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Abstract

Autophagy is a homeostatic mechanism of lysosomal degradation. Defective autophagy has been linked to various
disorders such as impaired control of pathogens and neurodegeneration. Autophagy is regulated by a complex array of
signaling pathways that act upstream of autophagy proteins. Little is known about the role of altered regulatory signaling in
disorders associated with defective autophagy. In particular, it is not known if pathogens inhibit autophagy by modulation
of upstream regulatory pathways. Cells infected with HIV-1 blocked rapamycin-induced autophagy and CD40-induced
autophagic killing of Toxoplasma gondii in bystander (non-HIV-1 infected) macrophage/monocytic cells. Blockade of
autophagy was dependent on Src-Akt and STAT3 triggered by HIV-1 Tat and IL-10. Neutralization of the upstream receptors
VEGFR, b-integrin or CXCR4, as well as of HIV-1 Tat or IL-10 restored autophagy in macrophage/monocytic cells exposed to
HIV-1-infected cells. Defective autophagic killing of T. gondii was detected in monocyte-derived macrophages from a subset
of HIV-1+ patients. This defect was also reverted by neutralization of Tat or IL-10. These studies revealed that a pathogen can
impair autophagy in non-infected cells by activating counter-regulatory pathways. The fact that pharmacologic
manipulation of cell signaling restored autophagy in cells exposed to HIV-1-infected cells raises the possibility of
therapeutic manipulation of cell signaling to restore autophagy in HIV-1 infection.

Citation: Van Grol J, Subauste C, Andrade RM, Fujinaga K, Nelson J, et al. (2010) HIV-1 Inhibits Autophagy in Bystander Macrophage/Monocytic Cells through Src-
Akt and STAT3. PLoS ONE 5(7): e11733. doi:10.1371/journal.pone.0011733

Editor: Linqi Zhang, Tsinghua University, China

Received April 12, 2010; Accepted June 16, 2010; Published July 22, 2010

Copyright: � 2010 Van Grol et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH Grant AI48406 (C.S.S.), EY EY018341 (C.S.S.), the American Heart Association Ohio Valley Affiliate (C.S.S.), Case/UHC
Center for AIDS Research NIH Grant AI36219 and NIH Grant P30 EY11373. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: carlos.subauste@case.edu

Introduction

Autophagy is a conserved degradative process whereby a double

membrane vesicle, an autophagosome, forms around a portion of the

cytoplasm or an organelle and fuses with a late endosome/lysosome

resulting in enzymatic degradation of its cargo [1,2]. Autophagy was

originally described as a homeostatic mechanism that provides energy

and substrates for synthesis of essential macromolecules during

starvation [1,2]. However, it is now recognized that autophagy is

involved in many other processes. Indeed, deficiency in autophagy

promotes disorders such as cancer, neurodegeneration, myopathy,

senescence and susceptibility to infections [3].

Autophagy can act as an innate anti-microbial mechanism

against several pathogens both in vitro [4,5,6] and in vivo [7,8,9,10].

Autophagy is also an important component of adaptive immunity

against pathogens. IFN-c or CD40 enables macrophages to kill

Mycobacterium tuberculosis or Toxoplasma gondii via autophagy,

respectively [4,11,12]. In addition, autophagy has been reported

to enhance antigen presentation [13,14]. In a model of

immunization with M. tuberculosis-infected dendritic cells, in vitro

treatment of these cells with a pharmacologic stimulator of

autophagy improved the efficacy of immunization [15].

Autophagy-related (Atg) proteins mediate the formation of

autophagosomes. In contrast to the highly conserved nature of Atg

proteins, the regulatory molecules that control autophagy are

varied, including JNK, ERK1/2, AMP kinase, class I and class III

PI3K, Akt, mTOR, JAK, STAT, eIF2a kinases, DAPK, Bcl-2

family proteins, the p53 tumor suppressor, ubiquitination, the ER-

membrane-associated protein, Ire-1 [16]. Little is known about the

role of these signaling pathways in diseases linked to dysregulation

of autophagy.

Questions that are receiving increased attention are whether and

how pathogens inhibit autophagy. Pathogens have been reported to

inhibit autophagy by expressing virulence factors that impair the

function of Atg proteins [6,8,17]. However, to our knowledge, there

is no demonstration of whether pathogens interfere with autophagy

by modulating upstream signaling mechanisms. Addressing this

question is key to attempts to modulate autophagy for therapeutic

purposes. While approaches that target Atg proteins are likely to

result in generalized, non-specific modulation of autophagy,

approaches aimed at preventing dysregulation of the pathways

upstream of autophagy are more likely to be of therapeutic benefit.

It has recently been reported that HIV-1 interacts with the

autophagy pathway in cells infected with the virus. Autophagy is
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stimulated in macrophages infected with HIV-1 [17,18]. However,

the degradative stage of autophagy is prevented by the interaction

between viral protein Nef and the autophagy protein Beclin 1 [17].

One of the important aspects of the pathophysiology of HIV-1

infection is that despite the fact that most cells of the immune

system are not infected with the virus, HIV-1 can affect the

function of non-infected cells creating a more global effect to HIV-

1 infection. In this regard, cell-free supernatants from microglia

obtained from SIV-1-infected monkeys inhibit autophagy in

bystander neurons [19]. However, it was not determined if the

inhibition of autophagy is a direct consequence of SIV-1. Thus, it

is not known if HIV-1 inhibits autophagy in bystander cells, and if

this is the case, by what mechanisms such an inhibition occurs. We

uncovered that HIV-1 inhibits autophagy in bystander macro-

phage/monocytic cells by acting through counter-regulators of this

process, Src, Akt, and STAT3. This is the first evidence of a

pathogen targeting signals upstream of autophagy to impair this

process. These findings are likely relevant to key aspects of HIV-1-

induced disease since they may contribute to susceptibility to

infections and immune evasion by inhibition of antigen recogni-

tion as well as neuro-degeneration associated with HIV-1.

Importantly, we also report that it is possible to prevent HIV-1

from inhibiting autophagy by pharmacologic manipulation of cell

signaling.

Results

HIV-1 blocks autophagic killing of T. gondii in bystander
macrophages

CD40 stimulation of macrophages results in killing of T. gondii

through autophagy [11,12]. To determine whether autophagy is

affected by HIV-1, we examined autophagic killing of T. gondii in

macrophages from HIV-1+ patients. Monocyte-derived macro-

phages (MDM) from HIV-1+ patients and healthy controls were

incubated with or without CD154 (CD40 ligand) followed by

challenge with T. gondii. MDM from 5 of a total of 23 HIV-1+

patients exhibited defective induction of anti-T. gondii activity

(Figure 1A). Impaired anti-T. gondii activity was reproducible since

similar results were obtained when MDM were retested 2 to 3

different times. The group of HIV-1+ patients with defective

CD40-induced toxoplasmacidal response will be referred to as

CD40 non-responders. CD40-induced anti-T. gondii activity did

not correlate with CD4 counts or plasma viral load (R = 0.02;

p = 0.76; data not shown). Impaired CD40-dependent toxoplas-

macidal activity was not due to differences in CD40 expression on

MDM (CD40 corrected mean fluorescence intensity: controls

26.664.4; CD40 responders 29.964.5; CD40 non-responders

32.666.4; p.0.1). While CD40 induces T. gondii killing through

autophagy, IFN-c works independently of autophagy to kill T.

gondii [11]. Indeed, in marked contrast to results obtained with

CD40-stimulated MDM, anti-T. gondii activity induced by IFN-c
was similar in all groups (Figure 1B).

Replication-competent virus can be present in a small

percentage of peripheral blood monocytes from HIV-1+ patients,

even in those receiving anti-retroviral therapy and with undetect-

able plasma viral load [20]. This raised the possibility that MDM

productively infected with HIV-1 may impair CD40-dependent

autophagic killing of T. gondii in MDM not infected with HIV-1.

To address this possibility, MDM from healthy controls were

infected with env-deficient, nef-deficient Heat Stable Antigen

(HSA)-encoding HIV-1. The virus was pseudotyped with VSV-

G envelope to enable initial infection. This pseudotyped HIV-1 is

competent for a single round of replication since it lacks expression

of gp160. Expression of HSA or intracellular p24 was used to

quantitate the percentage of macrophages infected with pseudo-

typed HIV-1. Uninfected MDM incubated with pseudotyped

HIV-1-infected MDM were unable to acquire anti-T. gondii

activity in response to CD40 stimulation (Figure 1C). This

inhibitory effect took place even when a low percentage of the

total MDM population was infected with HIV-1 (Figure 1D). To

determine if the inhibition of anti-microbial activity required the

expression of HIV-1 genes we treated cultures with the nucleoside

analog reverse transcriptase inhibitor, zidovudine. Addition of

zidovudine (AZT) 2 h after incubation with HIV-1, prevented

expression of HIV-1 genes in MDM as assessed by intracellular

p24 (not shown). While HIV-1-infected MDM incubated in

medium alone inhibited CD40-dependent anti-T. gondii activity in

non-HIV-1 infected MDM, zidovudine-treated HIV-1-infected

MDM were unable to affect induction of anti-microbial activity

(Figure 1E). Taken together, HIV-1 impairs CD40-dependent

autophagic killing of T. gondii in primary macrophages not infected

with HIV-1.

Monocytic cells infected with HIV-1 block rapamycin-
induced autophagy in bystander cells

We further determined whether HIV-1 impairs autophagy in

bystander monocytic cells. Autophagy was assessed by examining

the distribution of the autophagy protein LC3. MonoMac6 cells (a

human monocytic cell line) transfected with LC3-eGFP were

incubated with cells infected with pseudotyped HIV-1 or

pseudotyped control virus and treated with or with out rapamycin,

a stimulator of autophagy, and examined for the development of

autophagosomes in LC3-eGFP+ cells using fluorescent microscopy

(Figure 1F). MonoMac6 cells incubated with cells infected with

pseudotyped control virus exhibited large LC3+ structures after

rapamycin treatment (Figure 1G). In contrast, incubation with

MonoMac6 cells infected with pseudotyped HIV-1 resulted in

reduced presence of autophagosomes in bystander cells after

rapamycin treatment as assessed by expression of large LC3+

structures (Figure 1G, 1H). A decrease in autophagosomes could

be due to diminished autophagosome formation or increased

degradation. MonoMac6 cells were treated with bafilomycin A1,

an inhibitor of vacuolar ATPase, which prevents autophagosome

degradation [21]. MonoMac6 cells infected with pseudotyped

HIV-1 still inhibited the presence of autophagosomes in bystander

cells when autophagosome degradation was prevented (Figure

S1A). These results indicate that cells infected with HIV-1 inhibit

autophagosome formation in non-infected monocytic cells.

Macrophages/monocytic cells exhibit enhanced autophago-

some formation when they become infected with HIV-1 [17,18].

Incubation of the human monocytic cell line THP-1 with T cells

productively infected with HIV-1 results in HIV-1 infection of

THP-1 cells and autophagosome formation [17,18]. We used this

model to examine whether autophagy was still inhibited in

bystander monocytic cells when these cells were exposed to T cells

that produce infectious HIV-1. THP-1 cells were incubated with

pre-determined low concentrations of HIV-1-infected H9 T cells

that did not increase autophagy in THP-1 cells. Addition of

rapamycin caused a marked increase in autophagy in THP-1 cells

if they were incubated with uninfected H9 cells but not with HIV-

1-infected H9 T cells (Figure S1B). These results confirm that

autophagy is inhibited in primary macrophages and monocytic

cells exposed to cells infected with HIV-1.

HIV-1 Tat inhibits induction of autophagy
HIV-1 proteins can affect the function of cells not infected with

the virus. Given that cells infected with nef-, env-deficient HIV-1

inhibited autophagy in bystander cells, we determined whether

HIV-1 and Autophagy
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Figure 1. HIV-1 inhibits autophagy in bystander macrophages/monocytic cells. A and B, MDM from healthy controls and HIV-1+ patients
were incubated with or without CD154 (3 mg/ml) (A) or IFN-c (200 U/ml) (B) followed by challenge with T. gondii tachyzoites. The number of parasites
per 100 macrophages was assessed by light microscopy 24 h post-challenge. HIV-1+ patients were classified as non-responder when their
macrophages exhibited a percentage decrease in parasite load that was less than the 10th percentile of the percentage decrease in parasite load
observed in macrophages from healthy controls. C–E, MDM from healthy controls were infected with pseudotyped HIV-1 (PV HIV) or pseudotyped
control virus (PV Ctr) and were incubated with a monolayer of uninfected macrophages. In certain experiments macrophages were treated with or
without zidovudine (AZT) 2 h after incubation with pseudotyped HIV-1 (E). Macrophage monolayers were treated with or without CD154 followed by
challenge with T. gondii and assessment of parasite load at 24 h. F, Schematic representation of MonoMac6 cells infected with pseudotyped HIV-1 (PV
HIV) or pseudotyped control virus (PV Ctr) incubated with uninfected MonoMac6 cells transfected with LC3-eGFP. Cells were treated with or without
rapamycin (1 mM) and assessed for autophagy by expression of large ($1 mm) LC3+ structures. G, Flourescent images of LC3-eGFP+ cells as treated in
panel (F). H, Quantification of autophagic cells as treated in panel (F). Data are representative of 4 independent experiments presented as means 6
SEM; ***p#0.001; **p#0.01; *#0.05; ‘p$0.05.
doi:10.1371/journal.pone.0011733.g001
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autophagy is inhibited by HIV-1 Tat. Tat is a cationic 86–101 amino

acid polypeptide that acts as the main transactivator of HIV-1. HIV-

1 Tat can be released from HIV-1-infected cells or dying cells

[22,23] and has been reported to exhibit pleiotropic extracellular

effects on uninfected bystander cells [24,25,26,27,28,29]. Mono-

Mac6 cells infected with pseudotyped HIV-1 were no longer able to

impair autophagy in LC3-eGPF+ bystander MonoMac6 cells in the

presence of a neutralizing anti-Tat mAb (Figure 2A). Furthermore,

incubation of MonoMac6 cells with a low concentration of HIV-1

Tat inhibited rapamycin-induced autophagy as assessed by the

expression of large LC3+ structures (Figure 2B). The effect of HIV-1

Tat was specific since it was ablated by a neutralizing anti-Tat mAb

(Figure 2B). In contrast, neutralization of TNF-a, an inducer of

autophagy, did not restore autophagy in HIV-1 Tat treated

macrophages (Figure 2B). The inhibition of autophagy by HIV-1

Tat was confirmed by examining the expression of LC3 isoforms.

The amount of LC3 II directly correlates with the level of autophagy

[2,30,31]. Immunoblot analysis of MDM treated with rapamycin

revealed that the addition of HIV-1 Tat reduced LC3 II expression

compared to controls (Figure 2C). HIV-1 Tat inhibited LC3 II

expression even in the presence of bafilomycin A1 (Figure 2D). This

supports previous experiments examining the presence of LC3

punctae in response to HIV-1 (Figure 1G, H; 2A, B), which indicate

that HIV-1 inhibits the induction of autophagy in bystander cells.

Next, the effect of HIV-1 Tat on autophagic killing of T. gondii

was examined. Figure 2E shows that low concentrations of HIV-1

Tat inhibited CD40-induced autophagic killing of T. gondii

whereas it had no effect on anti-T. gondii activity induced by

IFN-c (Figure 2F). We also examined the effects of a neutralizing

anti-Tat mAb on the autophagic killing of T. gondii. MDM infected

with pseudotyped HIV-1 were unable to inhibit anti-T. gondii

activity in response to CD40 stimulation when an anti-Tat mAb

was added to the culture (Figure 2G). Finally, we confirmed this

observation in MDM from HIV-1+ patients whose cells were

refractory to CD40-induced killing of T. gondii. In the presence of

anti-Tat mAb, MDM from CD40 non-responders exhibited anti-

T. gondii activity similar to that of MDM from healthy controls

(Figure 2H). Taken together, HIV-1 Tat inhibited autophagy.

HIV-1 impairs autophagy in bystander macrophages/
monocytic cells through Src – Akt signaling

HIV-1 can activate Akt [32,33], which is an inhibitor of

autophagy [34,35]. To determine if Akt mediates the inhibitory

effects of Tat on autophagy, we initially examined if Tat induced

activation of Akt in macrophages. MDM exhibited enhanced

phosphorylation of Akt when incubated with HIV-1 Tat

(Figure 3A). Next, we determined if Akt signaling was necessary

for the inhibition of autophagy induced by HIV-1 Tat in

bystander cells. To this end, we silenced Akt in MonoMac6 cells

by utilizing siRNA (Figure 3B). Fluorescent microscopy of LC3-

eGFP+ MonoMac6 cells revealed that HIV-1 Tat was unable to

inhibit autophagy when these cells were transfected with Akt1
siRNA (Figure 3C). Additionally, cells infected with pseudotyped

HIV-1 were no longer able to inhibit autophagy in MonoMac6

cells that had silenced Akt1 (Figure 3D). Similar results were

obtained with Akt inhibitor IV (Figure S2A). Incubation with Akt

inhibitor IV also ablated the ability of HIV-1 Tat to block CD40-

dependent autophagic killing of T. gondii (Figure 3E). These results

indicate that HIV-1 inhibits autophagy in bystander primary

macrophage and monocytic cells through an Akt-dependent

pathway.

To further investigate the manner in which HIV-1 modulates

autophagy in non-infected cells we examined signaling molecules

upstream of Akt. Phosphatase and tensin homologue (PTEN) is a

potent inhibitor of Akt signaling and it has been reported that

HIV-1 can reduce levels of PTEN [32]. However, we did not

detect reduction of PTEN expression in cultures of pseudotyped

HIV-1 infected cells or after macrophage treatment with HIV-1

Tat (Figure 4A). We then examined the phosphorylation state of

Src and FAK, classical activating kinases upstream of Akt [36].

MDM treated with HIV-1 Tat exhibited increased phosphoryla-

tion of Src and FAK (Figure 4B). Moreover, treatment of

macrophages with the Src inhibitor PP2 prior to addition of

HIV-1 Tat blocked Akt phosphorylation (Figure 4C), indicating

that activation of Src leads to Akt phosphorylation. Therefore, we

examined the role of Src in HIV-1-induced inhibition of

autophagy by utilizing siRNA (Figure 4D). Similar to the studies

with Akt, cells infected with pseudotyped HIV-1 were unable to

inhibit autophagy in MonoMac6 cells that had Src silenced by

siRNA (Figure 4E). These results were also reproduced in

MonoMac6 cells exposed to HIV-1 Tat (Figure S2B). Taken

together, these studies indicate that Src and Akt are required for

HIV-1-induced inhibition of autophagy in non-infected primary

macrophage and monocytic cells.

CXCR4, VEGFR1 and b-integrins are required for
inhibition of autophagy caused by HIV-1

Since HIV-1 Tat increased phosphorylation of Src and FAK in

macrophages, we examined the role of receptors known to signal

through these molecules: chemokine receptors, VEGFR and b-

integrin [37,38,39]. To this end, we blocked engagement of these

surface molecules on LC3-eGFP+ MonoMac6 cells prior to

incubation with pseudotyped HIV-1 infected cells and treatment

with rapamycin. A blocking mAb against CXCR4 was used

because CXCR4 is a predominant chemokine receptor on

macrophages [40] and treatment of MonoMac6 cells with

recombinant SDF, the ligand for CXCR4, caused inhibition of

autophagy (Figure S3). VEGFR signaling was inhibited with a

mAb against VEGFR1 (the predominant form of VEGFR on

macrophages), or a VEGFR1 tyrosine-kinase inhibitor. b-integrin

signaling was inhibited with a blocking RGD peptide. Neutrali-

zation of any of these molecules impaired the ability of cells

infected with pseudotyped HIV-1 to inhibit autophagy in

bystander cells (Figure 5A). Similar results were obtained with

HIV-1 Tat (Figure 5B). These results suggest that all three cell

surface molecules are required for successful inhibition of

autophagy by HIV-1.

HIV-1 Tat has been reported to interact with chemokine

receptors, VEGFR, b-integrins and CD26 through the chemo-

kine-like domain, basic domain, RGD domain and CD26 binding

domain respectively [24,25,41,42,43]. To further confirm the role

of cell surface molecules in the inhibition of autophagy, we

assessed the ability of Tat with mutations in the above domains to

block rapamycin induced autophagy. To this end, we cultured

LC3-eGFP+ MonoMac6 cells with cells transfected with a control

plasmid, a plasmid that encoded wild type HIV-1 Tat (Figure 5C),

or HIV-1 Tat with mutations at the CD26-binding, chemokine-

like (Tat31–101), basic or RGD domains. Equivalent expression of

each protein was corroborated by immunoblot using an anti-HA

antibody (not shown). Cells that expressed wild type HIV-1 Tat

inhibited autophagy in LC3-eGFP+ MonoMac6 cells (Figure 5D).

Similar results were obtained with cells that expressed HIV-1 Tat

with deletion of the CD26 binding domain. In contrast, cells that

expressed HIV-1 Tat with mutations at the chemokine-like, basic,

or RGD domains lacked the ability to significantly inhibit

autophagy (Figure 5D). These results did not correlate with the

transactivation activity of HIV-1 Tat since wild type HIV-1 Tat,

and the RGD domain mutant exhibited transactivation activity

HIV-1 and Autophagy
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while the remaining mutants were devoid of this activity (not

shown). Taken together, these results indicate that HIV-1 inhibits

autophagy in non-infected cells in a manner dependent on

chemokine, VEGFR and b-integrin signaling. Importantly,

inhibition of autophagy in bystander monocytic cells/macrophag-

es caused by HIV-1-infected cells and HIV-1 Tat exhibit similar

Figure 2. HIV-1 Tat inhibits autophagy. A, MonoMac6 cells infected with pseudotyped HIV-1 (PV HIV) or pseudotyped control virus (PV Ctr) were
incubated with uninfected MonoMac6 cells transfected with LC3-eGFP overnight in the presence or absence of either a neutralizing anti-Tat or
control IgG mAb. Cells were treated with or without rapamycin and assessed for autophagy by expression of large LC3+ structures. B, MonoMac6 cells
transfected with LC3-eGFP were incubated overnight with HIV-1 Tat (100 pg/ml) plus either neutralizing anti-Tat, a neutralizing anti-TNF-a, or control
IgG mAb. Cells were then stimulated with rapamycin. Autophagy was assessed by examining expression of large LC3+ structures. C, MDM were
treated with or without HIV-1 Tat followed by rapamycin. Cell lysates were obtained at 2 h and used for immunoblot for LC3 II and actin. D, MDM
were treated with or without HIV-1 Tat followed by rapamycin in the presence of bafilomycin A1 (Baf A1; 100 nM). Cell lysates were obtained at 2 h
and used for immunoblot for LC3 II and actin. E, and F, MDM were treated with increasing concentrations of HIV-1 Tat (E) or HIV-1 Tat (60 pg/ml) plus
IFN- c (100 U/ml) (F) with or without CD154. Macrophages were challenged with tachyzoites of T. gondii and assessed for parasite load at 24 h. G,
MDM infected with pseudotyped HIV-1 were incubated with uninfected macrophages. Cells were cultured in the presence of neutralizing anti-Tat or
control mAb. After stimulation with CD154, monolayers were challenged with T. gondii and parasite load was assessed at 24 h. H, MDM from CD40
non-responder HIV-1+ patients were incubated with neutralizing anti-Tat or control mAb followed by stimulation with CD154. Macrophages were
challenged with T. gondii and assessed for parasite load at 24 h. Each symbol represents a different patient. The number of parasites per 100
macrophages was examined at 24 h by light microscopy. Data are representative of 3 to 4 independent experiments presented as means 6 SEM;
***p#0.001, ** p#0.01, ‘p$0.05.
doi:10.1371/journal.pone.0011733.g002

HIV-1 and Autophagy
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features since both are dependent on Src-Akt, as well as CXCR4,

VEGFR and b-integrin.

IL-10 and STAT3 are required for inhibition of autophagy
induced by HIV-1

Our data indicate that the presence of low percentages of cells

infected with HIV-1 or low concentrations of HIV-1 Tat were

sufficient to launch a robust inhibition of autophagy in bystander

macrophages/monocytic cells. We explored if HIV-1 utilizes an

additional pathway leading to an effective inhibition of autoph-

agy. HIV-1 and HIV-1 Tat upregulate IL-10 [44,45,46,47,48].

Indeed, we observed that MDM exhibited increased secretion of

IL-10 after exposure to 100 pg/ml of HIV-1 Tat (data not

shown). Thus, we explored IL-10 signaling as a possible

additional mechanism by which HIV-1 impairs autophagy.

Treatment of MonoMac6 cells with 100 pg/ml recombinant

human IL-10 impaired the induction of autophagy in response to

rapamycin (Figure 6A). Interestingly, however, the concentration

of IL-10 (30 pg/ml) detected after HIV-1 Tat treatment was

insufficient for inhibition of autophagy alone (data not shown).

Therefore, we determined whether cells infected with pseudo-

typed HIV-1 or HIV-1 Tat require the presence of IL-10 to

inhibit autophagy. In the presence of a neutralizing anti-IL-10

mAb, MonoMac6 cells infected with pseudotyped HIV-1 no

longer inhibited autophagy in rapamycin-treated non-infected

MonoMac6 cells (Figure 6B). Similarly, HIV-1 Tat was unable to

impair autophagy in rapamycin-treated MonoMac6 cells incu-

bated with anti-IL-10 mAb (Figure 6C).

Furthermore, IL-10 was also required for HIV-1-induced

inhibition of autophagic killing of T. gondii. MDM infected with

pseudotyped HIV-1 did not inhibit anti-T. gondii activity in

response to CD40 stimulation when an anti-IL-10 mAb was

present (Figure 6D). Finally, in the presence of anti-IL-10 mAb,

MDM from HIV-1+ patients whose MDM were refractory to

CD40-induced autophagic killing of T. gondii, exhibited anti-T.

gondii activity similar to that of MDM from healthy controls

Figure 3. HIV-1 inhibits autophagy in bystander macrophages/monocytic cells through Akt. A, MDM incubated with or without HIV-1 Tat
(1 ng/ml) were examined for expression of total Akt and phospho-Akt by immunoblot. B, MonoMac6 cells were transfected with siRNA against Akt1 or
control siRNA. Expression of Akt and actin were examined 72 h post-transfection. C, MonoMac6 cells transfected with control or siRNA directed
against Akt1 were transfected with LC3-eGFP. Cells were incubated with or without HIV-1 Tat (100 pg/ml) overnight followed by stimulation with
rapamycin. Autophagy was assessed by examining expression of large LC3+ structures. D, MonoMac6 cells were transfected with control siRNA or
siRNA directed against Akt. Cells were transfected with LC3-eGFP and incubated with MonoMac6 cells infected with pseudotyped control virus (PV
Ctr) or pseudotyped HIV-1 (PV HIV). Cultures were treated with or without rapamycin. Autophagy was assessed by examining expression of large LC3+

structures. E, MDM were treated with Akt inhibitor IV (1.25 mM) or vehicle followed by incubation with HIV-1 Tat. Macrophages were incubated with
or without CD154, challenged with T. gondii and assessed for parasite load at 24 h. Data are representative of 3 independent experiments presented
as means 6 SEM; *p#0.05, **p#0.01, ‘p$0.05.
doi:10.1371/journal.pone.0011733.g003
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(Figure 6E). Taken together, HIV-1 requires IL-10 to inhibit

autophagy in bystander macrophages/monocytic cells.

STAT3 is a major signaling molecule downstream of IL-10

[49,50]. Thus, we examined the role of STAT3 in the inhibition of

autophagy induced by HIV-1 and IL-10. Transfection of

MonoMac6 cells with siRNA directed against STAT3 reduced

expression of this protein (Figure 7A). Silencing of STAT3

prevented IL-10 and HIV-1 Tat from inhibiting autophagy

induced by rapamycin (Figure 7B). The PI3K/Akt pathway has

also been reported to mediate IL-10 signaling [51,52,53]. Indeed,

silencing of Akt prevented IL-10 from inhibiting autophagy

induced by rapamycin (Figure 7B). Therefore, IL-10 signaling

through STAT3 and Akt is necessary for blockade of autophagy.

IL-10 appears unlikely to be the sole mediator of inhibition of

autophagy. In this regard, the concentration of IL-10 (30 pg/ml)

detected in MDM cultures after HIV-1 Tat treatment was

insufficient for blockade of rapamycin-induced autophagy (data

not shown). Moreover, IL-10 production induced by HIV-1 Tat is

reported to be independent of the basic and RGD domains while

these sites are required for inhibition of autophagy [54,55]. Taken

together, these results support a model whereby HIV-1 and IL-10

act in cooperation through Akt and STAT3 to impair autophagy

in bystander macrophage/monocytic cells (Figure 8).

Discussion

Microbial virulence factors have been reported to inhibit

autophagy by binding to Atg proteins [6,8,17]. Here we report

that a pathogen impairs autophagy by acting at upstream events in

the regulation of autophagy. HIV-1 inhibits autophagy in

bystander non-infected macrophages/monocytic cells. This inhi-

bition is dependent on Akt, its upstream activator Src as well as on

STAT3 and IL-10. The simultaneous signaling by Akt and

STAT3 contribute to the robust inhibition of autophagy induced

by HIV-1. We believe that data from this study provide a novel

insight into the strategies used by a pathogen to inhibit autophagy.

HIV-1 can affect a variety of signaling cascades. In this regard,

HIV-1 induces activation of Akt, Src and FAK [25,32,33,56]. Our

studies using gene knockdown and pharmacological inhibition of

Src and Akt identified them as mediators of HIV-1-induced

inhibition of autophagy in bystander macrophages/monocytic

cells. Moreover, b-integrins, chemokine receptors and growth

Figure 4. HIV-1 inhibits autophagy in bystander macrophages/monocytic cells through Src and Akt. A, MonoMac6 cells were cultured
with MonoMac6 cells infected with pseudotyped control virus (PV Ctr) or pseudotyped HIV-1 (PV HIV) or treated with HIV-1 Tat (100 pg/ml). Culture
lysates were examined by immunoblot for expression of PTEN and actin. B, MDM were incubated with or without HIV-1 Tat and examined for
expression of Src, phospho-Src, FAK and phospho-FAK by immunoblot. C, MDM were incubated with PP2 (20 mM) or vehicle followed by incubation
with HIV-1 Tat. Expression of total Akt and phospho-Akt were examined by immunoblot. D, MonoMac6 cells were transfected with control siRNA or
siRNA directed against Src and examined for expression of Src and actin. E, MonoMac6 cells transfected with control siRNA or siRNA directed against
Src were transfected with LC3-eGFP and incubated with pseudotyped control virus (PV Ctr) or pseudotyped HIV-1 (PV HIV)-infected MonoMac6 cells
overnight. Cultures were treated with or without rapamycin. Autophagy was assessed by examining expression of large LC3+ structures. Data are
representative of 3 independent experiments presented as means 6 SEM; ***p#0.001, ‘p$0.05.
doi:10.1371/journal.pone.0011733.g004
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factor receptors such as VEGFR, are well-described stimulators of

Akt [37,38,39]. Indeed, blockade of any of these surface molecules

impairs the ability of HIV-1 to inhibit autophagy in bystander

macrophage/monocytic cells. These findings suggest that signaling

through these receptors synergize to trigger inhibition of

autophagy.

HIV-1 infection results in dysregulation of IL-10. Cells exposed

to various HIV-1 proteins, including Tat, exhibit increased IL-10

production; furthermore, HIV-1+ patients have increased serum

levels of IL-10 [44,45,47,48]. We identified IL-10 as an inhibitor

of autophagy and we report that HIV-1 also acts through IL-10 to

impair autophagy in bystander macrophage/monocytic cells. The

role of IL-10 is further supported by silencing of STAT3, a major

signaling molecule downstream of this cytokine. Relevant to these

findings is the report that telomere 39 overhang-specific DNA

oligonucleotides appear to induce autophagy by inhibiting STAT3

[57]. Thus, our studies indicate that inhibition of autophagy is part

of the constellation of inhibitory effects of IL-10 on macrophage

effector functions. IL-4 and IL-13 are cytokines that inhibit

autophagy through either Akt or STAT6 [58]. We report that IL-

10 impairs autophagy not only through STAT3 but also via Akt.

While our results support the existence of at least two pathways by

which HIV-1 inhibits autophagy in bystander macrophages, Src –

Akt and STAT3, the possibility of crosstalk between signaling

cascades cannot be ruled out. For example, there is evidence for

crosstalk and cooperation between STAT3 and Akt [59,60].

Additionally, not only IL-10 but also CXCR4 activates STAT3

[61]. Regardless of potential additional interactions between

Figure 5. HIV-1 inhibits autophagy in bystander macrophages/monocytic cells through CXCR4, VEGFR and b-integrin. A, MonoMa6
cells were transfected with LC3-eGFP and incubated with cells infected with pseudotyped control virus (PV Ctr) or pseudotyped HIV-1 (PV HIV).
Cultures were treated overnight with control mAb, control peptide cRAD, anti-CXCR4 mAb, anti-VEGFR1 mAb, VEGFR1 tyrosine kinase inhibitor, or b-
integrin blocking peptide cRGD. MonoMac6 cells were treated with or with out rapamycin and assessed for large LC3+ structures. B, MonoMac6 cells
transfected with LC3-eGFP were treated overnight with or without Tat (100 pg/ml) and either control mAb, control peptide cRAD, anti-CXCR4 mAb,
anti-VEGFR1 mAb or b-integrin blocking peptide, cRGD. MonoMac6 cells were treated with or without rapamycin and assessed for large LC3+

structures. C, Schematic representation of MonoMac6 cells transfected with LC3-eGFP cultured overnight with MonoMac6 cells transfected with a
control plasmid or a plasmid encoding Tat. Cultures were treated with rapamycin and assessed for large LC3+ structures. D, MonoMac6 cells
transfected with LC3-eGFP were cultured overnight with MonoMac6 cells transfected with a control plasmid or a plasmid encoding either wild-type
Tat, Tat CD26 mutant, Tat chemokine-like domain mutant (Tat31–101), Tat basic domain mutant, or Tat RGD mutant as depicted in panel (C). Cultures
were treated with rapamycin and assessed for large LC3+ structures. Data are representative of 4 independent experiments presented as means 6

SEM; *p#0.05, **p#0.01, ‘p$0.05.
doi:10.1371/journal.pone.0011733.g005
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pathways, our studies revealed that signaling by Akt and STAT3

are required for HIV-1-induced inhibition of autophagy in

bystander macrophages/monocytic cells.

Our work reveals that HIV-1-infected cells inhibit autophagy in

non-infected macrophages/monocytic cells. Various HIV-1 mol-

ecules affect the function of cells not infected with the virus. Our

studies with pseudotyped HIV-1 indicate that autophagy is

inhibited in bystander macrophages/monocytic cells despite the

lack of expression of Env and Nef. Moreover, blockade of

VEGFR, CXCR4 and b-integrin signaling restored autophagy.

This raised the possibility that HIV-1 Tat inhibits autophagy since

this molecule has sites with homology to natural ligands for those

receptors and HIV-1 Tat has been reported to exhibit pleiotropic

effects on uninfected bystander cells through interaction of HIV-1

Tat domains with VEGFR, chemokine receptors and b-integrins

[24,25,26,27,28,29]. However, the difficulty in measuring extra-

cellular HIV-1 Tat owing to the lack of suitable commercially

available reagents and the high concentrations of HIV-1 Tat used

in some studies have created controversy in the field. We report

that low concentrations of HIV-1 Tat inhibit autophagy in

macrophages/monocytic cells. The role of HIV-1 Tat as an

inhibitor of autophagy is further supported by the following

observations: i) Cells transfected with a tat-encoding plasmid

inhibit autophagy in bystander monocytic cells, ii) A neutralizing

anti-Tat mAb restores rapamycin-induced autophagy and CD40-

dependent autophagic killing of T. gondii in macrophages/

monocytic cells exposed to HIV-1-infected cells, iii) Neutralization

of HIV-1 Tat restores autophagic killing of T. gondii in

macrophages from HIV-1+ patients. Importantly, the effects of

HIV-1 Tat on autophagy emulate the inhibition of autophagy in

bystander monocytic cells/macrophages caused by cells infected

with HIV-1, including reliance on host membrane receptors, Akt,

Src, and IL-10 signaling.

The effective inhibition of autophagy is likely explained by

cooperation between HIV-1 and upregulated IL-10. Modulation

of IL-10 by exogeneous HIV-1 Tat is reliant on amino acid

Figure 6. IL-10 is required for HIV-1 to inhibit autophagy in bystander macrophages/monocytic cells. A, MonoMac6 cells transfected
with LC3-eGFP were incubated with HIV-1 Tat (100 pg/ml) or IL-10 (100 pg/ml) overnight. Cells were then stimulated with rapamycin. Autophagy was
assessed by examining expression of large LC3+ structures. B, MonoMac6 cells transfected with LC3-eGFP were incubated with MonoMac6 cells
infected with pseudotyped control virus (PV Ctr) or pseudotyped HIV-1 (PV HIV). Cultures were treated with either neutralizing anti-IL-10 or control
mAb overnight. Cells were then stimulated with rapamycin. Autophagy was assessed by examining expression of large LC3+ structures. C, MonoMac6
cells transfected with LC3-eGFP were incubated with HIV-1 Tat (100 pg/ml) plus either neutralizing anti-IL-10 or control mAb overnight. Cells were
then stimulated with rapamycin. Autophagy was assessed by examining expression of large LC3+ structures. D, MDM infected with pseudotyped HIV-
1 were incubated with uninfected MDM. Cells were cultured in the presence of either neutralizing anti-Tat, neutralizing anti-IL-10 or control mAb.
After stimulation with CD154, monolayers were challenged with T. gondii. The number of parasite per 100 macrophages was examined at 24 h by
light microscopy. E, MDM taken from a representative CD40 non-responder HIV-1+ infected patient were cultured in the presence of neutralizing anti-
Tat, anti-IL-10 or control mAb. After stimulation with CD154, monolayers were challenged with T. gondii. The number of parasite per 100
macrophages was examined at 24 h by light microscopy. Data are representative of 3 independent experiments presented as means 6 SEM;
*p#0.05, **p#0.01, ***p#0.001, ‘p$0.05.
doi:10.1371/journal.pone.0011733.g006
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residues 1–45 of HIV-1 Tat, which includes the chemokine-like

domain [54,55], however, not only the chemokine-like domain but

also the basic and RGD domain of HIV-1 Tat are required for

inhibition of autophagy. This is supported not only by studies

using inhibitors of VEGFR, b-integrin and CXCR4 signaling but

also by studies in which monocytic cells are exposed to cells that

express either wt tat or tat with mutations in the domains that

interact with these receptors. The synergistic signaling events

induced by Tat along with the presence of IL-10 provide an

effective inhibition of autophagy. Consistent with the notion that

IL-10 alone is insufficient for the inhibition of autophagy

prompted by HIV-1, IL-10 by itself does not block autophagy at

the concentrations detected in MDM cultures incubated with

HIV-1 Tat. Our results of IL-10 inhibition of autophagy support

the cooperation of Tat signaling. Therefore, HIV-1 and inducible

IL-10 likely function in combination to successfully inhibit

autophagy.

There is increasing evidence of the ability of HIV-1 to

manipulate autophagy. Env has been reported to induce

autophagy in bystander CD4+ T cells through the fusogenic effect

of gp41 [62]. In contrast, Env was unable to induce autophagy in

bystander macrophages/monocytic cells [18]. HIV-1 plays a

complex role in modulation of autophagy within cells infected by

the virus. Autophagy is inhibited in CD4+ T cells acutely infected

with HIV-1 [18,63]. In macrophages/monocytic cells infected

with HIV-1, while the early stages of autophagy are stimulated, the

degradative stage of this process is inhibited by Nef [17,18].

Although those studies provided an important insight into

modulation of autophagy within HIV-1-infected cells, the fact

that only a fraction of cells in vivo are estimated to be infected

stresses the importance of determining whether HIV-1 inhibits

autophagy in bystander cells. Little is known in this regard except

for the report that autophagy is inhibited in bystander neurons

treated with supernatants from microglia obtained from SIV-1

infected monkeys [19]. However, it was not determined if the

effect was a direct consequence of SIV-1. Indeed, it was postulated

that the bystander effect might be due to excitotoxic and pro-

inflammatory products secreted by microglia. We on the other

hand, demonstrate that HIV-1 is able to induce a robust inhibition

of autophagy in bystander macrophages/monocytic cells. This

phenomena may explain why macrophages from a subset of HIV-

1+ patients exhibit defective CD40-dependent autophagic killing of

T. gondii. In this regard, macrophages from two CD40-non-

responder HIV-1+ patients tested appeared to have detectable cells

with productive HIV-1 infection since approximately 0.5% of the

macrophages were p24+ by flow cytometry (Andrade and

Subauste, unpublished observations). This supports that a small

proportion of HIV-1 infected cells can have a significant impact on

autophagy in HIV-1 non-infected cells.

Our findings are likely of relevance to various aspects of HIV-1-

induced disease. The role of autophagy as an immune effector

Figure 7. STAT3 and Akt are required for HIV-1 and IL-10 to inhibit autophagy. A, MonoMac6 cells were transfected with siRNA against
STAT3 or control siRNA. Expression of STAT3 and actin were examined 72 h post-transfection. B, MonoMac6 cells transfected with control siRNA or
siRNA directed against STAT3 or Akt were transfected with LC3-eGFP. Cells were incubated with or without HIV-1 Tat or IL-10 (both at 100 pg/ml)
overnight followed by stimulation with rapamycin. Autophagy was assessed by examining expression of large LC3+ structures. Data are
representative of 3 independent experiments presented as means 6 SEM; ***p#0.001, ‘p$0.05.
doi:10.1371/journal.pone.0011733.g007

Figure 8. A schematic representation of the mechanism of HIV-
1-induced inhibition of autophagy. HIV-1 Tat interaction with the
cell surface receptors CXCR4, VEGFR, and b-Integrin induces signaling
through Src, it’s binding partner FAK, and Akt. Concomitant upregula-
tion of IL-10 by HIV-1 results in STAT3 activity, which functions in
cooperation with Akt to initiate a robust inhibition of autophagy.
doi:10.1371/journal.pone.0011733.g008
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mechanism for targeted destruction of several intracellular

pathogens, including M. tuberculosis, T. gondii, and Salmonella

typhimurium [4,11,64,65] suggests that the inhibition of autophagy

in bystander macrophages may contribute to the susceptibility of

HIV-1+ patients to tuberculosis, toxoplasmosis and/or salmonel-

losis. The fact that autophagy can promote antigen presentation

[13,15] raises the possibility that inhibition of autophagy may

promote pathogen immune evasion. Autophagy is critical for

control of protein quality and prevention of neurodegenerative

diseases [66]. HIV-1 associated dementia (HAD) is becoming a

major problem in HIV-1+ patients. It has been proposed that

dysregulation of autophagy by HIV-1 contributes to HAD [19].

The fact that patients with HAD exhibit perivascular infiltration

with HIV-1-infected monocytes [67] and the proposed link

between HIV-1 Tat and HAD [68] suggest that the mechanism

of autophagy inhibition reported here may contribute to the

development of HAD.

Studies in animal models of neurodegenerative disorders

revealed that pharmacologic manipulation of autophagy is of

therapeutic value [69,70]. The complex effects of HIV-1 on the

autophagy pathway suggest that therapeutic benefit may not be

easily achieved by generalized manipulation of autophagy through

targeting autophagy proteins. Our studies raise the possibility of a

more selective approach to manipulate autophagy by targeting

regulatory pathways. Since blockade of one signaling pathway (for

example VEGFR) remarkably diminishes the ability of HIV-1 to

impair autophagy in bystander cells, this mechanism may be more

easily exploited for therapeutic use in HIV-1+ patients. Of note,

inhibitors of VEGFR, Src or Akt signaling are being explored for

cancer treatment [71,72,73].

In summary, we report that a pathogen inhibits autophagy by

modulating counter-regulatory signaling pathways, this inhibitory

effect can have global characteristics since it affects bystander (non

infected) macrophages/monocytic cells and approaches currently

developed for treatment of various disorders in humans prevent

inhibition of autophagy. The findings presented herein may be

relevant to the development of opportunistic infections, immune

evasion and neuro-degeneration in HIV-1+ patients. These studies

may open up the possibility of novel treatments for complication of

HIV-1 infection based on the use of agents currently developed for

the management of other disorders in humans.

Materials and Methods

Ethics statement
Written informed consent was obtained from all subjects, and

the human experimentation guidelines of the US Department of

Health and Human Services were followed. The study was

approved by the Institutional Review Board of the University of

Cincinnati.

HIV-1+ patients and control subjects
Blood samples were collected from 23 HIV-1 infected patients

followed at the Infectious Diseases Center of the University of

Cincinnati. Plasma viral load was measured by RT-PCR

(Amplicor, Roche). Blood samples were collected from 10 healthy

volunteers and used as control subjects.

Macrophage and monocytic cells
Human MDM were obtained as previously described [11,74],

MonoMac6 cells were a gift from Rene de Waal Malefyt (DNAX

Research Institute, Palo Alto, CA). Stable expression of LC3-

eGFP was achieved in THP-1 cells using a vector provided by

Christian Munz (University Hospital of Zurich, Switzerland). In

certain experiments, macrophages and monocytic cells were

treated with varying concentrations of recombinant Tat1–101

(Tecnogen), recombinant human IL-10 (100 pg/ml; PeproTech),

recombinant IFN-c (200 U/ml; PeproTech), neutralizing mAb

against either Tat (10 mg/ml; Immunodiagnostics), IL-10 (10 mg/

ml; BD Biosciences), TNF-a (10 mg/ml; Endogen), CXCR4

(25 mg/ml; R&D Systems), VEGFR1 (10 mg/ml; R&D Systems),

control mouse IgG (BD Biosciences), goat IgG (Jackson Immu-

noResearch Laboratories, Inc.), Akt inhibitor IV (1.25 mM;

Calbiochem), integrin blocking peptide cRGDfV (3 mM; Bachem)

or control peptide cRADfV (3 mM; Bachem).

T. gondii infection
MDM were stimulated with CD154 (3 mg/ml; Amgen) for 72 h

in the presence of macrophages infected with pseudotyped HIV-1

(see below), recombinant HIV-1 Tat (60 pg/ml added daily for 3

days unless otherwise stated) and/or Akt inhibitor (1.25 mM).

Tachyzoites of the RH strain of T. gondii were maintained in

human foreskin fibroblasts and were used to infect human MDM

[11,74]. Monolayers of macrophages were examined by light

microscopy after 24 h to assess parasite load as described

[11,74,75]. Changes in the number of T. gondii infected cells were

not due to differences in cell detachment during processing of

samples or HIV-1 presence. In addition, cell densities as

determined with an eyepiece grid were similar in all experimental

groups.

Pseudotyped HIV-1 infection
To generate pseudotyped HIV-1, we co-transfected 293T cells

with VSV-G, pMDL-g/p RRE and either pNL4-3.HSA.E2

(obtained from Dr. Nathaniel Landau through the AIDS Research

and Reference Reagent Program) or HIV-1 transfer plasmid pHR’

as control. pNL4-3.HSA.E2 contains a construct for the murine

Heat Stable Antigen (HSA, CD24) fused in frame to the nef

initiator methionine codon. The env gene is not expressed due to a

59 frameshift. Thus, viral particles formed after initial infection

with VSV-G pseudotyped HIV-1 lack HIV-1 gp160 and are

unable to infect other cells. pHR’ contains viral LTR and does not

express any HIV-1 proteins. Supernatants were collected at 24 and

48 h, passed through a 0.45 mm filter, concentrated by ultracen-

trifugation and stored at 280uC. MDM and MonoMac6 cells

(16106 cells/well in 24-well plates) were infected with pseudotyped

HIV-1 as described in the presence of polybrene (8 mg/ml; Sigma)

in a final volume of 250 ml for 2 h [76]. In certain experiments

zidovudine (10 mM, Sigma Chemical) was added 2 h after

incubation with HIV-1. Percentages of infected cells were assessed

at 48 h by examining expression of cell surface mouse HSA or

intracellular p24 by flow cytometry.

Assessment of Autophagy
MonoMac6 cells were transfected with LC3-eGFP or double

transfected with LC3-eGFP and siRNA for Akt1, Src, or STAT3

by Amaxa Nucleofection (Amaxa) per manufacturer’s protocol.

The percentage of LC3-eGFP transfected MonoMac6 cells was

consistent amongst all groups. Cells were plated in an 8-well

chamber slide and treated with recombinant HIV-1-Tat (100 pg/

ml) for 16 hours, then incubated with rapamycin (1 mM;

Calbiochem) for 2 h to stimulate autophagy. At least 200 LC3-

eGFP+ MonoMac6 cells were counted to examine the presence of

large ($1 mm) LC3+ structures using a Leica fluorescent inverted

microscope at 4006 magnification. In additional experiments,

MonoMac6 cells were infected with pseudotyped HIV-1, or

transfected with either wild-type Tat101 plasmid or mutant

plasmids. After 48 h these cells were incubated for 16 h with
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MonoMac6 cells that had been transfected with LC3-eGFP.

Autophagy was assessed as described above 2 h after addition of

rapamycin. In certain experiments, cultures were treated with

bafilomycin A1 (100 nM; Sigma Chemical) for 2 h prior to

autophagy assessment. In additional experiments, uninfected H9

T cells or H9/HTLV-III T cells (gift from David Canaday) were

incubated for 72 h with THP-1 cells that express LC3-eGFP.

Autophagy was assessed as described above 2 h after addition of

rapamycin. In addition, immunoblot analysis was utilized to

determine autophagy induction by expression of LC3 II. MDM or

MonoMac6 cells stimulated with HIV-1 Tat with or without

rapamycin and bafilomycin A1 were lysed and analyzed by

immunoblot, as described below, for expression level of LC3 II.

Transfection of monocytic cells
MonoMac6 cells were transiently transfected with plasmids

encoding LC3-eGFP (gift from T. Yoshimori National Institute for

Basic Biology, Okazaki, Japan); Tat1–101 or the Tat mutants described

below using an Amaxa Nucleofector per manufacturer’s instructions

[11]. Knockdown of Akt1, Src and STAT3 were performed by

transfecting MonoMac6 cells with previously described siRNA

duplexes [77,78,79] (Dharmacon Inc.) using an Amaxa Nucleofector.

Control siRNA from Dharmacon Inc. was used as control. After 48 h,

MonoMac6 cells were transfected with LC3-eGFP.

Plasmids
A construct of recombinant hemagglutinin (HA)-tagged wild-

type Tat (Tat1–101); Tat31–101 was subcloned into the plasmid

pLINK2 using EcoRV and SpeI enzymes. Constructs that encode

mutants of Tat were generated by PCR based mutagenesis. Site

directed mutagenesis was carried out with QuickChange XL Site-

Directed Mutagenesis Kit (Stratagene) following manufacturers

instructions. The following oligonucleotides were used to generate

mutants: RGD mutant (TatR(78)K,D(80)E) 59-CCC GCC TCC CAG

TCC AAA GGG GAA CCG ACA GGG CCC-39; basic mutant

(TatR(53,54,55,56,58,59)A) 59- GGC ATC TCC TAT GGC GCG

AAG AAG GCG GCA CAG GCA GCA GCA GCT CCT CAG

GAC -39; CD26 binding domain mutant (Tat21–101) 59-GGG

GAA TTC CCC TGG AAG CAT CCA GGA AGT CAG CC-39.

Resulting mutants were confirmed by sequencing (Integrated

Biotechnologies).

Immunoblotting
Primary macrophages or MonoMac6 cells treated with

recombinant Tat were lysed and assessed for expression of various

signaling proteins. In brief, cytoplasmic protein was separated

using Tris-HCL gels (BioRad) and transferred to PVDF

membranes for probing overnight with primary antibodies

directed against Akt, phospho-Akt, Src, phospho-Src, PTEN (all

from Cell Signaling Technologies), FAK (Santa Cruz Biotechonol-

ogies), phospho-FAK (BD Bioscience), LC3 (MBL Technologies)

and HA (Cell Signaling Technologies). The membranes were

incubated with corresponding secondary antibodies and the signal

was visualized by using a chemilluminescent kit (Pierce Biosci-

ence). In addition, MonoMac6 cells were lysed 72 h after

transfection with siRNA for Akt1, Src, or STAT3 and probed

with antibodies against Akt, Src, STAT3 (R & D Systems) and

Actin (Santa Cruz Biotechnologies) to ensure proper knockdown.

Flow cytometry
Human MDM and MonoMac6 cells were incubated with

human IgG (20 mg/ml) for 15 min followed by incubation with

anti-CD40, anti-HSA or isotype control mAb (Pharmingen). Cells

were fixed with 1% paraformaldehyde and analyzed using an LSR

II (BD Biosciences). For detection of intracellular p24, cells were

fixed and permeabilized using IntraPrep permeabilization reagent

(Beckman Coulter). Thereafter, cells were stained with anti-p24 or

isotype control mAb (Beckman Coulter). After fixation with 1%

paraformaldehyde, cells were analyzed using an LSRII.

Statistics
Statistical significance was assessed by 2-tailed Student’s t test

and ANOVA. Values less than 0.05 were considered statistically

significant. Linear-regression analysis was performed to determine

the relationship between CD40-induced anti-T. gondii activity,

CD4 counts and viral load.

Supporting Information

Figure S1 HIV-1 inhibits autophagy in bystander cells. A,

MonoMac6 cells infected with pseudotyped HIV-1 (PV HIV) or

pseudotyped control virus (PV Ctr) were incubated with

uninfected MonoMac6 cells transfected with LC3-eGFP. Cells

were treated with or without rapamycin (1 mM) in the presence of

bafilomycin A1 (BafA1; 100 nM) and assessed for autophagy by

expression of large LC3+ structures. B, THP-1 cells that express

LC3-eGFP were incubated for 72 h with either HIV-1-infected or

uninfected H9 T cells. Cultures were treated with rapamycin.

Autophagy was assessed by examining expression of large LC3+
structures. Data are representative of 2 independent experiments

presented as means + SEM; **p,0.01, ***p,0.001, ‘p.0.05.

Found at: doi:10.1371/journal.pone.0011733.s001 (0.36 MB TIF)

Figure S2 HIV-1 Tat inhibits autophagy in an Akt-Src-

dependent manner. A, MonoMac6 cells transfected with LC3-

eGFP were incubated overnight with or with out HIV-1 Tat

(100 pg/ml) in the presence of Akt inhibitor (1.25 mM). Cells were

then stimulated with rapamycin. Autophagy was assessed by

examining expression of large LC3+ structures. B, MonoMac6

cells transfected with control siRNA or siRNA directed against Src

were transfected with LC3-eGFP and treated with HIV-1 Tat

overnight. Cultures were treated with or without rapamycin.

Autophagy was assessed by examining expression of large LC3+
structures. Data are representative of 3 independent experiments

presented as means + SEM; **p,0.01, ‘p.0.05.

Found at: doi:10.1371/journal.pone.0011733.s002 (0.33 MB TIF)

Figure S3 CXCR4 activation inhibits autophagy. MonoMac6

cells transfected with LC3-eGFP were incubated overnight with

SDF-1 (100 pg/ml). Cells were then stimulated with or with out

rapamycin. Autophagy was assessed by examining expression of

large LC3+ structures. Data are representative of 3 independent

experiments presented as means + SEM; **p,0.01.

Found at: doi:10.1371/journal.pone.0011733.s003 (0.22 MB TIF)
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