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Evaluating a Foundation Artificial
Intelligence Model for Glaucoma Detection
Using Color Fundus Photographs

Benton Chuter, MS,1 Justin Huynh, MS,1,2 Shahin Hallaj, MD,1 Evan Walker, MS,1 Jeffrey M. Liebmann, MD,3

Massimo A. Fazio, PhD,4 Christopher A. Girkin, MD, MSPH,4 Robert N. Weinreb, MD,1 Mark Christopher, PhD,1

Linda M. Zangwill, PhD1

Purpose: To evaluate RETFound, a foundation artificial intelligence model, using a diverse clinical research
dataset to assess its accuracy in detecting glaucoma using optic disc photographs. The model’s accuracy for
glaucoma detection was evaluated across race, age, glaucoma severity, and various training cycles (epochs) and
dataset sample sizes.

Design: Evaluation of a diagnostic technology.
Participants: The study included 9787 color fundus photographs (CFPs) from 2329 participants of diverse

race (White [73.4%], Black [13.6%] and other [13%]), disease severity (21.8% mild glaucoma, 7.2% moderate or
advanced glaucoma, 60.3% not glaucoma, and 10.7% unreported), and age (48.8% <60 years, 51.1% >60 years)
from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. All
fundus photographs were graded as "Glaucomatous" or "Non-glaucomatous."

Methods: The study employed RETFound, a self-supervised learning model, to perform binary glaucoma
classification. The diagnostic accuracy of RETFound was iteratively tested across different combinations of
dataset sample sizes (50e2000 optic disc photographs), training cycles (5e50), and study subpopulations
stratified by severity of glaucoma, age, and race).

Main Outcome Measures: Diagnostic accuracy area under the receiver operating characteristic curve (AUC)
for classifying CFP as "Glaucomatous" or "Non-glaucomatous."

Results: Performance increased with larger training datasets and more training cycles, improving from 50
training images and 5 epochs (AUC: 0.52) to 2000 training images and 50 epochs (AUC: 0.86), with reduced gain
in performance from approximately 500 and 1000 training images (AUC of 0.82 and 0.83, respectively). Perfor-
mance was consistent across race and age for all training size and cycle number combinations: Black
(AUC ¼ 0.87) vs. other (AUC ¼ 0.86), and >60 years (AUC ¼ 0.84) vs. <60 years (AUC ¼ 0.87). Performance was
significantly higher in patients with moderate to severe vs. mild glaucoma (AUC ¼ 0.95 vs. 0.84, respectively).

Conclusions: Good RETFound performance was observed with a relatively small sample size of optic disc
photographs used for fine-tuning and across differences in race and age. RETFound’s ability to adapt across a
range of CFP training conditions and populations suggests it is a promising tool to automate glaucoma detection
in a variety of use cases.

Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures
at the end of this article. Ophthalmology Science 2025;5:100623 ª 2024 Published by Elsevier Inc. on behalf of the
American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
Ophthalmology has witnessed remarkable advancements in
the application of deep learning artificial intelligence (AI)
models.1 These models have demonstrated considerable
success across a spectrum of diseases including glaucoma2

and diabetic retinopathy,3 data modalities including retinal
color fundus photographs (CFPs) and OCT images,4,5 and
tasks including disease classification6,7, disease
progression,8 prediction of disease worsening,9,10 and
optic nerve head (ONH) segmentation.11 A long-standing
ª 2024 Published by Elsevier Inc. on behalf of the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND li-
cense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
limitation of the majority of existing algorithms, however,
is their dependence on datasets labeled by domain expertsd
a process that is both labor-intensive and time-consuming
12,13 Such models may also be task-specific and have
limited generalizability to different clinical applications.14

The emergence of foundation models, a class of large-
scale AI models pretrained on extensive datasets and
capable of fine-tuning for diverse downstream tasks
including detection of a various diseases, holds promise to
1https://doi.org/10.1016/j.xops.2024.100623
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address these issues.15 In medicine, foundation models have
demonstrated potential to employ vast datasets through self-
supervised learning. In self-supervised learning, models
learn useful representations and relevant features from un-
labeled data without use of human labor-intensive labels,
mitigating this limitation and enabling generalization across
various tasks.16 In addition, 1 foundation model can be used
to detect several different diseases making it a flexible
option for a wide range of tasks.

RETFound, a recently developed foundational model,
poses a possible solution to the challenges of labeled data
acquisition and generalizability in developing AI for
ophthalmology.17 RETFound is built upon 1.6 million
unlabeled retinal images using self-supervised learning,
aiming to provide a generalizable solution that outperforms
existing models in diagnosing and predicting sight-
threatening eye diseases while requiring fewer labeled
data. RETFound employs a transformer-based architecture
to handle the complexity and variance inherent in retinal
imaging, with pretext tasks such as masked autoencoding to
support development of retinal image representations that
can be used in subsequent fine-tuned applications. Potential
applications include detection of ophthalmic diseases such
as diabetic retinopathy, glaucoma, and age-related macular
degeneration as well as oculomic challenges including
identification of ischemic heart disease, stroke, heart failure,
and Parkinson’s disease. Operating with both fundus
photography and OCT, this foundation model represents a
significant advancement in medical AI, offering potential to
reduce the annotation workload and improve AI applications
in retinal imaging. However, its ability to do so across
varying datasets and conditions remains to be established.17

Preliminary assessments of RETFound suggest potential
application across diseases and imaging modalities.17

However, the model’s subsequent fine-tuning and evalua-
tion have thus far been confined to publicly accessible
datasets, where variations in image and label quality are
prevalent. In addition, RETFound was developed from a
limited United Kingdom cohort. It is crucial to further
validate the RETFound model with large geographically and
demographically diverse external datasets.

Addressing this gap, our research aims to perform a
validation study of RETFound on a large, well-
characterized, diverse CFP dataset of eyes with and
without glaucoma. Through this study, we seek to rigor-
ously evaluate the performance and applicability of
RETFound in an independent context, thereby facilitating its
potential integration into diagnostic workflows and
enhancing the precision of ophthalmic assessments.
Furthermore, it is important to determine how many images
and training cycles are necessary to finetune the RETFound
model on a new dataset and task. This work explores the
ability of RETFound to detect glaucoma using CFPs, with
varying amounts of training time and data. We also deter-
mine its generalizability to individuals of different races,
ages, and disease severity. In this way, we sought to address
the question: for a given dataset size and number of training
cycles, what kind of performance, with what variability and
generalizability, can a user expect from RETFound in
assigning binary labels to CFPs?
2

Methods

Data Collection

This study used CFPs from the Diagnostic Innovations in Glau-
coma Study (DIGS) (clinicaltrials.gov identifier: NCT00221897)18

and the African Descent and Glaucoma Evaluation Study
(ADAGES) (clinicaltrials.gov identifier: NCT00221923).19 The
study’s recruitment and methods received approval from the
institutional review boards of each involved institution
(University of California, San Diego, University of Alabama at
Birmingham, and Columbia University), in line with the
Declaration of Helsinki and the Health Insurance Portability and
Accountability Act, ensuring all participants gave informed
consent at recruitment. While the methods of these studies have
been detailed in previous publications,18,19 key relevant details
are summarized here.

The DIGS and ADAGES studies represent a collaborative effort
involving the University of California, San Diego Hamilton
Glaucoma Center and Viterbi Family Department of Ophthal-
mology, the University of Alabama at Birmingham Department of
Ophthalmology, and the Columbia University Medical Center
Edward S. Harkness Eye Institute. The study population includes a
diverse population of individuals of African, European, and Asian
descent. The study protocols include semiannual collection of
stereo fundus photographs and visual field (VF) tests as part of
their longitudinal framework. For this analysis, 9787 fundus pho-
tographs were included. Fundus photographs were captured as
simultaneous stereoscopic ONH images between 1986 and 2019.
Several different cameras were used over the years, including a
Nidek Stereo Camera Model 3-DX (Nidek Inc). Visual field as-
sessments were conducted using the Humphrey Field Analyzer II
with a 24-2 standard testing pattern and the Swedish Interactive
Thresholding Algorithm, discarding tests with >33% in fixation
losses, false-negative, or false-positive errors. The mean deviation
(MD) from VF testing, conducted closest to the time of image
capture and within a year, was used to approximate the severity of
glaucoma damage at the imaging time for all ONH images.

Glaucoma Labels

To assess glaucoma status for DIGS/ADAGES images, stereo-
photographs were reviewed by 2 independent, masked graders
using a stereoscopic viewer such as the Asahi Pentax Stereo
Viewer II (Pentax). Criteria for a glaucoma status label comprised
evidence of, as demonstrated by excavation, neuroretinal rim
thinning or notching, or localized or diffuse retinal nerve fiber layer
defect, as assessed by these graders based solely on fundus im-
aging, with or without VF damage. Disagreements between graders
were resolved by a third, experienced grader. Stereo image pairs
were then separated into individual images of the ONH. The
resulting dataset included 7411 stereo pairs, which were divided
into 14 822 individual ONH images, taken from 4363 eyes
belonging to 2329 participants. In this study, the data underwent
cross-sectional evaluation with images assigned a binary label
(Nonglaucomatous or Glaucomatous) at the image level. Images
where poor quality precluded confident determination of Glau-
comatous Optic Neuropathy status by any of the graders were
excluded to yield the images used in this study.

Image Preprocessing

All CFPs selected for this study underwent preprocessing through
an automated segmentation tool designed to identify and extract a
square crop centered on the ONH, with each side measuring 2.5
times the optic disc’s diameter. When applied to images that had

http://clinicaltrials.gov
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passed the manual quality screen, cropping algorithm fail rate was
<1%. This uniform crop was established to ensure a consistent
basis for examining the ONH area. A 2.5x disc diameter frame was
chosen to accommodate the widest range of visual information
accessible from the various cameras and configurations used to
acquire the images, despite potential limitations in capturing details
far from the disc. Previous studies have validated the effectiveness
of this framing size for accurate primary open-angle glaucoma
detection with convolutional neural networks (CNNs).20,21

Following this standardized cropping, the images were resized
to a standard 224 � 224 pixel dimension, and a specialist (M.C.)
performed a manual inspection of each one to verify the precise
alignment of the ONH. The choice of 224 � 224 pixels was
informed by its compatibility with the input requirements of the
RETFound and this resolution’s prior effectiveness in diagnosing
primary open-angle glaucoma in our past experiments.21 The
available images included either simultaneous stereo
photographs, sequential stereo images, created by taking 2
successive shots with a monocular fundus camera to simulate a
stereo effect. In our analysis, stereo images were separated and
analyzed as if they were single-view to include all available data.
Self-Supervised Learning, RETFound

Self-supervised learning attempts to improve data use efficiency by
creating supervisory signals without externally provided labels.22

Models engage in “pretext tasks” that do not require labels. This
Figure 1. Schematic showing how the data was split per training run, per boo
number of images being tested for that specific epoch and sample size combina
approach utilizes vast quantities of unlabeled data to develop
versatile feature representations suitable for various tasks.

After this initial training, models undergo fine-tuning for spe-
cific applications, such as classification or segmentation. Self-
supervised learning has demonstrated superiority over supervised
learning methods, such as those involving pretraining on ImageNet
with categorical labels, across numerous computer vision chal-
lenges, achieving higher performance with less data during fine-
tuning.16 Moreover, self-supervised learning models excel over
supervised counterparts in tests involving new, domain-divergent
data, showcasing their strong generalization and superior fine-
tuning capabilities.23,24 This underscores self-supervised learn-
ing’s significant promise for medical AI, where data is plentiful,
tasks are varied, and labels are limited.25,26

RETFound adapts self-supervised learning to ophthalmic im-
aging modalities, namely CFP and OCT. As described in its
original publication, RETFound was created from large-scale un-
labeled retinal images through self-supervised learning.17 Two
distinct RETFound models were developed, 1 using CFP and the
other using OCT, through application on natural and retinal
images from the Moorfields Eye Hospital-MoorfIelds Diabetic
imAge dataSet and other publicly available datasets, involving
904170 CFPs and 736442 OCTs. RETFound was then adapted
for various challenging detection and prediction tasks by fine-
tuning with task-specific labels. In addition to the diagnostic
classification of ocular diseases such as diabetic retinopathy and
glaucoma, RETFound also identified heart failure, stroke, and
Parkinson’s disease.
tstrap test run. For each run, the train and validation samples sum to the
tion. Not to scale.
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Evaluation of RETFound Using CFPs for
Glaucoma Label Assignment

We assessed the practical application and performance of
RETFound for glaucoma detection from CFPs. Comprehensive
iterative testing of RETFound performance, captured as area under
the receiver operating characteristic (AUC) in predicting glaucoma
status when trained with datasets of CFPs of varying size (50, 100,
200, 500, 1000, 2000) for varying trainings (epochs: 5, 10, 20, 50),
was conducted. In this way we evaluate whether it can perform at
or above the level of other deep learning models in categorization
tests with relatively little subsequent training (fine-tuning) on
relatively small labeled datasets. We also evaluate whether
RETFound’s results are generalizable to differences in glaucoma
severity, age, and race.
Table 1. Overview of

Characteristics
All (n [ 2104

Subjects; 3973 eyes)
T

Su

Baseline age 58.4 (57.7, 59.0) 58
Baseline age classification
Age <60 1027 (48.8%) 7
Age >60 1076 (51.2%) 7
Unknown or not reported 1 (0.0%)

Sex
Female 1225 (58.2%) 8
Male 878 (41.7%) 6
Unknown or not reported 1 (0.0%)

Race
American Indian/Alaska Native 3 (0.1%)
Asian 128 (6.1%)
Black or African American 287 (13.6%) 1
Native Hawaiian or Other Pacific Islander 4 (0.2%)
Unknown or not reported 138 (6.6%) 1
White 1544 (73.4%) 10

Ethnicity
Hispanic 21 (1.0%)
Not Hispanic 1061 (50.4%) 7
Unknown or not reported 1022 (48.5%) 7

Diabetes
No 1968 (93.5%) 13
Yes 136 (6.5%)

Hypertension
No 1646 (78.2%) 11
Yes 458 (21.8%) 3

24-2 VF MD (dB) �2.60 (�2.81, �2.39) �2.
Baseline disease severity
Mild glaucoma 867 (21.8%) 5
Moderate to advanced glaucoma 285 (7.2%) 2
Nonglaucomatous 2396 (60.3%) 16
Unknown or not reported 425 (10.7%) 3

Axial length (mm) 24.06 (23.99, 24.13) 24.
Spherical equivalent �0.74 (�0.84, �0.64) �0.
IOP (mmHg) 18.96 (18.71, 19.21) 18.
CCT (mm) 553.35 (551.49, 555.21) 554.
Baseline visit glaucoma classification
No 2396 (60.3%) 16
Yes 1577 (39.7%) 11

Last visit glaucoma classification
No 2336 (58.8%) 16
Yes 1637 (41.2%) 11

CCT ¼ central corneal thickness; dB ¼ decibels; IOP ¼ intraocular pressure;

4

Number of Images Variation and Dataset Split

Nine thousand seven hundred eighty-seven images from 2104
patients were randomized into train (6884d1472 patients), vali-
dation (976d211 patients), and test (2127d421 patients) pools
according to a standard 70-10-20 split by patient (Fig 1).
Demographic features of the study population as a whole and for
each of these pools can be found in Table 1, further stratified for
all images used by glaucoma severity, race, and age in Table S2
(available at www.ophthalmologyscience.org). RETFound was
then iteratively tested for varying dataset sizes (50, 100, 200,
500, 1000, 2000) and epochs (5, 10, 20, 50) for a total of 24
size-epoch combinations. These dataset size and epoch ranges
were chosen after initial testing suggested these ranges would
represent broad model performance from poor to good.
Study Population

rain (n [ 1472
bjects; 2788 eyes)

Validation (n [ 211
Subjects; 395 eyes)

Test (n [ 421
Subjects; 790 eyes)

.3 (57.5, 59.1) 58.2 (56.0, 60.4) 58.6 (57.1, 60.1)

14 (48.5%) 110 (52.1%) 202 (48.0%)
57 (51.4%) 101 (47.9%) 219 (52.0%)
1 (0.1%) 0 (0.0%) 0 (0.0%)

67 (58.9%) 119 (56.4%) 239 (56.8%)
04 (41.0%) 92 (43.6%) 182 (43.2%)
1 (0.1%) 0 (0.0%) 0 (0.0%)

2 (0.1%) 1 (0.5%) 0 (0.0%)
95 (6.5%) 10 (4.7%) 23 (5.5%)
89 (12.8%) 31 (14.7%) 67 (15.9%)
3 (0.2%) 1 (0.5%) 0 (0.0%)
01 (6.9%) 14 (6.6%) 23 (5.5%)
82 (73.5%) 154 (73.0%) 308 (73.2%)

15 (1.0%) 2 (0.9%) 4 (1.0%)
18 (48.8%) 113 (53.6%) 230 (54.6%)
39 (50.2%) 96 (45.5%) 187 (44.4%)

83 (94.0%) 197 (93.4%) 388 (92.2%)
89 (6.0%) 14 (6.6%) 33 (7.8%)

60 (78.8%) 165 (78.2%) 321 (76.2%)
12 (21.2%) 46 (21.8%) 100 (23.8%)
62 (�2.87, �2.37) �2.28 (�2.81, �1.76) �2.72 (�3.21, �2.23)

97 (21.4%) 83 (21.0%) 187 (23.7%)
02 (7.2%) 21 (5.3%) 62 (7.8%)
80 (60.3%) 252 (63.8%) 464 (58.7%)
09 (11.1%) 39 (9.9%) 77 (9.7%)
02 (23.93, 24.11) 24.14 (23.90, 24.37) 24.14 (23.98, 24.30)
73 (�0.85, �0.62) �0.70 (�1.06, �0.34) �0.80 (�1.03, �0.56)
97 (18.67, 19.27) 18.59 (17.80, 19.37) 19.10 (18.51, 19.68)
13 (551.89, 556.38) 549.30 (543.90, 554.69) 552.63 (548.47, 556.79)

80 (60.3%) 252 (63.8%) 464 (58.7%)
08 (39.7%) 143 (36.2%) 326 (41.3%)

39 (58.8%) 252 (63.8%) 445 (56.3%)
49 (41.2%) 143 (36.2%) 345 (43.7%)

MD ¼ mean deviation; VF ¼ visual field.

https://www.ophthalmologyscience.org
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For each of these size-epoch combinations, models were
trained, validated, and tested on train, validation, and test sets
generated by random sampling from the predetermined train,
validation, and test pools of 6684, 976, and 2127 images, respec-
tively (70-10-20 split), where the total number of images reported
represents the current size for the current size-epoch combination
being tested (#train_sample þ #validation_sample ¼ current size)
(Fig 1). To both accommodate and assess variability inherent
between training runs, each size-epoch combination involved 10
separate training runs for which this train-validation-test sampling
process was repeated. For each of these training runs, a further 100
bootstrap runs were conducted, for a total of 240 training runs and
24 000 bootstrap runs. Details regarding implementation details
can be found in Table S3 (available at www.ophthalmolog
yscience.org).

Analysis

Given the relatively balanced nature of the DIGS/ADAGES dataset
with respect to the presence of glaucoma (Table 1), performance
for each run was assessed via AUC; 95% confidence intervals
(CIs) for these AUCs were calculated by 2 methods: via
assumption of a normal distribution, and by a cumulative density
function (CDF). For CIs calculated using the CDF method, this
involves sorting the bootstrapped estimates and selecting values
that correspond to the 2.5th and 97.5th percentiles of the
bootstrapped distribution. These different CIs serve distinct
purposes: CDF CI better captures the degree of variability
between runs, especially at low numbers of images. Normal
distribution CI, with the large sample size, suggests the
significance of differences in performance between epoch and
image number combinations. In addition, the generalizability of
the models was evaluated by stratifying by race, (African descent
vs. not of African descent), age (above and below the median 60
years), and severity of glaucoma (mild VF MD >�6 decibels
[dB] vs. moderate to severe VF MD <�6 dB).

Results

This study included 2104 subjects and 3973 eyes, with
subsets for testing (421 subjects and 790 eyes), training
(1472, 2788), and validation (211, 395), as displayed in
Table 1. The average age of participants in the study is 58
Figure 2. Plots demonstrating the relationship between number of images (x-
operating characteristic curve (AUC, y-axis), at each tested epoch number.
years, with 48.8% (n ¼ 1027) of participants <60 years
of age and 51.1% (n ¼ 1076) >60 years of age. Females
(n ¼ 1225, 58.2%) slightly outnumbered males (n ¼ 878,
41.7%). A majority of the study population are White
(1544, 73.5%), followed by people of Black/African
descent (287, 13.6%) and Asian (128, 6.1%). Racial status
was unknown or unrecorded for 138 (6.6%) of study
participants. Eye-level characteristics including 24-2 VF
MD (dB), axial length (mm), spherical equivalent, intraoc-
ular pressure (mmHg), and central corneal thickness (mm),
are presented for the training, validation, and test set in
Table 1. Twenty-one point eight percent (n ¼ 867) of
participants’ eyes had mild glaucoma (dB >�6 on 24-2
VF MD) compared with 7.2% (n ¼ 285) with moderate or
severe glaucoma (VF MD dB <�6), while 60.3%
(n ¼ 2396) were not glaucomatous and 10.7% (n ¼ 425)
did not have a recorded dB measurement. The datasets are
relatively well-balanced between the 2 categories of inter-
est at most recent visit: glaucoma (n ¼ 2336, 58.8%) or not
glaucoma (n ¼ 1637, 41.2%).

Figures 2, S3 and S4 (available at www.ophthalm
ologyscience.org) illustrate the model performance for
different epoch and image sample size combinations. Ninety-
five percent CIs calculated with the standard normal
distribution method are much narrower than those using CDF
and show statistically significant (P < 0.001) differences
between each epoch and image number combination.
Cumulative density function CIs in contrast are broader and
show a relatively high degree of variability between training
and testing runs at small sample sizes.

When holding epoch or sample size constant to observe
changes in AUC in response to increasing image number or
epoch, respectively, there is a positive trend of increasing
AUC with a larger number of images, suggesting that more
data contribute to better model performance. For all epochs,
as the number of images increases from 50 to 2000, the
AUC also increases, indicating improved model perfor-
mance; for 50 epochs this represents an increase from 0.574
at 50 images to 0.859 at 2000 images. However, the rate of
improvement diminishes with more images and epochs, as
axis) and diagnostic performance, as measured by area under the receiver

5
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Table 4. Summary of the Model Performance on the Local Datasets as Captured by AUC, with 95% Confidence Intervals as Calculated by Cumulative Density Function

Epoch
Number of
Images

Overall
(n [ 421 Subjects;

790 Eyes; 2127 Images)

Disease Severity Age Race

Mild Glaucoma
(n ¼ 162 Subjects;

270 Eyes; 871 Images)

Moderate to Advanced
Glaucoma (n ¼ 58 Subjects;

75 Eyes; 355 Images)

Age Below 60
(n ¼ 201 Subjects;

383 Eyes; 865 Images)

Age Above 60
(n ¼ 251 Subjects;

468 Eyes; 1262 Images)

Black or African American
(n ¼ 67 Subjects;

128 Eyes; 370 Images)

Other Races
(n ¼ 354 Subjects;

662 Eyes; 1757 Images)

5 50 0.522 (0.420, 0.627) 0.514 (0.424, 0.606) 0.555 (0.415, 0.740) 0.525 (0.384, 0.655) 0.527 (0.453, 0.633) 0.529 (0.394, 0.688) 0.526 (0.449, 0.631)
5 100 0.549 (0.456, 0.631) 0.547 (0.467, 0.620) 0.576 (0.405, 0.741) 0.526 (0.413, 0.628) 0.532 (0.416, 0.615) 0.541 (0.382, 0.712) 0.549 (0.478, 0.625)
5 200 0.590 (0.447, 0.657) 0.558 (0.417, 0.615) 0.688 (0.518, 0.802) 0.580 (0.471, 0.675) 0.606 (0.515, 0.685) 0.633 (0.450, 0.761) 0.584 (0.469, 0.659)
5 500 0.670 (0.598, 0.716) 0.634 (0.567, 0.684) 0.769 (0.673, 0.843) 0.649 (0.510, 0.717) 0.651 (0.579, 0.707) 0.700 (0.579, 0.808) 0.655 (0.594, 0.704)
5 1000 0.716 (0.668, 0.765) 0.675 (0.619, 0.734) 0.838 (0.774, 0.886) 0.698 (0.608, 0.783) 0.692 (0.637, 0.740) 0.762 (0.660, 0.857) 0.696 (0.651, 0.745)
5 2000 0.766 (0.726, 0.801) 0.726 (0.678, 0.768) 0.890 (0.842, 0.922) 0.768 (0.683, 0.830) 0.733 (0.681, 0.775) 0.808 (0.697, 0.887) 0.749 (0.707, 0.787)
10 50 0.550 (0.471, 0.677) 0.537 (0.478, 0.645) 0.575 (0.436, 0.770) 0.557 (0.385, 0.664) 0.542 (0.450, 0.667) 0.569 (0.422, 0.763) 0.541 (0.472, 0.649)
10 100 0.578 (0.415, 0.678) 0.564 (0.414, 0.648) 0.652 (0.411, 0.809) 0.554 (0.350, 0.674) 0.583 (0.429, 0.677) 0.584 (0.370, 0.767) 0.585 (0.455, 0.664)
10 200 0.667 (0.527, 0.717) 0.634 (0.505, 0.686) 0.769 (0.643, 0.840) 0.642 (0.447, 0.721) 0.653 (0.571, 0.720) 0.692 (0.528, 0.793) 0.656 (0.562, 0.708)
10 500 0.719 (0.668, 0.763) 0.685 (0.632, 0.733) 0.825 (0.706, 0.881) 0.712 (0.622, 0.783) 0.683 (0.613, 0.738) 0.746 (0.638, 0.843) 0.701 (0.636, 0.750)
10 1000 0.784 (0.747, 0.830) 0.749 (0.702, 0.802) 0.904 (0.863, 0.935) 0.796 (0.723, 0.858) 0.752 (0.708, 0.801) 0.818 (0.705, 0.897) 0.772 (0.729, 0.818)
10 2000 0.821 (0.787, 0.854) 0.792 (0.751, 0.826) 0.932 (0.889, 0.957) 0.832 (0.774, 0.887) 0.796 (0.749, 0.837) 0.850 (0.760, 0.921) 0.819 (0.783, 0.853)
20 50 0.554 (0.433, 0.680) 0.541 (0.425, 0.656) 0.582 (0.351, 0.770) 0.554 (0.430, 0.703) 0.548 (0.412, 0.652) 0.568 (0.401, 0.795) 0.547 (0.429, 0.651)
20 100 0.594 (0.388, 0.657) 0.574 (0.402, 0.634) 0.650 (0.428, 0.785) 0.596 (0.366, 0.696) 0.572 (0.449, 0.666) 0.612 (0.374, 0.754) 0.584 (0.446, 0.651)
20 200 0.661 (0.581, 0.722) 0.625 (0.545, 0.693) 0.762 (0.570, 0.838) 0.655 (0.572, 0.750) 0.641 (0.466, 0.709) 0.710 (0.596, 0.845) 0.644 (0.547, 0.703)
20 500 0.777 (0.700, 0.815) 0.740 (0.653, 0.785) 0.904 (0.812, 0.938) 0.786 (0.659, 0.845) 0.744 (0.675, 0.790) 0.814 (0.691, 0.895) 0.765 (0.673, 0.806)
20 1000 0.816 (0.774, 0.847) 0.786 (0.741, 0.821) 0.931 (0.892, 0.957) 0.823 (0.756, 0.876) 0.788 (0.744, 0.829) 0.838 (0.747, 0.921) 0.812 (0.773, 0.844)
20 2000 0.845 (0.812, 0.873) 0.819 (0.784, 0.851) 0.944 (0.904, 0.968) 0.857 (0.806, 0.902) 0.821 (0.779, 0.856) 0.866 (0.770, 0.933) 0.841 (0.810, 0.869)
50 50 0.574 (0.455, 0.680) 0.559 (0.450, 0.668) 0.613 (0.425, 0.818) 0.585 (0.433, 0.666) 0.558 (0.469, 0.687) 0.590 (0.420, 0.754) 0.560 (0.463, 0.670)
50 100 0.624 (0.408, 0.691) 0.594 (0.421, 0.660) 0.719 (0.426, 0.832) 0.605 (0.391, 0.702) 0.628 (0.467, 0.696) 0.661 (0.352, 0.793) 0.622 (0.443, 0.685)
50 200 0.699 (0.621, 0.794) 0.661 (0.590, 0.762) 0.800 (0.665, 0.921) 0.694 (0.583, 0.810) 0.667 (0.587, 0.771) 0.741 (0.629, 0.882) 0.681 (0.603, 0.780)
50 500 0.811 (0.764, 0.846) 0.779 (0.715, 0.820) 0.927 (0.879, 0.955) 0.825 (0.748, 0.888) 0.776 (0.722, 0.824) 0.843 (0.735, 0.926) 0.804 (0.756, 0.850)
50 1000 0.832 (0.796, 0.865) 0.803 (0.760, 0.844) 0.936 (0.891, 0.963) 0.844 (0.777, 0.890) 0.805 (0.759, 0.850) 0.846 (0.734, 0.923) 0.829 (0.784, 0.866)
50 2000 0.859 (0.829, 0.884) 0.837 (0.802, 0.865) 0.946 (0.906, 0.971) 0.869 (0.824, 0.909) 0.838 (0.800, 0.871) 0.869 (0.775, 0.932) 0.856 (0.822, 0.883)

AUC ¼ area under the receiver operating characteristic curve.
The number of images represents the sum of images used for training and validation stratified by age, disease severity, and race.
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Figure 5. Generalizability of the best performing RETFound model across age, race, and severity of glaucoma. Area under the receiver operating char-
acteristic curves are stratified by glaucoma severity (left: mild, moderate/severe), age (middle: >60 years, <60 years), and race (right: African descent, other).
The best performing model was defined as the model with the highest combined (AUC), fine-tuned from a single training run. AUC ¼ area under the
receiver operating characteristic curve.
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indicated by the plateauing curves from approximately 500
to 1000 images with both 20 and 50 epochs in the training
set (Fig 2, S3 and S4, available at www.ophthalm
ologyscience.org). The diminishing returns in AUC with
increasing epochs and images suggest a point of
diminishing returns where additional epochs and number
of images do not yield significant performance gains.

Table 4 further illustrates these trends. For 20 epochs,
this constitutes a rise in AUC from 0.554 with 50 training
and validation images, to 0.845 with 2000 images. The
95% CIs for AUC narrow with the increase in the number
of images, indicative of higher confidence in the AUC
values with larger datasets; 95% CI range is 0.214 at 50
epochs, 50 images and decreases to 0.075 at 50 epochs,
2000 images. This narrowing of 95% CIs with the rise in
images and training cycles indicates better model stability
and performance consistency, as more data are made
available for training over greater numbers of epochs. An
increase in the number of images seems to have a larger
effect than a proportional increase in epochs. For 2000
training and validation images, the CI range only
decreases from 0.075 at 5 epochs to 0.054 at 50 epochs.
Model performance at 2000 images, over 50 epochs, is
consistently excellent, with a mean AUC of 0.86.
Figure 6. Bar plots of mean AUC values for 50 epochs, 2000 training/validatio
moderate/severe), and race (African descent, other), with confidence intervals.
The results also demonstrate no significant differences in
performance when stratifying by race and age (Table 4, Figs
5 and 6). Comparing the 95% CI for AUCs derived from
images from patients with mild glaucoma vs. moderate or
advanced glaucoma, we found a significant difference at 50
epochs and 1000 or 2000 training and validation images,
where the model performed significantly better on images
from patients with moderate to advanced glaucoma
compared with mild glaucoma (Figs 5 and 6). At 50
epochs, for 1000 images from patients with mild glaucoma
mean AUC was 0.81 (0.76, 0.84), while for moderate to
severe glaucoma it was 0.94 (0.86, 0.96). Similarly, at 50
epochs for 2000 images, for mild glaucoma mean AUC
was 0.86 (0.80, 0.87), while for moderate to severe
glaucoma mean AUC was 0.95 (0.91, 0.97).
Discussion

Although RETFound benefits from a larger volume of data
and extended training, good diagnostic performance for
detection of glaucoma from fundus photographs is possible
with relatively small sample sizes. Specifically, as the num-
ber of images and epochs increases, there is a general trend of
n images, stratified by age (>60 years, <60 years), glaucoma severity (mild,
AUC ¼ area under the receiver operating characteristic curve.
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improvement in diagnostic accuracy, with limited improve-
ment after increasing the sample size past 500 images (on
average 107.5 patients, 203.0 eyes) for higher numbers of
epochs (20, 50) or past 1000 images (on average 215 pa-
tients, 406.0 eyes) for lower numbers of epochs (5, 10). In
addition, the good diagnostic accuracy was generalizable
across differences in age and race. Because this foundation
model was pretrained on a large dataset using a self-
supervised approach, it was able to acquire strong prior
knowledge of informative retinal image features, allowing for
efficient fine-tuning using smaller sample sizes and fewer
epochs to achieve strong performance for our specific task of
detecting glaucoma from fundus photographs.

RETFound performance equals or surpasses previously
developed CNNs while being trained with significantly
fewer samples.21,27,28 When trained for 5 epochs on 2000
images, it begins to approach the performance of a
previously developed CNN, ResNet-50, that had been
trained on similar DIGS/ADAGES, but used significantly
larger datasets, on the order of 10 000 images.21,27,28 When
trained for 10 epochs, it requires 1000 images to match prior
CNN performance (CNN AUC ¼ 0.74 [0.69, 0.79],
n ¼ 9473),21,27,28 and surpasses prior CNNs when trained
and validated on 2000 images (RETFound AUC ¼ 0.821
[0.787, 0.857], n ¼ 2000). When trained for 20 epochs, it
surpasses prior CNNs when trained on only 500 images
(RETFound AUC ¼ 0.777 [0.705, 0.819], n ¼ 2000).

RETFound performance also compares favorably to our
previous results based on a transformer model applied to
DIGS/ADAGES data.21,27,28 On a similar DIGS/ADAGES
dataset, the transformer model achieved a mean AUC
(95% CI) of 0.77 (0.71, 0.82), which was comparable or
worse than the results achieved by RETFound in the
current study (Table 4). RETFound benefits from both
increased training time and training samples but overall
requires fewer labeled training samples to match or
surpass the performance of prior approaches.

The findings underscore RETFound’s adaptability and
efficiency across a spectrum of training configurations. It
demonstrates that substantial performance gains are
achievable even with constrained training samples or limited
computational power, situations often encountered in clin-
ical settings. Many health care facilities grapple with the
challenges of obtaining large volumes of expertly labeled
data and the requisite computational infrastructure for
extensive model training. RETFound’s reduced reliance on
extensive labeled datasets and its ability to deliver high
performance across a variety of training conditions position
it as a viable and innovative tool for integrating medical AI
more broadly into ophthalmic practices. This study high-
lights the potential of using foundation models trained on
large unlabeled datasets to address existing barriers to the
adoption of AI technologies in a variety of settings. It offers
8

an avenue for enhancing glaucoma detection in telehealth,
primary care, community, and clinical settings.

In the original study,17 RETFound’s application to a
publicly available dataset for glaucoma classification
yielded equivalent or mildly superior outcomes compared
with its performance following fine-tuning on the clinical
DIGS/ADAGES dataset. This includes glaucoma detection
on the PAPILA dataset,29 for which they reported a mean
AUC 0.86 (0.84, 0.87) and a “Glaucoma Fundus” dataset,
with mean AUC 0.94 (0.94, 0.95).17 Such a discrepancy
in performance may be a result of many factors, including
variations in disease severity, study population, image
quality, or other factors. Numerous studies have reported
high accuracy in glaucoma detection; however, direct
comparisons across studies can be difficult because the
disease severity is often not reported despite its apparent
large impact on accuracy.1,30 In particular, accuracy for
identifying mild glaucoma is often substantially lower
than identifying moderate or severe disease.14,31 As shown
in this work, where mean AUC for detecting moderate or
severe glaucomatous disease rose to 0.95 (0.91, 0.97) at
2000 images and 50 training cycles, compared with 0.84
(0.80, 0.87) for detecting mild disease.

One limitation of this study is its reliance on binary
classification (i.e., glaucoma vs. not glaucoma), which
simplifies the complex spectrum of eye conditions. As
stratification demonstrates increased performance when
distinguishing severity of disease, this may suggest that a
broader categorical model allowing >2 labels, as performed
in the original RETFound study,17 may aid glaucoma
detection. However, a binary classification that can be
used to make referral recommendations is important in
implementing telehealth, screening, primary care, and
clinical decision support tools. Another limitation is that
the model relies solely on fundus photography; including
other imaging or diagnostic data will likely enhance
performance. Overall, these limitations are not necessarily
specific to glaucoma detection and are indicative of
broader challenges commonly faced when adopting AI-
based techniques in ophthalmology.

Future work will focus on integrating OCT data into the
models. Evaluating RETFound in multimodal approaches
that include both fundus and OCT imaging could provide
additional validation of diagnostic performance. Further-
more, expanding the validation study to encompass a
broader spectrum of eye conditions, moving beyond
binary glaucoma classification to include diseases with
categorical labels, would significantly enhance our
understanding of RETFound’s versatility and relevance.
Foundation AI models potentially represent an important
advancement in applying AI within ophthalmology, but
strong validation is required before integration into
ophthalmic care.
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