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Persevering with home rehabilitation exercise is a struggle for millions of people in the

US each year. A key factor that may influence motivation to engage with rehabilitation

exercise is the challenge level of the assigned exercises, but this hypothesis is currently

supported only by subjective, self-report. Here, we studied the relationship between

challenge level and perseverance using long-term, self-determined exercise patterns

of a large number of individuals (N = 2,581) engaging in home rehabilitation with a

sensor-based exercise system without formal supervision. FitMi is comprised of two

puck-like sensors and a library of 40 gamified exercises for the hands, arms, trunk, and

legs that are designed for people recovering from a stroke. We found that individuals

showed the greatest perseverance with the system over a 2-month period if they had

(1) a moderate level of motor impairment and (2) high but not perfect success during

the 1st week at completing the exercise game. Further, a steady usage pattern (vs.

accelerating or decelerating use) was associated with more overall exercise, and declines

in exercise amount over time were associated with exponentially declining session

initiation probability rather than decreasing amounts of exercise once a session was

initiated. These findings confirm that an optimized challenge level and regular initiation

of exercise sessions predict achievement of a greater amount of overall rehabilitation

exercise in a group of users of commercial home rehabilitation technology and suggest

how home rehabilitation programs and exercise technologies can be optimized to

promote perseverance.
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INTRODUCTION

The World Health Organization estimated that one in three
individuals worldwide have conditions that would benefit from
rehabilitation (1). Movement-related conditions, such as low
back pain (∼568M people per year) and stroke (∼80M people
per year) account for over 80% of these conditions (1). For stroke
patients in the US, the total estimated cost for rehabilitation
services is >$9B each year (2).

In the current rehabilitation service paradigm, clinicians
instruct patients to continue practicing selected movement
exercises on their own at home following periods of inpatient
and/or outpatient treatment. Clinicians usually provide
patients with printed descriptions of the exercises. The
importance of continuing with therapeutic exercise at home has
increased because of decades-long actions aimed at reducing
inpatient rehabilitation stays (3). However, there have been few
innovations that have helped ensure that discharged patients
complete home rehabilitation exercise programs. The COVID-
19 pandemic caused an even greater emphasis on carrying out
rehabilitation at home (4–6), potentially furthering this trend
toward expecting rehabilitation to occur outside of formal
facilities in the longer-term (7).

Studies examining home exercise programs have found that
compliance is partial across a variety of health conditions. While
estimates vary, most reports indicate the majority of patients
do not fully adhere to prescribed home exercise routines. One
estimate suggested that up to 65% of patients are non-adherent
to their home exercise programs (8). Therapist estimates of
their patients’ adherence tend to be lower than patients’ reports.
For example, only 36% of physical therapists reported high
levels of adherence to home exercises (9). In a study of home
exercise for low back pain, 39% of patients reported adherence,
while therapists estimated 16% were adherent. Low adherence
is also implied by patients’ poor memory of their prescribed
exercises: only 15% of participants were able to recall all of the
exercises contained within their program and demonstrate them
accurately (10).

Most home rehabilitation adherence studies have relied on
subjective and self-reported methods, primarily surveys (8, 11).
The introduction of sensor and computer gaming technologies
for home rehabilitation—or mRehab (mobile rehabilitation)
systems (12, 13)—has made it possible to objectively quantify
adherence. Studies with sensor systems have reinforced the
concept that adherence is partial and highly variable. A recent
systematic review of home-based, upper limb practice after
stroke examined 42 studies that used a variety of technologies
to facilitate movement practice, ranging from the Wii, to the
iPad, to custom-designed sensor or robotic devices (14). These
studies were typically small: only three enrolled more than 30
participants, and the largest study, which used Nintendo Wii
Sports for arm rehabilitation after stroke, enrolled 235 individuals
(15). The studies also varied substantially on whether and how
they prescribed a dose of practice. The seven studies that allowed
participants to self-select their dose of practice found that stroke
survivors chose to train for approximately 24 min/day, 4–5
days/week. For studies where practice amounts were prescribed,

participants were asked to complete between 9.5 and 161 h of
practice over four to 24 weeks. Adherence varied widely, being
≤ 50% in five studies, 51 to 74% in nine studies, 75 to 100% in 13
studies, ≥ 101% in six. Considering this variability, determining
how to help patient populations consistently persevere with home
exercise is an important goal for promoting health and function.

A key factor that has been hypothesized to influence the
motivation to engage with rehabilitation exercise is the challenge
presented by the assigned exercises (16). For example, if an
individual is severely impaired, exercises can quickly become
overly challenging, requiring large amounts of effort to complete
(17, 18). On the other hand, exercises that are too easy
to complete may be viewed as non-beneficial by the person
exercising. In a study of repetitive finger movement training after
stroke in which the exercise was gamified, success at playing the
game predicted the level of self-reported motivation for engaging
in the exercise, as well as self-efficacy in achieving functional
gains (19).

Here, we leveraged a unique opportunity to analyze
anonymous usage logs from a commercial, sensorized, home
rehabilitation technology, called FitMi, to study what predicts
perseverance in rehabilitation. FitMi is comprised of two puck-
like sensors and software that visually guides the user through
40 therapeutic exercises for the hands, arms, legs, and torso in
a game-like setting (Figure 1). This game format allows users
to “level-up” if they perform a target number of repetitions for
a given exercise, providing a quantitative measure of successful
exercise completion. Users typically buy the system out-of-pocket
and use it freely on their own without direct supervision from
a rehabilitation therapist. We are therefore studying a group
of people who have taken concrete steps to continue their
rehabilitation by acquiring a home rehabilitation technology.
Individuals with enhanced autonomy and self-efficacy have
better health outcomes, including in stroke rehabilitation (20–
23). However, we hypothesize that even among this motivated
subpopulation, there will be variance in their perseverance which
is influenced by challenge level and steadiness of use.

To test whether challenge levels are associated with
perseverance in unsupervised, home rehabilitation exercise,
we studied whether the impairment level of the user, measured
with the device itself, as well as the user’s success in leveling
up in the 1st week of use, predicted total amount of use of the
system. Therapists sometimes warn patients not to “overdo”
their exercises when they begin a new program lest they become
too fatigued or sore. Further, people who engage with new
consumer technologies are known to sometimes experience a
novelty effect in which engagement is initially high but rapidly
tapers (24, 25). We therefore also quantified steadiness of FitMi
use and tested for a potential association with perseverance.

METHODS

We analyzed usage data from 2,581 users of the FitMi movement
rehabilitation system acquired over a 3-year period. We required
users to have had the system for at least 8 weeks to be included in
the analysis. Data were anonymous, having been automatically
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FIGURE 1 | FitMi (produced by the company Flint Rehab Devices) consists of two force and motion sensing pucks and a software application called RehabStudio.

Top row: Hardware required for FitMi, Bottom row: Graphical user interface for FitMi.

uploaded to a server managed by Flint Rehabilitation Devices,
the company that manufactures and sells FitMi, without any
identifying information after each exercise session. The study was
confirmed by the UC Irvine Institutional Review Board.

FitMi Overview
FitMi is an FDA-listed medical device marketed to persons who
have experienced a stroke to help them perform movement
exercise. FitMi consists of two 8.9 cm diameter “pucks” that sense
movement (using a 3-axis accelerometer and a 3-axis gyroscope)
and compression force (using a load cell). Users hold the pucks
or place them on a table or the floor in various configurations
to exercise (Figure 1). The companion software uses data from
the pucks’ sensor arrays to detect completion of the exercises
available in the system.

FitMi provides user-selectable, therapist-designed exercises
for the arms, hands, core, and legs. Each of these four regions
has ten possible exercises. Users initiate a session by selecting a
body region and an amount of time to exercise: 5, 10, 15, 20,
25, or 30min. FitMi then presents the unlocked exercises for that
body area and the user chooses which exercises to perform during
the session. If they achieve the target number of repetitions for

a specific exercise in a set amount of time, they “level up” and
the software will increase the target number of repetitions for
the exercise. Once a user reaches level 10 (the maximum level) in
an exercise, they go into “Infinite Play” mode and can no longer
level up.

Three exercises in each body region are unlocked at the
beginning of use. These exercises were judged to be the easiest
by an experienced occupational therapist who helped design the
exercises. The software will unlock more difficult exercises if
the cumulative level (of the currently unlocked exercises in the
region) exceeds a threshold (5, then 10, 15, 20, 25, 30, 40, 50).

For example, if a new user interacts with the system for the first
time, all of their exercises start at level 0. Then, if they start their
first session in the arms region and complete the target number
of repetitions 5 times in a row for one exercise and then five
times in a row for a different exercise, their cumulative level in
the arms region will be 10. After this session ends, the software
will unlock two new exercises because the user passed both the 5
and 10 cumulative level thresholds.

During an exercise, the user has a set amount of time to
complete the exercise, which is visually represented by a falling
bar on the screen. Additional time is added for each repetition
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completed, but the rate at which the bar falls also increases
over time, creating a gamified experience. Thus, if a user stops
exercising or performs repetitions too slowly, time will run out
(i.e., the bar will reach the bottom of the screen), and the exercise
will end before the user was able to achieve the target number
of repetitions.

As users typically acquire the system directly and use it
on their own without supervision from a therapist, they are
prompted to “take a tour” of the software when they first interact
with the system. If the user chooses to do this, the system presents
a sequence of messages explaining the graphical interface to
perform their first exercise. The system also comes with a written
user’s guide and online resources (e.g., setup videos hosted on
YouTube). For each exercise available in the system, there are
written instructions and an embedded video users can access
in which an occupational therapist explains the exercise and
provides tips to properly complete the exercise. During the
exercise, the interface presents a visual of the desired start and
stop state for each repetition with a slider prompting the user to
move between the two states (Figure 1, Bottom row, right).

Data Acquisition and Cleaning
We used FitMi user data acquired between June 20th, 2016
and December 15th, 2019. We removed data from test users,
clinic users, and users whose first exercise was <8 weeks
prior to the end of our data collection (as described in the
Supplemental Material), resulting in data for 2,581 users. We
assigned the start time of each user’s 1st day to be 12:00 am,
counting days of use as 24-h periods after this start time.

We found that the total number of repetitions performed by
each user during their first 8 weeks had a lognormal distribution
(see Results). Thus, we filtered outliers from the data using the log
transform of total repetitions performed, excluding users with log
transformed data more than two standard deviations from the
mean. This filter resulted in the exclusion of 117 (4.5 %) users
with total repetition counts that were ≤16 or ≥79,380. A total of
2,464 users remained after this outlier removal process.

Data Analysis
Estimating Upper Extremity Impairment
The large data set was anonymous and contained no clinical
information about the users’ impairment. We hypothesized that
the rate of repetition of an exercise would reflect the user’s
motor impairment level. To test this hypothesis, we used data
from a randomized controlled trial (RCT) using the FitMi
system (ClinicalTrials.gov Identifier: NCT03503617) for which
a rehabilitation therapist monitored 41 persons with a chronic
stroke as they played three (out of the ten total) exercises in
each of the four FitMi regions. The therapist also evaluated
each participant with the Upper Extremity Fugl-Meyer (UEFM)
assessment, a widely-used and validated measurement of upper
extremity impairment after stroke that varies from 0 (meaning
complete paralysis) to 66 (normal arm movement) (26). As
described below, we studied the relationship between the subject’s
initial repetition rate for various FitMi exercises and their
UEFM score.

FIGURE 2 | Sample lifetime data for a user who quit using FitMi after 6 days

and initiated an exercise session only on 4days.

Success Rate
A FitMi user “levels up” when they complete the target number
of repetitions for a given exercise in the allotted time. We defined
each user’s “Success Rate” as the percentage of exercises in which
the user leveled up during the 1st week of use, divided by
the number of exercises they attempted during that 1st week,
excluding Level 10 exercises because leveling up was not possible
at Level 10.

Lifetime
To compare trends between users over the entirety of their
interaction with FitMi (i.e., beyond the eight-week window), we
calculated various outcomes measures as a function of “lifetime.”
We defined each user’s lifetime as the period of time between their
first (assigned value 0%) and final day of interaction (assigned
value 100%). Data for all other days in the user’s lifetime were
proportionally distributed throughout the percent lifetime into
100 bins, each representing an increment of 1% (Figure 2). If
a user had more than 100 days of activity, neighboring day
data were summed and placed into the nearest 1% bin. When
we calculated ensemble statistics across percent lifetime, we
considered only bins corresponding to days on which the user
could have used the system. We excluded users who used the
system for only 1 day from the lifetime analysis, leaving 2,033
users for these analyses.

Steadiness of Use
To quantify steadiness of use of the system, we first plotted the
cumulative percentage of total exercises initiated vs. the percent
lifetime (Figure 3A). We found that the curvature of the progress
lines between users varied from concave to convex. We fit a
function based on the smooth approximation from (27) with a
single parameter µ (which we will refer to as the “steadiness
curvature”) that specifies concavity, using the fmincon solver on
MATLAB R2019b (Figure 3B). See Supplemental Material for
function and details.We did not include the values of the first and
last exercise session because these were always 0 and 100% and
the fit curve also was constrained to have these values. We only
included users with five or more active days in this analysis, to
ensure there was sufficient data to estimate a curvature, resulting
in 1,385 users.
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FIGURE 3 | Estimating steadiness of use. (A) % Progress in exercises

achieved vs. % lifetime. (B) We fit curves of this form, identifying the parameter

µ as the “steadiness curvature.” A curve with µ = 0 indicates perfectly steady

use over the lifetime, while a curve with µ = −5 indicates high initial use

tapering rapidly off (deceleration), and a µ = 5 indicates light initial use, rapidly

increasing (acceleration).

Probability of Perseverance
We quantified perseverance as the probability that individuals
would achieve low, medium, or high levels of usage. We defined
the thresholds for low, medium, and high levels to be the 25th,
50th, and 75th percentiles of various measures of usage – total
repetitions, total usage time, and total active days. We estimated
the probability of perseverance for a given range of three factors
(estimated impairment, success level, and steadiness of use) by
finding all individuals within that range for that factor, then
calculating the fraction of those individuals who exceeded the
level of usage.

Statistical Tests for a Maximum in Perseverance
For the three factors we analyzed, measures of perseverance often
had a maximum at an intermediate value of the factor and fell
off in either direction from that value. To test whether this
maximum was significant, we compared the maximum to the
value immediately next to it (Phi test) or, if there were at least four
neighboring values, we tested for a relationship in the descending
region using regression analysis. For brevity, we will refer to this
statistical methodology as the “sweet spot test” below, providing
the 2 p-values needed to assess whether there was a significant
declining trend on the left and right side of the peak, respectively.

RESULTS

Usage Statistics
To provide context for the ensuing analysis of factors that
predicted perseverance, we first provide summary statistics for
usage of the system over the entire 3.5 year data snapshot
window. The 2,464 users performed a mean of 245 ± 617
(SD) exercises per user, which they achieved over 16 ± 35
days of use. Users focused more on performing upper extremity
exercise (39.9% of exercises were for the arms and 27.8% for
the hands) vs. the core (15.8%) or leg (16.5%) exercises (see
Supplementary Figure S1). The average time spent on each
exercise was 58.2± 52.7 s, resulting in a mean total exercise time

of 237 ± 682min (3.9 h), during which users achieved 13,033 ±
42,789 repetitions.

Total repetitions and total exercise minutes (but not total # of
active days) were distributed in log-normal fashion (Figure 4).
Thus, while there were a large number of users who used
the system only lightly and relatively fewer heavy users, there
was no clear demarcation between them. The top 1% of users
completed a mean of 332,189 repetitions, a ∼25-fold increase in
perseverance compared to the average user.

Factors Associated With Perseverance
Impairment Level
To determine a sensor-based measurement that we could
associate with impairment, we first analyzed the data acquired
from 41 individuals with hemiparesis after stroke who used FitMi
in a clinic under the supervision of a rehabilitation therapist.
Among the six upper-extremity FitMi exercises tested, the initial
repetition rate of the “Reach to Target #2” exercise was most
strongly correlated with UEFM score (adjusted R2 = 0.75,
p < 0.001), a common clinical measure of upper extremity
impairment. The relationship was well-fit by an exponential
function (Figure 5).

This repetition rate measured in the 1st week predicted
perseverance, measured as the probability of achieving various
levels of either total repetitions, exercise time, or active days
during Weeks #1–8 (Figure 6). Users with lower repetition rate
(i.e., greater estimated impairment) exhibited a perseverance
probability that was decreased by 7–64% compared to users
with the maximum probabilities, although this trend was not
always significant. Users with higher repetition rate (i.e., lower
impairment) also exhibited probabilities decreased by 27–64%,
but this trend was significant only for the active days measure.
The optimal range of 40–50 reps/min indicated that people with
generally less impairment tended to persevere more, however,
and corresponded to a relatively mild UEFM score (Figure 5B).

Success Level
People who experienced lower levels of success in the 1st
week of use exhibited decreased probabilities of achieving
the different levels of use in the 8-week window, as did
people who experienced 100% success (Figure 7). Thus, there
was an optimal range of initial success associated with
perseverance, which was above 90 but not 100%. Notably,
only 45% of users who achieved 100% success rates initiated
another exercise after the 1st week, while 72% of users who
achieved lower success rates initiated an exercise after the
1st week, a significant difference (Phi Test, Coeff = 0.2,
p-value < 0.001). About 85% of users who obtained 0%
success rates went on to initiate another exercise after the
1st week.

Steadiness of Use
Some users initiated exercises at a steady rate over time,
while others exercised at a high-then-low rate (decelerating),
or a low-then-high rate (accelerating). The steadiness
curvature (µ from Figure 3) had a mean curvature value
of −1.1, which was significantly <0 (t-test, p < 0.01)
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FIGURE 4 | Histograms across 2,464 FitMi users for (A) total repetitions (B) total exercise time and (C) total active days. (D–F) show the same data plotted on a log

scale for the x-axis. Red lines are best-fit normal distributions.

FIGURE 5 | Identifying a system measurement that relates to clinically-measured, upper extremity impairment. (A) “Reach to Target #2” exercise diagram (B)

Relationship between the Upper Extremity Fugl-Meyer (UEFM) score, assessed by a rehabilitation therapist, and repetition rate of the “Reach to Target #2” exercise.

Shown is an exponential curve fit with the associated statistics.

(Figure 8A). Users with greater steadiness curvature (either
decelerating or accelerating) tended to use the system less
(Figure 8). Thus, there was an optimal range for steadiness

of exercise initiation associated with the probability of
perseverance, although the relationship was relatively flat in the
intermediate range.
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FIGURE 6 | Relationship of repetition rate of the Reach to Target # 2 exercise in Week 1 and perseverance. (A) Distribution of users with various repetition rates (B–D)

Probability of achieving low, medium, and high levels of perseverance, defined to be the 25th, 50th, and 75th percentiles of three measures of usage – total repetitions

(B), total exercise time (C), and total active days (D) – measured across 8 weeks of use. The – symbol indicates a significant decline from the peak value moving to

the left, and + sign indicates a significant decline from the peak value moving to the right, using the “sweet spot” test described in the methods (p < 0.05).

Session Initiation Probability
The results of the analysis of steadiness of use indicated that users
on average had a decelerating pattern of use (since the mean
steadiness curvature was −1.1). We studied this decelerating
pattern further by calculating the probability of initiating a
session across the population as a function of lifetime. On
average across the population, session initiation probability
decreased in an exponential-like fashion over the lifetime of
use (Figure 9A). However, when users initiated an exercise, on
average they achieved increasingly more exercise repetitions over
time (Figure 9B). The amount of time spent exercising per session
stayed roughly constant (around 20min, Figure 9C), so the
increase in repetitions was attributable to doing more repetitions
per minute, a demand the game software automatically imposed
on users as they “leveled up.” As a result of this demand, users
had less success leveling up over time (Figure 9D).

We observed an exponential-like decrease in session initiation
probability on average across the user population. To determine

if individuals also tended to follow exponential-like decreases
in session initiation probability, we tested the ability of various
decay functions (the sum of two exponential functions, a single
power function, and a double power function) to fit individual
users’ session initiation probability curves plotted over their
lifetime. For individual users, we estimated session initiation
probability (for one or more sessions in a day) using a moving
average with a window of size 19% of lifetime, padding the start
and end of the data with ones and zeros, respectively. The value
of 19% was chosen to give a smooth curve; smaller or larger
windows did not alter the main results. Only users with more
than 1 day of activity were fit. The sum of two exponential
functions fit users significantly better than the other two with
an average adjusted R2 of 0.84 (0.19 SD) vs. 0.50 (0.13 SD)
and 0.70 (0.19 SD) for the single and double power functions,
respectively. Fit statistics for different functions were significantly
different (Kruskal Wallis p < 0.001). Thus, session initiation was
best characterized by the sum of two exponential decay processes
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FIGURE 7 | Relationship of initial success and perseverance. (A) Distribution of users with various success levels in leveling up during Week #1 (B–D) Probability of

achieving low, medium, and high levels of perseverance, defined to be the 25th, 50th, and 75th percentiles of three measures of usage – total repetitions (B), total

exercise time (C), and total active days (D) – measured across 8 weeks of use. The – and + symbols indicated significant declines to left and right, respectively, from

the peak value using the “sweet spot” test described in the methods (p < 0.05).

(Figure 10). The decay constants, λ, were on average 16.7 (9.3
SD) and 6 (8.7 SD). Converting the decay constants to time
constants, τ (where τ = 1

λ
), shows these processes had an average

mean time constant of 8.8% (2.9 SD) and 51.6% (17.3 SD) of
normalized lifetime, respectively.

DISCUSSION

The data set studied here represents the self-determined exercise
patterns of a large number of individuals continuing their
rehabilitation at home without formal supervision following
purchase of a commercial exercise technology.We tested whether
three factors—impairment level, initial success, and steadiness
of use—were associated with persevering at home rehabilitation
exercise over an eight-week window. For each factor there was
an optimal range associated with higher perseverance: mild
impairment (but not too mild), high levels of success (but not
perfect success), and steady, regular use, respectively. We also

observed that the amount of exercise being achieved decelerated
over time. This deceleration was attributable to an exponentially
decreasing probability of initiating sessions, rather than a
declining amount of exercise within a session. We first discuss
the relevance of these findings for home rehabilitation exercise
programs and then limitations and directions for future research.

Perseverance and Motor Impairment
Severity of motor impairment would be expected to predict
perseverance because people who are weaker and less
coordinated perceive exercise as more effortful and difficult
(28). Since we did not have any clinical information about the
users, we identified a sensor-based measure of impairment
level – repetition rate of the Reach to Target #2 exercise. This
rate strongly correlated with a widely used clinical measure of
upper extremity impairment (the UEFM score), as measured
in a separate, clinically-monitored study (ClinicalTrials.gov
Identifier: NCT03503617).
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FIGURE 8 | Relationship of steadiness curvature and perseverance. (A) Distribution of users with various steadiness curvatures. Probability of achieving low, medium,

and high levels of perseverance, defined to be the 25th, 50th, and 75th percentiles of three measures of usage – total repetitions (B), total exercise time (C), and total

active days (D) – measured across 8 weeks of use. The – and + symbols indicated significant declines from the peak value to the left and right, respectively, using the

“sweet spot” test described in the methods (p < 0.05). In the above analysis, user’s initial repetition rates, success rates, and steadiness curvature included data from

Week #1, and we used them to predict overall perseverance, which also included data from Week #1. To test if including data from Week #1 biased the patterns we

observed, we repeated the above analyses with measures of perseverance calculated over Weeks #2–8. The results of these analyses were similar to the results

presented above.

FIGURE 9 | (A) Estimated probability of initiating at least one session, and (B–D) Average activity metrics plotted against percent lifetime for active users only. By our

definition of percent lifetimes, all users are active on the first and last ticks of the normalized lifetimes.
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FIGURE 10 | Pattern of individual users’ session initiation probabilities. (A–E) Examples of five users’ session initiation probability demonstrating a variety of the usage

patterns. Orange circles mark initiation of at least one exercise session at that lifetime %. The blue line is the probability of initiating at least one session calculated with

a sliding window average (window size = 19). The purple line is the sum of two exponential functions fit to each user’s probability of session initiation curve. (F) Decay

constants of the two exponentials. For the model fit, f (x) = ae−λ1x + be−λ2x , the average coefficients of the population were a = 0.42± 0.17 , λ1 = 16.7± 9.3 ,

b = 0.43± 0.17, λ2 = 6± 8.7 .

There was a downward trend in probability of achieving
various levels of total repetitions, minutes of use, and active
days of exercise as repetition rate decreased; this trend was
significant in six of the nine curves considered (Figure 6). This
trend is expected when the total number of repetitions is the
perseverance measure (since exercising at a slower repetition rate
should produce lower total number of reps), but it was also at
least partially true when total minutes of use and total days of
exercise were the measures, which are behavioral decisions rather
than performance related. This finding supports the concept that
people who are more severely impaired have marginally greater
difficulty persevering with home rehabilitation exercise.

However, this was not a strong effect, as not all curves
examined had a statistically significant maximum despite the
large sample size. This may be due in part to the fact that the
FitMi system was designed to accommodate people with a wide
range of impairment levels by including exercises with a broad
range of difficulties, including exercises with simple movements
and low requirements for hand dexterity.

Perseverance and Optimal Challenge
A striking observation about both the impairment and initial
success factors was that perseverance increased steadily as

capability increased, but then fell off dramatically near the highest
level of capability. This finding is consistent with the idea that
training should be “not so hard that we are discouraged, but not
so easy that we get bored” (29).

The Challenge Point Hypothesis is influential in motor
learning theory and posits that the amount of learning will
be maximized when the challenge presented during practice is
optimized (16, 30). Several studies suggest, however, that the
self-selected amount of practice is also maximized when the
challenge is optimized. For example, rats who were given a
running wheel to run on in their cage at night ran less when
the wheel incorporated more resistance (31). Reducing success at
playing a video game during robotic hand rehabilitation exercise
after stroke lowered motivation and self-efficacy (19). Persons
with a stroke engaging in technology-aided home rehabilitation
seem to intuit this principle. In a recent study of a wearable
sensing glove for practicing finger dexterity, home users tended
to select difficulty parameters so that they practiced the game at a
high success rate (near 90%) (32). To achieve this, they adjusted
difficulty up and down based on their recent experience of
success or failure. Success rates of ∼80–90% have been found to
optimize learning for a broad class of learning algorithms that are
useful in describing human and animal perceptual, motor, and
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reinforcement learning (29). The results of this study contribute
to the principle that 80–90% success is desirable for promoting
learning-related activity in terms of practice dosage.

This notion is also consistent with Csikszentmihalyi’s concept
of flow—an enjoyable psychological state that occurs when
individuals are engaged in optimal challenges (33). Flow theory
posits that an activity becomes intrinsically rewarding (hence,
more likely to be initiated and sustained) when the individual’s
skillset is appropriate for the task but continues to develop,
and the level of challenge is gradually increased. Our findings
support what others have proposed—incorporating elements that
optimize flow into design games for rehabilitative therapy could
be helpful for promoting adherence and optimizing outcomes
(34, 35).

Perseverance and Steadiness of Use
Steadiness of use was also associated with perseverance.
Users with heavily accelerating steadiness curvatures often had
substantial periods of inactivity shortly after they first started
using FitMi, followed then by periods of increased use. On
the other hand, heavily decelerating users tended to exhibit
less usage as well. They may have experienced burnout from
exercising too much too quickly, becoming fatigued or sore
from exerting themselves, or become bored with the system,
consistent with a novelty effect. Factors unique to FitMi might
have contributed to decreasing session initiation probability as
well. For example, after leveling up, users could not practice
at previously experienced levels of an exercise. Thus, users
eventually reached levels where they could no longer achieve high
success rates. While this design choice forced users to perform
exercises at higher repetition rates over time, the increasing game
failure rates may have decreased session initiation probability.

We highlight the finding that it was the decreased session
probability, rather than the decreased amount of exercise within
a session, that was associated with reduced perseverance. That
is, it was the act of “getting started again” rather than “finishing
a session” that users struggled with. Indeed, the smaller and
larger time constants found in the analysis of individuals’
initiation decrease may reflect two processes, a brief period of
higher use due to a novelty effect (25) and a lower use period
with slower decay due to the individual’s intrinsic motivation,
an important clue for rehabilitation technology developers we
discuss further below.

Information Contained in the Distribution
of Usage
Total repetitions and exercise time were distributed log-
normally. Thus, a large portion of users had low perseverance,
while a small portion of users performed substantially more
than their peers (recall that the top 1% of users used the
system ∼25 times more than the average user). It is important
to notice, however, that the data were distributed smoothly,
preventing clear clustering of users into low, moderate, or
high performing users. Log-normal distributions arise in many
branches of science, including analyses of human behavior (36)
and characterizations of neurophysiological parameters (37),
because they occur in samples where the mean value is low, the

variance is large, and the data cannot take negative values (36),
conditions met in the present study. Mechanistically, log-normal
distributions arise as the result of a multiplicative effect of small
independent factors, such as repeated choices (36, 38). For the
population we studied, it may be that the multiplicative effect of
the daily choices the users made on whether or not to initiate a
session caused a log-normal distribution of perseverance to arise
(32). If so, another important clue for rehabilitation technology
developers provided by this analysis is to consider various means
to influence daily choices that users make to exercise or not.

Limitations and Future Work
There are several potential limitations of this work. The data
in this study are anonymous, and we did not have access to
any demographic or clinical data about users beyond their
direct interactions with the system. For example, our measure of
impairment was inferred from exercise rates and only partially
characterized impairment. Biological, psychological, and socio-
environmental measures are key predictors of health outcomes
(39), as well as rehabilitation outcomes for people who have
had a stroke (40–42). Due to the anonymity of the data, our
analysis did not include any biopsychosocial measures, and this
limits our ability to compare results with other work on stroke.
It is also important to note that our results are likely biased
toward a specific type of person, limiting their generalizability.
Namely, we studied people who: (a) could afford the technology
and had internet access (which allowed the anonymous data
collection); (b) had a profile of disabilities that did not inhibit
them from engaging with the system (e.g. sufficient visual and
cognitive capabilities); and (c) were motivated enough to seek out
a technology to continue rehabilitation. As FitMi is marketed for
stroke rehabilitation, we assume thatmost users have experienced
a stroke, but other types of users undergoing rehabilitation were
possible (e.g., people with spinal cord injury or cerebral palsy),
and this may have introduced further variability. An important
direction for future research is to understand the psychological,
demographic, and clinical characteristics of FitMi users that also
modulate perseverance (43), potentially through surveys sent
to FitMi users. A small fraction of data entries for a given
user may have been generated by other people with access to
the device playing with the system, or by a clinical facility
purchasing the home version of FitMi and using a single user
ID with multiple patients. We filtered potentially anomalous
users to limit their impact. Despite these limitations, we believe
the present study provides a first-of-its-kind demonstration that
inferences about perseverance with rehabilitation exercise can
be drawn even from anonymous patterns of sensor usage. Of
note, analyses drawn from anonymous usage patterns maintain
privacy while also providing insights into how to optimize home
rehabilitation systems.

A key principle supported by our analysis is that providers
of home rehabilitation exercises should design programs that
appropriately challenge the participant. High levels of success
are desirable, but 100% success rates should be avoided. The
company that produces FitMi has already implemented software
changes based on these findings. The changes allow less successful
users to increase their success, and highly successful users to
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increase their challenge more quickly. Another approach could
be to incorporate an initial assessment of user capability into the
home exercise system, and then to titrate challenge based on the
assessment results.

Our findings also suggest that providers of home
rehabilitation exercises should incorporate methods to sustain
session initiation. Beyond factors intrinsic to the exercises such
as challenge, extrinsic factors, such as providing reminders to
exercise (44), having a therapist monitor achieved amounts
of exercise (45), encouraging the involvement of caregivers
(46), promoting self-efficacy through actions plans or goal
setting (47), or embedding the exercise program in a supportive
community (48) will also likely play a critical role in making
home rehabilitation effective and could be examined in future
studies with FitMi.

Other important directions for future research include the
following. It is feasible to conduct large-scale experiments to test
factors that influence perseverance—such as challenge level or
other factors—by releasing modified versions of the software to
subgroups of users; indeed, as mentioned above, the company
that produces FitMi has already implemented a new version
of the FitMi software based on the findings of this study, and
as users accumulate, it will be possible to test whether these
changes improved perseverance. It is also feasible to quantify
the exact amount of exercise associated with generating a
therapeutic benefit on movement capability, which would help
settle an open, fundamental question in rehabilitation practice
(49, 50). Using artificial intelligence to predict dropout and to
automatically send encouragements or adapt system parameters
is an interesting possibility (51). Finally, an important direction
for future research is to study the “super-users” who persevered
the most to try to determine what factors contributed to their
extreme behavior. Perhaps by understanding the motivational
characteristics of super-users, strategies could be developed to
help other users better persevere in their rehabilitation.
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Data Cleaning
Users with the following characteristics were removed from the
data set:

• User accounts created before July 1st, 2017 (when FitMi
became commercially available), because these users were test
users.

• Users with “clinic” or “generic” installations of FitMi, because
this work is focused on home rehabilitation. Users with
“home” installations were kept.

• Users labelled as a “Super User” and/or “Staff”.
• Users with entries from other Flint Rehab software, because

they are likely test users.
• Users with multiple/inconsistent Install Type values, because

they are likely test users.
• Users that reverted from the new/current version of the FitMi

software to the old version (this only occurred with one user).
• Users that accessed the FitMi software but never performed

any exercises.
• Users with region and exercise name entries not found in

commercial software, because they are likely test users.
• Users that owned the FitMi software for less than eight weeks

since their first exercise, to exclude users that had recently
bought FitMi.

Frontiers in Neurology | www.frontiersin.org 12 June 2022 | Volume 13 | Article 896298

mailto:dzondervan@flintrehab.com
https://www.frontiersin.org/articles/10.3389/fneur.2022.896298/full#supplementary-material
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ramos Muñoz et al. Large Data Home Rehabilitation Perseverance

• Users whose first exercise did not start at level zero, because
they have data that is either missing or corrupted.

Steadiness Curvature Function
Our steadiness curvature function was based on the smooth
approximation function, f (x) =

√
x2 + C, from (27). Various

modifications and transformations were used to ensure that our

steadiness curvature function started at 0 and ended at 100, while
maintaining symmetry across the diagonal (i.e., y = −x + 100
in Figure 3).

Supplementary Figure S1 | Percent distribution of all exercises done in the (A)

Arms, (B) Core, (C) Legs, and (D) Hands regions by users in the study. The

exercises for each region are plotted in order of difficulty from left to right. Initially

the first three exercises of each region are unlocked. As the user levels up,

exercises are unlocked in order of increasing difficulty.
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