at s =R+s 1-t. We check Pc and P~ at the 

same point. 

lim Pc = R[sin(sin-1(o..(s 1-t))+cos-1(p.(s 1+t))-sin-1(a8 (s 1+t))) 
s .. (]hs 1-c)-

+a5(S 1-t)] + p(s 1-t) (2.90) 

r -= Rl-a5 (s 1+t)+a,(s 1-t)] + p(s 1-t) = p 

lim {3, = {3 
s .. (R+s 1-c)+ I 

Checking (3~. we have 

lim (3~ = cos(sin-1 (o.5 (s 1-t ))+cos-1({35 (s 1 +t ))-sin-1(a5 (s 1-t ))) 
s .. (.P. +s 1-c)- . 

= (3,(s1+t) (2.9:) 

. . (3(s i+t)-{3 
hm P c = ;__;........:.,__:_....:,_ 

s .. (R+s 1'-c)+ . . LaQ 

1 

= ......----.,.--I I ----=---~2]1/2 : + a(s 1 +t)-R~s(s1+t)-(3.(s 1 -t)]-a(s 1 -t) 
P(s 1+t)+Rla._(s 1 +t )-as (s 1-t) · 

1 = 

I:+ I a:(s:,:,) r· - 1 
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= (:J.(st+&) 

Thus, 7r. is differentiable at s=R+s 1-t. Next, we check the point 

s=R+s 1-t+LBQ· For cxr,. we have 

lim CXr. = cx(s 1+t) 
.... (Jl+sl-t+Lsq)- (2. 92) 

lim cxr. = a(s 1+t) 
• ... (R+scr.+Lsq>+ 

For ex~. we have previously shown that the section .of 7r. between R+st-t and 

R+sl-t+LBQ has slope CXc(sl+t),.thus a~·matches. For f3c., we have 

lim f3r. = (3(s 1 +&) 
.... (R+s 1-r.+L8 q)- · (2.93) 

· lim f3r. = (3{s 1+&) 
.... (R+s 1-r.+.i8 q)+ 

Similarly, we have shown that (3~ = f35 (s 1+&) for the line, thus (3~ matches at 

Finally, and 

f3c(R+LeQ+S-2t)=(3(S)=(3(0).· Thus. 7,(s) is a curve· of class C1 for 

sE:(s 1-6,s 1+6), and 7r.(s) .... 7(s) as & .... 0. We repeat this process at each of the 

points si. where 7 is not differentiable, until we produce a curve 7r. of class C1 

that tends to 7 as t .... O. This completes the first part of the proof. 

We now construct ignition curYes for 7(s) at a point s 1 where 7. is not 

differentiable. Our goal is to show that if we allow the family of curves 7r. to 

burn for a time t 1, then as t .... O. they will tend towards the solution 

(x (s ,t 1 ).y (s ,t 1)), where (x (s .t 1),y (s .t 1)) is the position of 7 after it has burned 
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for a time t 1. 

We first reparametrize 7(s) so that there are "enough" values of s at 

1(s 1). (We followed this procedure in the previous example.) Let 

:y(s )=(a(s ),p(s )), s e:[O,S], where . / I a(s) 
Ci(s) = a(s 1) 

a(s-1) 

s<s
1 I 

ss:s;;s~s 1 +1 

s 1+1<s~S+1 
(2.94) 

(2.95) 

1 'and 7 have the same trace with :y{s )=')'{s) for s~s 1 and :y(s + l)=')'(s) for 

s>s 1. From now on, we omit the overbar. 

We e}..i.end ignition curves from 1(s) at the point 1(s 1). Let 

-a -a 
c.;r = lim_ tan- 1

( ---;!---1 and C'.>t = lim tan- 1
{ ~) ; both these limits exist since 

s-.sl t'S s-.s: t'li 

the curve is piecewise C1• We construct ignition curves 

(2.96) 

y(s,t) = ksin((:.>t-C'.>r)(s-s 1)+C'.>r+1i)t + {J(s 1) (2.97) 

for t~O. s 1~s~s 1 +1. Thus, using (2.93)-(2.94) to provide ignition curves for 

s <s 1 and s 1 + l <s, we have the full set ofignition curves 

[ 

k{J,.(s)t + a(s) s<s 1 I 
x(s,t) = kcos((C'.>t-:.>5 )(s-s 1)+CJr+1i)t + a(s 1) s 1~s~s 1 +1 

k{J5 (s-1)t + a(s-l) s 1 +:<s~S+: 

[ 

-k a 5 ( s ) t + {J ( s ) , 

y(s,t) = ksin((C'.>t-:.>r~(s~sl)+:....·r:1i)~ + {J(s1) 
-ka"s- ~)t + {J,s- ~) 

This gives the position of the front at time t. 

s<s
1 I · s 1 ~s ~s 1 + : . 

s 1+: <s~S+: 

(2.96) 

(2.99) 
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We no~ check that, for t>O. the normal to (z(s,t),y(s,t)) is a continuous 

function of s. We need only check at s=s1 and s =s 1+ 1, since both z andy are 

differentiable everywhere else. We first check for continuity at s=s 1: 

lim (z (s ,t ),y(s ,t)) = (kP. (s 1)t +a(s 1). -k a. (s 1)t +P(s 1)) 
•~I 

W~ now check the normal (y,l z,) at s=s 1. 

lim (y, I%,) = -a, (s 1)1 p, (s 1) = tan( c.>,.) 
.... 1 

lim (y,lz,) = tan(c.>r+11') = tan(c.>r) 
... :st . 

Checking continuity at s=s 1+1, we have 

(2.100) 

(2.101) 

(2.102) 

lim (z (s ,t ).y (s ,t ))= (k P:s (s 1 + l)t +a(s 1 + 1 ). -k a, (s 1+ 1 )t +P{s 1)) 
... ,.1+1)-

Finally, we check the normal (Ytlz,) ats=s 1+1 

lim (y, I z,) = tan(c.>t +11') = tan(c.>t) 
... ,. 1+ 1)-

Thus, the third claim of the theorem is verified. 

(2.1 03) 

Let (z,;(s ,t ).y,;(s ,t )) be the ignition curves of the' initial curve 

All that remains is to show that 

lim tr(z,;(s,t),y,;(s,t))=tr(z(s,t),y(s,t)). Since "Yt is a curve of class C1, we 
t .. C . . 

may use (2.67) and (2.68) to find its ignition curves. We have 

'2 ·o·) \ . ~ ": 



52 

(2.1 05) 

where a, and {J, are defined in (2.84) and (2.85). Since a~. +fJ~. =1. we hav~ 

(2.106) 

(2.107) 

We now check that lim tr (x,(s ,f),y,(s ,t ))=tr(.:r: (s ,t ),y (s J)) for t<!:O. We check , ... o .. 

this in four sections; for s~s 1-e: for s 1-e<s<R+s 1.;_e, - for 

R+s 1 -e~s<R+s 1-e+LsQ• and for R+s 1'-e+LsQ~ssR+LsQ:rS-2t. At first 

glance, it would seem that the section of (z,,y,) for s 1 -e<s~R+s 1 -t must 

disappear as e-+0, since R -+0 as e-+0. However, the length of the front 

(z~;(s,t),y,(s,t)) between those two points is a function of e. thus we must be 

extremely careful in our analysis. 

Our ·technique will be to reparameterize s.ections of the curve by arc 

length and then make comparisons. 

lim ( -a.s) =sin( c..>r), and lim (fJs) =cos( c..>t). 
s ... s 1 . . s ... s t . · 

" 

1) s<s 1-e . For s<s 1-e, ·a.,(s)=a(s) and {J,(s)={J(s) 'for all e<:!:O. Thus. 

tr(xi.Y~:) = tr(x,y) fors<s 1-e. 

2) s 1-es,ssR+s 1-e . For any fixed t 1<:!:0, we show that, as e-+0, the trace of 

the c:urve (x,,y,) for s 1-esssR+s 1-e approaches the trace of the curve 

(x,y) fors 1ssss 1+1. Let 

• 
y(s•,t 1) = kt 1sin(:t

1 
+ c..>r+1i) + fJ(sl) 

-· 
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~s ·~(CJ1 -CJr) kt 1 (2.108-2.109) · 

This is a paramet~rizationby arc length of the section of (z(s,t 1),y(s,t 1)) 

betwee!ls 1 ands 1+1. Let 

!f,(s •.t_,) = ( kt 1+R )cos[ kt::R sm-•(a. (s 1-•ll 1-Rj!.(s,' -•)~a(s 1-•) 

y~(s•.t 1 ) = ( kt 1+R )sin[ kt~:R sin-1(o:,(s 1-t:))] Ro:,(s 1 "-t:)+~(s 1 -t:) 
~s~(kt 1 + R) (sin-1(o:, (s 1-t ))+cos-

1 (~, (s 1 +t ))) (2.110-2.111) 

This is a parameterization by arc · length of the section of 

(x,(s ,t 1),y,(s ,t 1)) fo~ s 1 -t~s~R~s 1 -t. Evaluation of the limit shows that , 

• 
lim .z,(s •,t 1) = kt 1cos(k

5
t I CJr+rr)+o:(s 1) 

c~o 1 

• 
lim y,(s•,t 1) = kt 1sin(k

5
t I ~r+r.)+~(sl) 

c~o 1 

= y(s•.t 1) 

Hence, they have the same trace in that range. 

(2.112) 

(2.::3) 

3) R+s 1-t:<s<R+s 1-t+LeQ . This section of (z,,y,) is just the straight line 

segment oflength.LeQ· As £-+0, LeQ-+0, and this section vanishes. 

• i'c(s) = 1(s -R+,t-LeQ-:) 

Evaluation of the limit yields 

lim')',(s) = ')'(s-1) , .. c 

Thus, as t-+0, the trace of (z,,y,) approaches the trace of (z ,y). This com-

pleles the proof. 
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Remark. We have constructed a specific set of C1 curves -y, that tend to a 

piecewise C1 curve -y and showed that, for t~O. (z,,y,) .... (z ,y). where the igni­

tion curves at the point of discontinuity are constructed in our special way. 

This is not the optimal result. Ideally, we should be able to show that our con­

struction is unique; that is, any set of smooth initial data. tending towards -y 

burns into a set of c\.irVes that tend towards our constructed solution. The 

main stumbling block in such an approach is that it is hard to determine if two 

curves have the same trace when they are not parameterized by the same 

object. In the. specific case we chose. the approximation elements were 

straight lines and curves, both of which can easily be parameterized by arc 

length. This made our comparison straightforward. Unfortunately, it is not a 

simple matter to provide an actual parameterization by arc length of an arbi­

trary curve. 

The arguments in Theorem 2 showing that any convex flame front burns 

into a circle require that the initial curve be of class C2. In Theorem 3, we con­

structed ignition curves for initial curves that were only piece'\\ise C2. 1\ow 

that we are able to follow the propagation of a piecewise C2 flame front in a 

· direction normal to itself, we '\\ish to extend Theorem 2. 

Theorem 4. Let 1 be a convex, piece'Wise C2, and piecewise regular curve. Sup­

pose that the particles inside 1 are burnt, and those outside are unburnt. At 

t =0. the particles along 1 are ignited. Assurne that the flame moves along the 
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ignition curves constructed in Theorem 2. Then, as t .. ca, the shape of. the 

' burned region becomes circular. 

Proof. We assume~ for the moment, that given t, there exists a Simple, closed, 

regular, parameterized, positively oriented, convex, plane curve 

?'1(s)=(o.1(s),p1(s)), se:[O,St], ')'1(0)=?'1(8 1). of class c2 that lies inside 1 a dis­

tance less than t. ·That is, given s 1e:[O,St], min l.r(s)-')'1(s 1)! <t, given 
. . · se:[O.S] . 

s 1 e:[O,S], rnin · l?'1(s )-')'(s 1) I <t, and every point on ')'1 is in the closure of the 
se:[O.S 1] 

interior of?'· With this assumption (to be proved later), we now show that the 

original curve 1 can be trapped between two curves that can be made arbi­

trarily close, both of which burn into circular regions. This "Ytill complete the 

proof. 

Since 11 is a closed, convex curve of class C2 , we may use (2.67) and (2.66) · 

to move it in a direction normal to itself with constant speed k. Let 1 1 (s ,t) be 

the position of the front at time t, that is, 1 1(s ,0)=')'1(s ). Then. by Theorem 2. 

as t -+oe, ')'1(s ,t) approaches a circle. Define another curve 12(s )=(o.2(s ),p2(s )), 

se:[O,S1] such that ')'2(s)=?'1(s,2t/k);thus ')'2(s) is the position of the pro­

pagating front ?'t at time t =2tl k. Let 12(s ,t) be the position of the front 1 2 at 

timet, that is. ')'2(s,0)=')'2 . Since ')'2(s,t)=')'1(s,t + 2t/k), ')'2(s,t) also burns 

into a circle. 

We .claim that, for all t . 1 1 (s , t) and ?'2(5 . t) are exactly a distance 2t from 

each other. We prove that, given s 1e:[O,St], i?'2(s 1.t)-')'1(s,t).=2t. Let 

')'1(s,,t)=(x 1(s,t),y1(s,t)) and ')'2(s,t)=(x2(s,t).y2(s,t)). Then. using (2.:8) and 

(2. ~ 9), we have 
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(2.114) 

(l1 

y 1(s,t) = -k (a2 +(J~ )112 t + (J1(s) (2.115) 
1, 1, 

By definition, a2=z2(s,O)=z 1(s,2t/k), and (J2(s)=y2(s,O)=y 1(s,2t/k). Hence, 

y 1 (s ,2t/ k) . 
z2(s,t) =k ((z1,(s,2t/k))2+(fJ1,(s,2t/k))2)112 t +z1(s,2t/k) (2.116) 

=k 
(-a1 (af +pf )-112+a1 (a1 a1 +fJ1 fJ1 )(af +(Jf )-312)(2t) + f11 . . . . . - . - . . . 
~------------~----------------------~--~----t 

(a2 +(12 )-1/2(1 + ((J a -a (J )(a2 +(12 )-3/2(2t)l 11 11 lu 1, 1.. 1, 18 11 

(-o:~ (o:f +fJr >+a:l (a: I al +fJ1 fJ1 >)(o:r +fJr >-312(2t)+fJI •• • s • • .. • • • • • 

= k t 
(af, +fJf.)-l/ 2(:+(fJI.al, -a~.fJ~.Haf, +fJr.)-312 \Zt)} 

Here, we have used {2.37)-(2.42). Similarly, 
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1 (af +Pf )0::112-PI (al a1 +P1 P1 )(af +pf t 912)(2t)+a1 • • • • • • • • • • • = -k ~~~----~----------------~~----~~----t 

(~f .+Pf >{1 +(PI a1 -al P1 )(af +Pf )-312(2t)l • • • • • • • •• 

•' 

!PI (af +Pf )-PI (al a~ +P1 P1 ) (af +Pf )-312(2t)+a1 .. . . . . . . . . . . 
=~ t 

. (af, +Pf,)112{1 + (P1.a1, -a1.P~,)(a~ +Pf,)-312(2t)l 

a1 {(a1 a1 +P1 P1 )(af +Pf )-312(2t)+l) • . . .. . .. . . 
= -k . t + 

'a 2 + R2 )1/2{1 + (R a. -a R )(a 2 + R2 )-312(2t)) · ' 1, ,..1, ,..1_ 1,. 1.,,..1, 1, ,..1, 
. . 

CX1 

= -k (a2 +P~ )112 t + 
1, 1. 

Therefore, givens 1e:[O,S 1]. 

{'Y2(.S 1•t )--y1(s 1 ,t) )=,[ r2(s 1•t )-.:z: 1(s 1·t ))\{Y2(s t•t )-y 1(s t•t )rl 112 (2.118) 

= ~ '"~~P1.> (2·)r ~{ '";.:~1.> (2·)lr 
= (4-t2)1/2 = 2t 

Thus, )'1 (s ,t) and -y2 (s ,t) are a distance 2t from each other and therefore can-

not cross. 

We now prove that -y2(s ,0) lies outside the original curve )' a distance less 

than 2t. Suppose part of -y2 is inside the original curve )' .. Then there exists an 

se:[O,S d such that -y2(s ,0) is inside -y. By Lemma 2, we can draw the ignition 

curve from -y2(s,O) to the curve 'Yt: By Lemma :. this curve is a straight line 

·' 



58 

normal to ')'1• thus t~e shortest distance from ')'2 (s ,0) to the. curve ')'1 is the 

length of that ig~tion curve: l1'2(s,0)-')'1(s,O)l=2t. Continue this igrution 

curve ahead in time until it ·crosses the original curve ')'; the point where the 

two intersect will be more than 2t from ')'1, which violates the assumption that 

all points of ')' are within t of ')'1. Thus, ')'2 is outside ')'. Since ')'1 and ')'2 are 2£ 

apart. then ')'2 lies outside ')' a distance less .than 2t . 

We no~' claim that. for all t, ')'(s ,t) remains behve~n ')'1(s ,t) and ')'2 (s ,t ). 

We prove this by c~ntradiction. Suppose there exists some s 1 and t I such that 

')'(s 1 ,t 1) is outside ')'2 (s,t 1). If we draw the ignition curve from ')'(s 1.t 1) to the 

curve ')'2 (s,O), its length must be greater than kt 1. Since ')'(s,O) is inside 

')'2 (s ,0), this implies that ')'(s 1,t 1) is further thai? kt1 from ')'(s ,0), ·which is 

impossibfe~: Conversely, suppose there exists so~e s 1 and t 1 such that ')'(s 1.t 1) 
' . . . 

is inside ')'1(s,t 1). If we draw the ignition curve from ')'(s 1,0) passing through 

?'(s 1,t 1),. it has length kt 1 . Co,ntinue this ignition curve ahead in time until it 
.. 

hits ?'1 at some point P. (This must happen since we. are supposing that 

?'(s 1,t 1) liesinside ?'1(s,t1 )). The distance from P on')'1(s,t 1) must be greater 

than kt 1 fr_om7(s .,0). Since ?'1 (s ,0) is inside y(s ,0), then-the distance from P .to 

i'i(s ,0) is greater than kt 1, which is impossible. Thus,?' is trapped between two 

curves ')' 1 ~nd ')'2 which, by 'fheorem 2. must burninto circles. 

All. that remains is to show that there exists a convex curve ')'1 of class C2 

lying inside i' a distance less than t. We construct such a curve in two steps: 

first, we in;~ribe a ci;nve'x ·polyg~n that \ies i-nside i' a distance less than t:l 2. 

and second, we smooth out the corners of the polygon so that the resulting 

curve is of class C2 . retains its convexity, and ·lies a distance less than t:/ 2 

inside'.the polygon, thus yielding the result 
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We start at the point ')'(O)=(a(O),p(O)), and let s 1 be the larg~st value of s 

such that each point of the chord connecting 1(0) to 1(s 1) is Within t/2 of the 

section of the initial curve between s =0 and s =s 1: this can be dc;me since the 
. . 

curvature of the initial curve is piecewise ce. Furthermore, since 1 is convex, 

no part of the chord· can lie outside 1· From 1(s 1), we can find the largest value 

of s, say s 2 , such that each point of the chord connecting 1(s 1) to 1(s2) is 

Within t/ 2 of the section of the initial curve between s =s 1 and s =s2. (We are 

doing nothing more than buiding a discrete approximation to the length of the 

curve, which can be done for any curve that is piecewise C1). We continue this 

process until we reach s=S. (See Figure (2.16)). 

Figure 2.16 · 

This produces a convex polygon lying a distance less than t/ 2 inside 1· Our 

goal is to smooth out the corners of the polygon so that the resulting curve is 

convex, of class CZ, and lies a distance less than t/ 2 inside the polygon. Let 

-yPOLY(s )=(aPOLY(s ),pPOLY(s )). s e::[o.sPOLY] be a parameterization of the 

polygon by arc length. 
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We now exhibit a· function that smooths corners. Consider the function 

I (z) defined by 

I (z) = \v .~ % z<u•] (2.119) 
u(2ut-z) z~ut 

where t, u. and v are constants such that t>O·. 0<u<1. O<v<1, and u2+v 2~1. 

The graph of I (z) is shown in Figure (2.17). 

Figure 2.17 

We will exhibit a convex curve of class ~ that lies below f (z) a distance less 

than t. 

We reparameterize the curve (z./ (z)).-oc<x<oc:, by arc length as follows: 

· "Y(s )=(Ci(s ),p(s)).s e:( -oc:,oc: ). where 

-( _ [u(Zt-s) -=<s<t) 
a\s) - lu (2t -s) t~s <oc: 

f vs -oo<s <t) 
p(s) = lv (2t -s) t~s <oc (2.:2:) 

The trace of "Y(s) is the same as the graph of 1 (x ). and a}+Ps2=: at points 
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where .the derivative is defined. We define 'Yc(s )=(Cic(s ).Pc(s )), E:( -Dii,ao)as fol­

lows: 

li,(s) = {u(2<-s) -<s<~ l. ' 
(2.122) 

'IJS 

(2.123) 
e<s<2t 

(See Figure (2.18)) 

Figure 2. 18. 

We claim that :y,(s) is a convex curve of class c!l lying below 'j(s) a d1stance 

less than t. 

:) We check that 'rt(s) is .of class c'l. We need only check p,(s) at the points 

s =0. s =t. and s =2t, since p, is infinitely differentiable eyerywhere else 

(a, is infinitely differentiable). We have. for p,(s). 
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lim (tis) = 0 = lim ( ~ s 4 + vs) 
... o- ... o+ 4t 

(2.124) 

lim ( ~ s 4 + vs) = -1.1
4

£ + vt =lim ( -; (2t-s)4 + v(2t-s)) (2.125) 
• .. ,- 4£ ... ,+ 4£ -

lim(-; (2t-s)4 +v(2t-s))=O= lim (v(2t-s)) (2.126) 
... (2£)- 4t ... (2£)+ . 

Thus, ~' is a continuous function of s. We now check the first derivative. 

lim (v) = v = lim ( ~ s 3 +v) 
... o- ... o+ t 

(2.127) 

lim ( ~ s 3 +v) = 0 ='lim ( T(2t-s)3 - v) 
... £- t ... ,+ t 

(2.128) 

lim ( vs (2t-s )5 - v) = -v = lim ( -v) 
a .. (2c)- t a .. (2c)+ 

(2.129) 

Thus. ~~· is a continuous function of s. Finally, we check the second 

derivative: 

- -3v 2) lim (D)= 0 =lim (-3-s _ 
... c- ... o+ t . 

(2.: 30) . 

(2.131) 
., 

lim ( ....,~v (2t-s )2) = 0 = lim (0) 
a .. (2c)- t a .. (2c)+ 

(2.132) 

Thus, :Ye(s) is a curve of class C2. 

2) We check that 'Ye lies below :y(s) a distance less than t. For s~O and s~Zt, 

.1e(s )=:Y(s ), thus we need only check for O<s <2t. There are no values of s 

such that p,{s )=0 in that interval. since v and t are both positiVE' Since 

~,(t)=3vt/4>0, p,(s)~O for all O<s<2t, thus :y,(s) is above the x axis in 

that interval. Since p,(s)<vs for O<s<t, and ~,{s)<v(2t:-s) for t:<s<2r, 

:y,(s) is below :y. All points in the triangle ABC lie a distance less than t 

away from :y, therefore 1, lies below 1 a distance less than t. 

3) Since p;'(s} is negative for 0<s<2t, :y,(s} is convex. 
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We can now use the curve 1c(s) .to smooth the corners of yOLY(s). Let 

yOLY(s,)=(a.POLY(s,).~POLY(si)). sie:[o.sPOLY] be the location of a corner of the 

polygon. (See Figure (2.19)) 

Figure 2.19 

Since the polygon is parameterized by arc length, the directed unit vector 

tangent to side 1 is lim (afOLY(s ),pfOLY(s )); and that tangen:t to side 2 is 
.... i-

lim (o.f0LY(s ),pf0D'(s )), both taken in the direction of increasing s. Let 
.... t 

· (cos~ 1 .sin~ 1 ) = lim (cx.f0LY(s ),pfOLY(s )) 
.... i-:: 

= ~cosv2 cosv1 - sinv2 sinv1 

= -cos{,;2~ 1 ) · 

and 

(2.:33) 

We wish to graft :Yc(s) onto the corner located at ')'POLY(s,). The first step is 

make :jj:~POLY (."jj is defined in Figure (2.18)). If we definer.>, ()!;;~r./2. such 
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that (cosc.>, sinc.>)=(u,v),(u and v were assumed to be between 0 and 1 in Fig-

ure (2.1 B)), the I) 

cos:jj = (-cosc.>, sinc.>)·(cosc.>, -sine.>) (2.134) 

= -cos2c.> 

If iS=~POLY, then cos(2c.>)=cos(1j 1~1). Since O<~POLY<TT, ~~2~ 1 1<1r. lf ~~"1· 

~2~1 . 
take c.>= 

2 
and the requirement that O<t.><TTI 2 is satisfied (if " 1>"2 . 

1}1~2 ) 0 0 0 

. choose c.>= 
2 

. This 1mphes 

1}2-" 
v =sin( 1 ~ 

2 
(2.135) 

Kext, shrink the side AB in Figure (2.18) so that it has length tl 2. (It is possi-

ble that another corner of the polygon is located ·within tl 2 of y 0L>"(si); if so. 

let the length of AB be one-quarter the distance along the curve to the closest 

. corner. ). Thus, we have 

. 1 1}2-VJ 
sm, 2 1 

4(t/ 2)3 

0 ( "2~1 ~ sm, 
2 1 

4(t/ 2)3 

1}2-'111 . 
(s-t)4 +sin( .

2 
)(t-s) 

1}2-1}1 
sin( 

2 
)(e-s) 

(2. :36) 

O<s~tl 2 
(2.: 37) 

e<s <:x: 

This curve :y,12= (a,12(s ).~,12(s )) is convex, of class C2, and stays within tl 2 of 

a corner with the same angle as v?OLr All that remains is to rotate and 

translate the curve until it fits on top of the corner located at y 0L>"(st) (such 

a transformation preserveR lengths. angles and differentiability. hence the 

.. 
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properties of 1c12 are not disturbed). 

The angle the vector BC in Figure (2.16) makes with the positive x intis is 

-r.>. The angle the vector pointing away from~the corner along side 1 in Figure 

(2.20) makes with the x axi~ is ,.1-rr. Thus, we rotate 1ct2 through an angle of 

(,. 1-rr)-(-r.>)= ,.2
;'

1 
- rr in the counterclockwise direction about th~_ point 

,2_,1 ,.2_,1 . . 
B=(tl 2 cos( 

2 
~. tl 2 sin( 

2 
)). Finally, we translate the curve so that 

the point B is sent to yOLY(si). (See Figure (2.20)) 

Figure 2.20 

Any point (x ,y) is sent to (x ·.y •), where 

1t) 
(2.: 38) 

rr) 

Thus. 
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. +aPOLY(si) (2.139) 

( ~2+~1 t ~2+~1 ~2-~1 . ( ~2+~1 = -.:r:cos, 
2 

~+~os( 
2 

)cos( 
2 

)+ysm, 
2 

~ 

· t . ( ~2+~1 '\ . ( ~2-,.1 :.\+ POLY( ) --ram 
2 

7sm 2 7 ex s1 

~2+~1 . ~2+~1 t POLY = -.:r:cos( 
2 

)+ysin( 
2 

~+ ~os(~2)+cx (s1) 
\ 

• · ( ~2+~1 )' t ( ~2~1 :.\) ( ~2+'\91 )1 t . 1 112-1)1 )) y = sm, 
2 

-1i ,.:r:- ~os, --
2
- 7 +cos, 

2 
-1i ,y- z-sm~. 

2 

(2.:~0) 

' I '112+111 I 112+111 t . POLY! = -.:r:sm,, 2 ~-yeas, 2 )+ zsm(iJ2)+P' ,si) 

Thus, we "glue" the section ')i,12(s) from s =0 to s =e into the corner located at 

y 0LY(sd. Rotation and translation of ')i,12 yield 

t 
For O<s~ 2' 

For t-<s~e; 

+ 1 !_'co~'-c )+,.,_POLY's·) \ 2 7 . ~ \ V2 '"" \ l 



For e<s<ao: 

• ~2-~1 ~2+~1 ~2~1 112+~1 . 
ac12 =(s-e)cos( 

2 
~cos( 

2 
~+(e-s)sin( 

2 
~sin( 2 ~ 

For -oo<s:S;Q; 

E 
For 0<s<2' 

E 
.For z-<s<E; 

For E<s <:x:; 

\ 

+ ( ~ ~cos(112)+aPOL:t'(s.J . 

67 



Thus, we define 'Yc(s )=(ac(s ),flc(s )). s e:[o.sPOLY] as follows; · 

l
-fs-fs.-!.._\)4 ' \ \ 2' 

. 3 £. 
4-

2 

R 1 s) - RPOL Y r S ) 
1-'t\ - ,... ' \ 

66 

(2.143) 

'2 • LL) ' . - .. 

-·•. 
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For s.,; <s·<(s.,; +tl 2): 

For (s..: +e/ 2)~s~SPoLY:. 

Here. we have shifted the parameterization by (s.,; -e/ 2) so that the two curves 

match up. By construction, ,,(s ), s e:[o.sPOLY] is a convex curve, lying a dis-

tance less than ~ inside y 0LY(s ), and thus a distance less than e inside the 

original curve /'(s). Furthermore, we claim that ')',(s) is of class C2 for· 

si- ~ ~s~ s.,; + ~. We check that a.,(s) and ~,(s) and their derivatives match up 

t t at s =st- '2 and s =s..: + 2" Vsing the definitipn of u1 and u2 , we note that 

4-.sinl .c )+ r.~POLYt S· ):t:~POLYt S· + £_\ z \ vz . 1-' \ l 1-' \ t z I • 



70 

We fiTst check a, and its derivatives at s =si + ~ . For a, at si + ~ , we have 

(2.145) 

For a~. we have 

lim (a~) = cos('l>2) 

... (st+~+ (2.146) 

_ , '~>2-u 1 , '~>2.+v1 . , u2-u1 . , '~>2+v1 _ , • 
- cos, 

2 
~cos, 

2 
~-sm, 

2 
~sm, 

2 
1 - cos,1J2)' 

For a.~·, we have 

lim (a.;) = 0 
s .. (s,+~+ (2.147) 

1
. , ") _ 

1
. ~-3(e-(s-(si-e/2)))2 ·. , '~>2-v 1 . ,v2+u 1 ) 

1m ,a., - 1m q . . 1n, 
2 

7sm, 
2 

7_ = 0 
... 's-+.f-1"' .... (s+~- e~ \ \ 2 \ 2 

Thus, a., and its first two derivatives check at s =si + ~. We now check {3,. 

/ 

(2.1'=8) 

For {3~. we have 

lim ({3~) = sin( '11 2) 

s .. :.,_ t }'+ 
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1)2-1)1 1)2+1)1 1)2-1)1 1)2+1)1 
=cos( 

2 
)sin( 

2 
)+sip( 

2 
)cos( 

2 
) = sin(u2) 

For p;·, we have 

lim (p;') = 0 
... (.,+~·+ (2.150) 

Thus, f3t and its first two derivatives agree at s =si + ~. We now check o:£ at 

For o:;. we have· 

'::':' 
hm {o:;) = cos(u 1) 

... ,st -}l-

(2.15:) 

'2 1 5?) \ . ~ -
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~2~1 . ( ~2+~1 . . ~2-~1 . ( ~2+~1 = cos( 
2 

~cos, 
2 

~+sm( 
2 

~sm, 
2 

~ = cos(~ 1 ) 

For a~·. we have 

lim (a;') = 0 
.... ,.s,-~::- (2.153) 

-3(s -(si -t/2))2 . ~2-~1 . 
1 
~2+~1 · 

t 3 sm( 2 ~sm, 2 ~ = 0 

2 
Finally, we check (3,. 

(2.15.;) 

For (3~. we have 

lim ((3;) = sin(v 1) 

.... (.si-~- (2.: 55) 
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For p;, we have 

lim (p;) = 0 .... ,.(_~- (2.156) 

lim (p~') ::;:; lim 
s ... (sc.~+ • ... (5( ,..i7+ 

Thus, o.t and Pt and their first two derivatives are all continuous for 

si- ~s~si + ~ . We smooth the other corners in the same way to achieve the 

desired result: a convex curve ?'t (s) of class C2 lying inside the original curve -y 

a distance less than t. This completes the proof. 

·. 



74 
2.4. Evolution of a Non-convex Ji1ame Front 

We have anaylzed the motion of a closed, convex. piecewise C2 and piece­

wise regular tiame front. In this section, we wish to analyze the propagation of 

a non-convex initial front. By "non-convex", we mean that there exists a chord 

connecting two points ')'(s 1,0) and ')'(s 2,0), s 1,s2 €[0,S] on the initial curve that 

passes through some part of the unburnt ft.uid. We begin with a suggestive 

example. 

Example 2.4 Let ')'(s)=(o.(s),p(s))=(-s,s2), sE:(-oc,ae). The trace of this curve 

is the . parabola y =x2 . Suppose that the particles below the parabola are 

burnt. and the particles above are unburnt. (This agrees with our earlier for-

·· mulations in which the burnt region is on the left as we travel along the curve 

in the direction of increasing s .) Suppose that at t =0 we ignite all the parti­

cles located along ')'(s ). We assume that the ft.ame propagates with unit speed. 
. . 

As in Example 2.1, we may use equations (2.18) and (2.19) to determine 

the position of the front. Thus, 

2s x(s.t)= 2 2 t-s 
(1+4s )1/ 

(2.:57) 

y(s,t) = (:+4;2)1/2 t + s2. (2.158) 

(See Figure (2.21)) 



75 

Figure 2.21 

We make the following observations: 

:) For ~t~ ~, (2.157) and (2.158) are reversible. That is, the mapping 

s,t-+(x(s,t),y(s,t)) is Invertible for all te:[O.~. We prove this by check­

ing that the Jacobian is non-zero for ~t < ~. From (2.69) we'have · 

[Xs Xt]:: _ ~· PssCXs-CXssPs t+(a2+R2)1/2) 
Ys Yt ai+Pi s 1-'s 

(2.:59) 

1 
Since 2t <( 4s 2+ ~) for ~t < z , the Jacobian is non-zero. Given any 

s 1e:(-oo,oo), the ignition curve leaving the point (x(s 1,0),y(s 1,0)) on the im-

tial parabola does not intersect any other ignition curve for O~t < 2 .· 
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2) For t > ~, the situation is different; the mapping s ,t .... (z (s ,t ),y (s ,t )) is no 

longer invertible. To see that this is so, consider the point (O,a), where 

a·>~. (Note that this is a point in the unburnt fluid.) We claim that there 

are two distinct ignition curves passing through (O,a). Let s 1=(a-1/2)112 

and s 2=-(a-1/ 2)112. The ignition curve starting at the point 

2(a-l/ 2) 112 _ _ 112 
x(s1,t) = (1+4((a-1/2)112)2)112 t (a 1/2) 

= (a-1/ 2)112 [ 2t _ 1 ) 
(4-a-1)112 

y(s 1,t) = 1 t + ((a-1/2)112)2 
(l+ 4((a-1/ 2)112)2)112 

= ( t ) 1/2 + (a -1/ 2) . 4a-l 

(2.160) 

(2.161) 

Similarly, the ignition curve starting at the point (x(s2.0),y(s 2,0)) is 

-2(a-1/2)112 . t ( f 2)112) 
(1+4( -(a-1/ 2)112)2)112 + -,a-11 . 

=-(a-1/2)112[ 2t -1) 
· . (4a-1)112 

1 t (-'a-1/2)112)2 
( 1 +4-( -(a -l/2)112)2)112 ' 

t = ---)~11-:-:2:- + (a -11 2) . 
(4a-1 · · 

At t =t =(11 2)(4a -1) 112, these two curves intersect. since 

x(s 1.f) = 0 = x(s 2,l) 

y(s 1.l) =a= y(s2.f). 

(2.162) 

(2.163) 

(2.165) 

Cnlike the situation in Lemma 2 in which the convexity of the .initial data 

implied that the ignition curves could not collide. in this example of a 

_. 
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non-convex initial curve, the ignition curves intersect. 

In Figure (2.22), we. graph (2.15'7) and (2.158} for various values oft. 

Figure 2.22 

As the curve moves, it crosses itself at the point where the two ignition curves 

collide. The previous calculation shows that this collision occurs at the point 

(O,a}. ~>~,when t =( tH4a-1)112. 

1 
Figure (2.22) illustrates the situation. At any time t > 2, the mo\ing curve 

can be divided into two parts: the part above and including the crossover 

point, and the part below. The part above and including the crossover point is 

given by (x(s,t},y(s,t)}, for all s such that -oo<s~(-1/2}(4t 2-l) 112 or 

(1/2)(4t 2-1} 112 ~s<oe. The part below cor.responds to all s such that 

( -~/ 2)(4t 2-1) 11 2 ~~ <(11 2)(4t 2-1)11 2. The partieles located along the part 

~bove and including the crossover point are the ones "on fire" at time t; they 

form the boundary between the burnt and unburnt particles. The part of the 

curve below the crossover point passes through fiuid that is already burnt 
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Thus, as any time t > ~ , the actual tlame front is a subset of the moving curve. 

Hence, the position of the tlame front at time t is given by (:z: (s ,t ),y(s ,t )), 

se:(-ao,ao) for 1 
t<z; and (:z: (s ,t ),y (s ,t )) 

s e:( -a:,( -1/ 2)(4t 2-1)1l 2]U[(11 2)(4t 2-1) 112,ao) for t~ ~, where :z: (s ,t) and 

y (s ,t) are given by (2.157) and (2.158). ln Figure (2.23), the position of the 

tlame front is shown for various values oft. 

Figure 2.23 

ln addition, we can show that for t > ~, the front develops a cusp, that is, a 

point where the curve is continuous but not differentiable. To verify this. we 

check the one-sided derivatives. Using (2.28), we see that 

(2.: 66) 

= lim (2s)::: -(4t 2-:) 11 2 

s ... : ( -1/ 2)(4tLt)II2J-

while 
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(2.167) 

= lim (2s) = (4t2-1)112 . 
• .. [( -112)(41 2_1)11 2]+ 

Fort >11 2. these tw_o limits are not equal, hence the tangent is discontinuous. 

Thus we have shown that an infinit.ely differentiable initial front can develop 

cusps as it burns and cease to be differentiable. Drawings to this effect were 

first made in [ 18]. This completes the example. 

We now consider an arbitrary, non-convex initial curve and ask the follow­

ing questions: How shall we continue the motion of the flame front beyond the 

point when ignition curves fir.st collide'? Which sections of our moving curve do 

we eliminate so that the remaining portions form the actual boundary between 

burnt and unburnt regions'? (N.B. It is important to stress that for a convex 

initial curve, ignition curves canJ).ot collide.) 

We now develop an "entropy condition" for our propagating flame front. 

With the help of this condition, we will be able to continue our solutionbeyond 

the time when ignition curves first collide. Let ')'(s )=(a(s ).{J(s )). s c:~O.S] be a 

simple, closed, regular curve of class C2. Suppose that the particles inside -y 

are burnt and those outside are unburnt. At t =0. we ignite all the particle::: 

along -y and allow the front to propagate normal to itself ""ith speed k. Let 

:f(X ,y ,t) be the indicator function of the burnt region; \i'(x .y ,t )=: iflhe parti­

cle located at (x ,y) is burnt at time t and zero otherwise Since the ignition 

curve connecting the initial curve and the point (x ,y) is a straight line normal 

to the initial curve, its length equals the distance from (x ,y) to the initial 

curve. and we have 



1 if (x,y) is burnt at t=O 
9'(x,y,t) = 1 (kt)2~ min (x-a(s))2+(y-p(s))2 

se:[O.S] 

0 (kt )2< min (x -a(s ))2+(y -p(s ))2 
ae:[O.S] 
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(2.168) 

9'(x ,y ,t) measures when the "news" of the burning front reaches a particular 

particle. From the definition of rp, we see that if rp(x 0 ,y0 ,t 0)=1. then 

9'(x 0,y0,t)=l for all t >t 0 ; once a particle changes from unburnt to burnt, it 

remains burnt for all t. 

Definition. We say that a propagating flame front satisfies the entropy condi-

lion if once a particle burns, it remains burnt. 

Ourreasons for the name "entropy condition" will be made clear later. In this 

work, we assume that the flame front satisfies the entropy condition. Then if 

two ignition curves cross at a particular point, whichever one arrives first will 

ignite the particle located there. 

curves that collide at some point P, and suppose that the ignition curve leav­

ing (x_(s 1,0),y(s 1,0)) arrives at P before (or at the same time as) as the igni­

tion curve leaving (x (s 2 ,0),y(s 2,0)). Then there exists t 1 and t 2 such that 

(2.169) 

By the entropy condition, the ignition curve arriving first (of shortest length) 

will be the one that ignites the particle at P. In our next lemma, we prove 

that, fort >t 2, the later arriving ignition curve can only pass through fluid that 

has been previously burnt. That is, every particle on the ignition curve 

t 
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(x (s2,t).y (s2,t)) beyond the intersection point is burnt before the "fuse" from 

(x (s2.0),y(s2,0)) reaches it. Thus, we can ignore its effects for t";?:t 2 . 

Lemma 3. Let ')'(s)=(a(s),p(s)), se:[O,S] be a simple, closed, regular curve of 

class c2. Let (x(s,t),y(s,t)), se:[O,S], te:[O,oo) be the ignition curves of 1 as 

defined in (2.67) and (2.68). Suppose there exists s~os 2 e:[O,S], s 1 ~s 2 , and t.,t 2 

such that (x(s 1.t 1),y(s 1,t 1))=(x(s 2,t 2),y(s2,t 2)), with t 1~t 2 . Then, given any 

min ( (x(s2.t3)-x (s ,0))2+(y(s 2,t3)-y(s ,0))2 ) 
se[O,S] 

< ( (x (s 2 ,t 3)-x (s2,0))2+(y(s 2,t3)-y (s2,0))2 ) 

(2.170) 

Furthermore, there exists a f<t 3 such that 9\'(x(s2,t3),y(s2,t 3),f)=l. where rp is 

defined in (2.168). 

Note that if t 1 =t 2 , both clirves can be eliminated beyond the intersection 

point. 

Proof. Let l 1 be the distance from (x(s 1,0),y(s1,0)) to (x(s 1,t 1),y(s 1,t 1)). 

Then l 1=kt 1. Let l2 be the distance from (x(s 2,0),y(s 2,0)) to 

(x(s 2.t2),y(s 2,t 2)). Then l 2=kt 2 , and l 1~l2 . Let P be the point where the igni­

tion curves intersect; P=(x(s 1,t 1),y(s 1,t 1))=(x(s 2,t2),y(s2,t2)). Choose t3>t2 

and let Q=(x(s 2 ,t3),y(s 2,t3)). Let A be the point (x(s 1,0),y(s 1,0)) and B be the 

point (x (s 2 ,0),y (s 2,0)). (See Figure (2.24)) 

) 
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Figure 2.24 

Then AQ<.AP+PQ=l 1 +PQ~l2+PQ=BQ. Thus, Q is closer to A than it is to B. 

hence, B cannot be the point ~hat ignites Q. Define f such that kt =AQ. Then 

"' kt <BQ=kt 5 . Thus ~(:z:(s 2,t 5),y(s2 ,t 5),f)=1. This completes the proof. 

Thus, we can eliminate the late-arriving ignition curve beyond the inter­

section point. In the next lemma, we prove that if an ignition curve is elim-

inated, it must be eliminated by an ignition curve of equal length, and hence, 

by Lemma 3, both can have no effect beyond the intersection point. 

Lemma 4 Let 7(s)=(a(s),p(s)), sE:[O,S] be a simple closed, regular curve of 

class c;;., Let (:z:(s,t),y(s,t)), sE:[O,S], tE:[O,co) be the ignition curves of 7 as 

defined in (2.67)-(2.68). Suppose, in accordance with Lemma 3, we eliminate 

those parts of ignition curves that .reach previously burnt fuel. Then, if an igni­

tion curve is eliminated for t'fi!!t 1, it is eliminated by an ignition curve of equal 

length. Hence, both pass through previously burnt fuel for t'fi!!t 1. 

Proof. Suppose the curve leaving 7(s 1), s 1E:[O,S] is eliminated. Thus, there 

exists t 1 such that for O~t<t 1 , (:z:(s 1,t),y(s 1,t)) passes though unburnt fuel. 

and for t';;?!t 1, (:z:(s 1,t),y(s 1,t)) passes through previously burnt fuel. Let the 

,. 
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curve leaving ')'(s 2), s 2E:[O,S] be the one that eliminates x(s 1,t),y(s 1 ,t). That 

is, there exists t 2 such that (x(s2,t 2),y(s2,t2))=(x(s 1,t 1),y(s 1.,t 1)) with t2~t 1 . 

We prove that t 2=t 1. Suppose not. Then t 2<t 1, and all points (x(s 1,f),y(s 1.f)), 

t 2<f <t 1 on the first ignition curve are closer to ')'(s 2) then they are to )'(s 1), 

and are thus burnt before the ignition curve leaving ')'(s 1) reaches them. This 

means that the curve leaving )'(s 1) must have been eliminated before t 1, which 

contradicts the hypothesis. Hence, t 2=t 1 , and both ignition curves are elim-

inated at the same time. This completes the proof. 

We can now describe the motion of a propagating flame front. We extend 

ignition curves from the front according to our formulae 

(2.171) 

(2.1 72) 

and move the flame front along these ignition curves until there is a collisiol). 

Eliminate those ignition curves that carry the initial front into the intersec-
' 

lion point, since they are of the same length. Continue moving the front along 

the remaining ignition curves, all the while eliminating curves that collide. 

This will give the position of the front at any time. At any time, each point of 

the front can be traced back along an ignition curve to the initial curve, since 

the motion of the front is solely determined by the ignition curves. However, 

there may be points on the initial curve whose ignition curves are eliminated 
' -

before they reach the propagatiil(!; front. 

We return briefly to Example 2.4 and point out that we have already used 

this elimination procedure to follow the propagation of the parabolic flame 

1 front. For 05;;t < 2' the ignition curves do not intersect. .For each value of 

/ 
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1 
t > ~ a pair of ignition curves of equal length intersect, one from 

s =( -1/2)(4t 2-1)112 and one from s=(112)(4t 2-1) 112 . To continue our solu-

tion beyond that time, we eliminate both ofthe curves. This is the solution we 

previously found. 

We are now able to explain our choice of the phrase "entropy condition". 

If the initial curve is con~ex and of class c;2, the solution (x(s,t),y(s,t)) is 

reversible; given the position of the flame front at any time t, we may recon­

struct the initial data. This is because the ignition curves cannot intersect, 

and thus it suffices to follow the front backwards in time along the ignition 

curves for a time t: 

(2.173) 

(2.174) 

However, if the initial curve is not convex, the ignition curves collide. Once 

they collide, the results of Lemmas 3 and 4 spow that we can eliminate them, 

with no effect on the solution. Thus, the position of the flame front, after the 

time when the ignition curves first collide, has no "knowledge" of those dis-

carded ignition curves. Information is "swallowed up" at the collision point 

and the solution ceases to be reversible; hence the name "entropy". Each 

time we use the entropy condition to discard ignition curves, more informa-

lion about the initial data is lost. 

Example 2.5. As another example of the elimination of ignition curves for 

non-convex initial data, suppose the initial front is in the shape of the cardioid 

/'(s )=(o:(s ),,B(s ))=(cos(s ),sin(s )(1-cos(s ))), s E[0,2rr]. Assume that the parti-

-· 
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cles inside -y are burnt and the particles outside are unburnt. We ignite the 

particles located along -y and allow the curve to propagate normally to itself 

with unit speed. (See Figure (2.25)) 

Figure 2.25 

Let B=-y(rr/3) and B'=-y(2rr-rr/3). These are the points whose ignition curves .·. 

are in the positive x direction. Given s, O<s <rr/3, the ignition curve leaving 

-y(s) collides with the one leaving -y(2rr-s ). When they collide, they are elim­

inated and the effect is that the cusp C "travels" along the x axis, "swallowing 

up" sections of the parameterization. We wish to establish the relationship 

between the distance the cusp has traveled and the set of ignition curves that 

have been eliminated. Let P=')'(s 1), with O<s 1<rt/3, and let l be the length of 

the ignition curve between P and the point (.6,0) where it hits the~x axis. (See 

Figure (2.26)) 



.rt~cl 
---------+----------~~~~~~~~~ 

Figure 2.26 

A calculation shows that 

( 1-cos(s 1))sin(s 1) l = ...:.__ _ ____:.-=.;__..,..;--....:..;_ 

cos(3s 1/2) 
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rz . --) \ . -("C) 

Since the _fiame travels with unit speed, the time it. takes the front to reach 

the point (6,0) is 

(: -cos{s 1))sin(s 1) t = -'------:-~--=-=~-'-:-
cos(3s1/2) 

(2.176) 

( 1-cos(s 1))sin(s 1) Let g (s 1) = ) Another calculation shows that 
cos(3s 1/ 2 

(2.: 77) 

(1-cos(s 1))cos(s 1/ 2) 
Let h (s) = cos(3s 

11 2
) At time t, ignition curves of equal length 

leaving -y(s 1) ~nd -y(21i-S 1) reach (6,0), and all the curves leaving ?' bet weE:n 

-y(21i-s 1) and -y(s 1) have l:>een eliminated. Thus. we know which ignition cun'es 

to eliminate at timet. Using (2.169) and (2.170), we have 



·-

:z: (s ,t) = 
h(g-1(t)) ssg- 1(t) 

( 2 fJs2)112 t+a g-l(t)<s<2rr-g-l(t) 
a. +fJs 
h(g-1(t)) 2rr-g-1(t)ss 
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(2.178) 

(2.1 79) 

To uniquely define g - 1(t ), we use the smallest value of s 1 between 0 and 2rr 

such that g (s 1)=t. Since (ai+fJi)=2(1-cos(s)), calculating as and f3s we find 

x(s,t)= 

( 1-cos(g - 1(t )/2))cos(g - 1 (t )/2) 
cos(3g 1(t )/2) 

cos(s)-cos(2s) ) 2r ) 
r ( r )))112 t +cos(s -cos ,s ,2 1-cos,s 

( 1-cos(g - 1(t )/2))"cos(g - 1 (t )/2) 
cos(3g -l(t )/2) 

0 

g-1 (t )<s <2rr-g - 1(t) (2.180) 

y(s,t)= (~~~(s)-s/n}~J 2 t+sin(s)-cos(s)sin(s) g-1(t)<s<2rr-g- 1(t) (2.18:) 
, .:. -cos,s . 

0 2rr-g -(t )~s 

A drawing of (x(s .t).y(s ,t)) for various values oft is given in Figure (2.27). 
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Figure. 2. 27 

We now show that as t ..... e1o, the cusp disappears and the propagating flame 

front becomes differentiable at the point where it intersects the positive x 

axis. Define ~+(t) by 

(2.182) 

(See Figure (2.28)) 

-· 



89 

Figure 2.28 

"Csing (2.28), we then have 

(2.:83) 

From the definition of g (s 1), we have lim g-1(t )=rr/3. Therefore, 
. t~~ 

r 
(2.:8~) 

= lim tan- 1 [ cos(s)-cos(2s) } 
s-+n/3 sm(2s )-sm\s) 

= rr/2. 

Thus, the cusp opens to an angle of rr/2. By symmetry, the angle rf~S -(rr/2)) .. 
opens up to rr/ 2 also. Thus the tangent to the curve becomes vertical and 

changes direction continuously at the point where the front intersects the 

positive x axis. This completes the example. 
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This example shows that the traveling cusp engulfs sections of the initial· 

curve until it itself disappears. In Example 2.4, we showed that the collision of 

ignition curves can cause a cusp to form in the solution. The creation and 

disappearance of cusps is a consequence of the entropy condition. In the n.e·xt 

theorem, we show that any simple, closed, regular curve of class c2 (convex or 

not) burns into a circle as t -+oo. 

Remark. We shall need the following inequality: If \ O<l <a <b, .then 

a -(a2-L 2) 112>b -(b 2-L 2) 112 . To show this, we let f (t )=t -(t 2-l 2) 112 . Then 

f'(t)=1-( 1/2)(t2-! 2
)-

112(2t)=1- (t 2_:2) 112 . For t>l, (t 2_:2) 112 >1. which 

implies that r (t )<0. 

Theorem 5. Let /'(s )=(a.(s ),p(s )), s e:[O,S] be a simple, closed, regular. posi­

tively oriented curve of class C2
. Assume that the convex hullf'H(s ), s e:[o.sH] 

of 7 is piece"Wise .C2 and piecewise regular. Assume that the front propagates 

in a direction normal to itself with speed k. Then, as t -+ex:, the shape of the 
'· 

burnt region approaches a circular region. 

Remark. The convex hull of y is the boundary of the smallest convex set that 

contains all points of f'; physically it corresponds to a membrane stretched as 

tightly as possible around I'· It consists of pieces of the original curve con-

nected by straight lines, and is tangent to the original curve at e\'ery point 

where they touch. 
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Proof. The proof will consist of showing that 1 and 1H approach the same 

shape as t .... oo. Since, by Theorem 4, 1H must become circular as t .... oo, so then 

must 1· Without loss of generality, we assume the front propagates at unit 

speed. 

We first note that if -y is convex, then 1 and 1H are the same curve and we 

are done. In the non-convex case, along those sections of -y where 1H and -y 

touch, the two curves are tangent and their ignition curves are the same. 

Thus, we focus our attention on these sections where 1H and-y do not touch. 

Let A and B be two points common to -y and 'YH· A=-y(s 1) and B=-y(s2), 

such that the section of 1H between A and B does not touch-y. Thus, between 

A and B, 1H is a straight line segment connecting A to B. (See Figure (2.29)) 

Figure 2.29 

We want to show that the section of the curve 1 between A and B burns into 

the same shape as does the line segment AB as t .... oo. Draw the ignition curves 

of 1H at A and f3; since 1H is tangent to 1 at A and B, they must be the same 
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as the ignition curves of -y at A and B. Define lA to be the ignition curve leav.:. 

ing A and IB to be the ignition curve lea\ing B. (See Figure (2.30).) 

Figure 2.30 

The ignition curves at A and B must be parallel, since they are both nor­

mal to the line segment AB. We note that the ignition curve leaving any point 

Pon-y between A and B can only influence the region between !A and !B, since 

any point outside that region must be nearer to A or to B (and hence ¥.ill be 

ignited by the closer of the two) than it is toP. 

Choose t >0. We will show that there exists a t 0 such that for t >t c. each 

point of the flame front that evolved from the section of the original curve -y 

between A and B lies less than a distance t from the flame front tha·t evolved 

from the section of the convex hull between A and B. In other words, as t .... x, 
\ 

the two propagating flame fronts get within t of each other. 

Let 2l be the distance between A and B, and consider the set of points 

t2+l2 
that lie between !A and IB a distance greater than from both A and B. 

2t 



t2+z2 --
and a distance less than Zt from the line segment AB; 

~\st~ 
:-_-_-_ -__:-_ -_-_ -_ -_ -_ -_-__ u~--------; A'. 

-
\7...-t ~'l. --

"~---­--
--

F-------------------------------4~ 

Figure 2.31 

93 

this corresponds to the shaded region in Figure (2.31). We claim that every 

point in that shaded region is a distance less than t from the line segment. 

A'B'. To prove this, we note that the distance from C to AB is 

2 t2 
(( t 

2
: · ~ 2 -l 2) 112 . Thus the distance from C to A'B is 

2+L2 2+L2 2+L2 4+ 2 2z2+t4-L 2L2 _t ___ (( t . ~2-z2)1/2 = _t ___ ( t t .t: ~112 ( 2 :e5) 
2t ' 2t 2t 4t2 

= t2+t2 - ( t4-2t2l2+t4 ~J/2 
2t 4t2 

t2+z2 z2-t2 
= Z't- (-zt) 

= t. 

Since every point in the shaded region is closer than the point C to lhe seg­

ment A'B'. every point of the shaded region is less than t from A'B. 
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t2+z2 
We can now complete the proof. Choose t 0 = Zt . Allow the section of 

the convex hull between A and B to propagate at unit speed for a time t >t 0; 

this corresponds to a line segment A'B displaced a distance t to the right. 

Similarly, allow the section of the original curve -y between A and B to pro­

pagate at unit speed for the same length of time. We claim that this flame 

front (labeled -y(t )) is within t of the segment A'B'. There are only two possi­

bilities. No part of -y(t) can be to the right of the segment A'B, since such a 

point would be located a distance greater than t from the original curve, 

which is impossible. Likewise, there can be no unburnt particle located to the 

left of the shaded ·region (see Figure (2.32)), since such a point is located' a 

distance less than t from either A or B and thus must have been ignited by 

lime t. 

c 

Figure 2.32 

Thus. -y(t) must lie in the shaded region. We repeat the earlier argument to 

see that every point in the shaded region lies a distance less than t -(t 2 -Z 2) 112 

/ 
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from A'B. Finally, using the inequality proved earlier. we have 

t -(t 2-l2) 112<t 0-(t8 -l2) 112=t, since t 0<t. Thus. ')'(t) lies less than t from A'B'. 

This completes the proof. 

2.5. Comparison of Flame Propagation with Gas Flow in One Dimension 

The situation we have presented is analogous to gas flow in one dimension. 

In this sec'tion. we briefly explore the analogy. The comments that follow on 

the solution of a conservation law are taken from [3]. 

We consider the conservation law 

(2.186) 

The characteristics are straight lines along which the solution u of (2. ~86) is 

constant. Consider the initial data 

. u(x.O) = {~ :~~) (2.:87) 

The characteristics do not fill out the (x ,t) plane. as can be seen in Figure 

(2.33). 
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t 

Figure 2.33 

We fill out the (x ,t) plane through the introduction of a rarefaction fan. This is 

a set of characteristics leaving th~ origin that fan out and provide the transi­

tion from the characteristic on the left leaving the origin to the characteristic 

on the right. (See Figure (2.34).) 

Figure 2.34 
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Conversely, consider the initial data 

·(o x~o) 
u. (.:z: ,O) = l .:z; <0 (2.1 BB) 

Here, the characteristics cross each other. We introduce a shock with propa­

gation speed s = 1/2 to keep the characteristics from crossing. Thus, we get a 

globally defined weak solution, as shown in Figure (2.35). 

Figure 2.35 

In the above, we have made use of an "entropy condition" which may be slated 

as follows: A shock satisfies the entropy condition if. when it separates the 

characteristics of one family, the characteristics can be traced back to the 

initial data. 

The above discussion parallels our theory of flame propagation. We have 

introduced ignition curves along which the heat required for ignition is tran­

sported. These curves are analogous to the characteristics of (2.1.86): curves 

along which the solution u. is carried. When the flame propagates with uniform 
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speed. the ignition c~es are straight lines, just as the characteristics of the 

simple conservation law (2.186) are straight lines. 

In Section 2.3, we gave an example of initial data for which the ignition 

curves separated, leaving an open area. In Theorem 4, we showed that ignition 

curves could be constructed to till in the open area. with the requirement that 

each ignition curve reach back to the initial data. These ignition curves pro­

vided a transition from the ignition curves on the right to the ignition curves 

on the left. In Section 2.4, we gave an example of initial data for which the 

ignition curves collided. We introduced an entropy condition that stipulated 

that each particle burns only once. This enabled us to continue the solution 

beyond the first collision. Our constructed solution maintained the property 

that every point of the moving front reach back along an ignition curve to the 

initial data. 

Thus. the two entropy conditions have a similar result: they ensure that 

we can always trace back along characteristics/ignition curves to the initial 

data. This promises that the solution depends only on the initial data. 

In the following chapters~ we return to our full set of combustion equa­

tions (1.15)-(1.20). 
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Chapter Three 

name .Propagation with Volume Expansion 

ln this chapter, we use the results of our theory of flame propagation to 

analyze the full set of combustion equations ( 1.15-1.20). 

3.1. Effects of Volume Expansion 

I 

ln Chapter Two, we studied the motion of a flame propagating in a 

premixed. combustible fluid with no boundaries. Since we assumed that the 

density of a particle remained constant as it changed from unburnt to burnt. 

there was no motion impartedto the fluid by the flame. If the fluid is initially 

at rest. it remains at rest .. Each fluid particle is "glued down", and changes 

from unburnt to burnt when the flame reaches it. 

We now consider the effects of volume expansion. Assume that the density 

· of the unburnt fluid is Pu. the density of the burnt fluid is Pb. and the flame 

. propagates in a direction normal to itself with speed k. Let Pb <Pu (the case 

Pb >Pu is physicaily unreasonable). Each particle along the flame front expands 

as it burns. pushing the surrounding particles. Since the flow of mass across· 

the flame front is conserved, this sudden change in volume along the flame 

front must be accompanied by a jump in the normal_component of the fluid 

velocity across the front of strength z[Pu -pb k. (See Chapter One). We 
Pu+Pb 

. . [ 1-(pb I Pu) 
rewnte th1s as 

1 
( 

1 
) k. The smaller the density ratio (Pb I Pu) between 

... + Pb Pu 

the burnt and the unburnt fluids. the more the particles ex'Pand and the 

greater the velocity jump. Likewise. the larger the flame speed, the greater 

the velocity jump The location of the boundary between the burnt and 
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unburnt regions, as seen from a fixed reference frame, is a product of two fac-

tors: first, the change in individual ftuid particles from unburnt to burnt and 

second, the velocity field produced by their resulting expansion. 

We appeal to the theory_ . of single layer distributions. Let 

")'(s )=(a:(s ),p(s )), s E:[O,S] be a simple, closed, regular curve. We assume that y 

is infinitely differentiable with respect to s. Suppose we spread a charge p.(s) 

along y, where p. is a c- function such that J.L(O)=p.(S), p.'(O)=p.'(S), etc. If we 

define the single layer potential 9'(x ,y) as 

( ) - 1 Js g(s) log-(f,x -o..r,s))2+f,y -Rt,s))2)112ds (3 • ) 
rf,x ,y - 2rr o (a:i+Ps2)1/2 "" ' . -

then it can be shown [5] that 

:) At any point (x ,y) not on y, rf is twice differentiable and \72f(X ,y) = 0. 

2) rf(x ,y) is conhnuous across y. 

3) The tangential derivative of rr- is· continuous across y 

L:) The normal derivative of;; undergoes a jump of strength p. across y. 

We use this to find the velocity field produced by volume expansion along 

the flame front. We uniformly spread a charge J.1=2[Pu -pb k along a flame 
Pu +pb · 

front y(s}=(o..(s),p(s)).sE:~O.S). Then the associated single layer potential is 
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~N.B. The term (a.i+Pi)-112 in the integrand of (3.4) is the reciprocal of arc 

length. We need to divide J.J. by the arc length to insure that the charge f..J. 

corresponds to a charge per unit length of the flame J. Thus, if we let '11 = 'V~, 
we have that 

'V·'Il = 'V·'Vrp = 0 (3.3) 

and the jump in the normal component of '11 across the flame front is of 

strength 

'3 ') , .. ~ 

We combine this velocity field with the burning motion of the front in a 

··direction normal to itself. Equations (1.13) and (1.14) become 

where 

and 

oYp 
oXp os --= k + u(Xp, lr) 
at (' axF 'l2+' a Yp ~ 2 ) 112 

' OS ' as l 

axF 
BYr as 
--=-k +v(Xp,}p) 
at ,, axF ~ 2+' o}p w) 112 

" OS l ' OS l . 

(3 5) 

(3.6) 

.~~x y) _ __;_Jsz[Pu-Pb lk"Xp)2+'}' )2)-112Jog''"-x .. ~s))2+'>'-}'-'o;-))2)1'2rJ:,-
v-' , - Z1i C Pu +pb " s ' F s \\A , \ 1' f ,~ 
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Here, l~ means the limit as ~e approach the point (Xr. Yr) em the front from 

the burnt region in a direction normal to the front, and lim means that limit 
+ 

as we approach the point (Xr. Yr) on the front from the unburnt region in a 

direction normal to the front. 

Example 3.1 Let ')'(s)=(cos (s),sin (s)), sE:[0,2rr]. Suppose the particles inside 

i' are burnt and those outside are unburnt. The ignition curves to this front 

are the set of radial lines {x,y) = (t+1)(cos(s),sin(s)), (r-:;;t<oc, s<D.2~o]. At 

t =0 we ignite the particles located along i'· We wish to follow the motion of the 

fiame front. 

l
p -pb 

For a charge of strength 2 u k per unit length placed along a circle 
Pu +pb 

of radius a, the resulting single layer potential rp, from (3.4), is 

s I I 11/2 rp(x,y) = 
2
1 Jz Pu -pb k log (x-acos~)2+(y-asin~2 d.s 
1T c Pu +pb a a 

(3.7) 

where ')'(s}=(acos~asin~). sE:[0,2~oa]. !X.B. Since this is a parameterization 
a a 

by arc length, (o}+~i)- 112 =:l. 

By symmetry, we must have 

\3 B) 

Hence. 

rp(x,y) = _l_JziPu-Pb klogl((x 2 +y2) 112 -acos~)2+(asin£) 2)1/
2

d.s (39) 
211 c Pu + Pb a a 

The substitution z :::: ~vields 
a -



[ 
r · 27T [ . ~~112 Jj a p -pb x2+ 2 x2+ 2 = ( -

2 
~ u kl2rrloga 2 + flog · l -2 . 2 . cos(z )+ 1 dz 

rr Pu +pb o a a 

'Using the formula [7] 

we have 

~(x ,y) = 

Thus rf is constant inside the circle. We rewrite ~ in polar coordinates 

~(r) = 

where 

a(Pu -pb lk log a 2 
Pu+Pb 

·[Pu -pb kl 2 a ogr 
Pu +pb 
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(3.10) 

( 3 .. ) 
' • ~ .l. 

(3.12) 

( 3.:3) 

Let '11 = \lrf. Then \!·'11 = \1·\lrf = 0 inside and outside the circle rf 1s continuous· 
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across the boundary, since 

(3.14) 

The radial symmetry of rp implies that the component of 'l1 in the direction 

tangent to the circle is zero and thus continuous across the flame front. 

Evaluation of the normal derivative across the front yields 

8 - 8 
E.!i._ = lim fl!L = 0 or r-+a- OT 

(3.15) 

(3. :6) 

a - a~· . 
where Tr- is the normal derivative from the inside and 8:;:- is the normal 

1 

deri~ative from the outside. Thus, ~; undergoes a jump of magnitude 

z(Pu. -pb lk. Note that the normal velocities on either side of the circle are 
Pu+Pb 

independent of the circle's radius. 

The propagation of the flame and the advection velocity field yield the 

position of the front. Since ")'(s) is originally a circle, each point both pro­

pagates radially outwards and is carried in a radial direction by the velocity 

field. 

We rev.Tite (3.5) and (3.6) in polar coordinates. Let (R(s ,t ),0(s ,t )). 

-s<0.2r.], te:[O,oc) be the position of the front at time t· then 

(R~s ,0),0(s .O))=(cos(s ).sin(s )). Them, / 
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oR Bt= k + ~r(R,9) (3.17) 

80 = 0 at (3.18) 

R(s ,0) = 1 9(s ,0) = s 

In (1.13)-(1.14), we chose the ftuid velocity at the front to be the average of the 

ftuid velocity from the burnt side and the ftuid velocity from the unburnt side. 

Thus, 

(R ,0) = 1 r~+ ar;-l = (Pu -pb k 
rpr 21 or aT] Pu +pb 

Substitution into (3.17)-(3.19) yields 

Integration yields 

Thus, 

R(O,s) = 1 

80 
-at= 0 

0(0,s) = s 

R(s,t) = 2k[. 1
1 

t + l 
J..+pb Pu 

0(s,t) = s 

(x(s,t).~(s,t)) = !2klf 1 
t + 1)(cos(s),sin(s)) 

·. . 1+pb/ Pu 

s EL0,21i] 

(3.19) 

(3.20) 

(3.2:) 

(3.22) 

(3.23) 

(3.2~) 

The larger the expansion ratio Pu , the faster the ftame moves This completes 
Pb 

the example. 
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The potential rp (3.12) is constant along the circular flame front. Thus. the 

streamlines of this velocity field there are everywhere tangent to the family of 

ignition curves associated with such a front burning without volume expansion. 

The fluid merely "pushes" the front at a uniform speed along the original set of 

ignition curves. Each point on the front travels along its ignition curve l\oith 

1 · . d (Pu -pb speed equal to the propagation speed k pus the advectton spe~ . k. 
Pu+Pb 

(See Figure (3.1)) 

fu..=t'b 
lSb 'fo\...,..,E. ~~~0,.._, 

Figure 3.1 

Thus, we are able to recast our equations of motion (3.8)~(3.9) as equations 

along the ignition curves associated v.'i.th a front burning v.ith no volume 

expansion. 

Given a more general curve, however, the potential associated with a sin­

gle layer distribution of constant charge density will not be constant along thE 

front. There will be a component of the velocity field tangential to the fronl. 

The motion of the front. as seen from a fixed reference frame. will re~ult from 

J 
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its propagation in a direction normal to itself and the effects of the fluid velo-

city, which carry it in a different direction. If the curve is non-convex, the 

situation is even more complex. Since both the flame and the fluid are 

advected by the fiow, one can no longer tell when a particle will be ignited by 

simply measuring its distance to the itutial front. The motion of the front 

depends on the ignition curves, the velocity field induced by volume e:ll:pansion 

and our entropy condition. We have not attempted in this paper to present a 

general theory to account for such situations. 

3.2. Boundary Conditions 

We now consider the effect of boundary conditions on flame propagation. 

Suppose the fla::ne is burning inside a partially closed vessel. Tl'!-at is, let D be a 

domain and let -y be a simple, closed curve lying in D. Let oD be the boundary 

of D. and assume that aD•caD is the part of the boundary of D that does not 

correspond to solid wall. We assu:rne that the particles inside -y are burnt ·and 

those outside are unburnt. At t =0, we ignite the particles along -y 

Let i1 be the velocity field created by volume expansion along the flame 

front. Our boundary conditions (:.: 7) force i1 to be zero on solid walls. Since 

the flow is incompressible in the burnt region, by the divergence theorem we 

haYe that 

j(u noYas = J v·u = o 
-y Burnt 

(3.25) 

where at any point P on the flame front, 'it0 is the inner unit normal and 

(u 'it0 )=p~(il·if.11 ) with R approaching P from the burnt region along the nor-
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mal. (See Figure (3.2)) 

Figure 3.2 

Equation (3.25) states that if no volume is created or destroyed inside the 

burnt region, then the net flow through its boundary is zero. Since the normal 

velocity must undergo a jump of 2[Pu -pb k across the flame front, then 
· Pu +pb 

(3.26) 

where, at any point P on the flame front, 7tu is the outer unit normal and 

· ('l1·7'tu)=~~ ('l1·7'tu) with Q approaching P from the unburnt region along the 

normal. Hence. 

(3.27) 

where l ("y) is the length of the flame front. The flow is also incompressible out-
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side the burnt region, thus 

j('il·'ftu)d.s - (('i1.·1t)d.s = f V·'il = 0 
-, lD 9nb1DT1t 

(3.28) 

where n is the outward pointing normal. Substitution of (3.27) into (3.28) 

yields 

(3.29) 

Since 'i1. is zero on the complement of an•, 

(3.30) 

Equation (3.30) states that the volume produced along the flame front must be 

allowed to flow out through ~n·. The longer the flame, the more volume pro-

duced. The more volume produced, the faster the exit velocity of the fluid 

. through an·. This flow of fluid out the exit is -reflected in the velocity field at 

the flame front. Furthermore, we cannot close off the vessel completely and 

still require that the densities of the unburnt and burnt fluids remain con-

stant. 

3.3. Numerical Modeling by Finite Ditferences 

ln this section. we use our theory of flame propagation to show that finite 

difference methods that attempt to model the flame's motion face serious obs-

tacles. We assume the motion satisfies Equations (:.:5)-(:.20) and the entropy 

condition. 
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Let 7(s ),s e:[O,S], 7(0)=7(S) be a simple, closed curve. The particles 

inside 1 are burnt and those outside are unburnt. At t =0, we ignite the parti­

cles along 1· In this discussion, we neglect pre-existing vorticity. ~N.B. Our 

objective is to show the inapplicability of finite difference techniques to this 

problem. The addition of another advection field to the flame's motion can 

only make matters worse.~ 

Consider an attempt to represent the flame by a set of marker particles . 

. Choose n points O=s 1<s 2< ...... <sn =S. We interpolate the initiaJ position of the 

flame front at the points si. 

We -wish to move each marker in the direction given by our equations of 

motion for flame propagation. With (xi·Yi) as the position of the ith marker at 

time t , we hope to interpolate and obtain a good approximation to the position 
. ' 

of the ftame front. 

. ~ . 

To move the marker (xi·Yi), we must know the flwd velocity and the nor-

mal direction at that point. At time t 1, one way to determine this direction is 

to make use of the neighboring marker poin:ts. For example, one could approx-

imate the front at (xi,yd by the parabola through (xi-!·Yi- 1), (xi,yJ, and 

(xi+l·YH 1), and use this to determine the normal direction. Let 

( 3. 3:) 

be the x component of the approximated unit normal at (xi ,yJ Similarly. Jet 

(3.32) 
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be the y component of the approximated unit vector. For brevity, we write 

NX;, and NY;,. Thus, NX;. and NY;. represent finite difference approximations to 

the spatial derivatives in the equations of motion (1.19) and ( 1.20). The motion 

of each marker point is described by 

(3.33) 

By· 
-' = -k ·NY.· + V(""~· y·) at ' -L • ' 

(3.34) 

i=l.n-1 

The velocities u and v represent the velocity field induced by volume expan­

sion and depend on the position of the flame front (and thus all the marker 

points). We have written them as functions of only (:z; ,yJ for the sake of brev-

ity For an example of a numerical scheme for the propagation of a flame 

:-wTitten in this form, see [9]. One then solves Equations (3.33)-(3.34). The sim-

plest technique is to use Euler's method to advance the position of the marker 

points in time Of course, the functions u and v may be complicated, having 

arisen from the solution of an elliptic partial differential equation. 

We now use our theory of flame propagation to see the problems involved 

in such a formulation. We can ignore the effects of the advection field for our 

analysis. 

Let 7H he the convex hull of -y. We have seen in Chapter Two that, along 

those sections of 7 touching 7H, the length of any given piece of the initial 

front cannot decrease as it moves. Moreover. if the section is not straight, it~ 

length must increase (Equation 2.4·4) The greater the curvature of the initial 

front between two neighboring marker points, the more that section 
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lengthens. As the marker points get further apart, the approximating curve 

becomes more suspect. Unfortunately, those sections that change the least 

are the ones that keep their marker particles closest together. 

The situation is even worse for those sections of the initial front that lie 

inside the convex hull. We have shown in Chapter Two that, as such a section 

propagates, cusps form and the flame front ceases to be differentiable. These 

cusps "swallow up" sections of the front. Consider a collection of marker 

points placed along such a section of the initial front. The first problem to con-

front is our entropy condition. Example 2.4 shows that one doesn't want to fol-
J 0 

low that part of the front which moves into previously burnt areas. It is hard to 

imagine a technique that could reconstruct the flame front at each time step 

from those points that are actually on the boundary between burnt and 

unburnt fiuid, and know how to avoid the rest of them. The second problem is 

that the marker points tend to cluster together in a small area around the 

cusp. As the markers cluster; small errors in their positions can cause huge 

errors in the determination of the normal direction to the front. for example, 

for a parabola through three points, two of which are close together, small 

changes in their position cause radical changes in the shape of the parabola. 

Thus the tendency of the marker points to cluster can cause a large error in 

the determination of the direction in which the front is to move. Typically, the 

front becomes highly unstable and develops wild oscillations. 

In summary, since one needs to know the orientation of the front at a 

point to determine where next to move it, too fine a discretization leads to 

great numerical error in this determination as marker points cluster 

together. and too coarse a discretization leads to an overly simplified and 

unsatisfying resolution of the front. As if almost by design. the effect of the ~ 
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motion of a fiame in a direction normal to itself is to bunch up marker points 

where they do the most harm and spread them out where they would have 

done the most good. 

In the next chapter, we present a numerical method for following fiame · 

fronts that does not depend on a discrete parameterization of the front . 
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Numerical Siniulations 
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ln the last chapter, we showed that numerical methods that attempt to 

follow a ftame front by finite difference techniques face serious and possibly 

insurmountable obstacles. ln this chapter, we present a numerical method, 

developed by Chorin [2], which does not rely on a discrete parameterization of 

the moving front. This method has been used with great success in the numer­

ical simulation of turbulent combustion ([6] and [14]). We show that the rea­

son for the success of Chorin's method is clear when viewed from within the 

framework of our theqry of ftame propagation, and that the method arises 

naturally from our theory of ignition curves. The central idea of this method is 

an expression of our entropy condition that once a particle burns it remains 

burnt. We use this method to demonstrate the results of our theorems, illus­

traHng spreading and colliding ignition curves, cusp formation and ftame 

reversibility., 

4.1. The Method 

We first use our theory of flame propagation to set the stage for the 

numerical method. 

Let ")'{s)={o.(s),,S(s)) be a simple, closed curve. Assume that the particles 

inside ?' are burnt and the particles outside are unburnt At t =0, we ignite the 

particles along ")', and assume that the front propagates in a direction normal 

to itself with speed k. For the moment, we assume that Pu =pb, thus the ftuid 

remains at rest. 

In ( 2 :68), we defined the indicator function :;c (x ,y :t) of the burning_ fror,t; 

cp(x,y,t)=: i.f the particle located at (x,y) is burnt at time t, and zero 

_, 
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otherwise. 

Wefound that 

1 if (.:r: ,y) is burnt at t =0 
~(.:r:,y,t) = 1 (kt)2~ rriin ((.:r:-cx(s))2.t.(y-p(s))2) 

•e:[O.S) ·. . (4.1) 
0 (kt)2< min ((z-cx(s))2+(y-p(s))2) 

•e:[O.S) • 

At time t 1, the boundary of the set of (.:r:,y) such that ~(.:r:,y,t 1)=1 corresponds 

to the position of the ftame front at time t 1. 

We now formulate rp(.:r: ,y ,t ,) in a different w~y. For each s €[0,5]. let Ds (t) 

be the closed disk of radius kt centered at 7(s). (See Figure (4.1)) 

Figlire 4.1 

Choose any point s 1€[0,5] on the initial curve. Clearly, every point 

(.:r: ,y )€Ds/t) must be burnt by time t, since any such point is located a dis· 

lance less than kt from -y(s 1). Consider the set D(t), defined as the union of 

the interior of I' with Ds(t) as we range over all possible values of s€~0.5]. 
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That is, 

D(t) = [ D-y ]ur U D.(t)] 
· l•E[O.S] 

(4.2) 

where D-y is the interior of 1· 

We claim that, given a point (z,y) and a time t 1, ~(z,y,t 1)=1 ifand only if 

(x,y)e:D(t 1). First, suppose ~(z,y,t 1)=1. Then, by the definition of rp, there 

exists ans such that !(z,y)--r(s)l!;;kt 1. Therefore, (z,y)e:D5 (t 1) cD(t 1). Con­

versely. suppose (z,y)e:D(t 1). Then either i) for somes, (z,y)e:D8 (t 1) and so 

rp(z,y,t 1)=1 or ii) (x,y)e:D.., and rp(x,y,t 1)=i for all t. 

Thus, at any time t, the position of the flame front is given by the boun­

dary of D{t). Note that our construction of D(t) obeys our entropy condition. 

This is because D(t) is formed from the union of all disks of radius kt with 

centers on the initial front.· .. a.ny particle within that union is "counted" ,i.e .. 

ignited, only once, regardless of how many disks Ds (t) contain it The position 

of the front at any time t is the envelope of the region formed by the expand­

ing disks Ds(t), s e:[ 0, S] and the original area D..,. 

We now describe an alternate way of constructing D(t ). Let Di (t) be the 

translat:on of the original region D.., a distance kt in the direction (cos 0,sin0). 

That is. (z,y)e:Di(t) if and only if (z-(kt)cos0,y-(kt)sin0)c:D..,. By taking the 

union of all such possible translations as 0 ranges from 0 to 2rr, we see that 

nu > = D-r u lr .._) Diu>] ee: [C.2n] 
(4.3) 

We now present a numerical method, developed by Chorin, that moves the 

front by approximating the above construction 
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Assume for the moment that we possess an algorithm· that will translate 

the region D.., in a given direction at a·given speed (we shall describe such an 

algorithm shortly). Consider the eight angles 0 1 = (l-1)1T/ 4, l=1.2, ..... 8. If we 

form the eight regions D:' (6t) . each one being the translation of the original 

region D.., a distance kM_ in the direction (cos01.sin01) , then the union of 

these regions together with D.., will approximate the burnt region at time 6t. 

The algorithm Chorin used to translate D.., in the eight directions is the 

Simple Line Interface Calculation (SLIC) method. developed by Noh and Wood­

ward [ 13]. We impose a square grid i,j of uniform mesh length on the combus-

lion domain, and assign a number /i.i· ~li.r~l to each square. The number ft; 

corresponds to the fraction of fluid \\ithin the square i .j that is burnt. Thus .. if 

')'(s) separates the fluid at t =0 into the two regions. burnt and unburnt, the 

squares outside -y have f ;.; =0, squares inside have f ;.; = 1. and those that strad-

dle -y havef ij between 0 and 1. The field of numbers f 11 allow one to recreate 

the approximate position of the front. 

The algorithm moves the burnt region by drawing in each cell an interface 

which represents the boundary between the burnt and unburnt fluid. The 

orientation of the interface depends on the value of /i.i and the /1./s in the 

cell's neighbors. The burnt fluid is then transported in the given direction. and 

a new set of /1./s are created, which approximate the burnt region translated 

a distance k fjt in the given direction. 

Csing this algorithm, we may approximate the positionof the flame front 

at any time t. At time t =nb.t, n an integer, M a time step, we have an array 

of cell fractions /i.i (n), which can be used to describe the burnt region at time 

t. We move the burnt region in each of our eight directions 01 a distance k tJ.t 

e 
Let f 1./ (n) be the array of cell fractions obtained from moving the burnt 
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region at timet in the direction 91. Let /:0(n)=/ij(n). Then the burnt region 

at time ( n + 1 ).6t will be approximated by 

I ij (n+l) = max ft.~'(n) 
OS&s:e 

This advances the front in a direction normal to itself a distance k M. 

(4.4) 

We have been content to merely sketch the outlines of the numerical 

method and of SLIC. For a complete presentation, see [2] and [ 13], respec­

tively. 

4.2. Examples of Numerical Simulations 

In this section, we use the numerical method presented above to illus-

trate some of the results of our theory of ftame propagation. 

' Let -y be the boundary of the square centered at the origin with sides of 

unit length,' and assume that the particles inside -y are burnt and those outside 

are unburnt. At t =0. we ignite the particles along -y. We assume that the front 

trave,ls in a direction normal to itself with speed k = ~ .. -

From our theory of ftame propagation, we know that the ignition curves 

extend from each corner in a r:adial manner, filling in the space between the 

ignition curve on the left at a corner and the ignition curve on the right. (See 

Figure { ?.2)). 
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Figure 4.2 

At any time t. the position· of the flame front may be described as follows 

Each of the four sides has moved in a direction normal to itself a distance kt. 

and these segments are connected together by four circular arcs. 

In Figure (4.3), we show the results of a numerical simulation. We chose a 

mesh v.idth h=.05, a flame speed k=.5 and a time step of /;).t=.:. For display 

purposes. we shaded those squares v.ith /i.;';;!:.25. We display the results at 

t =0, t =2.0 and t =4.0. The results show the propagation of each side of the 

square, and the circular arcs connecting these sides. This illustrates our con­

struction of radial ignition curves at the corners. 

We now show the idea of flame reversibility. Since the initial curve r is 

convex. our theory of flame propagation maintains that we should be able to 

take the position of the front at any time t and "burn it backwards" until we 

reach the initial shape. Numerically. we let f[?v.; = : -/i.'jla : this w11l inter­

change the places of the burnt and unburnt regions. At t =4 0, we switch the 

burnt and unburnl regions ln Figure (4 4). we show the results of this front 
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propagating inwards at t =4.0, t =6.0 and t =B.O. At t =B.O, the position of the 

front is about the same as it was at t =0. Thus, the numerical method 

preserves our notion of fiame reversibility. 
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TIME • 0.00 FLAME SPEED• 0.5000 TI ME • 2.00 FLAME SPEED• 0.5000 ... < . 0 

3.0 ) .0 

... ~ 2. 

J 

!.0 l !.0 

... J . .. 
-l.t 

1 
- I. e 

-a.t -2.e 

-J.t -). 8 

-··· - 4 . 1 

-··· - J.t - 2.1 -1.e ... !.f ... 3. 0 . .. - .f . t -J. t -2. 1 - l. t o.t ... . .. 3.0 ... 
F1gure 4.3a F1gure 4.3b 

4. 00 FLAI1E SPEED• 0.5000 

Figure 4.3c 



122 

TIME= 4.00 FLAI·lE SPEED= 0.5000 TIME= 6.00 FLAME SPEED= 0.5000 
<. 0 ... 
l.O ).0 

... . .. 
1.0 1.0 

o.o 0.0 

- 1.9 -1.& 

-3. 1 

- -4 •• -J.e -z.e -1. 1 ... ... . .. ).0 ... 
Figure 4 . 4a Figure 4.4b 

TIME= 9.00 FLAME SPEED= 0.5000 ... 
).0 

... 
... 
... 

-1.6 

-J. e 

F1gure 4.4c 



123 

Furthermore. the numerical method does an equally good job of illustrat­

ing lhe irreversibility of non-convex initial tiame shapes. Let 1 be the boU!l,dary 

of the square centered at the origin with sides of length 5. Assume that," the 

particles outside 1 are burnt and those inside are unburnt. Thus. the initial 

curve is not convex (that is, the burnt region is not a convex set) and the igni­

tion curves intersect for any t >0. (See Figure (4.5)) 

Figure4.5 

lf we allow this front to propagate, our theory. of flame propagation dictates 

that information about the initial shape of the flame will be lost. In Figure 

(4.6). we show the results at t =0. t =2 and t =4. At t =4. we interchange the 

burnt and unburnt fluids. and allow the front to burn "in the other direction". 

In Figure (4.7). we show the results at t =4. t=6 and t =B. Clearly, the front at 

t =B does not look like the front at t =0. This illustrates the irreversibility of a 

non-convex initial shape. 
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Finally. we consider a smooth. non-convex curve that develops a cusp as it 

moves. Let 7(s )=(a(s ),p(s )). s e:[0.6rr ]. where a and p are defined as follows: 

a(s) = 

p(s) = 

-cos(s) 
-cos(s) 

3cos(s I 3) 
-cos(s) 
-cos(s) 

sin(s) 
-sin(s )+2 
3sin(s I 3) 
-sin(s )-2 

sin(s) 

~s <rrl 2 
rr I 2~s <3rr I 2 

3rrl ~s <9rrl'2 
9rrl 2~s <1111'1 2 

11rrl 2~s~6rr 

O~s <r.l 2 
rrl 2~s <3r.l 2 

3rrl 2~s <9rr/2 
9rrl 2~s <1111'1 2 

1111' I 2~s~611' 

(4.5) 

(4:.6) 

:Kot.e that 7 is parameterized by arc length, and possesses a smoothly turning 

normal vector. We assume that the particles inside 7 are burnt and those out-

side are unburnt. At t =0, we ignite the particles along ')'. We let the front pro­

pagate with speed = ~. Using our formula for ignition curves, a lengthy but 

straightforward calculation shows that the position of the front (x (s, t) ,y (s, t)) 

is given by 

Fort~: 

• 
x (s ,t) = ~ Ps t + Cl (, -) \ '=· ( 

y ( S , t) = - ~ Cl5 t + {3 



Fort >1 

:r(s,t) = ~ Pst +a 

y(s,t) = -~ a5 t + P 

. [ cos-1
( (1 !t) l+; ]"'•"6rr-[ cos-•( (I !t) )+;)I 
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(4.8) 

The position of the front for various values of t is shown in Figure ( 4.8). We 

note that as the front moves, a cusp forms at t = 1, and travels along the posi­

tive x axis, "swallowing up'' sections of the front. In Figure (4.9). we show the 

results of the application of Chorin's flame propagation algorithm to this prob­

lem for various values of t. The method d.oes an excellent job of sho\o\'ing the 

formation and absorption of the cusp. 

The above computations were performed on a VAX computer at the 

Lawrence Berkeley Laboratory, Berkeley, California. 

\ 
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PLOT OF EQUATIONS 4.7 and 4.8. 
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-1•5 

-3.8 

-~.5 

-6.8 

-6.8 -~.5 -3.8 -1.5 ••• 1.5 3.8 4.5 6.8 

Figure 8 
.. 
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130 
Conclusion 

We have developed a theory of flame propagation for a simplified model of 

combustion. We considered a premixed, combustible fluid in which each fluid 

particle could exist in one of two states, burnt and unburnt. We modeled the 

flame front between the burnt and unburnt regions as an infinitely thin curve 

propagating in a direction normal to itself at a constant, prescribed speed. We 

assumed that the specific volume of each fluid particle increased by a fixed 

amount as it changed from unburnt to burnt. 

We began (Chapter One) by presenting the full set of combustion equa­

tions for our model. that is, the equations of fluid mechanics for viscous, 

incompressible flow ·together with our equations 'of flame propagation. In 

Chapter Two, we suppressed the effects of the. velocity field produced by 

volume expansion. Through the introduction of ignition curves, we were able 

to solve our equations of flame propagation. These ignition curves carry the 

temperature required for ignition, and play a role in our equations analogous 

to that of characteristics in the solutions of hyperbolic equations. Continuing 

the analogy with the theory of conservation laws, we developed an entropy · 

condition for flame propagation that stipulated that no particle could burn 

more than once. With this theory of ignition curves and our entropy condition. 

we proved the following: 

1) If two initial fronts start close together, then they remain close together 

as they propagate. In other words, flame fronts are stable. As the front 

moves, oscillations in its initial shape are smoothed. with the result that 

the burning front asymptotically approaches a circular shape 

. 2) As the front moves and deforms, il develops cusps. At such points. the 

curve ceases to be differentiable These cusps are a result of colliding 
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ignition curves and our entropy condition. They form ih a manner similar 

to the way in which shocks form when characteristics collide. These cusps 

"swallow up" sections of the fiame front as they move an:d destroy infor­

mation about the initial shape of the fiame front. Once a cusp forms, it is 

impossible to retrieve the original fiame shape by solving the equations of 

motion backwards in time. Each ignition curve carries information about 

the initial shape of the front, and that information is lost in a collision. 

In Chapter Three, we returned to our full set of combustion equations and 

showed that the streamlines of the velocity field produced by volume expan­

sion are not, in general, normal to the ftame front. Thus. when viewed from a 

fixed frame of reference, the motion of the ftame is no longer solely in a direc­

tion normal to the front. 

We then used our. theory of ftame propagation to show that a numerical 

approximation to the equations of motion based on finite difference tech­

niques contains numerous drawbacks. As the front burns, the parameteriza­

tion changes dramatically as certain sections expand while others ar~ wholly 

eliminated through the formation of cusps. Those numerical methods that 

discretely parameterize the curve will have great difficulty following the ftame 

front, since the formation and absorption of these cusps takes place on a 

variety of scales. Tn particular, since one needs to determine the orientation 

of th'e front at a point to establish where next to move it. too fine a discretiza­

tion can lead to great numerical error in the .determination of this direction as 

marker points clu5ter together. and too coarse a discretization can lead to an 

overly simplified resolutibn of the front. 
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ln Chapter Four, we presented a numerical method, developed by Chorin, 

for following flame fronts which did not rely on a discrete parameterization of 

the front. We showed that the reason for the great success of Chorin's method 

is clear when viewed from within the framework of our theory of flame propa­

gation, and that the method arises naturally from our theory of ignition 

curves. The central idea of this method, the application of Huygen's principle 

to move the front in a direction normal to itself, is an expression of our 

entropy condition that once a particle burns it remains burnt. finally, we used 

this numerical technique to illustrate the results of our theorems, demon-

strating the idea of spreading and colliding ignition curves, ftame reversibility 

and cusp formation. 

There are several directions suggested for further work. One possibility is 

to investigate the model proposed by Markstein in which the ftame speed, is 

taken as function of the curvature at any point. ln this case, although the igni-

lion curves are always normal to the front, they are no longer straight lines. 

Thus, a simple solution to the appropriate equat{ons of motion is not readily 

apparent. With or without a solution, can one still show that any ftame front 

asymptotically approaches a circle'? Although our entropy condition is still 

appropriate, do cusps form in the same manner, if at all'? 

Another possibility is to analyze tbe interaction of ignition curves with the 

velocity field produced by volume expansion along the ftame front. As men-

tioned earlier, the motion of the ftame is a combination of the transformation 

of particles from unburnt to burnt and the advection field produced by their 
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resulting expansion. How does one rigorously deal with the effects of volume 

expansion at places where the curve is not differentiable'? A third possibility is 

to remove the constant pressure approximation in the equations of motion. 

Finally. how does one show that the solutions to these sorts of problems are 

unique'? 
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