
UC Berkeley
UC Berkeley Previously Published Works

Title
Optimal trade-off control in machine learning-based library design, with application to 
adeno-associated virus (AAV) for gene therapy.

Permalink
https://escholarship.org/uc/item/87b6k6z8

Journal
Science Advances, 10(4)

Authors
Zhu, Danqing
Brookes, David
Busia, Akosua
et al.

Publication Date
2024-01-26

DOI
10.1126/sciadv.adj3786
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/87b6k6z8
https://escholarship.org/uc/item/87b6k6z8#author
https://escholarship.org
http://www.cdlib.org/


Zhu et al., Sci. Adv. 10, eadj3786 (2024)     24 January 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

1 of 16

M O L E C U L A R  B I O L O G Y

Optimal trade-off control in machine learning–based 
library design, with application to adeno-associated 
virus (AAV) for gene therapy
Danqing Zhu1†‡, David H. Brookes2†, Akosua Busia3†, Ana Carneiro4, Clara Fannjiang,  
Galina Popova5,6,7, David Shin5,6,7, Kevin C. Donohue6,8,9,10, Li F. Lin4, Zachary M. Miller11,  
Evan R. Williams11, Edward F. Chang12, Tomasz J. Nowakowski5,6,7,10,12, Jennifer Listgarten3,13*, 
David V. Schaffer1,4,14,15,16,17*

Adeno-associated viruses (AAVs) hold tremendous promise as delivery vectors for gene therapies. AAVs have been 
successfully engineered—for instance, for more efficient and/or cell-specific delivery to numerous tissues—by 
creating large, diverse starting libraries and selecting for desired properties. However, these starting libraries of-
ten contain a high proportion of variants unable to assemble or package their genomes, a prerequisite for any 
gene delivery goal. Here, we present and showcase a machine learning (ML) method for designing AAV peptide 
insertion libraries that achieve fivefold higher packaging fitness than the standard NNK library with negligible 
reduction in diversity. To demonstrate our ML-designed library’s utility for downstream engineering goals, we 
show that it yields approximately 10-fold more successful variants than the NNK library after selection for infec-
tion of human brain tissue, leading to a promising glial-specific variant. Moreover, our design approach can be 
applied to other types of libraries for AAV and beyond.

INTRODUCTION
Adeno-associated viruses (AAVs) hold major promise as delivery 
vectors for gene therapy. While naturally occurring AAVs can be 
clinically administered safely and in some cases efficaciously, they 
have a number of shortcomings that limit their use in many human 
therapeutic applications. For example, naturally occurring AAVs do 
not target delivery to specific organs or cells, their delivery efficiency 
is limited, and they are susceptible to preexisting neutralizing anti-
bodies (1–3). Consequently, directed evolution of the AAV capsid 
protein has emerged as a powerful strategy for engineering thera-
peutically suitable or optimal AAV variants. In directed evolution, a 
diversified library of AAV capsid sequences is subjected to multiple 

rounds of selection for a specific property of interest, with the aim of 
identifying and enriching the most effective variants (1, 4). Primary 
techniques for constructing AAV starting libraries include error-prone 
polymerase chain reaction (PCR) (1, 5), DNA shuffling (6, 7), structurally 
guided recombination (8), peptide insertions (9), and phylogenetic 
reconstruction (10). Recent studies have also explored computational 
strategies for setting the parameters that control the construction of 
these libraries. For example, genomic junctions that minimize AAV 
structure disruptions, suitable for recombination libraries, were 
computationally identified (9). For mutagenesis libraries, genomic 
locations and their mutation probabilities were identified using 
single-substitution variant data or by way of ancestral imputation 
from phylogenetic analysis (10, 11).

Although successes have been achieved with directed evolution 
(4, 5, 8, 9, 12), several challenges are slowing progress (13). For instance, 
a substantial fraction of the variants in the starting libraries for these 
selections are unable to assemble properly or package their payload 
efficiently—a basic requirement for any functional selection (11, 14, 
15). Consequently, much of the library is wasted, thereby decreasing 
the chance of successfully achieving any desired engineering goal in 
the downstream selections. Next-generation sequencing (NGS) tech-
nologies enable analysis of properties for individual variants within 
a library, such as packaging fitness and infectivity, and the large 
quantity of data resulting from such assays suggests that machine 
learning (ML) could be a useful tool to help design more effective 
starting libraries for directed evolution. Here, we propose a method 
to design such an ML-guided library that balances the requirements 
of packaging and diversity, to improve the probability of success in 
any general AAV directed evolution goal.

Recent studies have applied ML models trained on experimental 
data to generate previously unidentified AAV variants (16, 17); however, 
these studies examined diversity post hoc and provided no way to 
systematically navigate an optimal trade-off between diversity and 
packaging. In earlier work, Parker et al. (18) balanced “quality” and 

1California Institute for Quantitative Biosciences, University of California, Berkeley, 
Berkeley, CA 94720, USA. 2Biophysics Graduate Group, University of California, 
Berkeley, Berkeley, CA 94720, USA. 3Department of Electrical Engineering and 
Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA. 
4Department of Chemical and Biomolecular Engineering, University of California, 
Berkeley, Berkeley, CA 94720, USA. 5Department of Anatomy, University of California 
San Francisco, San Francisco, CA 94143, USA. 6Department of Psychiatry and 
Behavioural Sciences, University of California San Francisco, San Francisco, CA 
94143, USA. 7Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell 
Research, University of California San Francisco, San Francisco, CA 94143, USA. 
8School of Medicine, University of California San Francisco, San Francisco, CA 94143, 
USA. 9Kavli Institute of Fundamental Neuroscience, University of California San 
Francisco, San Francisco, CA 94143, USA. 10Weill Institute for Neurosciences, University 
of California San Francisco, San Francisco, CA 94143, USA. 11Department of Chemistry, 
University of California, Berkeley, Berkeley, CA 94720, USA. 12Department of Neuro-
logical Surgery, University of California San Francisco, San Francisco, CA 94143, 
USA. 13Center for Computational Biology, University of California, Berkeley, Berkeley, 
CA 94720, USA. 14Department of Bioengineering, University of California, Berkeley, 
Berkeley, CA 94720, USA. 15Department of Molecular and Cell Biology, University of 
California, Berkeley, Berkeley, CA 94720, USA. 16Helen Wills Neuroscience Institute, 
University of California, Berkeley, Berkeley, CA 94720, USA. 17Innovative Genomics 
Institute (IGI), University of California, Berkeley, Berkeley, CA 94720, USA.
*Corresponding author. Email: jennl@​berkeley.​edu (J.L.); schaffer@​berkeley.​edu (D.V.S.)
†These authors contributed equally to this work.
‡Present address: Department of Chemical and Biological Engineering, The Hong 
Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, 
Hong Kong SAR, China.

Copyright © 2024 The 
Authors, some rights 
reserved; exclusive 
licensee American 
Association for the 
Advancement of 
Science. No claim to 
original U.S. 
Government Works. 
Distributed under a 
Creative Commons 
Attribution 
NonCommercial 
License 4.0 (CC BY-NC). 

mailto:jennl@​berkeley.​edu
mailto:schaffer@​berkeley.​edu


Zhu et al., Sci. Adv. 10, eadj3786 (2024)     24 January 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

2 of 16

“novelty” in their library design. Quality was estimated from a sta-
tistical model evaluated on each sequence [specifically, a Potts model 
(19) trained on a fixed set of natural sequences], whereas novelty 
captured how different the library sequences were from naturally 
occurring sequences but provided no indication of diversity within 
the library. Extensions of this work considered multiple fitness, or 
quality, scores (20). In contrast to these, our approach will (i) allow 
for the use of any predictive model of fitness, (ii) explicitly address 
and control the diversity within the designed library, and (iii) be 
broadly applicable to different kinds of library construction.

We instantiated and evaluated our library design approach by 
designing a 7-mer peptide insertion library for AAV serotype 5 
(AAV5) to optimally balance diversity and overall packaging fitness. 
Among the natural AAV serotypes, AAV5 has been suggested as a 
promising candidate for clinical gene delivery because of the low 
prevalence of preexisting neutralizing antibodies and successful 
clinical development for hemophilia B (21–24). We focus, specifi-
cally, on peptide insertion libraries because they are both simple 
and highly practical, having already been translated to the clinic 
(e.g., NCT03748784, NCT04645212, NCT04483440, NCT04517149, 
NCT04519749, NCT03326336, and NCT05197270) (25).

Briefly, our approach is as follows: First, we assess the packaging 
fitness of variants in an NNK 7-mer insertion library, a standard 
library type that is used as a starting point for experimental selec-
tions of insertions to AAV capsids. We then use these estimated 
packaging efficiencies as labels to build a predictive model from 
peptide insertion sequence to packaging fitness. Last, we develop a 
design approach that can systematically trade off library diversity 
with packaging fitness, enabling us to choose an optimal trade-off. 
Our approach to ML-guided library design biases library construc-
tion toward variants that package well, thereby reducing the amount 
of wasted sequences and space in screening tasks. We show that our 
design approach yields a library with fivefold higher packaging 
fitness than the NNK library, with negligible sacrifice to diversity, 
suggesting that our library will be more generally useful. As further 
evidence, when we subjected the NNK library to one round of packaging 
selection, the resulting pool of variants still had a lower packaging 
fitness than that of our initially designed library while also being 
substantially less diverse. Last, to demonstrate the general down-
stream utility of our designed library on an engineering task for 
which it was not designed, we showed in a primary human brain 
tissue selection that the ML-guided library yielded a 10-fold higher 
number of infectious variants compared to the NNK library, and these 
variants can be further selected for efficient and cell-specific infectivity. 
This ML-guided AAV capsid library design is thus highly useful for 
selection in human tissue. While we focus on a therapeutically relevant 
capsid 7-mer peptide insertion library, our methods are general and 
can be applied to other AAV library types and to proteins beyond AAV.

RESULTS
AAV5–7-mer peptide insertion library preparation and 
packaging selection
We used libraries with a variable seven–amino acid (7-mer) NNK 
sequence inserted at position 575–577 in the viral protein mono-
mer, within a loop at the threefold symmetry axis associated with 
receptor binding and cell-specific entry (26, 27). The “NNK” moni-
ker refers to a broadly used strategy (28–30) involving a uniform 
distribution over all four nucleotides (N) in the first two positions of 

a codon, and equal probability on nucleotides G and T (K) in the 
third position, where the K in the third position was chosen to 
reduce the chance of stop codons that typically render the protein 
nonfunctional. Each of the seven amino acids in the insertion is 
sampled at random from this distribution during library construc-
tion. Although NNK libraries are among the most promising AAV 
libraries (2), a substantial fraction (>50%) of the variants in these 
libraries fail to package (i.e., do not assemble into viable capsids), 
and many more have lower packaging fitness than the parental virus 
(14, 15). For example, placing a large hydrophobic residue in the 
7-mer (solvent-exposed) region is likely destabilizing. Much of the 
experimental library is thus effectively wasted on poor fitness variants.

Our goal was to improve upon the commonly used NNK library 
and implicitly uncover a broad set of rules, as yet unknown, for in-
sertion sequences that confer higher packaging fitness and then en-
code them in our library design so as to avoid such problems. In 
particular, our design approach will specify probabilities for each 
nucleotide in each position of the codon, at each position in the 7-
mer, in a manner that achieves better overall packaging than NNK 
while maintaining high diversity. For example, we might specify for 
the first codon that the first nucleotide in the codon should be cho-
sen with 20% chance as an A, 40% chance as a C, and 35% chance as 
a T and 5% G and then specify four other such probabilities for the 
other two positions in the codon, for a total of 12 specified values. A 
designed library will specify these 84 (=7 × 12) probabilities, which, 
in turn, will dictate the mean packaging fitness—through a compli-
cated relationship that will be approximated with our ML predictive 
model—and library sequence diversity. We refer to designed libraries 
specified in this way as position-wise nucleotide specified. First, we 
experimentally synthesized roughly 107 variants from the NNK 
library to yield the NNK pre-packaged library. This plasmid library 
was then packaged, and the resulting viral particles were harvested 
and purified, and their genomes were extracted, yielding the NNK 
post-packaged library (Fig. 1) (31). The sequences from both pre- and 
post-​packaged libraries were then PCR-amplified and deep-sequenced 
(Materials and Methods).

These experiments yielded 49,619,716 pre-​packaged and 55,135,155 
post-​packaged sequencing reads, which collectively yielded read 
counts for 8,552,729 unique peptide sequences. For each unique 
sequence, we used the pre and post read counts to calculate a log 
enrichment score (Materials and Methods) (11, 16, 32, 33), a measure 
of its packaging fitness. Note, however, that a variant that appeared 
in 10 pre- and 100 post-packaged sequencing reads would have the 
same log enrichment score as one that appeared in 1 and 10 sequencing 
reads, although the former has more data to support its value (i.e., 
more stably statistically estimated). Consequently, we derived a 
procedure to take this into account in a statistically principled manner 
when estimating our regression model parameters. Our procedure 
assigns a weight to each unique sequence that is higher when the 
statistical estimate is more stable, and higher weighted sequences 
have more influence on the regression model (Materials and Methods). 
In the previous example, the variant with a read count ratio of 10:1 
would get a smaller weight than the one with a ratio 100:10, as the 
former provides weaker evidence of enrichment.

Training and evaluation of predictive models
To find the best model type to use for our ML-guided library design, 
we compared seven classes of ML regression models: three linear 
models and four feed-forward neural networks (NNs) (Fig. 2). Each 
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model was trained using the log enrichment scores as the target 
variable and the sequence-specific weights described above (Materi-
als and Methods). The three linear models differed in the set of input 
features used. One used the “independent site” (IS) representation 
wherein individual amino acids in each 7-mer insertion sequence 
were one-hot–encoded. Another used a “neighbors” representation 

composed of IS features and, additionally, pairwise interactions 
between all positions that are directly adjacent in the amino acid 
sequence. The third used a “pairwise” representation composed of 
the IS features and, additionally, all pairwise interactions among all 
positions in the sequence. All NN models used the IS features alone, 
as these models have the capacity to construct higher-order 

Fig. 1. Experimental workflow for generating pre- and post-packaged AAV5–7-mer library data for ML-based library design. Ni, number of reads for each unique 
insertion sequence i. Experimental data were used to build a supervised regression model where the target variable reflects the packaging success of each insertion se-
quence. The predictive model was then systematically inverted to design libraries that trace out an optimal trade-off curve between diversity and packaging fitness. 
Schematic illustration created with BioRender.com.

Fig. 2. Predictive model architectures and results. (A) Comparison of models for predicting AAV5–7-mer packaging log enrichment scores, using Pearson correlation, 
and “top-​K” Pearson correlation, where K denotes what fraction of top-ranked observed log enrichment test sequences were used. The correlation is between predicted 
and true log enrichment scores. Seven different models including four neural network (NN) architectures, distinguished by the number of nodes in the hidden layers (100, 
200, 500, and 1000). (B) Similar plot to (A) except comparing the use of weighted versus unweighted sequences during training, for the final selected model, NN, 100, 
and a baseline, linear, pairwise. (C) Schematic illustrations of “linear, IS” (left) and “NN, 4” (right) predictive models. Each model predicts packaging log enrichment from 
peptide insertion sequence.

http://BioRender.com
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interaction features from the IS features. Each NN architecture com-
prised exactly two densely connected hidden layers with tanh acti-
vation functions. The four NN models differed in the size of the 
hidden layers, with each using either 100, 200, 500, or 1000 nodes in 
both hidden layers.

We compared the performance of these seven models using the 
standard (unweighted) Pearson correlation between model predic-
tions and true log enrichment scores on a held-out test set (training 
with weighted samples as described earlier). We randomly split the 
data into a training set containing 80% of the data points and a test 
set containing the remaining 20% of the points. Because our ultimate 
aim was to design a library of sequences that package well, we also 
studied how the models’ predictive accuracy changed when restricted 
to sequences in the test set with observed high packaging log 
enrichment. Specifically, we computed the Pearson correlation on 
subsets of the test set restricted to the fraction K of sequences with 
the highest observed log enrichment. By varying K, we traced out a 
performance curve where for lower K, the evaluation is more focused 
on accurate prediction of higher log enrichment scores rather than 
lower ones (Fig.  2A and fig.  S1). Overall, we found that the NN 
models performed better than the linear models, presumably owing 
to their capacity to construct more complex functions, particularly 
to capture higher-order epistatic interactions in the fitness function. 
We selected “NN, 100” as our final model, as it performed similarly 
to the overall best-performing model, “NN, 1000,” but with many 
fewer parameters. The comparison between observed log enrich-
ment scores and scores predicted by the (NN, 100) model for all 
sequences in the test set is shown in fig. S2.

Next, we assessed the effect of training with our sequence-
specific weights by retraining two of the models—the final model, 
(NN, 100) model, and the “linear, pairwise” model—this time with 
all weights set to 1.0 (i.e., unweighted), again using Pearson correla-
tion to evaluate (Fig. 2B). Training in this unweighted manner, rath-
er than weighted, resulted in a performance benefit for K near 1.0 
but degraded the performance near K < 0.25, a regime of particular 
interest because it focuses on variants with high log enrichment, and 
we ultimately aim to design a library that packages well (i.e., with 
high enrichment). These results further supported our choice of the 
weight trained (NN, 100) model with which to do library design.

Experimental validation of the predictive models
Before proceeding to using our predictive model for library design, 
we first validated the (NN, 100) model by identifying and synthesizing 
five individual 7-mer insertion sequences that were not present in 
our original experiment dataset. These five sequences were chosen 
to span a broad range of predicted log enrichment scores (−5.84 to 
4.83; see Fig. 3 for correspondence with viral titers). The five variants 
were packaged individually into viral particles, harvested, and titered 
by quantifying the resulting number of genome-containing particles 
using digital-droplet PCR (ddPCR; Materials and Methods). High 
titer values indicated the variant was capable of packaging its genome 
properly in the assembled capsid. To differentiate whether our capsid 
variants failed to assemble in the first place or whether there is a 
defect with loading the genome following capsid assembly, we applied 
single-ion charge detection mass spectrometry (CDMS; Materials 
and Methods) and showed that our selected capsid variants exhibited 
similar levels of full-to-empty capsids in the packaged pools (fig. S3). 
The agreement between model predictions and corresponding experi-
mental measurement of viral titers [1.83 × 104 to 8.70 × 1011 viral 
genomes (vg)/μl] (Fig.  3) demonstrates that the predictive model 
was sufficiently accurate to be used for library design. The accuracy 
of model predictions reported in Fig. 3 is higher than that reported 
in Fig. 2. This can be largely attributed to the choice of five sequences 
that spanned a large range of predicted log enrichment scores to 
produce the results of Fig. 3 (fig. S4).

Model-guided library design
Having validated our final model for use with our library design 
task, we next aimed to design a library that packages better than the 
NNK library while maintaining good diversity. Inherent in this 
challenge is a trade-off between library diversity and mean predicted 
packaging fitness of the library. For example, note that mean pre-
dicted packaging fitness is maximized with a library that contains 
only a single variant with the highest predicted fitness, while diver-
sity is maximized with a library uniformly distributed across se-
quence space, irrespective of packaging fitness. The library that is 
most effective for downstream selections will lie between these two 
extremes, balancing mean packaging fitness with diversity. Because 
the best trade-off between these two extremes is not clear a priori, 

Fig. 3. Experimental titers versus predicted log enrichment scores. The five variants were selected to span a broad range of predicted log enrichment scores. Log 
enrichment scales are computed using natural logarithm. Experimental titers are measured on three biological replicates.
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our approach to library design was to provide the tools to trace out 
an optimal trade-off curve, also known as a Pareto frontier (e.g., 
Fig. 4A). Each point lying on this optimal frontier represents a library 
for which it is not possible to improve one desiderata (packaging or 
diversity), without hurting the other. Our Pareto optimal frontier, 
therefore, allows us to assess what mean library packaging fitness 
can be achieved for any given level of diversity. To generate each 
point (library) that lies on the optimal frontier curve, we define a 
library optimization objective that seeks to maximize mean predicted 
fitness subject to a library diversity constraint controlled by the value 
λ. This knob, λ, controls the trade-off between library diversity and 
packaging ability; we set it to different values to trace out the Pareto 
frontier. We quantified the diversity of each theoretical library by 
computing the statistical entropy of the probabilistic distribution 
that it corresponds to (Materials and Methods). We refer to this 
overall methodology enabling tracing out the optimal curve as 
diversity-constrained optimal library design. We note that the opti-
mization problem is challenging to solve exactly (i.e., it is non-
convex). Consequently, libraries computed as we trace out λ may 
not lie exactly on the optimal frontier. However, the frontier can 
nevertheless be inferred approximately, providing useful insights, as 
we shall see next.

We applied this diversity-constrained optimal library design 
methodology to the design of an improved AAV5–7-mer peptide 
insertion library, yielding some notable implications (Fig. 4A). We 

call out three designed libraries in particular—D1, D2, and D3—as 
representative of three important areas of the curve and also show 
the NNK library overlayed. The NNK library has a markedly poor 
mean predicted log enrichment (MPLE), much lower than any 
designed library. In contrast, library D3 had nearly identical diversity 
but substantially higher mean packaging fitness (top 50% of all 
designed libraries). This observation implies that D3 effectively domi-
nates NNK in the sense that we increased the predicted packaging 
fitness without taking much loss to the diversity. Such concrete con-
clusions can be drawn from a Pareto frontier whenever one point on 
the frontier lies vertically above another. In addition, we see that, 
compared to D3, D2 is less diverse but is predicted to package better 
(2.0-fold higher MPLE). Similarly, D1 is less diverse than D2 but, 
again, is predicted to package better (1.4-fold higher MPLE).

Although the original motivation for creating the NNK library 
was to reduce the number of stop codons, it does not eliminate them 
entirely. Therefore, for further comparison, we computed the mean 
packaging fitness and diversity of the theoretical library containing 
all possible sequences, except for any containing a stop codon. In 
practice, such a library is not physically realizable using this position-
wise nucleotide specification strategy but serves as a useful comparator. 
We call this the “filtered uniform” library and find that, although it 
does have slightly higher mean packaging fitness than NNK and 
correspondingly less diversity, these differences are negligible com-
pared to the differences between NNK and D3, suggesting that the 

Fig. 4. Designed AAV5-based 7-mer insertion libraries. Each point in (A) represents a theoretical library designed with our diversity-constrained optimal library approach, 
with one particular diversity constraint, λ (higher values yields more diverse libraries). Entropy indicates diversity of the library distribution, while MPLE indicates overall 
library fitness; both quantities were computed from the theoretical library distribution. The baseline NNK library is denoted with a black “×”, while a cyan “×” denotes the fil-
tered uniform library that is uniform over all 21-mer nucleotide sequences except for those containing stop codons. Three designed libraries have been circled and labeled 
D1 to D3 for reference. Because of the non-convex optimization problem, some dots are suboptimal (i.e., lie strictly below or to the left of other dots) and are therefore 
further from the optimal frontier but are displayed for completeness. (B to D) Designed library parameters (probability of each amino acid at each position) for the three 
designed libraries D1 to D3, respectively, highlighted in (A).
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removal of stop codons is not the primary mechanism by which our 
ML-designed libraries achieve higher predicted packaging fitness.

Richer library generation mechanisms
As mentioned earlier, each designed library specifies the 84 marginal 
probabilities of individual nucleotides at each position in the 21–
base pair (bp) insertion (tables S1 and S2). Our diversity-constrained 
optimal library design approach can, however, be used for any library 
construction method, such as one where we specify and synthesize 
individual 21-bp nucleotide sequences to create a library. We use the 
term “unconstrained” to refer to libraries that are designed with this 
construction method because individual synthesis offers the most 
control over sequences in the library. In contrast, a position-wise 
nucleotide specification strategy, such as the one we have used, cannot 
guarantee the inclusion of any particular sequence; we thus refer to 
libraries constructed in this manner as “constrained” libraries. We 
have focused our experiments on these constrained libraries because 
they are now more cost-effective and thus most widely used. 
Weinstein et  al. (34) showed that, for a fixed cost, the use of a 
constrained library construction can yield orders of magnitude more 
promising leads in protein engineering than an unconstrained 
(individual synthesis) approach. As the cost of individual synthesis 
declines, it will become increasingly useful to use our design ap-
proach to specify unconstrained libraries that are both diverse and 
fit. With this future in mind, we also estimated the Pareto frontier 
for an unconstrained library (fig. S5), which shows that, if cost were 
no concern, then it would be advantageous to use an individual 
synthesis library construction approach, as its frontier substantially 
dominates that of our constrained library.

Experimental validation of designed libraries
We synthesized two designed libraries (D2 and D3) from our opti-
mality curve (Fig. 4A) to assess the accuracy of the designed libraries’ 
trade-off between diversity and mean packaging fitness. Later, we 
also tested D2 in a downstream selection task of infecting brain tissue. 
The library D2 was chosen for being at the “elbow” of the curve, sug-
gestive of a library making a good trade-off. The library D3 was chosen 
because, as discussed earlier, it dominates NNK by achieving much 
higher predicted packaging fitness with a negligible drop in diversity.

After experimentally constructing and deep sequencing these two 
designed libraries, we first checked that the physically realized library 
matched the statistics of the theoretical designed library distribution. 
We found that the empirically observed position-wise probabilities 
for each amino acid in each of the designed libraries were within 5% 
of the designed specification (tables S1 and S2). Furthermore, these 
sequencing data demonstrate that the reduction in the diversity 
between the NNK and designed libraries is relatively small, with 
approximately 2.7 and 4.4 million unique variants observed in the D2 
and D3 libraries, respectively (table S3 and fig. S6). Having validated 
that the constructed libraries were as specified, we packaged and 
harvested each library using the same methods as for the NNK li-
brary, yielding a pre- and post-packaged version of each. Deep 
sequencing data for each pre- and post-packaged library confirmed 
that these designed libraries, D2 and D3, are substantially different 
from the standard NNK library: Only roughly 0.2 to 0.5% of variants 
are shared with the NNK library (table S4). Next, we assessed to 
what degree the MPLE of each library reflected the measured library 
titers and found a strong positive Pearson correlation between them 
(r = 0.959; Fig. 5A).

As discussed earlier, D3 dominates the NNK library in fitness 
(one lies vertically above the other) and is thus predicted to be the 
better library. The choice between D3 and D2 is less clear, as they 
trade off packaging fitness and diversity. To assess such trade-offs, 
we subjected each of D2, D3, and NNK to one round of packaging 
selection and analyzed the diversity of each library post-packaging. 
When analyzing packaged libraries, the true underlying probability 
distributions corresponding to each library are not known, and, thus, 
we cannot exactly compute entropies. Instead, we estimate the effective 
sample size—specifically, the effective number of variants—of each 
packaged library from the observed deep sequencing data (see the 
“Comparison of constructed libraries” section). Effective sample size 
is commonly used to estimate phylogenetic diversity (35, 36), the 
number of nonredundant homologous sequences in multiple sequence 
alignments (37), cell-type specificity of transcription factor expression 
(38), and population sizes in population genetics (39) because it 
measures the uniformity of the distribution (i.e., relative abundances) 
of the unique observations rather than just the number of unique 
observations. In our context, the effective number of variants for a 
given library is defined, mathematically, as

where pempirical(s) corresponds to the empirical read frequency of the 
variant with sequence s in the sequencing data, and, therefore, for a 
given library, the effective number of variants reflects not just the 
number of unique variants but also relative read frequencies among 
unique variants. For example, if 100 sequencing reads are distributed 
among five unique variants with read counts (25, 25, 25, 20, and 5), 
then the estimated effective number of variants is

whereas the estimated effective number of variants if the 100 reads 
are instead distributed as (90, 3, 3, 2, and 2) is

A larger effective number of variants after packaging selection 
indicate that the post-packaged library is less likely to be dominated 
by a small number of variants and thus that the library contains 
more variants able to be packaged. We were also able to confirm, via 
supplementary experiments that artificially equalized the total number 
of reads across libraries, that the effective number of variants is not 
sensitive to the small observed differences in read coverage between 
libraries in our study (table S5 and fig. S7). An analysis of the effective 
number of variants revealed D2 to be more promising than D3 (Fig. 5B). 
Consequently, we continued our comparison to NNK with only the 
D2 library.

Looking back at our measured titers, designed library D2 (MPLE 
~ 2.0) showed a fivefold higher packaging titer than that of the NNK 
library (MPLE ~ −0.9) with titers of 5.12 × 1011 and 1.02 × 1011 vg/
ml, respectively. Next, we also measured the packaging titer of the 
NNK library after one round of packaging selection (NNK-post), 
finding that its titer (4.38 × 1011 vg/ml) was lower than that of D2 
(5.12 × 1011 vg/ml) (Fig. 5C). This result suggests that the additional 
round of packaging was not enough to lift the NNK library’s titer 
level to that of library D2. Note also that (i) the NNK-post library 
contains only 1.48 × 104 effective variants compared to the 1.33 × 106 

N
e
= exp

[

∑

s

−pempirical(s)logpempirical(s)

]
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effective variants in D2 and (ii) the designed libraries differ substan-
tially from the observed amino acid frequencies at each position in 
the NNK-post library (fig. S8). Therefore, the designed library D2 is 
different from and preferable to the library resulting from subjecting 
the NNK library to a round of packaging in both packaging titer and 
library diversity. Collectively, these experimental results suggest that 
our ML-guided library design procedure yielded a more useful li-
brary than the NNK library, the current standard peptide insertion 
library for AAV directed evolution experiments.

ML-designed AAV library for primary brain tissue infection
Having demonstrated our ability to design and construct libraries 
with better packaging and good diversity, we next investigated how 
these gains would translate into performance on a downstream 
selection task for which the library had not been tailored. After all, 
our goal was to design a generally useful library, agnostic to the 
downstream selection goal. Thus, we moved forward with two of 
the libraries, the NNK as a baseline and our designed library D2 
and used each to infect primary adult brain tissue. Infecting such 
tissue with AAV can be a first step toward numerous clinical ap-
plications in the central nervous system. AAV selection using di-
rected evolution is sensitive to the choice of experimental system, 
where evolved variants display high specificity in the context of cell 
types (40), species, and even strain within the same species (41). 
Given transcriptional differences between mouse and human cell 
types within the brain (42, 43) and evolutionary emergence of new 
cell types in the human brain that are absent in rodents, such as 
outer radial glia (44), it is crucial to select the starting biological 
material and model system. To make our work relevant for thera-
peutic interventions in humans across different disease states, 
we used fresh, surgically resected adult cortical tissues from 
epilepsy patients to develop and select the AAV variants, which 
would efficiently infect and drive gene expression in the human-
specific context.

We applied each library onto human adult brain slices (fig. S9 and 
Materials and Methods) and harvested the tissues after 72 hours of in-
fection (Fig. 6A). We evaluated the success of each library on this task 
by comparing the effective number of variants in each pool after infec-
tivity selection. A higher effective number of variants post-brain infec-
tion would suggest that the starting library contained more variants that 
were able to successfully infect human brain tissue, indicating a more 
useful starting library and larger set of promising variants.

We found that designed library D2 had a 10-fold higher post-
brain infection effective number of variants than the NNK library 
(Fig. 6B and fig. S10): 38,350 versus 3541 effective variants. In terms 
of diversity, which can be achieved in different ways, we were interested 
to know whether diversity of a given library was spread over the length 
of the 7-mer insertion or was more concentrated on particular positions. 
Thus, for each post-packaging and post-brain infection library, we 
examined the diversity at each position, finding that, for both selections, 
no amino acid has higher that 0.3 frequency in any position Fig. 6C 
and fig. S11), revealing a diversity that arose from across the 7-mer.

Other noteworthy observations include that our D2 library design 
showed a modest depletion of threonine (T) and serine (S) compared 
to the NNK library (Fig. 6C and fig. S11). Previous research has shown 
that the removal of several critical residues of S, tyrosine (Y), and T 
on the AAV capsid can significantly increase transduction efficiency 
compared to the wild-type vectors. Reduced S, Y, and T residues can 
result in lower capsid phosphorylation, thereby avoiding intracellular 
degradation and enabling higher nuclear translocation (45–47). Such 
mutations have also been explored previously to demonstrate enhanced 
transduction within various cell types (45–49). A modest depletion 
of S and T residues on capsids from ML-designed library D2 could 
thus potentially improve the transduction of target cells.

We next compared the post-packaging and post-brain infection 
libraries at the level of individual variants to assess some practical 
implications of the difference in diversity between the NNK and D2 
libraries (Fig. 6D). We found a small set of variants dominated the 

Fig. 5. Comparison of ML-designed libraries D2 and D3 to the NNK library. (A) Experimental titers (viral genome/ml) plotted against the MPLE. ***P < 0.001 compared 
to NNK. (B) Comparison of the effective number of variants present in each library after packaging and post-packaged libraries are labeled with the “-post” suffix. 
(C) Experimental titers and effective number of variants for D2, D3, and NNK DNA libraries (pre-packaging selection), and the NNK-post library (post-packaging selection). 
The NNK-post library represents the NNK library after one round of packaging selection. One-way ANOVA followed by Tukey test (**P < 0.01 compared to D2). In all cases, 
experimental titers are measured on three biological replicates. Graphs show means ± SD.
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Fig. 6. ML-designed AAV library for primary brain tissue infection. (A) General workflow of the primary adult brain infection study. (B) Effective number of variants 
(calculated from entropy) in NNK post-brain infection versus D2 post-brain infection; D2 post-brain infection exhibits a ~10-fold increase in effective number of variants 
compared to that of NNK post-brain infection. (C) Empirical probabilities of each amino acid at each position for D2 post-packaging and post-brain infection. (D) Scatterplots 
illustrating the behavior of individual variants over packaging and primary brain selection. Each axis shows the (log) prevalence of the variant in each library, as a fraction of reads 
in the library. For each library, variants in the top 20% are determined by first sorting unique variants by read count in descending order and then counting the number 
of unique variants comprising 20% of the total sequencing reads. Variants in the top 20% after packaging are colored blue, while those in the top 20% after brain selection 
are colored yellow. Those variants in the top 20% of both packaging and selection are colored green. The annotated colored numbers indicate the number of variants of 
each colored pool. A pseudo-count of 1 was added to each variant in each library before plotting. See fig. S11 for additional versions of (D) displaying variants in the top 50 and 
80% of each library. (E) Cell-specific AAV validation (VVKQRGD) selected from the post-brain infection pool [green, glial fibrillary acidic protein (GFAP) marker; red, AAV in-
fected cells; scale bars, 100 μm; CP, cortical plate; IZ, intermediate zone; VZ, ventricular zone; DAPI, 4′,6-diamidino-2-phenylindole). Schematic illustration created with BioRender.com.

http://BioRender.com
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post-packaging NNK library: The 32 most prevalent variants post-
packaging (blue and green points in Fig. 6E) accounted for 20% of 
the total sequencing reads. There were roughly 100-fold more 
unique variants in the top 20% of the D2 library post-packaging 
(1.32 × 104 blue and green points), meaning that there is a much 
larger set of variants in the D2 library that package well when com-
pared to the NNK library. In terms of downstream selection, the 
post-brain infection NNK library is dominated by a much smaller 
set of variants (~10-fold fewer) compared to D2 (75 yellow and 
green points for NNK compared to 727 for D2). This suggests that 
the chances of discovering individual variants that successfully 
package and pass downstream selection are increased by using D2 
instead of NNK as the starting library. In practice, then, the higher 
entropy for D2 post-packaging and post-brain infection translates 
to a much larger set of promising individual variants after each type 
of selection. We also considered the top 50 and 80% of the post-
packaging and post-brain infection libraries (fig.  S12) and found 
these conclusions to be consistent. Collectively, the results shown in 
Fig. 6 demonstrate that our designed library D2 provided more useful 
diversity over the widely used NNK library, thereby making it an 
effective, general starting library for downstream selections for which 
it was not specifically designed.

Last, we validated that individual AAV variants from the ML-
designed library D2 can not only package well but also successfully 
mediate cell-specific infection, which is a significant challenge in 
AAV engineering. For example, glial cells are important regulators 
of many aspects of human brain functions and diseases; however, 
true glial cell–specific targeting AAVs remain elusive (50).

To identify top variants for cell-specific expression validation, we 
applied the D2 library to human brain tissue, dissociated and iso-
lated glial cells using magnetic-activated cell sorting (MACS), extracted 
the AAV genomes that successfully entered the glial cells, and 
applied NGS (Materials and Methods). We then ranked the glia-
infectious variants in the D2 post-glia infection library by enrichment 
score and selected three top variants for individual validation. We 
see clearly that these three variants ranked top (in the yellow zone) 
of the D2 library, whereas they would not have been identified from 
the NNK (fig. S13). In general, we can see that, although these glial-
specific variants were not highly enriched in the post-packaging li-
braries for either NNK or D2, because the distribution of variants 
post-packaging is less skewed in D2 compared to NNK (i.e., the few 
most prevalent variants in NNK post-packaging are an order of 
magnitude more abundant than the most prevalent variants in D2 
post-packaging), these three variants appeared more enriched in D2 
after both the whole brain-selection and the glial-specific selection. 
In contrast, in NNK, the variants are unlikely to be selected for the 
downstream application. Each of these top selected glial specific 
AAV variants showed high titers (~1012 vg /μl) when packaged with 
a green fluorescent protein (GFP)–encoding genome (table  S6). 
Furthermore, AAV variant VVKQRGD insertion selected for glia 
population showed high levels of glial infection across multiple re-
gions of the primary brain tissue in immunostaining (Fig. 6E). Fu-
ture work can extend our library design and selections to other cell 
types in brain or other tissues for a variety of therapeutic applications.

DISCUSSION
We developed an ML-based method for systematically designing 
diverse AAV libraries with good packaging capabilities, so that they 

can be used as starting libraries in directed evolution for engineering-
specific and enhanced AAV properties. A brief summary of our 
overall workflow was to (i) synthesize and sequence a baseline NNK 
library, the pre-packaged library; (ii) transfect the library into packaging 
cells [i.e., human embryonic kidney (HEK) 293 T] to produce AAV 
viral vectors, harvest the successfully packaged capsids, extract viral 
genomes, and sequence to obtain the post-packaging library; (iii) 
build a supervised regression model where the target variable reflects 
the packaging success of each insertion sequence found; (iv) sys-
tematically invert the predictive model to design libraries that trace 
out an optimal trade-off curve between diversity and fitness; and (v) 
select a library design with a suitable trade-off. We then validated 
both the predictive model and the designed library by experimen-
tally measuring library packaging success and sequence diversity. 
Last, we demonstrated that our ML-designed library is better able to 
infect primary human brain tissues as compared to the baseline 
NNK library.

In doing so, we have shown that (i) we can build accurate predictive 
models for AAV packaging fitness for 7-mer insertion libraries; (ii) 
we can leverage these predictive models to design libraries that 
optimally trade off diversity with packaging fitness; and (iii) these 
designed libraries can be better starting libraries for downstream 
selection than standard libraries used today, despite not being tailored 
to the downstream task. This work develops and uses a generalizable 
and impactful ML-based design to systematically identify a suite of 
optimal libraries along a trade-off curve of diversity and fitness. In 
addition, it provides an end-to-end set of ML-based library design 
solutions, realized through experiments, in a therapeutically relevant 
system. We plan to generalize and apply this approach to further 
downstream selection tasks, including those relevant to gene replace-
ment in the nervous system and evasion of preexisting antibodies. 
Our approach can, in principle, be used for other library construction 
techniques, such as individual gene sequence specification and syn-
thesis (fig. S5). Our framework can also be extended to design libraries 
with multiple desired properties beyond diversity, by replacing the 
predictive model with one trained to simultaneously predict multiple 
functions or fitness combining such models when the properties are 
independent. This could be particularly useful to design libraries 
with improved cell sensitivity and specificity, which is particularly 
challenging using conventional experiment approaches.

Although we used replication during experimental preparation 
of our training dataset to mitigate noise, potential biases could still 
exist, such as those arising from uneven amplification from PCR or 
biased cloning errors. It could be possible to address some of these 
biases through further experimental and computational work; how-
ever, as our results demonstrate, the models as are have already 
proved useful in moving the field forward.

Beyond introducing a new approach for ML library design, a major 
contribution of our work has been to perform AAV directed evolution 
selected on primary human brain tissue, a clinically relevant physi-
ological system for downstream therapeutic applications. Gene thera-
pies have been explored as promising treatments for multiple brain 
diseases, including but not limited to Parkinson’s disease, Huntington’s 
disease, and lysosomal storage disorders. Specifically, there is a con-
sensus that dysfunction of nonneuronal populations of brain cells 
(e.g., astrocytes, a subtype of glial cells) contributes to the progression of 
multiple pathologies such as neurodegenerative diseases (51–52), 
and gene delivery to these cells could help reinforce their normal 
functional roles. However, a lack of robust and specific targeting 
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tools for accessing and manipulating these human brain cells remains 
a challenge in developing effective therapies. Through application 
of our ML-designed libraries, we succeeded in developing glial-
targeting capsid variants (Fig. 6E), which we had previously been 
unable to do.

MATERIALS AND METHODS
Construction of the NNK-based 7-mer insertion library
We used libraries with a variable seven–amino acid (7-mer) insertion 
region flanked by amino acid linkers [Threonine-Glycine-Glycine-
Leucine-Serine (TGGLS)] introduced at position 575–577 in the 
viral protein monomer. (NNK)7 oligo was first synthesized (Elim) 
and introduced to the 5′ end of the right fragment by a primer over-
hang (7mer_F). For ML-designed libraries, instead of using NNK, 
we specified position-specific nucleotide probabilities (table S1) at 
the time of synthesis (GeneWiz) to be incorporated at the 5′ end of 
the 7mer_F primer. Left and right fragments were each PCR-amplified 
by primer pairs Seq_F/Seq_R and 7mer_F/7mer_R, respectively (table S7). 
PCR products of the two fragments were then purified individually 
and subjected to overlap extension PCR (using HindIII_F and NotI_R 
primers) with Vent DNA polymerase (Thermo Fisher Scientific) with 
equimolar amounts of the left and right fragments for a total of 250-
ng DNA templates. The resulting library was then digested with 
Hind III and Not I (New England Biolabs Inc.) and ligated into rep-
lication incompetent AAV packaging plasmid pSub2repKO (8) for 
library construction. The resulting ligation reaction was electro-
porated (Bio-Rad) into electrocompetent Escherichia coli (Thermo 
Fisher Scientific, catalog no. 18290015) for plasmid production and 
purification. HEK 293 T cells were originally obtained from the 
American Type Culture Collection (Manassas, VA, USA) and cultured 
in Dulbecco’s modified Eagle’s medium (Gibco) with 10% fetal bovine 
serum (Invitrogen) and 1% penicillin/streptomycin (Gibco) at 37°C 
and 5% CO2. The passage number of 293 T for packaging AAV 
libraries was between 10 and 15.

We note that experimental noise and bias could arise from several 
procedures, including the PCR amplification, electroporation in 
transformation, and plasmid purification. To mitigate experimental 
noise, we used biological replicates (n = 3) in each of these steps that 
averaged the replicates at the biological level, before computational 
analysis.

Vector packaging and production
AAV library was packaged with transfection of HEK 293 T cells 
where each biological replicate (n = 3) was separately transfected in 
each round. Specifically, in a ~75 to 80% confluent density of 15-cm 
dish of HEK 293 T cells, 13.5 μg of pHelper, 9 μg of pBluescript 
(Addgene), 70 ng of the capsid plasmid library, and 5 μg of pRepHelper 
were cotransfected by the polyethyleneimine (PEI) method. This ra-
tio was calculated to minimize occurrences of cross-packaging as 
previously reported (1, 26, 53). Seventy-two hours later, cells were 
harvested, and the supernatant was collected. The cell pellet was 
resuspended in a lysis buffer [50 mM tris and 150 mM NaCl (pH 8.5)] 
and freeze/thawed for three times at dry ice/ethanol. The lysate was 
then incubated at 37°C for 30 min with an addition of Benzonase 
(10 U/ml; Invitrogen). Then, the lysate was first spun at 2000 rpm 
for 2 min, followed by a 10,000-rpm spin for 10 min, before the 
supernatant was all collected for purification. Collected virus was 
then purified via iodixanol density centrifugation and buffer-exchanged 

into phosphate-buffered saline (PBS) by Amicon (Ultra-15, Merck 
Millipore) filtration.

This packaging process has the potential to be confounded by 
cross-packaging, in which viral particles are composed of viral genomes 
and capsid proteins derived from different library variants. To minimize 
cross-packaging, we diluted the plasmid library according to previ-
ously determined concentration that minimizes the event of multiple 
members of the capsid plasmid library entering into the same cell (1, 
54). To quantify capsid cross-packaging in different libraries, we used 
GFP plasmid mixed with capsid libraries in 1:7 molar ratio and 
determined correctly packaged versus cross-packaged viral particles 
using either Cap-specific or GFP-specific primers, respectively (table S8). 
These findings quantitatively characterized cross-packaging and pro-
vided experimental evidence of a similar but minimal level (less than 
2%) of cross-packaging in all libraries.

Each individual sequence plasmid (in Fig. 3) was packaged sepa-
rately with biological replicates (n = 3), and its titer was measured 
with technical replicates (n = 3) for each run. Specifically, in a ~75 
to 80% confluent density of 15-cm dish of HEK 293 T cells, 12 μg of 
pHelper, 10 μg of the pRepCap (AAV capsid variant), and 6 μg of GFP-
encoding AAV vector plasmid were cotransfected by the PEI method. 
Seventy-two hours later, collected virus was purified and buffer-
exchanged into PBS. We then measured the packaged viral titers 
using ddPCR with GFP probe (CGCGATCACATGGTCCTGCTGG).

AAV viral genome extraction and titer
Packaged AAV vectors were first combined with equal volume of 10× 
deoxyribonuclease (DNase) buffer (New England Biolabs, B0303S) and 
0.5 μl DNase I (10 U/μl; New England Biolabs, M0303L) incubated for 
30 min at 37°C. Then, equal volume of 2× proteinase K buffer was 
added with sample to break open capsid. After heat inactivating for 
20 min at 95°C, the sample was further diluted at 1:1000 and 1:10,000 
and use as templates for titer. DNase-resistant viral genomic titers 
were measured using ddPCR (Bio-Rad) using with Hex-ITR probes 
(CACTCCCTCTCTGCGCGCTCG) tagging the conserved regions 
of encapsidated viral genome of AAV. After primary tissue infection, 
capsid sequences were recovered by PCR from harvested cells using 
primers HindIII_F and NotI_R (table S7). A ~75- to 85-bp region 
containing the 7-mer insertion was PCR-amplified from harvested 
DNA. Primers included the Illumina adapter sequences containing 
unique barcodes to allow for multiplexing of amplicons from mul-
tiple libraries. PCR amplicons were purified and sequenced with a 
single-read run-on Illumina NovaSeq 6000.

Single-ion CDMS
Experiments were performed using an in-house built charge detec-
tion mass spectrometer at University of California, Berkeley that has 
been described previously (55–56). AAV5–7-mer variants were pack-
aged and harvested at 72 hours after transfection followed by the 
purification through iodixanol gradients. Purified AAVs were washed six 
times using an Amicon Ultra Centrifugal Filter Unit (MilliporeSigma, 
St. Louis, MO): three times each with 1× PBS + 0.001% Tween, 
followed by 500 mM ammonium acetate. These AAVs were subse-
quently analyzed with CDMS as previously described (57), with a 
minimum of ~2200 ions measured to determine the capsid mass. By 
fitting the mass spectrum to a sum of three Gaussians corresponding 
to each component, we computed the ratio of full to empty capsid by 
dividing the integral of the full capsid mass peak by that of the empty 
capsid mass peak.
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Data filtering and processing
The raw sequencing data consisted of 49,619,716 and 55,135,155 
sequencing reads corresponding to the pre- and post-selection libraries, 
respectively. Each read contained (i) a 5-bp unique molecular identifier, 
(ii) a fixed 21-bp primer sequence, (iii) a 6-bp sequence representing 
the pre-insertion linker (two fixed amino acids that connect the in-
sertion sequence to the capsid sequence at position 575), (iv) a vari-
able 21-bp sequence containing the nucleotide insertion sequence, 
and (v) a 9-bp representing the post-insertion linker (three fixed 
amino acids that connect the insertion sequence to the capsid se-
quence at position 577). We filtered the reads, removing those that 
either contained more than two mismatches in the primer sequences 
or contained ambiguous nucleotides. After this filtering, the pre- 
and post- libraries contained 46,046,268 and 45,303,374 reads, re-
spectively. The insertion sequences were then extracted from each 
read and translated to amino acid sequences. Analysis of overlap 
variants between pools of sequences can be found in table S4.

Log enrichment score and variance
We calculated the log enrichment scores (Eq. 1) for each inser-
tion sequence using the (filtered) sequencing data to quantify 
each sequence’s effect on packaging. Note that only 218,942 of 
the 8,552,729 unique sequences appear in both the pre- and post-
selection libraries. A pseudo-count of 1 was added to each count 
so that the log enrichment score could still be calculated when 
the sequence appeared in only one of the libraries. In all cases, 
the natural log was used.

We estimated a variance associated with each log enrichment 
score using Eq.  2, which follows by noting that each of the raw 
counts associated with a log enrichment score is a random variable. 
Specifically, the count associated with a sequence can be modeled as 
a Binomial random variable (32). The log enrichment score (Eq. 1) 
is then the log ratio of two Binomial random variables; it can be shown 
with the Delta method (58) that, in the limit of infinite samples, the 
log ratio of two Binomial random variables converges in distribution 
to a Normal random variable with mean and variance approximated 
by Eqs. 1 and 2, respectively (32, 33)

Model training and evaluation
Our data processing yields a dataset of the form {(xi, yi, σ2i )}

M
i=1

 where 
the xi are unique insertion sequences, yi are log enrichment scores 
associated with the insertion sequences, σ2

i
 are the estimated variances 

of the log enrichment scores, and M = 8,555,729 is the number of 
unique insertion sequences in the data. We randomly split this dataset 
into a training set containing 80% of the data and a test set containing 
the remaining 20% of the data.

We assume that the distribution of a log enrichment score given 
the associated insertion sequence is

where fθ is a function with parameters θ that parameterizes the 
mean of the distribution and represents a predictive model for log 

enrichment scores. We determined suitable settings of the parameters θ 
with maximum likelihood estimation (MLE). The log likelihood of 
the parameters of this model given the training set of M′ ≤ M data 
points is given by

Performing MLE by optimizing this likelihood with respect to 
the model parameters, θ, results in the weighted least squares loss 
function in Eq. 3.

We tested both linear and NN forms for the function fθ; linear 
models are standard baseline models due to their simplicity, while 
NNs have been shown to produce state-of-the-art performance in 
sequence-to-fitness modeling tasks (59). For the linear forms of fθ, 
the loss (Eq. 3) is a convex function that can be solved exactly for the 
minimizing ML parameters. To stabilize training, we used a small 
amount of l2 regularization for the neighbors and pairwise represen-
tations (with regularization coefficients 0.001 and 0.0025, respec-
tively, chosen by cross-validation). For the NN forms of fθ, the 
objective (Eq. 3) is non-convex, and we use stochastic optimization 
techniques to solve for suitable parameters. We implemented these 
models in TensorFlow (60) and used the built-in implementation of 
the Adam algorithm (61) to approximately solve Eq. 3.

All NNs had two hidden layers, each with tanh activation func-
tions. A two hidden layer architecture was chosen so as to allow hi-
erarchical representations while reducing the total number of 
parameters in the model. As we did not observe an increase in mod-
el performance with an increased number of parameters (Fig. 2A), 
we did not explore deeper model architectures. The tanh activation 
function is a common choice for regression models, and we did not 
find the model performance to be sensitive to the choice of activa-
tion function (fig. S1).

To assess the prediction quality of each model, we calculated the 
Pearson correlation between the model predictions and observed 
log enrichment scores for different subsets of the sequences in the 
test set. Our aim is to use these models to design a library of se-
quences that package well (i.e., would be highly enriched in the 
post-selection library). We, therefore, assess how well the models 
perform for highly enriched sequences by progressively culling the 
test set to only include sequences with the largest observed log en-
richment scores (Fig. 2).

Diversity-constrained optimal library design
We developed a general framework for sequence library design that 
(i) can be used with any predictive model of fitness, (ii) is broadly 
applicable to different library construction mechanisms (e.g., error 
prone PCR, site-specific marginal probability specification, and in-
dividual synthesized sequences), and (iii) is simple to implement 
and extend. This framework balances mean predicted packaging fit-
ness with entropy, a measure of diversity for probability distribu-
tions, which has been used extensively in ecology to describe the 
diversity of populations (62). Our approach is based on a maximum 
entropy formalism: We represent libraries as probability distribu-
tions and aim to find maximum entropy distributions that maximize 
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entropy while also satisfying a constraint on the mean fitness, which 
is predicted by a user-specific model such as a NN.

Let χ be the space of all sequences that may be included in a library 
(e.g., all amino acid sequences of length 7). We consider a library to be 
an abstract quantity represented by a probability distribution with 
support on. Let ℘ represent all such libraries and one particular library. 
In other words, p represents a library, and p(x) refers to the probability 
of a sequence x in the library (63)

Now, let f(x) be a predictive model of fitness (e.g., from a trained 
NN). Our goal is to find a diverse library, p, where the mean predicted 
fitness in the library, �p(x)[f (x)] , is as high as possible. Formally, we 
want to find the library with the largest entropy such that the mean 
predicted fitness is above some cutoff. This objective is written

where a is the cutoff on the mean predicted fitness. It is straightforward 
to show that the solution to this optimization problem is given by (64)

where λ > 0 is a Lagrange multiplier that is a monotonic function of 
the cutoff a and Z(λ) = ∑x∈χ exp[f(x)/λ] is a normalizing constant. 
Equation 4 gives the probability mass of what is known as the maximum 
entropy distribution. The parameter λ controls the balance between 
diversity and mean fitness in the library (higher λ corresponds to more 
diversity). Each library, pλ, represents a point on a Pareto optimal 
frontier of libraries, which balances diversity and mean predicted 
fitness; these distributions cannot be perturbed in such a manner as 
to increase both the entropy and the mean fitness. Theoretically, the 
entire Pareto frontier could be traced out by calculating the mean 
predicted fitness and entropy of pλ for every possible setting of λ. In 
practice, we pick a discrete set of λ that traces out a practically 
useful curve.

As written so far, this framework can be used to select a particular 
library distribution, pλ(x), with value λ, from the Pareto optimal curve. 
Then, if designing libraries composed of individually specified se-
quences, one can sample individual sequences from this distribution, 
thereby designing a realizable, synthesizable library. However, for many 
cases of practical interest, it will not be cost-effective to synthesize 
individual sequences. We will, therefore, consider a more affordable 
library construction mechanism: A library of oligonucleotides is 
generated in a stochastic manner based on specified position-wise nu-
cleotide probabilities. Because this position-wise nucleotide specifi-
cation strategy does not allow one to specify individual sequences, 
we refer to libraries constructed in this way as constrained. In the 
next section, we describe how we use our design framework to set 
the parameters of these constrained libraries.

Maximum entropy design for constrained libraries
In this section, we describe the design of libraries that are not specified 
at the level of individual sequences, but rather at the (less precise) 
level of position-specific distributions. In particular, we controlled 
the marginal probability of each nucleotide at each position. The 

probability mass function of the distribution representing a library 
specified by position-wise probabilities is given by

where L is the sequence length, K is the alphabet size (i.e., K = 4 for 
nucleotide libraries), ϕ ∈ ℝL×K is a matrix of distribution parame-
ters, ϕj is the jth row of ϕ, δk(xj) = 1 if xj = k and zero otherwise, and

In words, qϕj(k) refers to the probability of observing the kth alpha-
bet element at the jth position in the sequence.

For an arbitrary predictive model (such as a NN to predict log enrich-
ment scores from sequence), the maximum entropy distribution (Eq. 4) 
will generally not have the form of Eq. 5. To apply the maximum entropy 
formulation to the design of libraries that are constrained to take a par-
ticular form, what we refer to as constrained library design, we take a 
variational approach: For a single, fixed value of λ, we find the con-
strained library distribution, qθ, that is the best approximation to the 
maximum entropy library distribution, pλ, in terms of the KL divergence

Our objective (Eq. 6) is a non-convex function of the library pa-
rameters. The stochastic gradient descent (SGD) algorithm has been 
shown to consistently find optimal or near-optimal solutions to a 
variety of non-convex problems, particularly in ML (65). We use a 
variant of SGD on the basis of the score function estimator (66) to 
solve Eq. 6. We randomly initialize a parameter matrix, ϕ(0), with 
independent Normal samples and then update the parameters ac-
cording to

for t = 1, …, T, where we define F(ϕ)≔ �q
ϕ
(x)[f (x)] + λH[q

ϕ
] to be 

the objective function in Eq. 6. The number of iterations, T, was set 
such that we observed convergence of the objective function values 
in most runs of the optimization. After T iterations, we assumed that 
we had reached a near-optimal solution [i.e., ϕ(T) can be used as an 
approximation of ϕλ]. The components of the gradient in Eq. 7 
are given by

where we define the weights w(x) ≔ f(x) − λ[1 + log qϕ(x)] (Supplemen-
tary Materials). The expectation in Eq. 8 cannot be solved exactly, so 
we use a Monte Carlo approximation

where M is the number of samples used for the MC approximation. 
We applied this maximum entropy framework to design site-specific 
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marginal probability libraries of the 21 nucleotides corresponding 
to the seven–amino acid insertion using the (NN, 100) predictive 
model of fitness. Figure  3 shows the near-optimal Pareto frontier 
resulting from 2238 such library optimizations with α = 0.01, T = 
2000, and M = 1000 and a range of settings of λ.

In practice, the nucleotide sequences sampled from qϕ must be 
translated to amino acid sequences before being passed to f(x), 
which is a model trained to predict log enrichment scores from ami-
no acid sequences. We have omitted this translation step from the 
above equations for notational simplicity.

Comparison of constructed libraries
Entropy is closely related to another notion of diversity known as 
effective sample size. The effective sample size of a library with en-
tropy H is defined as Ne = eH and corresponds to how many unique 
variants one would need to obtain entropy H, if each variant was 
constrained to have equal probability mass. This can be seen by noting 

that H = logN
e
= −

Ne
∑

i=1

1

N
e

log
1

N
e

. This interpretation of entropy 

is commonly used in the population genetics literature, first intro-
duced by Wright in 1931 (39).

When comparing designed theoretical libraries, we were able to 
compute the statistical entropy of each library distribution exactly in 
terms of its position-wise probabilities. However, when analyzing 
post-selection libraries, there is no known underlying probability 
distribution with which we can exactly compute entropy. Consequently, 
we instead estimated and compared the effective sample size of the 
empirically observed distribution in each library. Specifically, we es-
timated the effective number of samples in a library using the se-
quencing observations

where pempirical(s) corresponds to the empirical frequency of se-
quence s appearing in the post-selection sequencing data.

Consent statement UCSF
De-identified tissue samples were collected with previous patient 
consent in strict observance of the legal and institutional ethical 
regulations. Sample use was approved by the Institutional Review 
Board at University of California San Francisco (UCSF) and experi-
ments conform to the principles set out in the World Medical As-
sociation (WMA) Declaration of Helsinki and the Department of 
Health and Human Services Belmont Report.

Primary human adult brain slices culture and 
library infection
Adult surgical specimens from epilepsy cases were obtained from 
the UCSF medical center in collaboration with neurosurgeons with 
previous patient consent. Surgically excised specimens were imme-
diately placed in a sterile container filled with N-methyl-​d-glucamine 
(NMDG)–substituted artificial cerebrospinal fluid (aCSF) of the following 
composition: 92 mM NMDG, 2.5 mM KCl, 1.25 mM NaH2PO4, 30 mM 
NaHCO3, 20 mM Hepes, 25 mM glucose, 2 mM thiourea, 5 mM 
Na-ascorbate, 3 mM Na-pyruvate, 0.5 mM CaCl2·4H2O, and 10 mM 
MgSO4·7H2O. The pH of the NMDG aCSF was titrated from pH 7.3 
to pH 7.4 with 1 M tris-base at pH 8, and the osmolality was 300 
to 305 mosmol/kg. The solution was prechilled to 2° to 4°C and 

thoroughly bubbled with carbogen (95% O2/5% CO2) gas before 
collection. The tissue was transported from the operating room to 
the laboratory for processing within 40 to 60 min. Blood vessels and 
meninges were removed from the cortical tissue, and, then, the tissue 
block was secured for cutting using superglue and sectioned per-
pendicular to the cortical plate to 300 μm using a Leica VT1200S 
vibrating blade microtome in aCSF. The slices were then transferred 
into a container of sterile-filtered NMDG aCSF that was prewarmed to 
32° to 34°C and continuously bubbled with carbogen gas. After 12 min 
of recovery incubation, slices were transferred to slice culture 
inserts (Millicell, PICM03050) on six-well culture plates (Corning) 
and cultured in adult brain slice culture medium containing 840 mg 
of MEM Eagle medium with Hanks’ salts and 2 mM l-glutamine 
(Sigma-Aldrich, M4642), 18 mg of ascorbic acid (Sigma-Aldrich, 
A7506), 3 ml of Hepes (1 M stock) (Sigma-Aldrich, H3537), 1.68 ml 
of NaHCO3 (892.75 mM solution, Gibco, 25080-094), 1.126 ml of 
d-glucose (1.11 M solution; Gibco, A24940-01), 0.5 ml of penicillin/
streptomycin, 0.25 ml of GlutaMAX (at 400×; Gibco, 35050-061), 100 μl 
of 2 M stock MgSO4·7H2O (Sigma-Aldrich, M1880), 50 μl of 2 M stock 
CaCl2·2H2O (Sigma-Aldrich, C7902), 50 μl of insulin from bovine pan-
creas (10 mg/ml; Sigma-Aldrich, I0516), 20 ml of horse serum heat-
inactivated, and 95 ml of MilliQ H2O [as previously described (67)]. The 
following day after plating, adult human brain slices were infected with 
the viral library. Specifically, purified AAV library suspension in 0.001% 
Tween PBS was gently mixed by pipetting with tissue culture medium 
and directly added on top of the slices (n = 3 per group). The volume of 
each library added to the slice is calculated as follows

Slices were cultured at the liquid-air interface created by the 
cell culture insert in a 37°C incubator at 5% CO2 for 72 hours after 
infection.

Slice culture dissociation, cell purification, and 
Hirt extraction
Seventy-two hours after infection with the viral library, cultured 
brain tissue slices were first rinsed twice with Dulbecco's PBS 
(DPBS; Gibco, 14190250) and detached from the filters, then me-
chanically minced to 1-mm2 pieces, and enzymatically digested with 
a papain digestion kit (Worthington, LK003163) with the addition of 
DNase for 1 hour at 37°C. After the enzymatic digestion, tissue was 
mechanically triturated using fire-polished glass pipettes (Thermo 
Fisher Scientific, catalog no. 13-678-6A), filtered through a 40-μm 
cell strainer (Corning, 352340), pelleted at 300g for 5 min, and washed 
twice with DBPS. Following mechanical digestion, the slices were 
first treated with lysis buffer [10% SDS, 1 M tris-HCl (pH 7.4 to 8.0), 
and 0.5 M EDTA (pH 8.0)] with the addition of ribonuclease 
(RNase) A (Thermo Fisher Scientific, EN0531) for 60 min at 37°C 
and proteinase K (New England Biolabs, P8107S) for 3 hours at 
55°C. The enzymatically digested tissue homogenate was then pro-
ceeded to the Hirt column protocol as previously published (68).

Primary prenatal brain slices
Deidentified primary tissue samples were collected with previous 
patient consent in strict observance of the legal and institutional 
ethical regulations. Cortical brain tissue was immediately placed in 
a sterile conical tube filled with oxygenated aCSF containing 125 mM 

N
e
= exp

[

∑

s

−pempirical(s)log−pempirical(s)

]

Vol(ml)=
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NaCl, 2.5 mM KCl, 1 mM MgCl2, 1 mM CaCl2, and 1.25 mM 
NaH2PO4 bubbled with carbogen (95% O2/5% CO2). Blood vessels 
and meninges were removed from the cortical tissue, and, then, the 
tissue block was embedded in 3.5% low–melting point agarose 
(Thermo Fisher Scientific, BP165-25) and sectioned perpendicular 
to the ventricle to 300 μm using a Leica VT1200S vibrating blade 
microtome in a sucrose protective aCSF containing 185 mM su-
crose, 2.5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 1.25 mM NaH2PO4, 
25 mM NaHCO3, and 25 mM d-(+)-glucose. Slices were transferred 
to slice culture inserts (Millicell, PICM03050) on six-well culture 
plates (Corning) and cultured in prenatal brain slice culture medium 
containing 66% (v/v) Eagle’s basal medium, 25% (v/v) Hanks’ balanced 
salt solution, 2% (v/v) B27, 1% N2 supplement, 1% penicillin/strepto-
mycin, and GlutaMAX (Thermo Fisher Scientific). Slices were cultured 
in a 37°C incubator at 5% CO2, 8% O2, at the liquid-air interface 
created by the cell culture insert.

Slice dissociation and cell purification
Cultured brain slices were washed twice with DPBS (Gibco, 14190250), 
detached from the filters, and enzymatically digested with a papain 
digestion kit (Worthington, LK003163) with the addition of DNase 
for 30 min at 37°C. Following enzymatic digestion, slices were me-
chanically triturated using a fire-polished glass pipette, filtered through 
a 40-μm cell strainer test tube (Corning 352235), pelleted at 300g for 
5 min, and washed twice with DBPS.

Dissociated cells were resuspended in MACS buffer (DPBS with 
1 mM EGTA and 0.5% bovine serum albumin) with addition of DNAse 
and incubated with CD11b antibody for 15 min on ice. After the 
incubation, cells were washed in 10 ml of MACS buffer and loaded 
on LS columns (Miltenyi Biotec, 130-042-401) on the magnetic stand. 
Cells were washed three times with 3 ml of MACS buffer, then the 
column was removed from the magnetic field, and microglia cells 
were eluted using 5 ml of MACS buffer. The flow-through cells were 
then gently prepared to separate out neurons using polysialylated-
neural cell adhesion molecule, and the flow-through cell population 
was used as glial cell type. Cells were pelleted, resuspended in 1 ml 
of culture medium, and counted.

Immunofluorescence and antibodies
Primary human brain slices were fixed on the filters in 4% paraformal-
dehyde for 1 hour at room temperature and washed three times with 
PBS for 5 min each wash. Slices were carefully detached from the culture 
filter inserts and places into 12-well plates. Blocking and permeabiliza-
tion were performed in a blocking solution consisting of 10% normal 
donkey serum, 1% Triton X-100, and 0.2% gelatin for 1 hour. Primary 
and secondary antibodies were diluted and incubated in the blocking 
solution. Prenatal brain slices were incubated with primary antibodies at 
4°C overnight and washed three times with washing buffer (1% Triton 
X-100 in PBS). Adult brain slices were incubated with primary antibodies 
for 2 days and washed three times with washing buffer (1% Triton X-100 
in PBS). Slices were incubated with secondary antibodies in the blocking 
buffer at 4°C overnight and washed with washing buffer five times for 
10 min each. Images were collected using Leica SP8 confocal system 
with 10× and 20× air objective and processed using ImageJ/Fiji and Af-
finity Designer software. Primary antibodies used in this study included 
chicken glial fibrillary acidic protein (1:1000; Abcam, ab4674), rabbit 
dsRed (1:250; Takara, 632496), and 4′,6-diamidino-2-phenylindole. 
Secondary antibodies were species-specific AlexaFluor secondary anti-
bodies (1:2000; Thermo Fisher Scientific).

Statistical analysis
All comparisons were performed using Prism 8 (GraphPad Software). 
AAV viral titers were compared using a one-way analysis of variance 
(ANOVA), and comparisons between different groups were doing 
using a Tukey’s comparison test.

Supplementary Materials
This PDF file includes:
Figs. S1 to S13
Tables S1 to S8
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