Lawrence Berkeley National Laboratory
LBL Publications

Title
Unvail the Mysterious of the Single Spin Asymmetry

Permalink
https://escholarship.org/uc/item/87c3q6hZ

Journal
Modern Physics Letters A, 24(35-37)

Author
Yuan, Feng

Publication Date
2010-01-05

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/87c3q6hz
https://escholarship.org
http://www.cdlib.org/

October 22, 2009 11:30 FengYuan'ECT

Unvail the Mysterious of the Single Spin Asymmetry

FENG YUAN
Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
RIKEN/BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, NY
11973

Single transverse-spin asymmetry in high energy hadronic reaction has been greatly
investigated from both experiment and theory sides in the last few years. In this talk,
I will summarize some recent theoretical developments, which, in my opinion, help to
unvail the mysterious of the single spin asymmetry.

Keywords: Single Spin Asymmetry; QCD Factorization.

PACS Nos.: 12.38.Bx, 13.88.+¢, 12.39.5t

1. Introduction

There have been strong experimental interests on transverse spin physics around
the world, from the deep inelastic scattering experiments such as the HERMES
collaboration at DESY, SMC at CERN, and Hall A and CLAS at JLab, the
proton-proton collider experiment from RHIC at Brookhaven, and the very rele-
vant eTe™ annihilation experiment from BELLE at KEK. One of the major goals
in transverse spin physics is to study the quark transversity distribution, the last
unknown leading-twist quark distribution in nucleon. Besides the quark transver-
sity distribution, the transverse spin physics also opens a new window to explore
the partonic structure of nucleon, the so-called transverse momentum dependent
(TMD) parton distributions. TMD parton distribution is an extension to the usual
Feynman parton distributions. They allow us to study the three-dimension picture
of partons inside the nucleon, and they are also closely related to the general-
ized parton distributions and the parton orbital angular momenta. Especially, the
single transverse spin asymmetry (SSA) phenomena in high energy hadronic pro-
cesses have attracted many theoretical and experimental investigations. The SSA
is defined as the asymmetry when one of the hadrons’ transverse spin is flipped,
AN ~ (do(S1) — do(—=S51))/(do(S1) — do(—=SL1)). It has been a great theoretical
challenge in the understanding of these phenomena.

2, among oth-

It was the pioneer works by Efremov-Teryaev ! and Qiu-Sterman
ers, to investigate this phenomena in the QCD framework beyond the naive parton
picture, since the latter predicts very small single spin asymmetry in hard partonic
scattering processes 3. Recent theoretical developments have made great progress

in the exploration of these physics. They have demonstrated a promise to unvail the

1



October 22, 2009 11:30 FengYuan'ECT

mysterious for the single spin asymmetry. In this talk, I will try to summarize the
current theory status. Of course, it is impossible to cover all the exciting achieve-
ments in recent years in this short presentation. Rather, I would like to focus on
one important subject, i.e., the nontrivial QCD dynamics associated with transverse
spin physics: the QCD factorization, the universality of the parton distributions and
fragmentation functions, and their scale evolutions. These developments have laid
solid theoretical foundation to apply QCD theory for the description of the single
spin asymmetry phenomena. Fortunately, in this conference, there have been excel-
lent talks on other developments in the transverse spin physics 4, which compensate
my omission of other important works.

2. Universality and Factorization for the Transverse Momentum
Dependent Functions

Among those TMD parton distributions and fragmentation functions, two func-
tions have been mostly discussed: the Sivers quark distribution ® and the Collins
fragmentation function 6. The Sivers quark distribution represents a distribution of
unpolarized quarks in a transversely polarized nucleon, through a correlation be-
tween the quark’s transverse momentum and the nucleon polarization vector. The
Collins function represents a correlation between the transverse spin of the frag-
menting quark and the transverse momentum of the hadron relative to the “jet
axis” in the fragmentation process. Although they both belong to the so-called
“naive-time-reversal-odd” functions, they do have different universality properties.
For the quark Sivers function, because of the initial/final state interaction differ-
ence, they differ by signs for the SIDIS and Drell-Yan processes "-%%10. On the
other hand, there have been several studies 112131415 ghowing that the Collins
function is universal between different processes, primarily in the SIDIS and ete™

<

annihilation and recently in pp collisions. In the following, I will take the example
of the Collins contribution to the azimuthal asymmetric distribution of hadrons in-
side a high energy jet in the transversely polarized pp collision to demonstrate this
universality property 4,

p(Pa,S1) +p(Pg) — jet(Py) + X — H(Py) + X , (1)

where a transversely polarized proton with momentum P4 scatters on another pro-
ton with momentum Pg, and produces a jet with momentum Pj. The three mo-
menta of P4, Pg and P; form the so-called reaction plane. Inside the produced jet,
the hadrons are distributed around the jet axis, where we define transverse momen-
tum P relative to the jet axis. The correlation between P, and the polarization
vector S introduces the Collins contribution to the single spin asymmetry in this
process.

We need to generate a phase from the scattering amplitudes to have a non-
vanishing SSA. If the phase comes from the vertex associated with the fragment-
ing quark and the final state hadron, or from the dressed quark propagator, it is
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(c) (d)

Fig. 1. Gluon exchange diagrams contributions to the Collins asymmetry in pp collisions. The
short bars indicate the pole contributions to the phase needed for a non-vanishing SSA. The
additional two cuts in (d) cancel out each other.

easy to argue the universality of the Collins function between this process and the
SIDIS/ete™ process, because they are the same. The main issue of the universality
discussion concerns the extra gluon exchange contribution between the spectator of
the fragmentation process and hard partonic part. In Fig. 2, we have shown all these
interactions for a particular partonic channel g¢’ — ¢q’ contribution, including the
gluon attachments to the incident quarks (a,c), and final state balancing quark (d)
and the internal gluon propagator (b). The contributing phases of the diagrams in
Fig. 2 come from the cuts through the internal propagators in the partonic scatter-
ing amplitudes. In Fig. 2, we labeled these cut-poles by short bars in the diagrams.
From the calculations, we will find that all these poles come from a cut through the
exchanged gluon and the fragmenting quark in each diagram, and all other contri-
butions either vanish or cancel out each other. For example, in Fig. 2(d), we show
two additional cuts, which contribute however opposite to each other and cancel out
completely. Therefore, by using the Ward identity at this particular order, the final
results for all these diagrams will sum up together into a factorized form, where
the cross section is written as the hard partonic cross section for ¢(S, )¢’ — ¢(s1)q’
subprocess multiplied by a Collins fragmentation function. The exchanged gluon in
Fig. 2 is now attaching to a gauge link from the fragmentation function definition.
Similar calculations can be performed for the other two processes SIDIS and ete™
annihilation, and the same Collins function will be observed. This argument can
also be extended to two-gluon exchange diagrams .

The key steps in the above derivation are the eikonal approximation and the
Ward identity. The eikonal approximation is valid when we calculate the leading
power contributions in the limit of P, < Py. The Ward identity ensure that when
we sum up the diagrams with all possible gluon attachments we shall get the eikonal
propagator from the gauge link in the definition of the fragmentation function. The
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most important point to apply the Ward identity in the above analysis is that the
eikonal propagator does not contribute to the phase needed to generate a nonzero
SSA.

This observation is very different from the SSAs associated with the parton dis-
tributions, where the eikonal propagators from the gauge link in the parton distribu-
tion definition play very important role #9109 Tt is the pole of these eikonal prop-
agators that contribute to the phase needed for a nonzero SSA associated with the
naive-time-reversal-odd parton distributions, which also predicts a sign difference
for the quark Sivers function between the SIDIS and Drell-Yan processes. More com-
plicated results have been found for the SSAs in the hadronic dijet-correlation 6:17,
where a normal TMD factorization breaks down '®. The reason is that the eikonal
propagators from the initial and final state interactions in dijet-correlation process
do contribute poles in the cross section 718, Because of this, the Ward identity
is not applicable, and the standard TMD factorization breaks down, although a
modified factorization may be valid if we modify the definition of the TMD parton
distributions to take into account all the initial and final state interaction effects 6.

In particular, there is a sign change between the SSAs in SIDIS and Drell-Yan

7,8
processes *°,

Sivers SSA|py = —Sivers SSA|prs - (2)

This nontrivial result of the opposite signs between the above two processes will
still hold when gluon radiation contributions are taken into account, where the large
transverse momentum Sivers function is generated from the twist-three quark-gluon
correlation function '°. It is of crucial to test this nontrivial QCD predictions by
comparing the SSAs in these two processes. The Sivers single spin asymmetry in
SIDIS process has been observed by the HERMES collaboration, and the planned
Drell-Yan measurement at RHIC and other facility will test this prediction.

3. Unifying the Two Mechanisms for SSA

There are mainly two approaches to explore the single spin asymmetry phenomena
in the QCD framework: the transverse momentum dependent approach discussed
in the previous section and the collinear twist-three quark-gluon correlation ap-
proach pioneered by Efremov-Teryaev and Qiu-Sterman mentioned in the Intro-
duction. Both approaches have been used to describe the experimental data on
single spin asymmetry. One of the important developments in the last few years is
that it has been shown that these two mechanisms are unified to describe the same

19,20,21,22,23,24 " in particular, in the semi-inclusive hadron production in

physics
Deep Inelastic Scattering (SIDIS) and Drell-Yan lepton pair production in hadronic
collisions. For example, in SIDIS, at large P, ~ @, the quark-gluon correlation
approach applies. At small P,; < @, a factorization in terms of TMD parton
25 involving in case of the SSA the Sivers functions. If Py,
is much larger than Aqcp, the dependence of these functions on transverse mo-

mentum can be computed using QCD perturbation theory. At the same time, the

distribution applies
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Fig. 2. Generic diagram interpretations for the twist expansions in the high energy scattering
amplitudes up to twist-three level: (a) corresponds to a leading twist matriz element (ip); (b)-(d)
for twist-three contributions, (b) for (0, ), (c) for (YA ), and (d) for (0, ATy). Addi-
tional AT gluon connection between hard partonic part and the non-perturbative nucleon structure
part can be added to these diagrams. This is because they do not change the power counting in
these diagrams. The contributions from these diagrams (b-d) are not gauge invariant individually.
However, they will combine into the gauge invariant results in terms of the correlation functions
introduced in Sec.Il.

result obtained within the twist-three formalism can also be extrapolated into the
regime Aqcp < Pri < @, and it has been demonstrated that the result of this
extrapolation is identical to that obtained using the TMD approach.

The key step to demonstrate this consistency is the relation between the TMD
quark distributions and the collinear leading twist and higher-twist distribution
and fragmentation functions. In particular, the transverse momentum dependence
can be calculated within the perturbative QCD and related to the collinear matrix
elements as long as the k; is much larger than Agcp. In general, we will have the

following expression for the quark distributions at large transverse momentum 2°,
1 dz’
q(x, k1) k. >Aqep = 757 / — fi(@") x Hgpi(a;2') (3)
(k1) L

where g(z, k) ) represents the TMD quark distribution we are interested, f; rep-
resents the integrated quark distribution for the % -even TMDs, and higher twist
quark-gluon correlation function for the k£ -odd TMDs. For the latter case, 2’ should
be understood as two variables for the twist-three quark-gluon correlation functions
as we discussed in the last section. The overall power behavior 1/(k% )™ can be ana-
lyzed by the power counting rule. The hard coefficient H,/;(x;2") is calculated from
perturbative QCD.

To calculate the k) -odd quark distribution, we make use of the twist expansion.
In the twist expansion, a set of non-perturbative matrix elements of the hadron state
will be analyzed according to the power counting of the associated contributions.
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At the twist-three order, from a generic power counting we have contributions from
the following matrix elements,

We illustrate the typical diagrams for the associated contributions from the above
matrix elements in Fig. 1. For comparison, we have also shown the diagram corre-
sponding to the leading-twist contribution from the matrix element (1¢) in Fig. 1a.
Figs. 1b-d represent the contributions up to twist-three quark-gluon correlation ma-
trix elements. Fig. 1b corresponds to the contributions from the matrix element
(101 4), Fig. 1c from (A1), and Fig. 1d from ()9, AT4). Because of additional
gluon component in the matrix elements for Fig. 1c and d, there will be gluon at-
tachment from the nonperturbative part to the perturbative part as shown in these
diagrams. To calculate the contributions from Fig. 1b and d, we have to do collinear
expansion of the partonic scattering amplitudes in terms of p§ and k', = p3| —p7,
respectively. These expansions, combining with the quark field and gluon field, will
lead to the contributions in terms of the matrix elements: ()0, 1), and ()9, At)).
The calculation of Fig. 1b is straightforward, without expansion in terms of the
transverse momenta of the quarks and gluon. Furthermore, all these calculations
have to be combined into the gauge invariant matrix elements, such as Gp, G D,
Hp, Ep, TF, TF, T}U), Tl(;), g, and ]~7,, which are constructed from the gauge in-
variant operators ¢ D | ¢ and pF+1q 23,

With the large transverse momentum quark distributions calculated following
the above procedure, one will be able to show that the differential cross section
in the TMD factorization approach will be the same as the collinear factorization
approach in the intermediate transverse momentum region. This consistency has
been shown for the the SSA contributions coming from the polarized distributions of
the incoming nucleon %29, For the contribution from the twist-three fragmentation
function, it has been difficult to show this consistency. However, recent studies on
the universality property for the Collins fragmentation function in various processes
have paved way to demonstrate this consistency between the TMD and collinear
factorization approaches. This was finished in a recent publication 2. In particular,
the TMD quark fragmentation function are defined through the following matrix,

o nt dé— d? — - 7 F 1
M) = %ﬁ 0 R S S (01£otpa0) P X)
X a

(P X|($aq(§7,€10)LE0) | (5)

where a = 1,2, 3 is a color index, a and § are Dirac indices, and p_ is the transverse
momentum of the final state hadron with momentum P}, relative to the fragmenting
quark k. The quark momentum k is dominated by its plus component k+ = (k° +
k*)/v/2, and we have P;" = zk* and ki = —p. /z. For convenience, we have chosen
a vector n = (17,07,0, ) which is along the plus momentum direction. The leading
order expansion of the above matrix leads to two fragmentation functions for a
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scalar meson,

1 1
Mu=5 |D(z:p1) fi+ Mﬂf(%m)UW?uan ; (6)

where M is a mass scale chosen for convenience, and the second term defines the
Collins function Hi . From the above equation, we can further define the transverse-
momentum moment of the Collins function: H(z) = [ d21u2L Hi-(z,p1). By inte-
grating out the transverse momentum, the fragmentatlon function will only depend
on the longitudinal momentum fraction z of the quark carried by the final state
hadron. It is straightforward to show that this function can be written as a twist-
three matrix element of the fragmentation function,

A + JFOO
) =t [ Eoee Hmorrp [ip 4 [ acorerc)| welmx)
x (PoX[¥(0)[0) + h.c.} , (7)

where F'*¥ is the gluon field strength tensor and we have suppressed the gauge links
between different fields and other indices for simplicity. From the above definition,
we can see that H(z) involves derivative on the quark field and the field strength
tensor explicitly, and it belongs to more general twist-three fragmentation functions.
For example, extending the above definition, we can define a two-variable dependent
twist-three fragmentation function as,

Hp(zl,zQ)—n%zz/%eikifeikﬁ {Tro*(0]iDS () (€7)| P X)

x (P X[1(0)[0) + h.c.} | (8)

where k;F = P*/z; and ki = ki — k3. These functions are our starting point to
formulate the Collins mechanism in the collinear factorization approach. First, we
can calculate the transverse momentum dependence of the Collins function in the
perturbative region from the twist-three fragmentation functions Hp and H. To
do this, we will have to not only calculate the perturbative diagrams with gluon
radiation, but also to perform the twist expansion and take into account full con-
tributions from the 9, and A, operators in the definitions of Hp and H at this
order. An important check of the above result is its universality property. Indeed,
we find that our calculations are independent of the gauge link direction used in
Eq. (6). Because of this, this calculation shall apply to all the processes the Collins
function involved. This clearly demonstrates its universality property. Furthermore,
we can also calculate the Collins contribution to the SSA in semi-inclusive DIS,
epr — €'mX, and show that the TMD and collinear factorization approaches are
consistent in the intermediate transverse momentum region Aqcp < Phi < @,
This clearly demonstrates that in the intermediate transverse momentum region,
the twist-three collinear factorization approach and the TMD factorization approach

provide a unique picture for the Collins contribution to the SSA in the semi-inclusive
DIS 24,
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4. QCD Evolution and NLO Calculation for SSA Observable

Most recently, there has been very exciting progress in studying the scale evolu-
tion equations for the quark-gluon and three-gluon correlation functions and their
implications to the energy dependence of the relevant SSA observables 26:27:28,29
General structure of the evolution equations for the twist-three quark-gluon corre-
lation functions has been known in the literature 0. In a very recent publication 2?,
some interesting results are found (see the discussions below) in applying the known
results from Ref. 3 to the evolution equations derived in Refs. 26:27:28 On the other
hand, from the large transverse momentum quark Sivers function calculated in 9,
we would already obtain the evolution equation for Tr(x) (which is the transverse
momentum moment of the quark Sivers function), since the collinear divergence in
that calculation will lead to the splitting function of T (z). This splitting function
was confirmed by a complete calculation of next-to-leading order QCD correction
to the transverse-momentum weighted spin asymmetry in Drell-Yan lepton pair
production 26 and the derivations of the scale evolution equations directly 2728,
In particular, the scale evolution for the quark-gluon correlation function Tr(z) is

found to be (quark-quark splitting kernel),

0 2y s [dx 1+22 3
e = 52 [ or{ iy, + o= Tote) )
Ca (142 1+ 22 ~
T{l—zTF(xZ’I)_ 1_ZTF(x,x)+TF(xz,x)H ,

where 2 = 2 /x. In Ref. 2% it has been found two additional contributions for this
splitting contribution. One term comes from the so-called New-Hard-Pole contribu-
tion 3. After taking this contribution, the calculations in 26 will be able to reproduce
this term. Another terms is associated with a Delta function in the splitting kernel
and a color-factor C4, which has not yet been identified in the calculation approach
in Refs. 262728 Tt is highly important to have an independent calculation to check
this term from the general evolution equations for the twist-three operators.

Furthermore, the NLO perturbative-QCD correction to the transverse mo-
mentum weighted single spin asymmetry in Drell-Yan lepton pair production in
hadronic collisions has engaged the transverse spin physics to a more solid theoret-
ical ground 26. It has been shown that the collinear divergences can be absorbed
into the NLO twist-three quark-gluon correlation function of the transversely po-
larized nucleon and the unpolarized quark distribution of the unpolarized nucleon.
This calculation suggests that a general factorization formula exists for the trans-
verse momentum weighted spin-dependent cross section in the Drell-Yan process,
in extension of the general factorization arguments given in 32.

One important feature of this result is its behavior near “partonic threshold”,
that is in the large-z limit of the integrand, corresponding to 5 ~ @Q2, when the
initial partons have “just enough” energy to produce the virtual photon. Setting
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the scale u = @, we have the following structure of the NLO correction in this case:

d{qgiAo(S1)) as/d:vdx’ CoNia 2
dQ2 - UO27T x 7 TF(xaxvﬂ )Q(‘T e )

4Cp(1 + 2%) (M>J ;

1—=2

X

(10)

where we only keep the “double-logarithmic” term which dominates near threshold
in the MS scheme. The structure of this expression is identical to that for the spin-
averaged ¢ -integrated NLO cross section near threshold,

do  as [dvdd 50, o (In(1 —2)
a07 = %y ??Q(lﬁﬂ )q(z's 1) [4CR(1 + 27) e N (11)

This means that the soft gluon contribution is spin-independent. It contributes in
the same way to the spin-averaged and single-spin-dependent cross sections, and will
lead to the same soft-gluon threshold resummation effects to these cross sections, at
least at the leading double logarithmic level. This observation is very similar to that
made for the transverse momentum resummation in the Drell-Yan process 33. This
will likely have the phenomenological consequence that the single-spin asymmetry
for the Drell-Yan process will be quite stable under NLO corrections, in particular
when 7 = Q?/s is large.

In summary, there have been great progresses in transverse spin physics in the
last few years. Unfortunately, I could not cover all these important developments,
and rather I emphasized a few examples, including the universality of the parton
distribution and fragmentation functions, and QCD evolution and next-to-leading
order corrections to the relevant observables. On the other hand, there are many
excellent talks on transverse spin physics in this conference, and I believe that they
will present more comprehensive reviews on these exciting developments in this
physics.
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